aboutsummaryrefslogtreecommitdiffstats
path: root/arch/arm/plat-omap/clock.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/arm/plat-omap/clock.c')
-rw-r--r--arch/arm/plat-omap/clock.c1323
1 files changed, 1323 insertions, 0 deletions
diff --git a/arch/arm/plat-omap/clock.c b/arch/arm/plat-omap/clock.c
new file mode 100644
index 000000000000..59d91b3262ba
--- /dev/null
+++ b/arch/arm/plat-omap/clock.c
@@ -0,0 +1,1323 @@
1/*
2 * linux/arch/arm/plat-omap/clock.c
3 *
4 * Copyright (C) 2004 Nokia corporation
5 * Written by Tuukka Tikkanen <tuukka.tikkanen@elektrobit.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/module.h>
12#include <linux/kernel.h>
13#include <linux/list.h>
14#include <linux/errno.h>
15#include <linux/err.h>
16
17#include <asm/io.h>
18#include <asm/semaphore.h>
19#include <asm/hardware/clock.h>
20#include <asm/arch/board.h>
21#include <asm/arch/usb.h>
22
23#include "clock.h"
24
25static LIST_HEAD(clocks);
26static DECLARE_MUTEX(clocks_sem);
27static DEFINE_SPINLOCK(clockfw_lock);
28static void propagate_rate(struct clk * clk);
29/* UART clock function */
30static int set_uart_rate(struct clk * clk, unsigned long rate);
31/* External clock (MCLK & BCLK) functions */
32static int set_ext_clk_rate(struct clk * clk, unsigned long rate);
33static long round_ext_clk_rate(struct clk * clk, unsigned long rate);
34static void init_ext_clk(struct clk * clk);
35/* MPU virtual clock functions */
36static int select_table_rate(struct clk * clk, unsigned long rate);
37static long round_to_table_rate(struct clk * clk, unsigned long rate);
38void clk_setdpll(__u16, __u16);
39
40static struct mpu_rate rate_table[] = {
41 /* MPU MHz, xtal MHz, dpll1 MHz, CKCTL, DPLL_CTL
42 * armdiv, dspdiv, dspmmu, tcdiv, perdiv, lcddiv
43 */
44#if defined(CONFIG_OMAP_ARM_216MHZ)
45 { 216000000, 12000000, 216000000, 0x050d, 0x2910 }, /* 1/1/2/2/2/8 */
46#endif
47#if defined(CONFIG_OMAP_ARM_195MHZ)
48 { 195000000, 13000000, 195000000, 0x050e, 0x2790 }, /* 1/1/2/2/4/8 */
49#endif
50#if defined(CONFIG_OMAP_ARM_192MHZ)
51 { 192000000, 19200000, 192000000, 0x050f, 0x2510 }, /* 1/1/2/2/8/8 */
52 { 192000000, 12000000, 192000000, 0x050f, 0x2810 }, /* 1/1/2/2/8/8 */
53 { 96000000, 12000000, 192000000, 0x055f, 0x2810 }, /* 2/2/2/2/8/8 */
54 { 48000000, 12000000, 192000000, 0x0baf, 0x2810 }, /* 4/8/4/4/8/8 */
55 { 24000000, 12000000, 192000000, 0x0fff, 0x2810 }, /* 8/8/8/8/8/8 */
56#endif
57#if defined(CONFIG_OMAP_ARM_182MHZ)
58 { 182000000, 13000000, 182000000, 0x050e, 0x2710 }, /* 1/1/2/2/4/8 */
59#endif
60#if defined(CONFIG_OMAP_ARM_168MHZ)
61 { 168000000, 12000000, 168000000, 0x010f, 0x2710 }, /* 1/1/1/2/8/8 */
62#endif
63#if defined(CONFIG_OMAP_ARM_150MHZ)
64 { 150000000, 12000000, 150000000, 0x010a, 0x2cb0 }, /* 1/1/1/2/4/4 */
65#endif
66#if defined(CONFIG_OMAP_ARM_120MHZ)
67 { 120000000, 12000000, 120000000, 0x010a, 0x2510 }, /* 1/1/1/2/4/4 */
68#endif
69#if defined(CONFIG_OMAP_ARM_96MHZ)
70 { 96000000, 12000000, 96000000, 0x0005, 0x2410 }, /* 1/1/1/1/2/2 */
71#endif
72#if defined(CONFIG_OMAP_ARM_60MHZ)
73 { 60000000, 12000000, 60000000, 0x0005, 0x2290 }, /* 1/1/1/1/2/2 */
74#endif
75#if defined(CONFIG_OMAP_ARM_30MHZ)
76 { 30000000, 12000000, 60000000, 0x0555, 0x2290 }, /* 2/2/2/2/2/2 */
77#endif
78 { 0, 0, 0, 0, 0 },
79};
80
81
82static void ckctl_recalc(struct clk * clk);
83int __clk_enable(struct clk *clk);
84void __clk_disable(struct clk *clk);
85void __clk_unuse(struct clk *clk);
86int __clk_use(struct clk *clk);
87
88
89static void followparent_recalc(struct clk * clk)
90{
91 clk->rate = clk->parent->rate;
92}
93
94
95static void watchdog_recalc(struct clk * clk)
96{
97 clk->rate = clk->parent->rate / 14;
98}
99
100static void uart_recalc(struct clk * clk)
101{
102 unsigned int val = omap_readl(clk->enable_reg);
103 if (val & clk->enable_bit)
104 clk->rate = 48000000;
105 else
106 clk->rate = 12000000;
107}
108
109static struct clk ck_ref = {
110 .name = "ck_ref",
111 .rate = 12000000,
112 .flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
113 ALWAYS_ENABLED,
114};
115
116static struct clk ck_dpll1 = {
117 .name = "ck_dpll1",
118 .parent = &ck_ref,
119 .flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
120 RATE_PROPAGATES | ALWAYS_ENABLED,
121};
122
123static struct clk ck_dpll1out = {
124 .name = "ck_dpll1out",
125 .parent = &ck_dpll1,
126 .flags = CLOCK_IN_OMAP16XX,
127 .enable_reg = ARM_IDLECT2,
128 .enable_bit = EN_CKOUT_ARM,
129 .recalc = &followparent_recalc,
130};
131
132static struct clk arm_ck = {
133 .name = "arm_ck",
134 .parent = &ck_dpll1,
135 .flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
136 RATE_CKCTL | RATE_PROPAGATES | ALWAYS_ENABLED,
137 .rate_offset = CKCTL_ARMDIV_OFFSET,
138 .recalc = &ckctl_recalc,
139};
140
141static struct clk armper_ck = {
142 .name = "armper_ck",
143 .parent = &ck_dpll1,
144 .flags = CLOCK_IN_OMAP730 | CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
145 RATE_CKCTL,
146 .enable_reg = ARM_IDLECT2,
147 .enable_bit = EN_PERCK,
148 .rate_offset = CKCTL_PERDIV_OFFSET,
149 .recalc = &ckctl_recalc,
150};
151
152static struct clk arm_gpio_ck = {
153 .name = "arm_gpio_ck",
154 .parent = &ck_dpll1,
155 .flags = CLOCK_IN_OMAP1510,
156 .enable_reg = ARM_IDLECT2,
157 .enable_bit = EN_GPIOCK,
158 .recalc = &followparent_recalc,
159};
160
161static struct clk armxor_ck = {
162 .name = "armxor_ck",
163 .parent = &ck_ref,
164 .flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX,
165 .enable_reg = ARM_IDLECT2,
166 .enable_bit = EN_XORPCK,
167 .recalc = &followparent_recalc,
168};
169
170static struct clk armtim_ck = {
171 .name = "armtim_ck",
172 .parent = &ck_ref,
173 .flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX,
174 .enable_reg = ARM_IDLECT2,
175 .enable_bit = EN_TIMCK,
176 .recalc = &followparent_recalc,
177};
178
179static struct clk armwdt_ck = {
180 .name = "armwdt_ck",
181 .parent = &ck_ref,
182 .flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX,
183 .enable_reg = ARM_IDLECT2,
184 .enable_bit = EN_WDTCK,
185 .recalc = &watchdog_recalc,
186};
187
188static struct clk arminth_ck16xx = {
189 .name = "arminth_ck",
190 .parent = &arm_ck,
191 .flags = CLOCK_IN_OMAP16XX | ALWAYS_ENABLED,
192 .recalc = &followparent_recalc,
193 /* Note: On 16xx the frequency can be divided by 2 by programming
194 * ARM_CKCTL:ARM_INTHCK_SEL(14) to 1
195 *
196 * 1510 version is in TC clocks.
197 */
198};
199
200static struct clk dsp_ck = {
201 .name = "dsp_ck",
202 .parent = &ck_dpll1,
203 .flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
204 RATE_CKCTL,
205 .enable_reg = ARM_CKCTL,
206 .enable_bit = EN_DSPCK,
207 .rate_offset = CKCTL_DSPDIV_OFFSET,
208 .recalc = &ckctl_recalc,
209};
210
211static struct clk dspmmu_ck = {
212 .name = "dspmmu_ck",
213 .parent = &ck_dpll1,
214 .flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
215 RATE_CKCTL | ALWAYS_ENABLED,
216 .rate_offset = CKCTL_DSPMMUDIV_OFFSET,
217 .recalc = &ckctl_recalc,
218};
219
220static struct clk dspper_ck = {
221 .name = "dspper_ck",
222 .parent = &ck_dpll1,
223 .flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
224 RATE_CKCTL | DSP_DOMAIN_CLOCK | VIRTUAL_IO_ADDRESS,
225 .enable_reg = DSP_IDLECT2,
226 .enable_bit = EN_PERCK,
227 .rate_offset = CKCTL_PERDIV_OFFSET,
228 .recalc = &followparent_recalc,
229 //.recalc = &ckctl_recalc,
230};
231
232static struct clk dspxor_ck = {
233 .name = "dspxor_ck",
234 .parent = &ck_ref,
235 .flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
236 DSP_DOMAIN_CLOCK | VIRTUAL_IO_ADDRESS,
237 .enable_reg = DSP_IDLECT2,
238 .enable_bit = EN_XORPCK,
239 .recalc = &followparent_recalc,
240};
241
242static struct clk dsptim_ck = {
243 .name = "dsptim_ck",
244 .parent = &ck_ref,
245 .flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
246 DSP_DOMAIN_CLOCK | VIRTUAL_IO_ADDRESS,
247 .enable_reg = DSP_IDLECT2,
248 .enable_bit = EN_DSPTIMCK,
249 .recalc = &followparent_recalc,
250};
251
252static struct clk tc_ck = {
253 .name = "tc_ck",
254 .parent = &ck_dpll1,
255 .flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX | CLOCK_IN_OMAP730 |
256 RATE_CKCTL | RATE_PROPAGATES | ALWAYS_ENABLED,
257 .rate_offset = CKCTL_TCDIV_OFFSET,
258 .recalc = &ckctl_recalc,
259};
260
261static struct clk arminth_ck1510 = {
262 .name = "arminth_ck",
263 .parent = &tc_ck,
264 .flags = CLOCK_IN_OMAP1510 | ALWAYS_ENABLED,
265 .recalc = &followparent_recalc,
266 /* Note: On 1510 the frequency follows TC_CK
267 *
268 * 16xx version is in MPU clocks.
269 */
270};
271
272static struct clk tipb_ck = {
273 .name = "tibp_ck",
274 .parent = &tc_ck,
275 .flags = CLOCK_IN_OMAP1510 | ALWAYS_ENABLED,
276 .recalc = &followparent_recalc,
277};
278
279static struct clk l3_ocpi_ck = {
280 .name = "l3_ocpi_ck",
281 .parent = &tc_ck,
282 .flags = CLOCK_IN_OMAP16XX,
283 .enable_reg = ARM_IDLECT3,
284 .enable_bit = EN_OCPI_CK,
285 .recalc = &followparent_recalc,
286};
287
288static struct clk tc1_ck = {
289 .name = "tc1_ck",
290 .parent = &tc_ck,
291 .flags = CLOCK_IN_OMAP16XX,
292 .enable_reg = ARM_IDLECT3,
293 .enable_bit = EN_TC1_CK,
294 .recalc = &followparent_recalc,
295};
296
297static struct clk tc2_ck = {
298 .name = "tc2_ck",
299 .parent = &tc_ck,
300 .flags = CLOCK_IN_OMAP16XX,
301 .enable_reg = ARM_IDLECT3,
302 .enable_bit = EN_TC2_CK,
303 .recalc = &followparent_recalc,
304};
305
306static struct clk dma_ck = {
307 .name = "dma_ck",
308 .parent = &tc_ck,
309 .flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
310 ALWAYS_ENABLED,
311 .recalc = &followparent_recalc,
312};
313
314static struct clk dma_lcdfree_ck = {
315 .name = "dma_lcdfree_ck",
316 .parent = &tc_ck,
317 .flags = CLOCK_IN_OMAP16XX | ALWAYS_ENABLED,
318 .recalc = &followparent_recalc,
319};
320
321static struct clk api_ck = {
322 .name = "api_ck",
323 .parent = &tc_ck,
324 .flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX,
325 .enable_reg = ARM_IDLECT2,
326 .enable_bit = EN_APICK,
327 .recalc = &followparent_recalc,
328};
329
330static struct clk lb_ck = {
331 .name = "lb_ck",
332 .parent = &tc_ck,
333 .flags = CLOCK_IN_OMAP1510,
334 .enable_reg = ARM_IDLECT2,
335 .enable_bit = EN_LBCK,
336 .recalc = &followparent_recalc,
337};
338
339static struct clk rhea1_ck = {
340 .name = "rhea1_ck",
341 .parent = &tc_ck,
342 .flags = CLOCK_IN_OMAP16XX | ALWAYS_ENABLED,
343 .recalc = &followparent_recalc,
344};
345
346static struct clk rhea2_ck = {
347 .name = "rhea2_ck",
348 .parent = &tc_ck,
349 .flags = CLOCK_IN_OMAP16XX | ALWAYS_ENABLED,
350 .recalc = &followparent_recalc,
351};
352
353static struct clk lcd_ck = {
354 .name = "lcd_ck",
355 .parent = &ck_dpll1,
356 .flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX | CLOCK_IN_OMAP730 |
357 RATE_CKCTL,
358 .enable_reg = ARM_IDLECT2,
359 .enable_bit = EN_LCDCK,
360 .rate_offset = CKCTL_LCDDIV_OFFSET,
361 .recalc = &ckctl_recalc,
362};
363
364static struct clk uart1_1510 = {
365 .name = "uart1_ck",
366 /* Direct from ULPD, no parent */
367 .rate = 12000000,
368 .flags = CLOCK_IN_OMAP1510 | ENABLE_REG_32BIT | ALWAYS_ENABLED,
369 .enable_reg = MOD_CONF_CTRL_0,
370 .enable_bit = 29, /* Chooses between 12MHz and 48MHz */
371 .set_rate = &set_uart_rate,
372 .recalc = &uart_recalc,
373};
374
375static struct clk uart1_16xx = {
376 .name = "uart1_ck",
377 /* Direct from ULPD, no parent */
378 .rate = 48000000,
379 .flags = CLOCK_IN_OMAP16XX | RATE_FIXED | ENABLE_REG_32BIT,
380 .enable_reg = MOD_CONF_CTRL_0,
381 .enable_bit = 29,
382};
383
384static struct clk uart2_ck = {
385 .name = "uart2_ck",
386 /* Direct from ULPD, no parent */
387 .rate = 12000000,
388 .flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX | ENABLE_REG_32BIT,
389 .enable_reg = MOD_CONF_CTRL_0,
390 .enable_bit = 30, /* Chooses between 12MHz and 48MHz */
391 .set_rate = &set_uart_rate,
392 .recalc = &uart_recalc,
393};
394
395static struct clk uart3_1510 = {
396 .name = "uart3_ck",
397 /* Direct from ULPD, no parent */
398 .rate = 12000000,
399 .flags = CLOCK_IN_OMAP1510 | ENABLE_REG_32BIT | ALWAYS_ENABLED,
400 .enable_reg = MOD_CONF_CTRL_0,
401 .enable_bit = 31, /* Chooses between 12MHz and 48MHz */
402 .set_rate = &set_uart_rate,
403 .recalc = &uart_recalc,
404};
405
406static struct clk uart3_16xx = {
407 .name = "uart3_ck",
408 /* Direct from ULPD, no parent */
409 .rate = 48000000,
410 .flags = CLOCK_IN_OMAP16XX | RATE_FIXED | ENABLE_REG_32BIT,
411 .enable_reg = MOD_CONF_CTRL_0,
412 .enable_bit = 31,
413};
414
415static struct clk usb_clko = { /* 6 MHz output on W4_USB_CLKO */
416 .name = "usb_clko",
417 /* Direct from ULPD, no parent */
418 .rate = 6000000,
419 .flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
420 RATE_FIXED | ENABLE_REG_32BIT,
421 .enable_reg = ULPD_CLOCK_CTRL,
422 .enable_bit = USB_MCLK_EN_BIT,
423};
424
425static struct clk usb_hhc_ck1510 = {
426 .name = "usb_hhc_ck",
427 /* Direct from ULPD, no parent */
428 .rate = 48000000, /* Actually 2 clocks, 12MHz and 48MHz */
429 .flags = CLOCK_IN_OMAP1510 |
430 RATE_FIXED | ENABLE_REG_32BIT,
431 .enable_reg = MOD_CONF_CTRL_0,
432 .enable_bit = USB_HOST_HHC_UHOST_EN,
433};
434
435static struct clk usb_hhc_ck16xx = {
436 .name = "usb_hhc_ck",
437 /* Direct from ULPD, no parent */
438 .rate = 48000000,
439 /* OTG_SYSCON_2.OTG_PADEN == 0 (not 1510-compatible) */
440 .flags = CLOCK_IN_OMAP16XX |
441 RATE_FIXED | ENABLE_REG_32BIT,
442 .enable_reg = OTG_BASE + 0x08 /* OTG_SYSCON_2 */,
443 .enable_bit = 8 /* UHOST_EN */,
444};
445
446static struct clk mclk_1510 = {
447 .name = "mclk",
448 /* Direct from ULPD, no parent. May be enabled by ext hardware. */
449 .rate = 12000000,
450 .flags = CLOCK_IN_OMAP1510 | RATE_FIXED,
451};
452
453static struct clk mclk_16xx = {
454 .name = "mclk",
455 /* Direct from ULPD, no parent. May be enabled by ext hardware. */
456 .flags = CLOCK_IN_OMAP16XX,
457 .enable_reg = COM_CLK_DIV_CTRL_SEL,
458 .enable_bit = COM_ULPD_PLL_CLK_REQ,
459 .set_rate = &set_ext_clk_rate,
460 .round_rate = &round_ext_clk_rate,
461 .init = &init_ext_clk,
462};
463
464static struct clk bclk_1510 = {
465 .name = "bclk",
466 /* Direct from ULPD, no parent. May be enabled by ext hardware. */
467 .rate = 12000000,
468 .flags = CLOCK_IN_OMAP1510 | RATE_FIXED,
469};
470
471static struct clk bclk_16xx = {
472 .name = "bclk",
473 /* Direct from ULPD, no parent. May be enabled by ext hardware. */
474 .flags = CLOCK_IN_OMAP16XX,
475 .enable_reg = SWD_CLK_DIV_CTRL_SEL,
476 .enable_bit = SWD_ULPD_PLL_CLK_REQ,
477 .set_rate = &set_ext_clk_rate,
478 .round_rate = &round_ext_clk_rate,
479 .init = &init_ext_clk,
480};
481
482static struct clk mmc1_ck = {
483 .name = "mmc1_ck",
484 /* Functional clock is direct from ULPD, interface clock is ARMPER */
485 .parent = &armper_ck,
486 .rate = 48000000,
487 .flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
488 RATE_FIXED | ENABLE_REG_32BIT,
489 .enable_reg = MOD_CONF_CTRL_0,
490 .enable_bit = 23,
491};
492
493static struct clk mmc2_ck = {
494 .name = "mmc2_ck",
495 /* Functional clock is direct from ULPD, interface clock is ARMPER */
496 .parent = &armper_ck,
497 .rate = 48000000,
498 .flags = CLOCK_IN_OMAP16XX |
499 RATE_FIXED | ENABLE_REG_32BIT,
500 .enable_reg = MOD_CONF_CTRL_0,
501 .enable_bit = 20,
502};
503
504static struct clk virtual_ck_mpu = {
505 .name = "mpu",
506 .flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
507 VIRTUAL_CLOCK | ALWAYS_ENABLED,
508 .parent = &arm_ck, /* Is smarter alias for */
509 .recalc = &followparent_recalc,
510 .set_rate = &select_table_rate,
511 .round_rate = &round_to_table_rate,
512};
513
514
515static struct clk * onchip_clks[] = {
516 /* non-ULPD clocks */
517 &ck_ref,
518 &ck_dpll1,
519 /* CK_GEN1 clocks */
520 &ck_dpll1out,
521 &arm_ck,
522 &armper_ck,
523 &arm_gpio_ck,
524 &armxor_ck,
525 &armtim_ck,
526 &armwdt_ck,
527 &arminth_ck1510, &arminth_ck16xx,
528 /* CK_GEN2 clocks */
529 &dsp_ck,
530 &dspmmu_ck,
531 &dspper_ck,
532 &dspxor_ck,
533 &dsptim_ck,
534 /* CK_GEN3 clocks */
535 &tc_ck,
536 &tipb_ck,
537 &l3_ocpi_ck,
538 &tc1_ck,
539 &tc2_ck,
540 &dma_ck,
541 &dma_lcdfree_ck,
542 &api_ck,
543 &lb_ck,
544 &rhea1_ck,
545 &rhea2_ck,
546 &lcd_ck,
547 /* ULPD clocks */
548 &uart1_1510,
549 &uart1_16xx,
550 &uart2_ck,
551 &uart3_1510,
552 &uart3_16xx,
553 &usb_clko,
554 &usb_hhc_ck1510, &usb_hhc_ck16xx,
555 &mclk_1510, &mclk_16xx,
556 &bclk_1510, &bclk_16xx,
557 &mmc1_ck,
558 &mmc2_ck,
559 /* Virtual clocks */
560 &virtual_ck_mpu,
561};
562
563struct clk *clk_get(struct device *dev, const char *id)
564{
565 struct clk *p, *clk = ERR_PTR(-ENOENT);
566
567 down(&clocks_sem);
568 list_for_each_entry(p, &clocks, node) {
569 if (strcmp(id, p->name) == 0 && try_module_get(p->owner)) {
570 clk = p;
571 break;
572 }
573 }
574 up(&clocks_sem);
575
576 return clk;
577}
578EXPORT_SYMBOL(clk_get);
579
580
581void clk_put(struct clk *clk)
582{
583 if (clk && !IS_ERR(clk))
584 module_put(clk->owner);
585}
586EXPORT_SYMBOL(clk_put);
587
588
589int __clk_enable(struct clk *clk)
590{
591 __u16 regval16;
592 __u32 regval32;
593
594 if (clk->flags & ALWAYS_ENABLED)
595 return 0;
596
597 if (unlikely(clk->enable_reg == 0)) {
598 printk(KERN_ERR "clock.c: Enable for %s without enable code\n",
599 clk->name);
600 return 0;
601 }
602
603 if (clk->flags & DSP_DOMAIN_CLOCK) {
604 __clk_use(&api_ck);
605 }
606
607 if (clk->flags & ENABLE_REG_32BIT) {
608 if (clk->flags & VIRTUAL_IO_ADDRESS) {
609 regval32 = __raw_readl(clk->enable_reg);
610 regval32 |= (1 << clk->enable_bit);
611 __raw_writel(regval32, clk->enable_reg);
612 } else {
613 regval32 = omap_readl(clk->enable_reg);
614 regval32 |= (1 << clk->enable_bit);
615 omap_writel(regval32, clk->enable_reg);
616 }
617 } else {
618 if (clk->flags & VIRTUAL_IO_ADDRESS) {
619 regval16 = __raw_readw(clk->enable_reg);
620 regval16 |= (1 << clk->enable_bit);
621 __raw_writew(regval16, clk->enable_reg);
622 } else {
623 regval16 = omap_readw(clk->enable_reg);
624 regval16 |= (1 << clk->enable_bit);
625 omap_writew(regval16, clk->enable_reg);
626 }
627 }
628
629 if (clk->flags & DSP_DOMAIN_CLOCK) {
630 __clk_unuse(&api_ck);
631 }
632
633 return 0;
634}
635
636
637void __clk_disable(struct clk *clk)
638{
639 __u16 regval16;
640 __u32 regval32;
641
642 if (clk->enable_reg == 0)
643 return;
644
645 if (clk->flags & DSP_DOMAIN_CLOCK) {
646 __clk_use(&api_ck);
647 }
648
649 if (clk->flags & ENABLE_REG_32BIT) {
650 if (clk->flags & VIRTUAL_IO_ADDRESS) {
651 regval32 = __raw_readl(clk->enable_reg);
652 regval32 &= ~(1 << clk->enable_bit);
653 __raw_writel(regval32, clk->enable_reg);
654 } else {
655 regval32 = omap_readl(clk->enable_reg);
656 regval32 &= ~(1 << clk->enable_bit);
657 omap_writel(regval32, clk->enable_reg);
658 }
659 } else {
660 if (clk->flags & VIRTUAL_IO_ADDRESS) {
661 regval16 = __raw_readw(clk->enable_reg);
662 regval16 &= ~(1 << clk->enable_bit);
663 __raw_writew(regval16, clk->enable_reg);
664 } else {
665 regval16 = omap_readw(clk->enable_reg);
666 regval16 &= ~(1 << clk->enable_bit);
667 omap_writew(regval16, clk->enable_reg);
668 }
669 }
670
671 if (clk->flags & DSP_DOMAIN_CLOCK) {
672 __clk_unuse(&api_ck);
673 }
674}
675
676
677void __clk_unuse(struct clk *clk)
678{
679 if (clk->usecount > 0 && !(--clk->usecount)) {
680 __clk_disable(clk);
681 if (likely(clk->parent))
682 __clk_unuse(clk->parent);
683 }
684}
685
686
687int __clk_use(struct clk *clk)
688{
689 int ret = 0;
690 if (clk->usecount++ == 0) {
691 if (likely(clk->parent))
692 ret = __clk_use(clk->parent);
693
694 if (unlikely(ret != 0)) {
695 clk->usecount--;
696 return ret;
697 }
698
699 ret = __clk_enable(clk);
700
701 if (unlikely(ret != 0) && clk->parent) {
702 __clk_unuse(clk->parent);
703 clk->usecount--;
704 }
705 }
706
707 return ret;
708}
709
710
711int clk_enable(struct clk *clk)
712{
713 unsigned long flags;
714 int ret;
715
716 spin_lock_irqsave(&clockfw_lock, flags);
717 ret = __clk_enable(clk);
718 spin_unlock_irqrestore(&clockfw_lock, flags);
719 return ret;
720}
721EXPORT_SYMBOL(clk_enable);
722
723
724void clk_disable(struct clk *clk)
725{
726 unsigned long flags;
727
728 spin_lock_irqsave(&clockfw_lock, flags);
729 __clk_disable(clk);
730 spin_unlock_irqrestore(&clockfw_lock, flags);
731}
732EXPORT_SYMBOL(clk_disable);
733
734
735int clk_use(struct clk *clk)
736{
737 unsigned long flags;
738 int ret = 0;
739
740 spin_lock_irqsave(&clockfw_lock, flags);
741 ret = __clk_use(clk);
742 spin_unlock_irqrestore(&clockfw_lock, flags);
743 return ret;
744}
745EXPORT_SYMBOL(clk_use);
746
747
748void clk_unuse(struct clk *clk)
749{
750 unsigned long flags;
751
752 spin_lock_irqsave(&clockfw_lock, flags);
753 __clk_unuse(clk);
754 spin_unlock_irqrestore(&clockfw_lock, flags);
755}
756EXPORT_SYMBOL(clk_unuse);
757
758
759int clk_get_usecount(struct clk *clk)
760{
761 return clk->usecount;
762}
763EXPORT_SYMBOL(clk_get_usecount);
764
765
766unsigned long clk_get_rate(struct clk *clk)
767{
768 return clk->rate;
769}
770EXPORT_SYMBOL(clk_get_rate);
771
772
773static __u16 verify_ckctl_value(__u16 newval)
774{
775 /* This function checks for following limitations set
776 * by the hardware (all conditions must be true):
777 * DSPMMU_CK == DSP_CK or DSPMMU_CK == DSP_CK/2
778 * ARM_CK >= TC_CK
779 * DSP_CK >= TC_CK
780 * DSPMMU_CK >= TC_CK
781 *
782 * In addition following rules are enforced:
783 * LCD_CK <= TC_CK
784 * ARMPER_CK <= TC_CK
785 *
786 * However, maximum frequencies are not checked for!
787 */
788 __u8 per_exp;
789 __u8 lcd_exp;
790 __u8 arm_exp;
791 __u8 dsp_exp;
792 __u8 tc_exp;
793 __u8 dspmmu_exp;
794
795 per_exp = (newval >> CKCTL_PERDIV_OFFSET) & 3;
796 lcd_exp = (newval >> CKCTL_LCDDIV_OFFSET) & 3;
797 arm_exp = (newval >> CKCTL_ARMDIV_OFFSET) & 3;
798 dsp_exp = (newval >> CKCTL_DSPDIV_OFFSET) & 3;
799 tc_exp = (newval >> CKCTL_TCDIV_OFFSET) & 3;
800 dspmmu_exp = (newval >> CKCTL_DSPMMUDIV_OFFSET) & 3;
801
802 if (dspmmu_exp < dsp_exp)
803 dspmmu_exp = dsp_exp;
804 if (dspmmu_exp > dsp_exp+1)
805 dspmmu_exp = dsp_exp+1;
806 if (tc_exp < arm_exp)
807 tc_exp = arm_exp;
808 if (tc_exp < dspmmu_exp)
809 tc_exp = dspmmu_exp;
810 if (tc_exp > lcd_exp)
811 lcd_exp = tc_exp;
812 if (tc_exp > per_exp)
813 per_exp = tc_exp;
814
815 newval &= 0xf000;
816 newval |= per_exp << CKCTL_PERDIV_OFFSET;
817 newval |= lcd_exp << CKCTL_LCDDIV_OFFSET;
818 newval |= arm_exp << CKCTL_ARMDIV_OFFSET;
819 newval |= dsp_exp << CKCTL_DSPDIV_OFFSET;
820 newval |= tc_exp << CKCTL_TCDIV_OFFSET;
821 newval |= dspmmu_exp << CKCTL_DSPMMUDIV_OFFSET;
822
823 return newval;
824}
825
826
827static int calc_dsor_exp(struct clk *clk, unsigned long rate)
828{
829 /* Note: If target frequency is too low, this function will return 4,
830 * which is invalid value. Caller must check for this value and act
831 * accordingly.
832 *
833 * Note: This function does not check for following limitations set
834 * by the hardware (all conditions must be true):
835 * DSPMMU_CK == DSP_CK or DSPMMU_CK == DSP_CK/2
836 * ARM_CK >= TC_CK
837 * DSP_CK >= TC_CK
838 * DSPMMU_CK >= TC_CK
839 */
840 unsigned long realrate;
841 struct clk * parent;
842 unsigned dsor_exp;
843
844 if (unlikely(!(clk->flags & RATE_CKCTL)))
845 return -EINVAL;
846
847 parent = clk->parent;
848 if (unlikely(parent == 0))
849 return -EIO;
850
851 realrate = parent->rate;
852 for (dsor_exp=0; dsor_exp<4; dsor_exp++) {
853 if (realrate <= rate)
854 break;
855
856 realrate /= 2;
857 }
858
859 return dsor_exp;
860}
861
862
863static void ckctl_recalc(struct clk * clk)
864{
865 int dsor;
866
867 /* Calculate divisor encoded as 2-bit exponent */
868 if (clk->flags & DSP_DOMAIN_CLOCK) {
869 /* The clock control bits are in DSP domain,
870 * so api_ck is needed for access.
871 * Note that DSP_CKCTL virt addr = phys addr, so
872 * we must use __raw_readw() instead of omap_readw().
873 */
874 __clk_use(&api_ck);
875 dsor = 1 << (3 & (__raw_readw(DSP_CKCTL) >> clk->rate_offset));
876 __clk_unuse(&api_ck);
877 } else {
878 dsor = 1 << (3 & (omap_readw(ARM_CKCTL) >> clk->rate_offset));
879 }
880 if (unlikely(clk->rate == clk->parent->rate / dsor))
881 return; /* No change, quick exit */
882 clk->rate = clk->parent->rate / dsor;
883
884 if (unlikely(clk->flags & RATE_PROPAGATES))
885 propagate_rate(clk);
886}
887
888
889long clk_round_rate(struct clk *clk, unsigned long rate)
890{
891 int dsor_exp;
892
893 if (clk->flags & RATE_FIXED)
894 return clk->rate;
895
896 if (clk->flags & RATE_CKCTL) {
897 dsor_exp = calc_dsor_exp(clk, rate);
898 if (dsor_exp < 0)
899 return dsor_exp;
900 if (dsor_exp > 3)
901 dsor_exp = 3;
902 return clk->parent->rate / (1 << dsor_exp);
903 }
904
905 if(clk->round_rate != 0)
906 return clk->round_rate(clk, rate);
907
908 return clk->rate;
909}
910EXPORT_SYMBOL(clk_round_rate);
911
912
913static void propagate_rate(struct clk * clk)
914{
915 struct clk ** clkp;
916
917 for (clkp = onchip_clks; clkp < onchip_clks+ARRAY_SIZE(onchip_clks); clkp++) {
918 if (likely((*clkp)->parent != clk)) continue;
919 if (likely((*clkp)->recalc))
920 (*clkp)->recalc(*clkp);
921 }
922}
923
924
925static int select_table_rate(struct clk * clk, unsigned long rate)
926{
927 /* Find the highest supported frequency <= rate and switch to it */
928 struct mpu_rate * ptr;
929
930 if (clk != &virtual_ck_mpu)
931 return -EINVAL;
932
933 for (ptr = rate_table; ptr->rate; ptr++) {
934 if (ptr->xtal != ck_ref.rate)
935 continue;
936
937 /* DPLL1 cannot be reprogrammed without risking system crash */
938 if (likely(ck_dpll1.rate!=0) && ptr->pll_rate != ck_dpll1.rate)
939 continue;
940
941 /* Can check only after xtal frequency check */
942 if (ptr->rate <= rate)
943 break;
944 }
945
946 if (!ptr->rate)
947 return -EINVAL;
948
949 if (!ptr->rate)
950 return -EINVAL;
951
952 if (unlikely(ck_dpll1.rate == 0)) {
953 omap_writew(ptr->dpllctl_val, DPLL_CTL);
954 ck_dpll1.rate = ptr->pll_rate;
955 }
956 omap_writew(ptr->ckctl_val, ARM_CKCTL);
957 propagate_rate(&ck_dpll1);
958 return 0;
959}
960
961
962static long round_to_table_rate(struct clk * clk, unsigned long rate)
963{
964 /* Find the highest supported frequency <= rate */
965 struct mpu_rate * ptr;
966 long highest_rate;
967
968 if (clk != &virtual_ck_mpu)
969 return -EINVAL;
970
971 highest_rate = -EINVAL;
972
973 for (ptr = rate_table; ptr->rate; ptr++) {
974 if (ptr->xtal != ck_ref.rate)
975 continue;
976
977 highest_rate = ptr->rate;
978
979 /* Can check only after xtal frequency check */
980 if (ptr->rate <= rate)
981 break;
982 }
983
984 return highest_rate;
985}
986
987
988int clk_set_rate(struct clk *clk, unsigned long rate)
989{
990 int ret = -EINVAL;
991 int dsor_exp;
992 __u16 regval;
993 unsigned long flags;
994
995 if (clk->flags & RATE_CKCTL) {
996 dsor_exp = calc_dsor_exp(clk, rate);
997 if (dsor_exp > 3)
998 dsor_exp = -EINVAL;
999 if (dsor_exp < 0)
1000 return dsor_exp;
1001
1002 spin_lock_irqsave(&clockfw_lock, flags);
1003 regval = omap_readw(ARM_CKCTL);
1004 regval &= ~(3 << clk->rate_offset);
1005 regval |= dsor_exp << clk->rate_offset;
1006 regval = verify_ckctl_value(regval);
1007 omap_writew(regval, ARM_CKCTL);
1008 clk->rate = clk->parent->rate / (1 << dsor_exp);
1009 spin_unlock_irqrestore(&clockfw_lock, flags);
1010 ret = 0;
1011 } else if(clk->set_rate != 0) {
1012 spin_lock_irqsave(&clockfw_lock, flags);
1013 ret = clk->set_rate(clk, rate);
1014 spin_unlock_irqrestore(&clockfw_lock, flags);
1015 }
1016
1017 if (unlikely(ret == 0 && (clk->flags & RATE_PROPAGATES)))
1018 propagate_rate(clk);
1019
1020 return ret;
1021}
1022EXPORT_SYMBOL(clk_set_rate);
1023
1024
1025static unsigned calc_ext_dsor(unsigned long rate)
1026{
1027 unsigned dsor;
1028
1029 /* MCLK and BCLK divisor selection is not linear:
1030 * freq = 96MHz / dsor
1031 *
1032 * RATIO_SEL range: dsor <-> RATIO_SEL
1033 * 0..6: (RATIO_SEL+2) <-> (dsor-2)
1034 * 6..48: (8+(RATIO_SEL-6)*2) <-> ((dsor-8)/2+6)
1035 * Minimum dsor is 2 and maximum is 96. Odd divisors starting from 9
1036 * can not be used.
1037 */
1038 for (dsor = 2; dsor < 96; ++dsor) {
1039 if ((dsor & 1) && dsor > 8)
1040 continue;
1041 if (rate >= 96000000 / dsor)
1042 break;
1043 }
1044 return dsor;
1045}
1046
1047/* Only needed on 1510 */
1048static int set_uart_rate(struct clk * clk, unsigned long rate)
1049{
1050 unsigned int val;
1051
1052 val = omap_readl(clk->enable_reg);
1053 if (rate == 12000000)
1054 val &= ~(1 << clk->enable_bit);
1055 else if (rate == 48000000)
1056 val |= (1 << clk->enable_bit);
1057 else
1058 return -EINVAL;
1059 omap_writel(val, clk->enable_reg);
1060 clk->rate = rate;
1061
1062 return 0;
1063}
1064
1065static int set_ext_clk_rate(struct clk * clk, unsigned long rate)
1066{
1067 unsigned dsor;
1068 __u16 ratio_bits;
1069
1070 dsor = calc_ext_dsor(rate);
1071 clk->rate = 96000000 / dsor;
1072 if (dsor > 8)
1073 ratio_bits = ((dsor - 8) / 2 + 6) << 2;
1074 else
1075 ratio_bits = (dsor - 2) << 2;
1076
1077 ratio_bits |= omap_readw(clk->enable_reg) & ~0xfd;
1078 omap_writew(ratio_bits, clk->enable_reg);
1079
1080 return 0;
1081}
1082
1083
1084static long round_ext_clk_rate(struct clk * clk, unsigned long rate)
1085{
1086 return 96000000 / calc_ext_dsor(rate);
1087}
1088
1089
1090static void init_ext_clk(struct clk * clk)
1091{
1092 unsigned dsor;
1093 __u16 ratio_bits;
1094
1095 /* Determine current rate and ensure clock is based on 96MHz APLL */
1096 ratio_bits = omap_readw(clk->enable_reg) & ~1;
1097 omap_writew(ratio_bits, clk->enable_reg);
1098
1099 ratio_bits = (ratio_bits & 0xfc) >> 2;
1100 if (ratio_bits > 6)
1101 dsor = (ratio_bits - 6) * 2 + 8;
1102 else
1103 dsor = ratio_bits + 2;
1104
1105 clk-> rate = 96000000 / dsor;
1106}
1107
1108
1109int clk_register(struct clk *clk)
1110{
1111 down(&clocks_sem);
1112 list_add(&clk->node, &clocks);
1113 if (clk->init)
1114 clk->init(clk);
1115 up(&clocks_sem);
1116 return 0;
1117}
1118EXPORT_SYMBOL(clk_register);
1119
1120void clk_unregister(struct clk *clk)
1121{
1122 down(&clocks_sem);
1123 list_del(&clk->node);
1124 up(&clocks_sem);
1125}
1126EXPORT_SYMBOL(clk_unregister);
1127
1128#ifdef CONFIG_OMAP_RESET_CLOCKS
1129/*
1130 * Resets some clocks that may be left on from bootloader,
1131 * but leaves serial clocks on. See also omap_late_clk_reset().
1132 */
1133static inline void omap_early_clk_reset(void)
1134{
1135 //omap_writel(0x3 << 29, MOD_CONF_CTRL_0);
1136}
1137#else
1138#define omap_early_clk_reset() {}
1139#endif
1140
1141int __init clk_init(void)
1142{
1143 struct clk ** clkp;
1144 const struct omap_clock_config *info;
1145 int crystal_type = 0; /* Default 12 MHz */
1146
1147 omap_early_clk_reset();
1148
1149 for (clkp = onchip_clks; clkp < onchip_clks+ARRAY_SIZE(onchip_clks); clkp++) {
1150 if (((*clkp)->flags &CLOCK_IN_OMAP1510) && cpu_is_omap1510()) {
1151 clk_register(*clkp);
1152 continue;
1153 }
1154
1155 if (((*clkp)->flags &CLOCK_IN_OMAP16XX) && cpu_is_omap16xx()) {
1156 clk_register(*clkp);
1157 continue;
1158 }
1159
1160 if (((*clkp)->flags &CLOCK_IN_OMAP730) && cpu_is_omap730()) {
1161 clk_register(*clkp);
1162 continue;
1163 }
1164 }
1165
1166 info = omap_get_config(OMAP_TAG_CLOCK, struct omap_clock_config);
1167 if (info != NULL) {
1168 if (!cpu_is_omap1510())
1169 crystal_type = info->system_clock_type;
1170 }
1171
1172#if defined(CONFIG_ARCH_OMAP730)
1173 ck_ref.rate = 13000000;
1174#elif defined(CONFIG_ARCH_OMAP16XX)
1175 if (crystal_type == 2)
1176 ck_ref.rate = 19200000;
1177#endif
1178
1179 printk("Clocks: ARM_SYSST: 0x%04x DPLL_CTL: 0x%04x ARM_CKCTL: 0x%04x\n",
1180 omap_readw(ARM_SYSST), omap_readw(DPLL_CTL),
1181 omap_readw(ARM_CKCTL));
1182
1183 /* We want to be in syncronous scalable mode */
1184 omap_writew(0x1000, ARM_SYSST);
1185
1186#ifdef CONFIG_OMAP_CLOCKS_SET_BY_BOOTLOADER
1187 /* Use values set by bootloader. Determine PLL rate and recalculate
1188 * dependent clocks as if kernel had changed PLL or divisors.
1189 */
1190 {
1191 unsigned pll_ctl_val = omap_readw(DPLL_CTL);
1192
1193 ck_dpll1.rate = ck_ref.rate; /* Base xtal rate */
1194 if (pll_ctl_val & 0x10) {
1195 /* PLL enabled, apply multiplier and divisor */
1196 if (pll_ctl_val & 0xf80)
1197 ck_dpll1.rate *= (pll_ctl_val & 0xf80) >> 7;
1198 ck_dpll1.rate /= ((pll_ctl_val & 0x60) >> 5) + 1;
1199 } else {
1200 /* PLL disabled, apply bypass divisor */
1201 switch (pll_ctl_val & 0xc) {
1202 case 0:
1203 break;
1204 case 0x4:
1205 ck_dpll1.rate /= 2;
1206 break;
1207 default:
1208 ck_dpll1.rate /= 4;
1209 break;
1210 }
1211 }
1212 }
1213 propagate_rate(&ck_dpll1);
1214#else
1215 /* Find the highest supported frequency and enable it */
1216 if (select_table_rate(&virtual_ck_mpu, ~0)) {
1217 printk(KERN_ERR "System frequencies not set. Check your config.\n");
1218 /* Guess sane values (60MHz) */
1219 omap_writew(0x2290, DPLL_CTL);
1220 omap_writew(0x1005, ARM_CKCTL);
1221 ck_dpll1.rate = 60000000;
1222 propagate_rate(&ck_dpll1);
1223 }
1224#endif
1225 /* Cache rates for clocks connected to ck_ref (not dpll1) */
1226 propagate_rate(&ck_ref);
1227 printk(KERN_INFO "Clocking rate (xtal/DPLL1/MPU): %ld.%01ld/%ld/%ld MHz\n",
1228 ck_ref.rate / 1000000, (ck_ref.rate / 100000) % 10,
1229 ck_dpll1.rate, arm_ck.rate);
1230
1231#ifdef CONFIG_MACH_OMAP_PERSEUS2
1232 /* Select slicer output as OMAP input clock */
1233 omap_writew(omap_readw(OMAP730_PCC_UPLD_CTRL) & ~0x1, OMAP730_PCC_UPLD_CTRL);
1234#endif
1235
1236 /* Turn off DSP and ARM_TIMXO. Make sure ARM_INTHCK is not divided */
1237 omap_writew(omap_readw(ARM_CKCTL) & 0x0fff, ARM_CKCTL);
1238
1239 /* Put DSP/MPUI into reset until needed */
1240 omap_writew(0, ARM_RSTCT1);
1241 omap_writew(1, ARM_RSTCT2);
1242 omap_writew(0x400, ARM_IDLECT1);
1243
1244 /*
1245 * According to OMAP5910 Erratum SYS_DMA_1, bit DMACK_REQ (bit 8)
1246 * of the ARM_IDLECT2 register must be set to zero. The power-on
1247 * default value of this bit is one.
1248 */
1249 omap_writew(0x0000, ARM_IDLECT2); /* Turn LCD clock off also */
1250
1251 /*
1252 * Only enable those clocks we will need, let the drivers
1253 * enable other clocks as necessary
1254 */
1255 clk_use(&armper_ck);
1256 clk_use(&armxor_ck);
1257 clk_use(&armtim_ck);
1258
1259 if (cpu_is_omap1510())
1260 clk_enable(&arm_gpio_ck);
1261
1262 return 0;
1263}
1264
1265
1266#ifdef CONFIG_OMAP_RESET_CLOCKS
1267
1268static int __init omap_late_clk_reset(void)
1269{
1270 /* Turn off all unused clocks */
1271 struct clk *p;
1272 __u32 regval32;
1273
1274 omap_writew(0, SOFT_REQ_REG);
1275 omap_writew(0, SOFT_REQ_REG2);
1276
1277 list_for_each_entry(p, &clocks, node) {
1278 if (p->usecount > 0 || (p->flags & ALWAYS_ENABLED) ||
1279 p->enable_reg == 0)
1280 continue;
1281
1282 /* Assume no DSP clocks have been activated by bootloader */
1283 if (p->flags & DSP_DOMAIN_CLOCK)
1284 continue;
1285
1286 /* Is the clock already disabled? */
1287 if (p->flags & ENABLE_REG_32BIT) {
1288 if (p->flags & VIRTUAL_IO_ADDRESS)
1289 regval32 = __raw_readl(p->enable_reg);
1290 else
1291 regval32 = omap_readl(p->enable_reg);
1292 } else {
1293 if (p->flags & VIRTUAL_IO_ADDRESS)
1294 regval32 = __raw_readw(p->enable_reg);
1295 else
1296 regval32 = omap_readw(p->enable_reg);
1297 }
1298
1299 if ((regval32 & (1 << p->enable_bit)) == 0)
1300 continue;
1301
1302 /* FIXME: This clock seems to be necessary but no-one
1303 * has asked for its activation. */
1304 if (p == &tc2_ck // FIX: pm.c (SRAM), CCP, Camera
1305 || p == &ck_dpll1out // FIX: SoSSI, SSR
1306 || p == &arm_gpio_ck // FIX: GPIO code for 1510
1307 ) {
1308 printk(KERN_INFO "FIXME: Clock \"%s\" seems unused\n",
1309 p->name);
1310 continue;
1311 }
1312
1313 printk(KERN_INFO "Disabling unused clock \"%s\"... ", p->name);
1314 __clk_disable(p);
1315 printk(" done\n");
1316 }
1317
1318 return 0;
1319}
1320
1321late_initcall(omap_late_clk_reset);
1322
1323#endif