diff options
Diffstat (limited to 'arch/arm/nwfpe/softfloat-macros')
-rw-r--r-- | arch/arm/nwfpe/softfloat-macros | 740 |
1 files changed, 740 insertions, 0 deletions
diff --git a/arch/arm/nwfpe/softfloat-macros b/arch/arm/nwfpe/softfloat-macros new file mode 100644 index 000000000000..5469989f2c5e --- /dev/null +++ b/arch/arm/nwfpe/softfloat-macros | |||
@@ -0,0 +1,740 @@ | |||
1 | |||
2 | /* | ||
3 | =============================================================================== | ||
4 | |||
5 | This C source fragment is part of the SoftFloat IEC/IEEE Floating-point | ||
6 | Arithmetic Package, Release 2. | ||
7 | |||
8 | Written by John R. Hauser. This work was made possible in part by the | ||
9 | International Computer Science Institute, located at Suite 600, 1947 Center | ||
10 | Street, Berkeley, California 94704. Funding was partially provided by the | ||
11 | National Science Foundation under grant MIP-9311980. The original version | ||
12 | of this code was written as part of a project to build a fixed-point vector | ||
13 | processor in collaboration with the University of California at Berkeley, | ||
14 | overseen by Profs. Nelson Morgan and John Wawrzynek. More information | ||
15 | is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ | ||
16 | arithmetic/softfloat.html'. | ||
17 | |||
18 | THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort | ||
19 | has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT | ||
20 | TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO | ||
21 | PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY | ||
22 | AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. | ||
23 | |||
24 | Derivative works are acceptable, even for commercial purposes, so long as | ||
25 | (1) they include prominent notice that the work is derivative, and (2) they | ||
26 | include prominent notice akin to these three paragraphs for those parts of | ||
27 | this code that are retained. | ||
28 | |||
29 | =============================================================================== | ||
30 | */ | ||
31 | |||
32 | /* | ||
33 | ------------------------------------------------------------------------------- | ||
34 | Shifts `a' right by the number of bits given in `count'. If any nonzero | ||
35 | bits are shifted off, they are ``jammed'' into the least significant bit of | ||
36 | the result by setting the least significant bit to 1. The value of `count' | ||
37 | can be arbitrarily large; in particular, if `count' is greater than 32, the | ||
38 | result will be either 0 or 1, depending on whether `a' is zero or nonzero. | ||
39 | The result is stored in the location pointed to by `zPtr'. | ||
40 | ------------------------------------------------------------------------------- | ||
41 | */ | ||
42 | INLINE void shift32RightJamming( bits32 a, int16 count, bits32 *zPtr ) | ||
43 | { | ||
44 | bits32 z; | ||
45 | if ( count == 0 ) { | ||
46 | z = a; | ||
47 | } | ||
48 | else if ( count < 32 ) { | ||
49 | z = ( a>>count ) | ( ( a<<( ( - count ) & 31 ) ) != 0 ); | ||
50 | } | ||
51 | else { | ||
52 | z = ( a != 0 ); | ||
53 | } | ||
54 | *zPtr = z; | ||
55 | } | ||
56 | |||
57 | /* | ||
58 | ------------------------------------------------------------------------------- | ||
59 | Shifts `a' right by the number of bits given in `count'. If any nonzero | ||
60 | bits are shifted off, they are ``jammed'' into the least significant bit of | ||
61 | the result by setting the least significant bit to 1. The value of `count' | ||
62 | can be arbitrarily large; in particular, if `count' is greater than 64, the | ||
63 | result will be either 0 or 1, depending on whether `a' is zero or nonzero. | ||
64 | The result is stored in the location pointed to by `zPtr'. | ||
65 | ------------------------------------------------------------------------------- | ||
66 | */ | ||
67 | INLINE void shift64RightJamming( bits64 a, int16 count, bits64 *zPtr ) | ||
68 | { | ||
69 | bits64 z; | ||
70 | |||
71 | __asm__("@shift64RightJamming -- start"); | ||
72 | if ( count == 0 ) { | ||
73 | z = a; | ||
74 | } | ||
75 | else if ( count < 64 ) { | ||
76 | z = ( a>>count ) | ( ( a<<( ( - count ) & 63 ) ) != 0 ); | ||
77 | } | ||
78 | else { | ||
79 | z = ( a != 0 ); | ||
80 | } | ||
81 | __asm__("@shift64RightJamming -- end"); | ||
82 | *zPtr = z; | ||
83 | } | ||
84 | |||
85 | /* | ||
86 | ------------------------------------------------------------------------------- | ||
87 | Shifts the 128-bit value formed by concatenating `a0' and `a1' right by 64 | ||
88 | _plus_ the number of bits given in `count'. The shifted result is at most | ||
89 | 64 nonzero bits; this is stored at the location pointed to by `z0Ptr'. The | ||
90 | bits shifted off form a second 64-bit result as follows: The _last_ bit | ||
91 | shifted off is the most-significant bit of the extra result, and the other | ||
92 | 63 bits of the extra result are all zero if and only if _all_but_the_last_ | ||
93 | bits shifted off were all zero. This extra result is stored in the location | ||
94 | pointed to by `z1Ptr'. The value of `count' can be arbitrarily large. | ||
95 | (This routine makes more sense if `a0' and `a1' are considered to form a | ||
96 | fixed-point value with binary point between `a0' and `a1'. This fixed-point | ||
97 | value is shifted right by the number of bits given in `count', and the | ||
98 | integer part of the result is returned at the location pointed to by | ||
99 | `z0Ptr'. The fractional part of the result may be slightly corrupted as | ||
100 | described above, and is returned at the location pointed to by `z1Ptr'.) | ||
101 | ------------------------------------------------------------------------------- | ||
102 | */ | ||
103 | INLINE void | ||
104 | shift64ExtraRightJamming( | ||
105 | bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr ) | ||
106 | { | ||
107 | bits64 z0, z1; | ||
108 | int8 negCount = ( - count ) & 63; | ||
109 | |||
110 | if ( count == 0 ) { | ||
111 | z1 = a1; | ||
112 | z0 = a0; | ||
113 | } | ||
114 | else if ( count < 64 ) { | ||
115 | z1 = ( a0<<negCount ) | ( a1 != 0 ); | ||
116 | z0 = a0>>count; | ||
117 | } | ||
118 | else { | ||
119 | if ( count == 64 ) { | ||
120 | z1 = a0 | ( a1 != 0 ); | ||
121 | } | ||
122 | else { | ||
123 | z1 = ( ( a0 | a1 ) != 0 ); | ||
124 | } | ||
125 | z0 = 0; | ||
126 | } | ||
127 | *z1Ptr = z1; | ||
128 | *z0Ptr = z0; | ||
129 | |||
130 | } | ||
131 | |||
132 | /* | ||
133 | ------------------------------------------------------------------------------- | ||
134 | Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the | ||
135 | number of bits given in `count'. Any bits shifted off are lost. The value | ||
136 | of `count' can be arbitrarily large; in particular, if `count' is greater | ||
137 | than 128, the result will be 0. The result is broken into two 64-bit pieces | ||
138 | which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. | ||
139 | ------------------------------------------------------------------------------- | ||
140 | */ | ||
141 | INLINE void | ||
142 | shift128Right( | ||
143 | bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr ) | ||
144 | { | ||
145 | bits64 z0, z1; | ||
146 | int8 negCount = ( - count ) & 63; | ||
147 | |||
148 | if ( count == 0 ) { | ||
149 | z1 = a1; | ||
150 | z0 = a0; | ||
151 | } | ||
152 | else if ( count < 64 ) { | ||
153 | z1 = ( a0<<negCount ) | ( a1>>count ); | ||
154 | z0 = a0>>count; | ||
155 | } | ||
156 | else { | ||
157 | z1 = ( count < 64 ) ? ( a0>>( count & 63 ) ) : 0; | ||
158 | z0 = 0; | ||
159 | } | ||
160 | *z1Ptr = z1; | ||
161 | *z0Ptr = z0; | ||
162 | |||
163 | } | ||
164 | |||
165 | /* | ||
166 | ------------------------------------------------------------------------------- | ||
167 | Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the | ||
168 | number of bits given in `count'. If any nonzero bits are shifted off, they | ||
169 | are ``jammed'' into the least significant bit of the result by setting the | ||
170 | least significant bit to 1. The value of `count' can be arbitrarily large; | ||
171 | in particular, if `count' is greater than 128, the result will be either 0 | ||
172 | or 1, depending on whether the concatenation of `a0' and `a1' is zero or | ||
173 | nonzero. The result is broken into two 64-bit pieces which are stored at | ||
174 | the locations pointed to by `z0Ptr' and `z1Ptr'. | ||
175 | ------------------------------------------------------------------------------- | ||
176 | */ | ||
177 | INLINE void | ||
178 | shift128RightJamming( | ||
179 | bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr ) | ||
180 | { | ||
181 | bits64 z0, z1; | ||
182 | int8 negCount = ( - count ) & 63; | ||
183 | |||
184 | if ( count == 0 ) { | ||
185 | z1 = a1; | ||
186 | z0 = a0; | ||
187 | } | ||
188 | else if ( count < 64 ) { | ||
189 | z1 = ( a0<<negCount ) | ( a1>>count ) | ( ( a1<<negCount ) != 0 ); | ||
190 | z0 = a0>>count; | ||
191 | } | ||
192 | else { | ||
193 | if ( count == 64 ) { | ||
194 | z1 = a0 | ( a1 != 0 ); | ||
195 | } | ||
196 | else if ( count < 128 ) { | ||
197 | z1 = ( a0>>( count & 63 ) ) | ( ( ( a0<<negCount ) | a1 ) != 0 ); | ||
198 | } | ||
199 | else { | ||
200 | z1 = ( ( a0 | a1 ) != 0 ); | ||
201 | } | ||
202 | z0 = 0; | ||
203 | } | ||
204 | *z1Ptr = z1; | ||
205 | *z0Ptr = z0; | ||
206 | |||
207 | } | ||
208 | |||
209 | /* | ||
210 | ------------------------------------------------------------------------------- | ||
211 | Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' right | ||
212 | by 64 _plus_ the number of bits given in `count'. The shifted result is | ||
213 | at most 128 nonzero bits; these are broken into two 64-bit pieces which are | ||
214 | stored at the locations pointed to by `z0Ptr' and `z1Ptr'. The bits shifted | ||
215 | off form a third 64-bit result as follows: The _last_ bit shifted off is | ||
216 | the most-significant bit of the extra result, and the other 63 bits of the | ||
217 | extra result are all zero if and only if _all_but_the_last_ bits shifted off | ||
218 | were all zero. This extra result is stored in the location pointed to by | ||
219 | `z2Ptr'. The value of `count' can be arbitrarily large. | ||
220 | (This routine makes more sense if `a0', `a1', and `a2' are considered | ||
221 | to form a fixed-point value with binary point between `a1' and `a2'. This | ||
222 | fixed-point value is shifted right by the number of bits given in `count', | ||
223 | and the integer part of the result is returned at the locations pointed to | ||
224 | by `z0Ptr' and `z1Ptr'. The fractional part of the result may be slightly | ||
225 | corrupted as described above, and is returned at the location pointed to by | ||
226 | `z2Ptr'.) | ||
227 | ------------------------------------------------------------------------------- | ||
228 | */ | ||
229 | INLINE void | ||
230 | shift128ExtraRightJamming( | ||
231 | bits64 a0, | ||
232 | bits64 a1, | ||
233 | bits64 a2, | ||
234 | int16 count, | ||
235 | bits64 *z0Ptr, | ||
236 | bits64 *z1Ptr, | ||
237 | bits64 *z2Ptr | ||
238 | ) | ||
239 | { | ||
240 | bits64 z0, z1, z2; | ||
241 | int8 negCount = ( - count ) & 63; | ||
242 | |||
243 | if ( count == 0 ) { | ||
244 | z2 = a2; | ||
245 | z1 = a1; | ||
246 | z0 = a0; | ||
247 | } | ||
248 | else { | ||
249 | if ( count < 64 ) { | ||
250 | z2 = a1<<negCount; | ||
251 | z1 = ( a0<<negCount ) | ( a1>>count ); | ||
252 | z0 = a0>>count; | ||
253 | } | ||
254 | else { | ||
255 | if ( count == 64 ) { | ||
256 | z2 = a1; | ||
257 | z1 = a0; | ||
258 | } | ||
259 | else { | ||
260 | a2 |= a1; | ||
261 | if ( count < 128 ) { | ||
262 | z2 = a0<<negCount; | ||
263 | z1 = a0>>( count & 63 ); | ||
264 | } | ||
265 | else { | ||
266 | z2 = ( count == 128 ) ? a0 : ( a0 != 0 ); | ||
267 | z1 = 0; | ||
268 | } | ||
269 | } | ||
270 | z0 = 0; | ||
271 | } | ||
272 | z2 |= ( a2 != 0 ); | ||
273 | } | ||
274 | *z2Ptr = z2; | ||
275 | *z1Ptr = z1; | ||
276 | *z0Ptr = z0; | ||
277 | |||
278 | } | ||
279 | |||
280 | /* | ||
281 | ------------------------------------------------------------------------------- | ||
282 | Shifts the 128-bit value formed by concatenating `a0' and `a1' left by the | ||
283 | number of bits given in `count'. Any bits shifted off are lost. The value | ||
284 | of `count' must be less than 64. The result is broken into two 64-bit | ||
285 | pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. | ||
286 | ------------------------------------------------------------------------------- | ||
287 | */ | ||
288 | INLINE void | ||
289 | shortShift128Left( | ||
290 | bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr ) | ||
291 | { | ||
292 | |||
293 | *z1Ptr = a1<<count; | ||
294 | *z0Ptr = | ||
295 | ( count == 0 ) ? a0 : ( a0<<count ) | ( a1>>( ( - count ) & 63 ) ); | ||
296 | |||
297 | } | ||
298 | |||
299 | /* | ||
300 | ------------------------------------------------------------------------------- | ||
301 | Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' left | ||
302 | by the number of bits given in `count'. Any bits shifted off are lost. | ||
303 | The value of `count' must be less than 64. The result is broken into three | ||
304 | 64-bit pieces which are stored at the locations pointed to by `z0Ptr', | ||
305 | `z1Ptr', and `z2Ptr'. | ||
306 | ------------------------------------------------------------------------------- | ||
307 | */ | ||
308 | INLINE void | ||
309 | shortShift192Left( | ||
310 | bits64 a0, | ||
311 | bits64 a1, | ||
312 | bits64 a2, | ||
313 | int16 count, | ||
314 | bits64 *z0Ptr, | ||
315 | bits64 *z1Ptr, | ||
316 | bits64 *z2Ptr | ||
317 | ) | ||
318 | { | ||
319 | bits64 z0, z1, z2; | ||
320 | int8 negCount; | ||
321 | |||
322 | z2 = a2<<count; | ||
323 | z1 = a1<<count; | ||
324 | z0 = a0<<count; | ||
325 | if ( 0 < count ) { | ||
326 | negCount = ( ( - count ) & 63 ); | ||
327 | z1 |= a2>>negCount; | ||
328 | z0 |= a1>>negCount; | ||
329 | } | ||
330 | *z2Ptr = z2; | ||
331 | *z1Ptr = z1; | ||
332 | *z0Ptr = z0; | ||
333 | |||
334 | } | ||
335 | |||
336 | /* | ||
337 | ------------------------------------------------------------------------------- | ||
338 | Adds the 128-bit value formed by concatenating `a0' and `a1' to the 128-bit | ||
339 | value formed by concatenating `b0' and `b1'. Addition is modulo 2^128, so | ||
340 | any carry out is lost. The result is broken into two 64-bit pieces which | ||
341 | are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. | ||
342 | ------------------------------------------------------------------------------- | ||
343 | */ | ||
344 | INLINE void | ||
345 | add128( | ||
346 | bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr ) | ||
347 | { | ||
348 | bits64 z1; | ||
349 | |||
350 | z1 = a1 + b1; | ||
351 | *z1Ptr = z1; | ||
352 | *z0Ptr = a0 + b0 + ( z1 < a1 ); | ||
353 | |||
354 | } | ||
355 | |||
356 | /* | ||
357 | ------------------------------------------------------------------------------- | ||
358 | Adds the 192-bit value formed by concatenating `a0', `a1', and `a2' to the | ||
359 | 192-bit value formed by concatenating `b0', `b1', and `b2'. Addition is | ||
360 | modulo 2^192, so any carry out is lost. The result is broken into three | ||
361 | 64-bit pieces which are stored at the locations pointed to by `z0Ptr', | ||
362 | `z1Ptr', and `z2Ptr'. | ||
363 | ------------------------------------------------------------------------------- | ||
364 | */ | ||
365 | INLINE void | ||
366 | add192( | ||
367 | bits64 a0, | ||
368 | bits64 a1, | ||
369 | bits64 a2, | ||
370 | bits64 b0, | ||
371 | bits64 b1, | ||
372 | bits64 b2, | ||
373 | bits64 *z0Ptr, | ||
374 | bits64 *z1Ptr, | ||
375 | bits64 *z2Ptr | ||
376 | ) | ||
377 | { | ||
378 | bits64 z0, z1, z2; | ||
379 | int8 carry0, carry1; | ||
380 | |||
381 | z2 = a2 + b2; | ||
382 | carry1 = ( z2 < a2 ); | ||
383 | z1 = a1 + b1; | ||
384 | carry0 = ( z1 < a1 ); | ||
385 | z0 = a0 + b0; | ||
386 | z1 += carry1; | ||
387 | z0 += ( z1 < carry1 ); | ||
388 | z0 += carry0; | ||
389 | *z2Ptr = z2; | ||
390 | *z1Ptr = z1; | ||
391 | *z0Ptr = z0; | ||
392 | |||
393 | } | ||
394 | |||
395 | /* | ||
396 | ------------------------------------------------------------------------------- | ||
397 | Subtracts the 128-bit value formed by concatenating `b0' and `b1' from the | ||
398 | 128-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo | ||
399 | 2^128, so any borrow out (carry out) is lost. The result is broken into two | ||
400 | 64-bit pieces which are stored at the locations pointed to by `z0Ptr' and | ||
401 | `z1Ptr'. | ||
402 | ------------------------------------------------------------------------------- | ||
403 | */ | ||
404 | INLINE void | ||
405 | sub128( | ||
406 | bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr ) | ||
407 | { | ||
408 | |||
409 | *z1Ptr = a1 - b1; | ||
410 | *z0Ptr = a0 - b0 - ( a1 < b1 ); | ||
411 | |||
412 | } | ||
413 | |||
414 | /* | ||
415 | ------------------------------------------------------------------------------- | ||
416 | Subtracts the 192-bit value formed by concatenating `b0', `b1', and `b2' | ||
417 | from the 192-bit value formed by concatenating `a0', `a1', and `a2'. | ||
418 | Subtraction is modulo 2^192, so any borrow out (carry out) is lost. The | ||
419 | result is broken into three 64-bit pieces which are stored at the locations | ||
420 | pointed to by `z0Ptr', `z1Ptr', and `z2Ptr'. | ||
421 | ------------------------------------------------------------------------------- | ||
422 | */ | ||
423 | INLINE void | ||
424 | sub192( | ||
425 | bits64 a0, | ||
426 | bits64 a1, | ||
427 | bits64 a2, | ||
428 | bits64 b0, | ||
429 | bits64 b1, | ||
430 | bits64 b2, | ||
431 | bits64 *z0Ptr, | ||
432 | bits64 *z1Ptr, | ||
433 | bits64 *z2Ptr | ||
434 | ) | ||
435 | { | ||
436 | bits64 z0, z1, z2; | ||
437 | int8 borrow0, borrow1; | ||
438 | |||
439 | z2 = a2 - b2; | ||
440 | borrow1 = ( a2 < b2 ); | ||
441 | z1 = a1 - b1; | ||
442 | borrow0 = ( a1 < b1 ); | ||
443 | z0 = a0 - b0; | ||
444 | z0 -= ( z1 < borrow1 ); | ||
445 | z1 -= borrow1; | ||
446 | z0 -= borrow0; | ||
447 | *z2Ptr = z2; | ||
448 | *z1Ptr = z1; | ||
449 | *z0Ptr = z0; | ||
450 | |||
451 | } | ||
452 | |||
453 | /* | ||
454 | ------------------------------------------------------------------------------- | ||
455 | Multiplies `a' by `b' to obtain a 128-bit product. The product is broken | ||
456 | into two 64-bit pieces which are stored at the locations pointed to by | ||
457 | `z0Ptr' and `z1Ptr'. | ||
458 | ------------------------------------------------------------------------------- | ||
459 | */ | ||
460 | INLINE void mul64To128( bits64 a, bits64 b, bits64 *z0Ptr, bits64 *z1Ptr ) | ||
461 | { | ||
462 | bits32 aHigh, aLow, bHigh, bLow; | ||
463 | bits64 z0, zMiddleA, zMiddleB, z1; | ||
464 | |||
465 | aLow = a; | ||
466 | aHigh = a>>32; | ||
467 | bLow = b; | ||
468 | bHigh = b>>32; | ||
469 | z1 = ( (bits64) aLow ) * bLow; | ||
470 | zMiddleA = ( (bits64) aLow ) * bHigh; | ||
471 | zMiddleB = ( (bits64) aHigh ) * bLow; | ||
472 | z0 = ( (bits64) aHigh ) * bHigh; | ||
473 | zMiddleA += zMiddleB; | ||
474 | z0 += ( ( (bits64) ( zMiddleA < zMiddleB ) )<<32 ) + ( zMiddleA>>32 ); | ||
475 | zMiddleA <<= 32; | ||
476 | z1 += zMiddleA; | ||
477 | z0 += ( z1 < zMiddleA ); | ||
478 | *z1Ptr = z1; | ||
479 | *z0Ptr = z0; | ||
480 | |||
481 | } | ||
482 | |||
483 | /* | ||
484 | ------------------------------------------------------------------------------- | ||
485 | Multiplies the 128-bit value formed by concatenating `a0' and `a1' by `b' to | ||
486 | obtain a 192-bit product. The product is broken into three 64-bit pieces | ||
487 | which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and | ||
488 | `z2Ptr'. | ||
489 | ------------------------------------------------------------------------------- | ||
490 | */ | ||
491 | INLINE void | ||
492 | mul128By64To192( | ||
493 | bits64 a0, | ||
494 | bits64 a1, | ||
495 | bits64 b, | ||
496 | bits64 *z0Ptr, | ||
497 | bits64 *z1Ptr, | ||
498 | bits64 *z2Ptr | ||
499 | ) | ||
500 | { | ||
501 | bits64 z0, z1, z2, more1; | ||
502 | |||
503 | mul64To128( a1, b, &z1, &z2 ); | ||
504 | mul64To128( a0, b, &z0, &more1 ); | ||
505 | add128( z0, more1, 0, z1, &z0, &z1 ); | ||
506 | *z2Ptr = z2; | ||
507 | *z1Ptr = z1; | ||
508 | *z0Ptr = z0; | ||
509 | |||
510 | } | ||
511 | |||
512 | /* | ||
513 | ------------------------------------------------------------------------------- | ||
514 | Multiplies the 128-bit value formed by concatenating `a0' and `a1' to the | ||
515 | 128-bit value formed by concatenating `b0' and `b1' to obtain a 256-bit | ||
516 | product. The product is broken into four 64-bit pieces which are stored at | ||
517 | the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'. | ||
518 | ------------------------------------------------------------------------------- | ||
519 | */ | ||
520 | INLINE void | ||
521 | mul128To256( | ||
522 | bits64 a0, | ||
523 | bits64 a1, | ||
524 | bits64 b0, | ||
525 | bits64 b1, | ||
526 | bits64 *z0Ptr, | ||
527 | bits64 *z1Ptr, | ||
528 | bits64 *z2Ptr, | ||
529 | bits64 *z3Ptr | ||
530 | ) | ||
531 | { | ||
532 | bits64 z0, z1, z2, z3; | ||
533 | bits64 more1, more2; | ||
534 | |||
535 | mul64To128( a1, b1, &z2, &z3 ); | ||
536 | mul64To128( a1, b0, &z1, &more2 ); | ||
537 | add128( z1, more2, 0, z2, &z1, &z2 ); | ||
538 | mul64To128( a0, b0, &z0, &more1 ); | ||
539 | add128( z0, more1, 0, z1, &z0, &z1 ); | ||
540 | mul64To128( a0, b1, &more1, &more2 ); | ||
541 | add128( more1, more2, 0, z2, &more1, &z2 ); | ||
542 | add128( z0, z1, 0, more1, &z0, &z1 ); | ||
543 | *z3Ptr = z3; | ||
544 | *z2Ptr = z2; | ||
545 | *z1Ptr = z1; | ||
546 | *z0Ptr = z0; | ||
547 | |||
548 | } | ||
549 | |||
550 | /* | ||
551 | ------------------------------------------------------------------------------- | ||
552 | Returns an approximation to the 64-bit integer quotient obtained by dividing | ||
553 | `b' into the 128-bit value formed by concatenating `a0' and `a1'. The | ||
554 | divisor `b' must be at least 2^63. If q is the exact quotient truncated | ||
555 | toward zero, the approximation returned lies between q and q + 2 inclusive. | ||
556 | If the exact quotient q is larger than 64 bits, the maximum positive 64-bit | ||
557 | unsigned integer is returned. | ||
558 | ------------------------------------------------------------------------------- | ||
559 | */ | ||
560 | static bits64 estimateDiv128To64( bits64 a0, bits64 a1, bits64 b ) | ||
561 | { | ||
562 | bits64 b0, b1; | ||
563 | bits64 rem0, rem1, term0, term1; | ||
564 | bits64 z; | ||
565 | if ( b <= a0 ) return LIT64( 0xFFFFFFFFFFFFFFFF ); | ||
566 | b0 = b>>32; | ||
567 | z = ( b0<<32 <= a0 ) ? LIT64( 0xFFFFFFFF00000000 ) : ( a0 / b0 )<<32; | ||
568 | mul64To128( b, z, &term0, &term1 ); | ||
569 | sub128( a0, a1, term0, term1, &rem0, &rem1 ); | ||
570 | while ( ( (sbits64) rem0 ) < 0 ) { | ||
571 | z -= LIT64( 0x100000000 ); | ||
572 | b1 = b<<32; | ||
573 | add128( rem0, rem1, b0, b1, &rem0, &rem1 ); | ||
574 | } | ||
575 | rem0 = ( rem0<<32 ) | ( rem1>>32 ); | ||
576 | z |= ( b0<<32 <= rem0 ) ? 0xFFFFFFFF : rem0 / b0; | ||
577 | return z; | ||
578 | |||
579 | } | ||
580 | |||
581 | /* | ||
582 | ------------------------------------------------------------------------------- | ||
583 | Returns an approximation to the square root of the 32-bit significand given | ||
584 | by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of | ||
585 | `aExp' (the least significant bit) is 1, the integer returned approximates | ||
586 | 2^31*sqrt(`a'/2^31), where `a' is considered an integer. If bit 0 of `aExp' | ||
587 | is 0, the integer returned approximates 2^31*sqrt(`a'/2^30). In either | ||
588 | case, the approximation returned lies strictly within +/-2 of the exact | ||
589 | value. | ||
590 | ------------------------------------------------------------------------------- | ||
591 | */ | ||
592 | static bits32 estimateSqrt32( int16 aExp, bits32 a ) | ||
593 | { | ||
594 | static const bits16 sqrtOddAdjustments[] = { | ||
595 | 0x0004, 0x0022, 0x005D, 0x00B1, 0x011D, 0x019F, 0x0236, 0x02E0, | ||
596 | 0x039C, 0x0468, 0x0545, 0x0631, 0x072B, 0x0832, 0x0946, 0x0A67 | ||
597 | }; | ||
598 | static const bits16 sqrtEvenAdjustments[] = { | ||
599 | 0x0A2D, 0x08AF, 0x075A, 0x0629, 0x051A, 0x0429, 0x0356, 0x029E, | ||
600 | 0x0200, 0x0179, 0x0109, 0x00AF, 0x0068, 0x0034, 0x0012, 0x0002 | ||
601 | }; | ||
602 | int8 index; | ||
603 | bits32 z; | ||
604 | |||
605 | index = ( a>>27 ) & 15; | ||
606 | if ( aExp & 1 ) { | ||
607 | z = 0x4000 + ( a>>17 ) - sqrtOddAdjustments[ index ]; | ||
608 | z = ( ( a / z )<<14 ) + ( z<<15 ); | ||
609 | a >>= 1; | ||
610 | } | ||
611 | else { | ||
612 | z = 0x8000 + ( a>>17 ) - sqrtEvenAdjustments[ index ]; | ||
613 | z = a / z + z; | ||
614 | z = ( 0x20000 <= z ) ? 0xFFFF8000 : ( z<<15 ); | ||
615 | if ( z <= a ) return (bits32) ( ( (sbits32) a )>>1 ); | ||
616 | } | ||
617 | return ( (bits32) ( ( ( (bits64) a )<<31 ) / z ) ) + ( z>>1 ); | ||
618 | |||
619 | } | ||
620 | |||
621 | /* | ||
622 | ------------------------------------------------------------------------------- | ||
623 | Returns the number of leading 0 bits before the most-significant 1 bit | ||
624 | of `a'. If `a' is zero, 32 is returned. | ||
625 | ------------------------------------------------------------------------------- | ||
626 | */ | ||
627 | static int8 countLeadingZeros32( bits32 a ) | ||
628 | { | ||
629 | static const int8 countLeadingZerosHigh[] = { | ||
630 | 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, | ||
631 | 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, | ||
632 | 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, | ||
633 | 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, | ||
634 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | ||
635 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | ||
636 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | ||
637 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | ||
638 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
639 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
640 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
641 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
642 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
643 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
644 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
645 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 | ||
646 | }; | ||
647 | int8 shiftCount; | ||
648 | |||
649 | shiftCount = 0; | ||
650 | if ( a < 0x10000 ) { | ||
651 | shiftCount += 16; | ||
652 | a <<= 16; | ||
653 | } | ||
654 | if ( a < 0x1000000 ) { | ||
655 | shiftCount += 8; | ||
656 | a <<= 8; | ||
657 | } | ||
658 | shiftCount += countLeadingZerosHigh[ a>>24 ]; | ||
659 | return shiftCount; | ||
660 | |||
661 | } | ||
662 | |||
663 | /* | ||
664 | ------------------------------------------------------------------------------- | ||
665 | Returns the number of leading 0 bits before the most-significant 1 bit | ||
666 | of `a'. If `a' is zero, 64 is returned. | ||
667 | ------------------------------------------------------------------------------- | ||
668 | */ | ||
669 | static int8 countLeadingZeros64( bits64 a ) | ||
670 | { | ||
671 | int8 shiftCount; | ||
672 | |||
673 | shiftCount = 0; | ||
674 | if ( a < ( (bits64) 1 )<<32 ) { | ||
675 | shiftCount += 32; | ||
676 | } | ||
677 | else { | ||
678 | a >>= 32; | ||
679 | } | ||
680 | shiftCount += countLeadingZeros32( a ); | ||
681 | return shiftCount; | ||
682 | |||
683 | } | ||
684 | |||
685 | /* | ||
686 | ------------------------------------------------------------------------------- | ||
687 | Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' | ||
688 | is equal to the 128-bit value formed by concatenating `b0' and `b1'. | ||
689 | Otherwise, returns 0. | ||
690 | ------------------------------------------------------------------------------- | ||
691 | */ | ||
692 | INLINE flag eq128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 ) | ||
693 | { | ||
694 | |||
695 | return ( a0 == b0 ) && ( a1 == b1 ); | ||
696 | |||
697 | } | ||
698 | |||
699 | /* | ||
700 | ------------------------------------------------------------------------------- | ||
701 | Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less | ||
702 | than or equal to the 128-bit value formed by concatenating `b0' and `b1'. | ||
703 | Otherwise, returns 0. | ||
704 | ------------------------------------------------------------------------------- | ||
705 | */ | ||
706 | INLINE flag le128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 ) | ||
707 | { | ||
708 | |||
709 | return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 <= b1 ) ); | ||
710 | |||
711 | } | ||
712 | |||
713 | /* | ||
714 | ------------------------------------------------------------------------------- | ||
715 | Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less | ||
716 | than the 128-bit value formed by concatenating `b0' and `b1'. Otherwise, | ||
717 | returns 0. | ||
718 | ------------------------------------------------------------------------------- | ||
719 | */ | ||
720 | INLINE flag lt128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 ) | ||
721 | { | ||
722 | |||
723 | return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 < b1 ) ); | ||
724 | |||
725 | } | ||
726 | |||
727 | /* | ||
728 | ------------------------------------------------------------------------------- | ||
729 | Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is | ||
730 | not equal to the 128-bit value formed by concatenating `b0' and `b1'. | ||
731 | Otherwise, returns 0. | ||
732 | ------------------------------------------------------------------------------- | ||
733 | */ | ||
734 | INLINE flag ne128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 ) | ||
735 | { | ||
736 | |||
737 | return ( a0 != b0 ) || ( a1 != b1 ); | ||
738 | |||
739 | } | ||
740 | |||