aboutsummaryrefslogtreecommitdiffstats
path: root/arch/arm/mach-s5pv310/cpufreq.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/arm/mach-s5pv310/cpufreq.c')
-rw-r--r--arch/arm/mach-s5pv310/cpufreq.c580
1 files changed, 580 insertions, 0 deletions
diff --git a/arch/arm/mach-s5pv310/cpufreq.c b/arch/arm/mach-s5pv310/cpufreq.c
new file mode 100644
index 000000000000..b04cbc731128
--- /dev/null
+++ b/arch/arm/mach-s5pv310/cpufreq.c
@@ -0,0 +1,580 @@
1/* linux/arch/arm/mach-s5pv310/cpufreq.c
2 *
3 * Copyright (c) 2010 Samsung Electronics Co., Ltd.
4 * http://www.samsung.com
5 *
6 * S5PV310 - CPU frequency scaling support
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11*/
12
13#include <linux/types.h>
14#include <linux/kernel.h>
15#include <linux/err.h>
16#include <linux/clk.h>
17#include <linux/io.h>
18#include <linux/slab.h>
19#include <linux/regulator/consumer.h>
20#include <linux/cpufreq.h>
21
22#include <mach/map.h>
23#include <mach/regs-clock.h>
24#include <mach/regs-mem.h>
25
26#include <plat/clock.h>
27#include <plat/pm.h>
28
29static struct clk *cpu_clk;
30static struct clk *moutcore;
31static struct clk *mout_mpll;
32static struct clk *mout_apll;
33
34#ifdef CONFIG_REGULATOR
35static struct regulator *arm_regulator;
36static struct regulator *int_regulator;
37#endif
38
39static struct cpufreq_freqs freqs;
40static unsigned int memtype;
41
42enum s5pv310_memory_type {
43 DDR2 = 4,
44 LPDDR2,
45 DDR3,
46};
47
48enum cpufreq_level_index {
49 L0, L1, L2, L3, CPUFREQ_LEVEL_END,
50};
51
52static struct cpufreq_frequency_table s5pv310_freq_table[] = {
53 {L0, 1000*1000},
54 {L1, 800*1000},
55 {L2, 400*1000},
56 {L3, 100*1000},
57 {0, CPUFREQ_TABLE_END},
58};
59
60static unsigned int clkdiv_cpu0[CPUFREQ_LEVEL_END][7] = {
61 /*
62 * Clock divider value for following
63 * { DIVCORE, DIVCOREM0, DIVCOREM1, DIVPERIPH,
64 * DIVATB, DIVPCLK_DBG, DIVAPLL }
65 */
66
67 /* ARM L0: 1000MHz */
68 { 0, 3, 7, 3, 3, 0, 1 },
69
70 /* ARM L1: 800MHz */
71 { 0, 3, 7, 3, 3, 0, 1 },
72
73 /* ARM L2: 400MHz */
74 { 0, 1, 3, 1, 3, 0, 1 },
75
76 /* ARM L3: 100MHz */
77 { 0, 0, 1, 0, 3, 1, 1 },
78};
79
80static unsigned int clkdiv_cpu1[CPUFREQ_LEVEL_END][2] = {
81 /*
82 * Clock divider value for following
83 * { DIVCOPY, DIVHPM }
84 */
85
86 /* ARM L0: 1000MHz */
87 { 3, 0 },
88
89 /* ARM L1: 800MHz */
90 { 3, 0 },
91
92 /* ARM L2: 400MHz */
93 { 3, 0 },
94
95 /* ARM L3: 100MHz */
96 { 3, 0 },
97};
98
99static unsigned int clkdiv_dmc0[CPUFREQ_LEVEL_END][8] = {
100 /*
101 * Clock divider value for following
102 * { DIVACP, DIVACP_PCLK, DIVDPHY, DIVDMC, DIVDMCD
103 * DIVDMCP, DIVCOPY2, DIVCORE_TIMERS }
104 */
105
106 /* DMC L0: 400MHz */
107 { 3, 1, 1, 1, 1, 1, 3, 1 },
108
109 /* DMC L1: 400MHz */
110 { 3, 1, 1, 1, 1, 1, 3, 1 },
111
112 /* DMC L2: 266.7MHz */
113 { 7, 1, 1, 2, 1, 1, 3, 1 },
114
115 /* DMC L3: 200MHz */
116 { 7, 1, 1, 3, 1, 1, 3, 1 },
117};
118
119static unsigned int clkdiv_top[CPUFREQ_LEVEL_END][5] = {
120 /*
121 * Clock divider value for following
122 * { DIVACLK200, DIVACLK100, DIVACLK160, DIVACLK133, DIVONENAND }
123 */
124
125 /* ACLK200 L0: 200MHz */
126 { 3, 7, 4, 5, 1 },
127
128 /* ACLK200 L1: 200MHz */
129 { 3, 7, 4, 5, 1 },
130
131 /* ACLK200 L2: 160MHz */
132 { 4, 7, 5, 7, 1 },
133
134 /* ACLK200 L3: 133.3MHz */
135 { 5, 7, 7, 7, 1 },
136};
137
138static unsigned int clkdiv_lr_bus[CPUFREQ_LEVEL_END][2] = {
139 /*
140 * Clock divider value for following
141 * { DIVGDL/R, DIVGPL/R }
142 */
143
144 /* ACLK_GDL/R L0: 200MHz */
145 { 3, 1 },
146
147 /* ACLK_GDL/R L1: 200MHz */
148 { 3, 1 },
149
150 /* ACLK_GDL/R L2: 160MHz */
151 { 4, 1 },
152
153 /* ACLK_GDL/R L3: 133.3MHz */
154 { 5, 1 },
155};
156
157struct cpufreq_voltage_table {
158 unsigned int index; /* any */
159 unsigned int arm_volt; /* uV */
160 unsigned int int_volt;
161};
162
163static struct cpufreq_voltage_table s5pv310_volt_table[CPUFREQ_LEVEL_END] = {
164 {
165 .index = L0,
166 .arm_volt = 1200000,
167 .int_volt = 1100000,
168 }, {
169 .index = L1,
170 .arm_volt = 1100000,
171 .int_volt = 1100000,
172 }, {
173 .index = L2,
174 .arm_volt = 1000000,
175 .int_volt = 1000000,
176 }, {
177 .index = L3,
178 .arm_volt = 900000,
179 .int_volt = 1000000,
180 },
181};
182
183static unsigned int s5pv310_apll_pms_table[CPUFREQ_LEVEL_END] = {
184 /* APLL FOUT L0: 1000MHz */
185 ((250 << 16) | (6 << 8) | 1),
186
187 /* APLL FOUT L1: 800MHz */
188 ((200 << 16) | (6 << 8) | 1),
189
190 /* APLL FOUT L2 : 400MHz */
191 ((200 << 16) | (6 << 8) | 2),
192
193 /* APLL FOUT L3: 100MHz */
194 ((200 << 16) | (6 << 8) | 4),
195};
196
197int s5pv310_verify_speed(struct cpufreq_policy *policy)
198{
199 return cpufreq_frequency_table_verify(policy, s5pv310_freq_table);
200}
201
202unsigned int s5pv310_getspeed(unsigned int cpu)
203{
204 return clk_get_rate(cpu_clk) / 1000;
205}
206
207void s5pv310_set_clkdiv(unsigned int div_index)
208{
209 unsigned int tmp;
210
211 /* Change Divider - CPU0 */
212
213 tmp = __raw_readl(S5P_CLKDIV_CPU);
214
215 tmp &= ~(S5P_CLKDIV_CPU0_CORE_MASK | S5P_CLKDIV_CPU0_COREM0_MASK |
216 S5P_CLKDIV_CPU0_COREM1_MASK | S5P_CLKDIV_CPU0_PERIPH_MASK |
217 S5P_CLKDIV_CPU0_ATB_MASK | S5P_CLKDIV_CPU0_PCLKDBG_MASK |
218 S5P_CLKDIV_CPU0_APLL_MASK);
219
220 tmp |= ((clkdiv_cpu0[div_index][0] << S5P_CLKDIV_CPU0_CORE_SHIFT) |
221 (clkdiv_cpu0[div_index][1] << S5P_CLKDIV_CPU0_COREM0_SHIFT) |
222 (clkdiv_cpu0[div_index][2] << S5P_CLKDIV_CPU0_COREM1_SHIFT) |
223 (clkdiv_cpu0[div_index][3] << S5P_CLKDIV_CPU0_PERIPH_SHIFT) |
224 (clkdiv_cpu0[div_index][4] << S5P_CLKDIV_CPU0_ATB_SHIFT) |
225 (clkdiv_cpu0[div_index][5] << S5P_CLKDIV_CPU0_PCLKDBG_SHIFT) |
226 (clkdiv_cpu0[div_index][6] << S5P_CLKDIV_CPU0_APLL_SHIFT));
227
228 __raw_writel(tmp, S5P_CLKDIV_CPU);
229
230 do {
231 tmp = __raw_readl(S5P_CLKDIV_STATCPU);
232 } while (tmp & 0x1111111);
233
234 /* Change Divider - CPU1 */
235
236 tmp = __raw_readl(S5P_CLKDIV_CPU1);
237
238 tmp &= ~((0x7 << 4) | 0x7);
239
240 tmp |= ((clkdiv_cpu1[div_index][0] << 4) |
241 (clkdiv_cpu1[div_index][1] << 0));
242
243 __raw_writel(tmp, S5P_CLKDIV_CPU1);
244
245 do {
246 tmp = __raw_readl(S5P_CLKDIV_STATCPU1);
247 } while (tmp & 0x11);
248
249 /* Change Divider - DMC0 */
250
251 tmp = __raw_readl(S5P_CLKDIV_DMC0);
252
253 tmp &= ~(S5P_CLKDIV_DMC0_ACP_MASK | S5P_CLKDIV_DMC0_ACPPCLK_MASK |
254 S5P_CLKDIV_DMC0_DPHY_MASK | S5P_CLKDIV_DMC0_DMC_MASK |
255 S5P_CLKDIV_DMC0_DMCD_MASK | S5P_CLKDIV_DMC0_DMCP_MASK |
256 S5P_CLKDIV_DMC0_COPY2_MASK | S5P_CLKDIV_DMC0_CORETI_MASK);
257
258 tmp |= ((clkdiv_dmc0[div_index][0] << S5P_CLKDIV_DMC0_ACP_SHIFT) |
259 (clkdiv_dmc0[div_index][1] << S5P_CLKDIV_DMC0_ACPPCLK_SHIFT) |
260 (clkdiv_dmc0[div_index][2] << S5P_CLKDIV_DMC0_DPHY_SHIFT) |
261 (clkdiv_dmc0[div_index][3] << S5P_CLKDIV_DMC0_DMC_SHIFT) |
262 (clkdiv_dmc0[div_index][4] << S5P_CLKDIV_DMC0_DMCD_SHIFT) |
263 (clkdiv_dmc0[div_index][5] << S5P_CLKDIV_DMC0_DMCP_SHIFT) |
264 (clkdiv_dmc0[div_index][6] << S5P_CLKDIV_DMC0_COPY2_SHIFT) |
265 (clkdiv_dmc0[div_index][7] << S5P_CLKDIV_DMC0_CORETI_SHIFT));
266
267 __raw_writel(tmp, S5P_CLKDIV_DMC0);
268
269 do {
270 tmp = __raw_readl(S5P_CLKDIV_STAT_DMC0);
271 } while (tmp & 0x11111111);
272
273 /* Change Divider - TOP */
274
275 tmp = __raw_readl(S5P_CLKDIV_TOP);
276
277 tmp &= ~(S5P_CLKDIV_TOP_ACLK200_MASK | S5P_CLKDIV_TOP_ACLK100_MASK |
278 S5P_CLKDIV_TOP_ACLK160_MASK | S5P_CLKDIV_TOP_ACLK133_MASK |
279 S5P_CLKDIV_TOP_ONENAND_MASK);
280
281 tmp |= ((clkdiv_top[div_index][0] << S5P_CLKDIV_TOP_ACLK200_SHIFT) |
282 (clkdiv_top[div_index][1] << S5P_CLKDIV_TOP_ACLK100_SHIFT) |
283 (clkdiv_top[div_index][2] << S5P_CLKDIV_TOP_ACLK160_SHIFT) |
284 (clkdiv_top[div_index][3] << S5P_CLKDIV_TOP_ACLK133_SHIFT) |
285 (clkdiv_top[div_index][4] << S5P_CLKDIV_TOP_ONENAND_SHIFT));
286
287 __raw_writel(tmp, S5P_CLKDIV_TOP);
288
289 do {
290 tmp = __raw_readl(S5P_CLKDIV_STAT_TOP);
291 } while (tmp & 0x11111);
292
293 /* Change Divider - LEFTBUS */
294
295 tmp = __raw_readl(S5P_CLKDIV_LEFTBUS);
296
297 tmp &= ~(S5P_CLKDIV_BUS_GDLR_MASK | S5P_CLKDIV_BUS_GPLR_MASK);
298
299 tmp |= ((clkdiv_lr_bus[div_index][0] << S5P_CLKDIV_BUS_GDLR_SHIFT) |
300 (clkdiv_lr_bus[div_index][1] << S5P_CLKDIV_BUS_GPLR_SHIFT));
301
302 __raw_writel(tmp, S5P_CLKDIV_LEFTBUS);
303
304 do {
305 tmp = __raw_readl(S5P_CLKDIV_STAT_LEFTBUS);
306 } while (tmp & 0x11);
307
308 /* Change Divider - RIGHTBUS */
309
310 tmp = __raw_readl(S5P_CLKDIV_RIGHTBUS);
311
312 tmp &= ~(S5P_CLKDIV_BUS_GDLR_MASK | S5P_CLKDIV_BUS_GPLR_MASK);
313
314 tmp |= ((clkdiv_lr_bus[div_index][0] << S5P_CLKDIV_BUS_GDLR_SHIFT) |
315 (clkdiv_lr_bus[div_index][1] << S5P_CLKDIV_BUS_GPLR_SHIFT));
316
317 __raw_writel(tmp, S5P_CLKDIV_RIGHTBUS);
318
319 do {
320 tmp = __raw_readl(S5P_CLKDIV_STAT_RIGHTBUS);
321 } while (tmp & 0x11);
322}
323
324static void s5pv310_set_apll(unsigned int index)
325{
326 unsigned int tmp;
327
328 /* 1. MUX_CORE_SEL = MPLL, ARMCLK uses MPLL for lock time */
329 clk_set_parent(moutcore, mout_mpll);
330
331 do {
332 tmp = (__raw_readl(S5P_CLKMUX_STATCPU)
333 >> S5P_CLKSRC_CPU_MUXCORE_SHIFT);
334 tmp &= 0x7;
335 } while (tmp != 0x2);
336
337 /* 2. Set APLL Lock time */
338 __raw_writel(S5P_APLL_LOCKTIME, S5P_APLL_LOCK);
339
340 /* 3. Change PLL PMS values */
341 tmp = __raw_readl(S5P_APLL_CON0);
342 tmp &= ~((0x3ff << 16) | (0x3f << 8) | (0x7 << 0));
343 tmp |= s5pv310_apll_pms_table[index];
344 __raw_writel(tmp, S5P_APLL_CON0);
345
346 /* 4. wait_lock_time */
347 do {
348 tmp = __raw_readl(S5P_APLL_CON0);
349 } while (!(tmp & (0x1 << S5P_APLLCON0_LOCKED_SHIFT)));
350
351 /* 5. MUX_CORE_SEL = APLL */
352 clk_set_parent(moutcore, mout_apll);
353
354 do {
355 tmp = __raw_readl(S5P_CLKMUX_STATCPU);
356 tmp &= S5P_CLKMUX_STATCPU_MUXCORE_MASK;
357 } while (tmp != (0x1 << S5P_CLKSRC_CPU_MUXCORE_SHIFT));
358}
359
360static void s5pv310_set_frequency(unsigned int old_index, unsigned int new_index)
361{
362 unsigned int tmp;
363
364 if (old_index > new_index) {
365 /* The frequency changing to L0 needs to change apll */
366 if (freqs.new == s5pv310_freq_table[L0].frequency) {
367 /* 1. Change the system clock divider values */
368 s5pv310_set_clkdiv(new_index);
369
370 /* 2. Change the apll m,p,s value */
371 s5pv310_set_apll(new_index);
372 } else {
373 /* 1. Change the system clock divider values */
374 s5pv310_set_clkdiv(new_index);
375
376 /* 2. Change just s value in apll m,p,s value */
377 tmp = __raw_readl(S5P_APLL_CON0);
378 tmp &= ~(0x7 << 0);
379 tmp |= (s5pv310_apll_pms_table[new_index] & 0x7);
380 __raw_writel(tmp, S5P_APLL_CON0);
381 }
382 }
383
384 else if (old_index < new_index) {
385 /* The frequency changing from L0 needs to change apll */
386 if (freqs.old == s5pv310_freq_table[L0].frequency) {
387 /* 1. Change the apll m,p,s value */
388 s5pv310_set_apll(new_index);
389
390 /* 2. Change the system clock divider values */
391 s5pv310_set_clkdiv(new_index);
392 } else {
393 /* 1. Change just s value in apll m,p,s value */
394 tmp = __raw_readl(S5P_APLL_CON0);
395 tmp &= ~(0x7 << 0);
396 tmp |= (s5pv310_apll_pms_table[new_index] & 0x7);
397 __raw_writel(tmp, S5P_APLL_CON0);
398
399 /* 2. Change the system clock divider values */
400 s5pv310_set_clkdiv(new_index);
401 }
402 }
403}
404
405static int s5pv310_target(struct cpufreq_policy *policy,
406 unsigned int target_freq,
407 unsigned int relation)
408{
409 unsigned int index, old_index;
410 unsigned int arm_volt, int_volt;
411
412 freqs.old = s5pv310_getspeed(policy->cpu);
413
414 if (cpufreq_frequency_table_target(policy, s5pv310_freq_table,
415 freqs.old, relation, &old_index))
416 return -EINVAL;
417
418 if (cpufreq_frequency_table_target(policy, s5pv310_freq_table,
419 target_freq, relation, &index))
420 return -EINVAL;
421
422 freqs.new = s5pv310_freq_table[index].frequency;
423 freqs.cpu = policy->cpu;
424
425 if (freqs.new == freqs.old)
426 return 0;
427
428 /* get the voltage value */
429 arm_volt = s5pv310_volt_table[index].arm_volt;
430 int_volt = s5pv310_volt_table[index].int_volt;
431
432 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
433
434 /* control regulator */
435 if (freqs.new > freqs.old) {
436 /* Voltage up */
437#ifdef CONFIG_REGULATOR
438 regulator_set_voltage(arm_regulator, arm_volt, arm_volt);
439 regulator_set_voltage(int_regulator, int_volt, int_volt);
440#endif
441 }
442
443 /* Clock Configuration Procedure */
444 s5pv310_set_frequency(old_index, index);
445
446 /* control regulator */
447 if (freqs.new < freqs.old) {
448 /* Voltage down */
449#ifdef CONFIG_REGULATOR
450 regulator_set_voltage(arm_regulator, arm_volt, arm_volt);
451 regulator_set_voltage(int_regulator, int_volt, int_volt);
452#endif
453 }
454
455 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
456
457 return 0;
458}
459
460#ifdef CONFIG_PM
461static int s5pv310_cpufreq_suspend(struct cpufreq_policy *policy,
462 pm_message_t pmsg)
463{
464 return 0;
465}
466
467static int s5pv310_cpufreq_resume(struct cpufreq_policy *policy)
468{
469 return 0;
470}
471#endif
472
473static int s5pv310_cpufreq_cpu_init(struct cpufreq_policy *policy)
474{
475 policy->cur = policy->min = policy->max = s5pv310_getspeed(policy->cpu);
476
477 cpufreq_frequency_table_get_attr(s5pv310_freq_table, policy->cpu);
478
479 /* set the transition latency value */
480 policy->cpuinfo.transition_latency = 100000;
481
482 /*
483 * S5PV310 multi-core processors has 2 cores
484 * that the frequency cannot be set independently.
485 * Each cpu is bound to the same speed.
486 * So the affected cpu is all of the cpus.
487 */
488 cpumask_setall(policy->cpus);
489
490 return cpufreq_frequency_table_cpuinfo(policy, s5pv310_freq_table);
491}
492
493static struct cpufreq_driver s5pv310_driver = {
494 .flags = CPUFREQ_STICKY,
495 .verify = s5pv310_verify_speed,
496 .target = s5pv310_target,
497 .get = s5pv310_getspeed,
498 .init = s5pv310_cpufreq_cpu_init,
499 .name = "s5pv310_cpufreq",
500#ifdef CONFIG_PM
501 .suspend = s5pv310_cpufreq_suspend,
502 .resume = s5pv310_cpufreq_resume,
503#endif
504};
505
506static int __init s5pv310_cpufreq_init(void)
507{
508 cpu_clk = clk_get(NULL, "armclk");
509 if (IS_ERR(cpu_clk))
510 return PTR_ERR(cpu_clk);
511
512 moutcore = clk_get(NULL, "moutcore");
513 if (IS_ERR(moutcore))
514 goto out;
515
516 mout_mpll = clk_get(NULL, "mout_mpll");
517 if (IS_ERR(mout_mpll))
518 goto out;
519
520 mout_apll = clk_get(NULL, "mout_apll");
521 if (IS_ERR(mout_apll))
522 goto out;
523
524#ifdef CONFIG_REGULATOR
525 arm_regulator = regulator_get(NULL, "vdd_arm");
526 if (IS_ERR(arm_regulator)) {
527 printk(KERN_ERR "failed to get resource %s\n", "vdd_arm");
528 goto out;
529 }
530
531 int_regulator = regulator_get(NULL, "vdd_int");
532 if (IS_ERR(int_regulator)) {
533 printk(KERN_ERR "failed to get resource %s\n", "vdd_int");
534 goto out;
535 }
536#endif
537
538 /*
539 * Check DRAM type.
540 * Because DVFS level is different according to DRAM type.
541 */
542 memtype = __raw_readl(S5P_VA_DMC0 + S5P_DMC0_MEMCON_OFFSET);
543 memtype = (memtype >> S5P_DMC0_MEMTYPE_SHIFT);
544 memtype &= S5P_DMC0_MEMTYPE_MASK;
545
546 if ((memtype < DDR2) && (memtype > DDR3)) {
547 printk(KERN_ERR "%s: wrong memtype= 0x%x\n", __func__, memtype);
548 goto out;
549 } else {
550 printk(KERN_DEBUG "%s: memtype= 0x%x\n", __func__, memtype);
551 }
552
553 return cpufreq_register_driver(&s5pv310_driver);
554
555out:
556 if (!IS_ERR(cpu_clk))
557 clk_put(cpu_clk);
558
559 if (!IS_ERR(moutcore))
560 clk_put(moutcore);
561
562 if (!IS_ERR(mout_mpll))
563 clk_put(mout_mpll);
564
565 if (!IS_ERR(mout_apll))
566 clk_put(mout_apll);
567
568#ifdef CONFIG_REGULATOR
569 if (!IS_ERR(arm_regulator))
570 regulator_put(arm_regulator);
571
572 if (!IS_ERR(int_regulator))
573 regulator_put(int_regulator);
574#endif
575
576 printk(KERN_ERR "%s: failed initialization\n", __func__);
577
578 return -EINVAL;
579}
580late_initcall(s5pv310_cpufreq_init);