diff options
Diffstat (limited to 'arch/arm/mach-omap1/time.c')
-rw-r--r-- | arch/arm/mach-omap1/time.c | 436 |
1 files changed, 436 insertions, 0 deletions
diff --git a/arch/arm/mach-omap1/time.c b/arch/arm/mach-omap1/time.c new file mode 100644 index 000000000000..d540539c9bbb --- /dev/null +++ b/arch/arm/mach-omap1/time.c | |||
@@ -0,0 +1,436 @@ | |||
1 | /* | ||
2 | * linux/arch/arm/mach-omap1/time.c | ||
3 | * | ||
4 | * OMAP Timers | ||
5 | * | ||
6 | * Copyright (C) 2004 Nokia Corporation | ||
7 | * Partial timer rewrite and additional dynamic tick timer support by | ||
8 | * Tony Lindgen <tony@atomide.com> and | ||
9 | * Tuukka Tikkanen <tuukka.tikkanen@elektrobit.com> | ||
10 | * | ||
11 | * MPU timer code based on the older MPU timer code for OMAP | ||
12 | * Copyright (C) 2000 RidgeRun, Inc. | ||
13 | * Author: Greg Lonnon <glonnon@ridgerun.com> | ||
14 | * | ||
15 | * This program is free software; you can redistribute it and/or modify it | ||
16 | * under the terms of the GNU General Public License as published by the | ||
17 | * Free Software Foundation; either version 2 of the License, or (at your | ||
18 | * option) any later version. | ||
19 | * | ||
20 | * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED | ||
21 | * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF | ||
22 | * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN | ||
23 | * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, | ||
24 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
25 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF | ||
26 | * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON | ||
27 | * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | ||
28 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF | ||
29 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
30 | * | ||
31 | * You should have received a copy of the GNU General Public License along | ||
32 | * with this program; if not, write to the Free Software Foundation, Inc., | ||
33 | * 675 Mass Ave, Cambridge, MA 02139, USA. | ||
34 | */ | ||
35 | |||
36 | #include <linux/config.h> | ||
37 | #include <linux/kernel.h> | ||
38 | #include <linux/init.h> | ||
39 | #include <linux/delay.h> | ||
40 | #include <linux/interrupt.h> | ||
41 | #include <linux/sched.h> | ||
42 | #include <linux/spinlock.h> | ||
43 | |||
44 | #include <asm/system.h> | ||
45 | #include <asm/hardware.h> | ||
46 | #include <asm/io.h> | ||
47 | #include <asm/leds.h> | ||
48 | #include <asm/irq.h> | ||
49 | #include <asm/mach/irq.h> | ||
50 | #include <asm/mach/time.h> | ||
51 | |||
52 | struct sys_timer omap_timer; | ||
53 | |||
54 | #ifdef CONFIG_OMAP_MPU_TIMER | ||
55 | |||
56 | /* | ||
57 | * --------------------------------------------------------------------------- | ||
58 | * MPU timer | ||
59 | * --------------------------------------------------------------------------- | ||
60 | */ | ||
61 | #define OMAP_MPU_TIMER_BASE OMAP_MPU_TIMER1_BASE | ||
62 | #define OMAP_MPU_TIMER_OFFSET 0x100 | ||
63 | |||
64 | /* cycles to nsec conversions taken from arch/i386/kernel/timers/timer_tsc.c, | ||
65 | * converted to use kHz by Kevin Hilman */ | ||
66 | /* convert from cycles(64bits) => nanoseconds (64bits) | ||
67 | * basic equation: | ||
68 | * ns = cycles / (freq / ns_per_sec) | ||
69 | * ns = cycles * (ns_per_sec / freq) | ||
70 | * ns = cycles * (10^9 / (cpu_khz * 10^3)) | ||
71 | * ns = cycles * (10^6 / cpu_khz) | ||
72 | * | ||
73 | * Then we use scaling math (suggested by george at mvista.com) to get: | ||
74 | * ns = cycles * (10^6 * SC / cpu_khz / SC | ||
75 | * ns = cycles * cyc2ns_scale / SC | ||
76 | * | ||
77 | * And since SC is a constant power of two, we can convert the div | ||
78 | * into a shift. | ||
79 | * -johnstul at us.ibm.com "math is hard, lets go shopping!" | ||
80 | */ | ||
81 | static unsigned long cyc2ns_scale; | ||
82 | #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */ | ||
83 | |||
84 | static inline void set_cyc2ns_scale(unsigned long cpu_khz) | ||
85 | { | ||
86 | cyc2ns_scale = (1000000 << CYC2NS_SCALE_FACTOR)/cpu_khz; | ||
87 | } | ||
88 | |||
89 | static inline unsigned long long cycles_2_ns(unsigned long long cyc) | ||
90 | { | ||
91 | return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR; | ||
92 | } | ||
93 | |||
94 | /* | ||
95 | * MPU_TICKS_PER_SEC must be an even number, otherwise machinecycles_to_usecs | ||
96 | * will break. On P2, the timer count rate is 6.5 MHz after programming PTV | ||
97 | * with 0. This divides the 13MHz input by 2, and is undocumented. | ||
98 | */ | ||
99 | #ifdef CONFIG_MACH_OMAP_PERSEUS2 | ||
100 | /* REVISIT: This ifdef construct should be replaced by a query to clock | ||
101 | * framework to see if timer base frequency is 12.0, 13.0 or 19.2 MHz. | ||
102 | */ | ||
103 | #define MPU_TICKS_PER_SEC (13000000 / 2) | ||
104 | #else | ||
105 | #define MPU_TICKS_PER_SEC (12000000 / 2) | ||
106 | #endif | ||
107 | |||
108 | #define MPU_TIMER_TICK_PERIOD ((MPU_TICKS_PER_SEC / HZ) - 1) | ||
109 | |||
110 | typedef struct { | ||
111 | u32 cntl; /* CNTL_TIMER, R/W */ | ||
112 | u32 load_tim; /* LOAD_TIM, W */ | ||
113 | u32 read_tim; /* READ_TIM, R */ | ||
114 | } omap_mpu_timer_regs_t; | ||
115 | |||
116 | #define omap_mpu_timer_base(n) \ | ||
117 | ((volatile omap_mpu_timer_regs_t*)IO_ADDRESS(OMAP_MPU_TIMER_BASE + \ | ||
118 | (n)*OMAP_MPU_TIMER_OFFSET)) | ||
119 | |||
120 | static inline unsigned long omap_mpu_timer_read(int nr) | ||
121 | { | ||
122 | volatile omap_mpu_timer_regs_t* timer = omap_mpu_timer_base(nr); | ||
123 | return timer->read_tim; | ||
124 | } | ||
125 | |||
126 | static inline void omap_mpu_timer_start(int nr, unsigned long load_val) | ||
127 | { | ||
128 | volatile omap_mpu_timer_regs_t* timer = omap_mpu_timer_base(nr); | ||
129 | |||
130 | timer->cntl = MPU_TIMER_CLOCK_ENABLE; | ||
131 | udelay(1); | ||
132 | timer->load_tim = load_val; | ||
133 | udelay(1); | ||
134 | timer->cntl = (MPU_TIMER_CLOCK_ENABLE | MPU_TIMER_AR | MPU_TIMER_ST); | ||
135 | } | ||
136 | |||
137 | unsigned long omap_mpu_timer_ticks_to_usecs(unsigned long nr_ticks) | ||
138 | { | ||
139 | unsigned long long nsec; | ||
140 | |||
141 | nsec = cycles_2_ns((unsigned long long)nr_ticks); | ||
142 | return (unsigned long)nsec / 1000; | ||
143 | } | ||
144 | |||
145 | /* | ||
146 | * Last processed system timer interrupt | ||
147 | */ | ||
148 | static unsigned long omap_mpu_timer_last = 0; | ||
149 | |||
150 | /* | ||
151 | * Returns elapsed usecs since last system timer interrupt | ||
152 | */ | ||
153 | static unsigned long omap_mpu_timer_gettimeoffset(void) | ||
154 | { | ||
155 | unsigned long now = 0 - omap_mpu_timer_read(0); | ||
156 | unsigned long elapsed = now - omap_mpu_timer_last; | ||
157 | |||
158 | return omap_mpu_timer_ticks_to_usecs(elapsed); | ||
159 | } | ||
160 | |||
161 | /* | ||
162 | * Elapsed time between interrupts is calculated using timer0. | ||
163 | * Latency during the interrupt is calculated using timer1. | ||
164 | * Both timer0 and timer1 are counting at 6MHz (P2 6.5MHz). | ||
165 | */ | ||
166 | static irqreturn_t omap_mpu_timer_interrupt(int irq, void *dev_id, | ||
167 | struct pt_regs *regs) | ||
168 | { | ||
169 | unsigned long now, latency; | ||
170 | |||
171 | write_seqlock(&xtime_lock); | ||
172 | now = 0 - omap_mpu_timer_read(0); | ||
173 | latency = MPU_TICKS_PER_SEC / HZ - omap_mpu_timer_read(1); | ||
174 | omap_mpu_timer_last = now - latency; | ||
175 | timer_tick(regs); | ||
176 | write_sequnlock(&xtime_lock); | ||
177 | |||
178 | return IRQ_HANDLED; | ||
179 | } | ||
180 | |||
181 | static struct irqaction omap_mpu_timer_irq = { | ||
182 | .name = "mpu timer", | ||
183 | .flags = SA_INTERRUPT | SA_TIMER, | ||
184 | .handler = omap_mpu_timer_interrupt, | ||
185 | }; | ||
186 | |||
187 | static unsigned long omap_mpu_timer1_overflows; | ||
188 | static irqreturn_t omap_mpu_timer1_interrupt(int irq, void *dev_id, | ||
189 | struct pt_regs *regs) | ||
190 | { | ||
191 | omap_mpu_timer1_overflows++; | ||
192 | return IRQ_HANDLED; | ||
193 | } | ||
194 | |||
195 | static struct irqaction omap_mpu_timer1_irq = { | ||
196 | .name = "mpu timer1 overflow", | ||
197 | .flags = SA_INTERRUPT, | ||
198 | .handler = omap_mpu_timer1_interrupt, | ||
199 | }; | ||
200 | |||
201 | static __init void omap_init_mpu_timer(void) | ||
202 | { | ||
203 | set_cyc2ns_scale(MPU_TICKS_PER_SEC / 1000); | ||
204 | omap_timer.offset = omap_mpu_timer_gettimeoffset; | ||
205 | setup_irq(INT_TIMER1, &omap_mpu_timer1_irq); | ||
206 | setup_irq(INT_TIMER2, &omap_mpu_timer_irq); | ||
207 | omap_mpu_timer_start(0, 0xffffffff); | ||
208 | omap_mpu_timer_start(1, MPU_TIMER_TICK_PERIOD); | ||
209 | } | ||
210 | |||
211 | /* | ||
212 | * Scheduler clock - returns current time in nanosec units. | ||
213 | */ | ||
214 | unsigned long long sched_clock(void) | ||
215 | { | ||
216 | unsigned long ticks = 0 - omap_mpu_timer_read(0); | ||
217 | unsigned long long ticks64; | ||
218 | |||
219 | ticks64 = omap_mpu_timer1_overflows; | ||
220 | ticks64 <<= 32; | ||
221 | ticks64 |= ticks; | ||
222 | |||
223 | return cycles_2_ns(ticks64); | ||
224 | } | ||
225 | #endif /* CONFIG_OMAP_MPU_TIMER */ | ||
226 | |||
227 | #ifdef CONFIG_OMAP_32K_TIMER | ||
228 | |||
229 | #ifdef CONFIG_ARCH_OMAP1510 | ||
230 | #error OMAP 32KHz timer does not currently work on 1510! | ||
231 | #endif | ||
232 | |||
233 | /* | ||
234 | * --------------------------------------------------------------------------- | ||
235 | * 32KHz OS timer | ||
236 | * | ||
237 | * This currently works only on 16xx, as 1510 does not have the continuous | ||
238 | * 32KHz synchronous timer. The 32KHz synchronous timer is used to keep track | ||
239 | * of time in addition to the 32KHz OS timer. Using only the 32KHz OS timer | ||
240 | * on 1510 would be possible, but the timer would not be as accurate as | ||
241 | * with the 32KHz synchronized timer. | ||
242 | * --------------------------------------------------------------------------- | ||
243 | */ | ||
244 | #define OMAP_32K_TIMER_BASE 0xfffb9000 | ||
245 | #define OMAP_32K_TIMER_CR 0x08 | ||
246 | #define OMAP_32K_TIMER_TVR 0x00 | ||
247 | #define OMAP_32K_TIMER_TCR 0x04 | ||
248 | |||
249 | #define OMAP_32K_TICKS_PER_HZ (32768 / HZ) | ||
250 | #if (32768 % HZ) != 0 | ||
251 | /* We cannot ignore modulo. | ||
252 | * Potential error can be as high as several percent. | ||
253 | */ | ||
254 | #define OMAP_32K_TICK_MODULO (32768 % HZ) | ||
255 | static unsigned modulo_count = 0; /* Counts 1/HZ units */ | ||
256 | #endif | ||
257 | |||
258 | /* | ||
259 | * TRM says 1 / HZ = ( TVR + 1) / 32768, so TRV = (32768 / HZ) - 1 | ||
260 | * so with HZ = 100, TVR = 327.68. | ||
261 | */ | ||
262 | #define OMAP_32K_TIMER_TICK_PERIOD ((32768 / HZ) - 1) | ||
263 | #define TIMER_32K_SYNCHRONIZED 0xfffbc410 | ||
264 | |||
265 | #define JIFFIES_TO_HW_TICKS(nr_jiffies, clock_rate) \ | ||
266 | (((nr_jiffies) * (clock_rate)) / HZ) | ||
267 | |||
268 | static inline void omap_32k_timer_write(int val, int reg) | ||
269 | { | ||
270 | omap_writew(val, reg + OMAP_32K_TIMER_BASE); | ||
271 | } | ||
272 | |||
273 | static inline unsigned long omap_32k_timer_read(int reg) | ||
274 | { | ||
275 | return omap_readl(reg + OMAP_32K_TIMER_BASE) & 0xffffff; | ||
276 | } | ||
277 | |||
278 | /* | ||
279 | * The 32KHz synchronized timer is an additional timer on 16xx. | ||
280 | * It is always running. | ||
281 | */ | ||
282 | static inline unsigned long omap_32k_sync_timer_read(void) | ||
283 | { | ||
284 | return omap_readl(TIMER_32K_SYNCHRONIZED); | ||
285 | } | ||
286 | |||
287 | static inline void omap_32k_timer_start(unsigned long load_val) | ||
288 | { | ||
289 | omap_32k_timer_write(load_val, OMAP_32K_TIMER_TVR); | ||
290 | omap_32k_timer_write(0x0f, OMAP_32K_TIMER_CR); | ||
291 | } | ||
292 | |||
293 | static inline void omap_32k_timer_stop(void) | ||
294 | { | ||
295 | omap_32k_timer_write(0x0, OMAP_32K_TIMER_CR); | ||
296 | } | ||
297 | |||
298 | /* | ||
299 | * Rounds down to nearest usec | ||
300 | */ | ||
301 | static inline unsigned long omap_32k_ticks_to_usecs(unsigned long ticks_32k) | ||
302 | { | ||
303 | return (ticks_32k * 5*5*5*5*5*5) >> 9; | ||
304 | } | ||
305 | |||
306 | static unsigned long omap_32k_last_tick = 0; | ||
307 | |||
308 | /* | ||
309 | * Returns elapsed usecs since last 32k timer interrupt | ||
310 | */ | ||
311 | static unsigned long omap_32k_timer_gettimeoffset(void) | ||
312 | { | ||
313 | unsigned long now = omap_32k_sync_timer_read(); | ||
314 | return omap_32k_ticks_to_usecs(now - omap_32k_last_tick); | ||
315 | } | ||
316 | |||
317 | /* | ||
318 | * Timer interrupt for 32KHz timer. When dynamic tick is enabled, this | ||
319 | * function is also called from other interrupts to remove latency | ||
320 | * issues with dynamic tick. In the dynamic tick case, we need to lock | ||
321 | * with irqsave. | ||
322 | */ | ||
323 | static irqreturn_t omap_32k_timer_interrupt(int irq, void *dev_id, | ||
324 | struct pt_regs *regs) | ||
325 | { | ||
326 | unsigned long flags; | ||
327 | unsigned long now; | ||
328 | |||
329 | write_seqlock_irqsave(&xtime_lock, flags); | ||
330 | now = omap_32k_sync_timer_read(); | ||
331 | |||
332 | while (now - omap_32k_last_tick >= OMAP_32K_TICKS_PER_HZ) { | ||
333 | #ifdef OMAP_32K_TICK_MODULO | ||
334 | /* Modulo addition may put omap_32k_last_tick ahead of now | ||
335 | * and cause unwanted repetition of the while loop. | ||
336 | */ | ||
337 | if (unlikely(now - omap_32k_last_tick == ~0)) | ||
338 | break; | ||
339 | |||
340 | modulo_count += OMAP_32K_TICK_MODULO; | ||
341 | if (modulo_count > HZ) { | ||
342 | ++omap_32k_last_tick; | ||
343 | modulo_count -= HZ; | ||
344 | } | ||
345 | #endif | ||
346 | omap_32k_last_tick += OMAP_32K_TICKS_PER_HZ; | ||
347 | timer_tick(regs); | ||
348 | } | ||
349 | |||
350 | /* Restart timer so we don't drift off due to modulo or dynamic tick. | ||
351 | * By default we program the next timer to be continuous to avoid | ||
352 | * latencies during high system load. During dynamic tick operation the | ||
353 | * continuous timer can be overridden from pm_idle to be longer. | ||
354 | */ | ||
355 | omap_32k_timer_start(omap_32k_last_tick + OMAP_32K_TICKS_PER_HZ - now); | ||
356 | write_sequnlock_irqrestore(&xtime_lock, flags); | ||
357 | |||
358 | return IRQ_HANDLED; | ||
359 | } | ||
360 | |||
361 | #ifdef CONFIG_NO_IDLE_HZ | ||
362 | /* | ||
363 | * Programs the next timer interrupt needed. Called when dynamic tick is | ||
364 | * enabled, and to reprogram the ticks to skip from pm_idle. Note that | ||
365 | * we can keep the timer continuous, and don't need to set it to run in | ||
366 | * one-shot mode. This is because the timer will get reprogrammed again | ||
367 | * after next interrupt. | ||
368 | */ | ||
369 | void omap_32k_timer_reprogram(unsigned long next_tick) | ||
370 | { | ||
371 | omap_32k_timer_start(JIFFIES_TO_HW_TICKS(next_tick, 32768) + 1); | ||
372 | } | ||
373 | |||
374 | static struct irqaction omap_32k_timer_irq; | ||
375 | extern struct timer_update_handler timer_update; | ||
376 | |||
377 | static int omap_32k_timer_enable_dyn_tick(void) | ||
378 | { | ||
379 | /* No need to reprogram timer, just use the next interrupt */ | ||
380 | return 0; | ||
381 | } | ||
382 | |||
383 | static int omap_32k_timer_disable_dyn_tick(void) | ||
384 | { | ||
385 | omap_32k_timer_start(OMAP_32K_TIMER_TICK_PERIOD); | ||
386 | return 0; | ||
387 | } | ||
388 | |||
389 | static struct dyn_tick_timer omap_dyn_tick_timer = { | ||
390 | .enable = omap_32k_timer_enable_dyn_tick, | ||
391 | .disable = omap_32k_timer_disable_dyn_tick, | ||
392 | .reprogram = omap_32k_timer_reprogram, | ||
393 | .handler = omap_32k_timer_interrupt, | ||
394 | }; | ||
395 | #endif /* CONFIG_NO_IDLE_HZ */ | ||
396 | |||
397 | static struct irqaction omap_32k_timer_irq = { | ||
398 | .name = "32KHz timer", | ||
399 | .flags = SA_INTERRUPT | SA_TIMER, | ||
400 | .handler = omap_32k_timer_interrupt, | ||
401 | }; | ||
402 | |||
403 | static __init void omap_init_32k_timer(void) | ||
404 | { | ||
405 | |||
406 | #ifdef CONFIG_NO_IDLE_HZ | ||
407 | omap_timer.dyn_tick = &omap_dyn_tick_timer; | ||
408 | #endif | ||
409 | |||
410 | setup_irq(INT_OS_TIMER, &omap_32k_timer_irq); | ||
411 | omap_timer.offset = omap_32k_timer_gettimeoffset; | ||
412 | omap_32k_last_tick = omap_32k_sync_timer_read(); | ||
413 | omap_32k_timer_start(OMAP_32K_TIMER_TICK_PERIOD); | ||
414 | } | ||
415 | #endif /* CONFIG_OMAP_32K_TIMER */ | ||
416 | |||
417 | /* | ||
418 | * --------------------------------------------------------------------------- | ||
419 | * Timer initialization | ||
420 | * --------------------------------------------------------------------------- | ||
421 | */ | ||
422 | static void __init omap_timer_init(void) | ||
423 | { | ||
424 | #if defined(CONFIG_OMAP_MPU_TIMER) | ||
425 | omap_init_mpu_timer(); | ||
426 | #elif defined(CONFIG_OMAP_32K_TIMER) | ||
427 | omap_init_32k_timer(); | ||
428 | #else | ||
429 | #error No system timer selected in Kconfig! | ||
430 | #endif | ||
431 | } | ||
432 | |||
433 | struct sys_timer omap_timer = { | ||
434 | .init = omap_timer_init, | ||
435 | .offset = NULL, /* Initialized later */ | ||
436 | }; | ||