diff options
Diffstat (limited to 'arch/arm/mach-bcmring/dma.c')
-rw-r--r-- | arch/arm/mach-bcmring/dma.c | 2321 |
1 files changed, 2321 insertions, 0 deletions
diff --git a/arch/arm/mach-bcmring/dma.c b/arch/arm/mach-bcmring/dma.c new file mode 100644 index 000000000000..7b20fccb9d4e --- /dev/null +++ b/arch/arm/mach-bcmring/dma.c | |||
@@ -0,0 +1,2321 @@ | |||
1 | /***************************************************************************** | ||
2 | * Copyright 2004 - 2008 Broadcom Corporation. All rights reserved. | ||
3 | * | ||
4 | * Unless you and Broadcom execute a separate written software license | ||
5 | * agreement governing use of this software, this software is licensed to you | ||
6 | * under the terms of the GNU General Public License version 2, available at | ||
7 | * http://www.broadcom.com/licenses/GPLv2.php (the "GPL"). | ||
8 | * | ||
9 | * Notwithstanding the above, under no circumstances may you combine this | ||
10 | * software in any way with any other Broadcom software provided under a | ||
11 | * license other than the GPL, without Broadcom's express prior written | ||
12 | * consent. | ||
13 | *****************************************************************************/ | ||
14 | |||
15 | /****************************************************************************/ | ||
16 | /** | ||
17 | * @file dma.c | ||
18 | * | ||
19 | * @brief Implements the DMA interface. | ||
20 | */ | ||
21 | /****************************************************************************/ | ||
22 | |||
23 | /* ---- Include Files ---------------------------------------------------- */ | ||
24 | |||
25 | #include <linux/module.h> | ||
26 | #include <linux/device.h> | ||
27 | #include <linux/dma-mapping.h> | ||
28 | #include <linux/interrupt.h> | ||
29 | #include <linux/irqreturn.h> | ||
30 | #include <linux/proc_fs.h> | ||
31 | |||
32 | #include <mach/timer.h> | ||
33 | |||
34 | #include <linux/mm.h> | ||
35 | #include <linux/pfn.h> | ||
36 | #include <asm/atomic.h> | ||
37 | #include <mach/dma.h> | ||
38 | |||
39 | /* I don't quite understand why dc4 fails when this is set to 1 and DMA is enabled */ | ||
40 | /* especially since dc4 doesn't use kmalloc'd memory. */ | ||
41 | |||
42 | #define ALLOW_MAP_OF_KMALLOC_MEMORY 0 | ||
43 | |||
44 | /* ---- Public Variables ------------------------------------------------- */ | ||
45 | |||
46 | /* ---- Private Constants and Types -------------------------------------- */ | ||
47 | |||
48 | #define MAKE_HANDLE(controllerIdx, channelIdx) (((controllerIdx) << 4) | (channelIdx)) | ||
49 | |||
50 | #define CONTROLLER_FROM_HANDLE(handle) (((handle) >> 4) & 0x0f) | ||
51 | #define CHANNEL_FROM_HANDLE(handle) ((handle) & 0x0f) | ||
52 | |||
53 | #define DMA_MAP_DEBUG 0 | ||
54 | |||
55 | #if DMA_MAP_DEBUG | ||
56 | # define DMA_MAP_PRINT(fmt, args...) printk("%s: " fmt, __func__, ## args) | ||
57 | #else | ||
58 | # define DMA_MAP_PRINT(fmt, args...) | ||
59 | #endif | ||
60 | |||
61 | /* ---- Private Variables ------------------------------------------------ */ | ||
62 | |||
63 | static DMA_Global_t gDMA; | ||
64 | static struct proc_dir_entry *gDmaDir; | ||
65 | |||
66 | static atomic_t gDmaStatMemTypeKmalloc = ATOMIC_INIT(0); | ||
67 | static atomic_t gDmaStatMemTypeVmalloc = ATOMIC_INIT(0); | ||
68 | static atomic_t gDmaStatMemTypeUser = ATOMIC_INIT(0); | ||
69 | static atomic_t gDmaStatMemTypeCoherent = ATOMIC_INIT(0); | ||
70 | |||
71 | #include "dma_device.c" | ||
72 | |||
73 | /* ---- Private Function Prototypes -------------------------------------- */ | ||
74 | |||
75 | /* ---- Functions ------------------------------------------------------- */ | ||
76 | |||
77 | /****************************************************************************/ | ||
78 | /** | ||
79 | * Displays information for /proc/dma/mem-type | ||
80 | */ | ||
81 | /****************************************************************************/ | ||
82 | |||
83 | static int dma_proc_read_mem_type(char *buf, char **start, off_t offset, | ||
84 | int count, int *eof, void *data) | ||
85 | { | ||
86 | int len = 0; | ||
87 | |||
88 | len += sprintf(buf + len, "dma_map_mem statistics\n"); | ||
89 | len += | ||
90 | sprintf(buf + len, "coherent: %d\n", | ||
91 | atomic_read(&gDmaStatMemTypeCoherent)); | ||
92 | len += | ||
93 | sprintf(buf + len, "kmalloc: %d\n", | ||
94 | atomic_read(&gDmaStatMemTypeKmalloc)); | ||
95 | len += | ||
96 | sprintf(buf + len, "vmalloc: %d\n", | ||
97 | atomic_read(&gDmaStatMemTypeVmalloc)); | ||
98 | len += | ||
99 | sprintf(buf + len, "user: %d\n", | ||
100 | atomic_read(&gDmaStatMemTypeUser)); | ||
101 | |||
102 | return len; | ||
103 | } | ||
104 | |||
105 | /****************************************************************************/ | ||
106 | /** | ||
107 | * Displays information for /proc/dma/channels | ||
108 | */ | ||
109 | /****************************************************************************/ | ||
110 | |||
111 | static int dma_proc_read_channels(char *buf, char **start, off_t offset, | ||
112 | int count, int *eof, void *data) | ||
113 | { | ||
114 | int controllerIdx; | ||
115 | int channelIdx; | ||
116 | int limit = count - 200; | ||
117 | int len = 0; | ||
118 | DMA_Channel_t *channel; | ||
119 | |||
120 | if (down_interruptible(&gDMA.lock) < 0) { | ||
121 | return -ERESTARTSYS; | ||
122 | } | ||
123 | |||
124 | for (controllerIdx = 0; controllerIdx < DMA_NUM_CONTROLLERS; | ||
125 | controllerIdx++) { | ||
126 | for (channelIdx = 0; channelIdx < DMA_NUM_CHANNELS; | ||
127 | channelIdx++) { | ||
128 | if (len >= limit) { | ||
129 | break; | ||
130 | } | ||
131 | |||
132 | channel = | ||
133 | &gDMA.controller[controllerIdx].channel[channelIdx]; | ||
134 | |||
135 | len += | ||
136 | sprintf(buf + len, "%d:%d ", controllerIdx, | ||
137 | channelIdx); | ||
138 | |||
139 | if ((channel->flags & DMA_CHANNEL_FLAG_IS_DEDICATED) != | ||
140 | 0) { | ||
141 | len += | ||
142 | sprintf(buf + len, "Dedicated for %s ", | ||
143 | DMA_gDeviceAttribute[channel-> | ||
144 | devType].name); | ||
145 | } else { | ||
146 | len += sprintf(buf + len, "Shared "); | ||
147 | } | ||
148 | |||
149 | if ((channel->flags & DMA_CHANNEL_FLAG_NO_ISR) != 0) { | ||
150 | len += sprintf(buf + len, "No ISR "); | ||
151 | } | ||
152 | |||
153 | if ((channel->flags & DMA_CHANNEL_FLAG_LARGE_FIFO) != 0) { | ||
154 | len += sprintf(buf + len, "Fifo: 128 "); | ||
155 | } else { | ||
156 | len += sprintf(buf + len, "Fifo: 64 "); | ||
157 | } | ||
158 | |||
159 | if ((channel->flags & DMA_CHANNEL_FLAG_IN_USE) != 0) { | ||
160 | len += | ||
161 | sprintf(buf + len, "InUse by %s", | ||
162 | DMA_gDeviceAttribute[channel-> | ||
163 | devType].name); | ||
164 | #if (DMA_DEBUG_TRACK_RESERVATION) | ||
165 | len += | ||
166 | sprintf(buf + len, " (%s:%d)", | ||
167 | channel->fileName, | ||
168 | channel->lineNum); | ||
169 | #endif | ||
170 | } else { | ||
171 | len += sprintf(buf + len, "Avail "); | ||
172 | } | ||
173 | |||
174 | if (channel->lastDevType != DMA_DEVICE_NONE) { | ||
175 | len += | ||
176 | sprintf(buf + len, "Last use: %s ", | ||
177 | DMA_gDeviceAttribute[channel-> | ||
178 | lastDevType]. | ||
179 | name); | ||
180 | } | ||
181 | |||
182 | len += sprintf(buf + len, "\n"); | ||
183 | } | ||
184 | } | ||
185 | up(&gDMA.lock); | ||
186 | *eof = 1; | ||
187 | |||
188 | return len; | ||
189 | } | ||
190 | |||
191 | /****************************************************************************/ | ||
192 | /** | ||
193 | * Displays information for /proc/dma/devices | ||
194 | */ | ||
195 | /****************************************************************************/ | ||
196 | |||
197 | static int dma_proc_read_devices(char *buf, char **start, off_t offset, | ||
198 | int count, int *eof, void *data) | ||
199 | { | ||
200 | int limit = count - 200; | ||
201 | int len = 0; | ||
202 | int devIdx; | ||
203 | |||
204 | if (down_interruptible(&gDMA.lock) < 0) { | ||
205 | return -ERESTARTSYS; | ||
206 | } | ||
207 | |||
208 | for (devIdx = 0; devIdx < DMA_NUM_DEVICE_ENTRIES; devIdx++) { | ||
209 | DMA_DeviceAttribute_t *devAttr = &DMA_gDeviceAttribute[devIdx]; | ||
210 | |||
211 | if (devAttr->name == NULL) { | ||
212 | continue; | ||
213 | } | ||
214 | |||
215 | if (len >= limit) { | ||
216 | break; | ||
217 | } | ||
218 | |||
219 | len += sprintf(buf + len, "%-12s ", devAttr->name); | ||
220 | |||
221 | if ((devAttr->flags & DMA_DEVICE_FLAG_IS_DEDICATED) != 0) { | ||
222 | len += | ||
223 | sprintf(buf + len, "Dedicated %d:%d ", | ||
224 | devAttr->dedicatedController, | ||
225 | devAttr->dedicatedChannel); | ||
226 | } else { | ||
227 | len += sprintf(buf + len, "Shared DMA:"); | ||
228 | if ((devAttr->flags & DMA_DEVICE_FLAG_ON_DMA0) != 0) { | ||
229 | len += sprintf(buf + len, "0"); | ||
230 | } | ||
231 | if ((devAttr->flags & DMA_DEVICE_FLAG_ON_DMA1) != 0) { | ||
232 | len += sprintf(buf + len, "1"); | ||
233 | } | ||
234 | len += sprintf(buf + len, " "); | ||
235 | } | ||
236 | if ((devAttr->flags & DMA_DEVICE_FLAG_NO_ISR) != 0) { | ||
237 | len += sprintf(buf + len, "NoISR "); | ||
238 | } | ||
239 | if ((devAttr->flags & DMA_DEVICE_FLAG_ALLOW_LARGE_FIFO) != 0) { | ||
240 | len += sprintf(buf + len, "Allow-128 "); | ||
241 | } | ||
242 | |||
243 | len += | ||
244 | sprintf(buf + len, | ||
245 | "Xfer #: %Lu Ticks: %Lu Bytes: %Lu DescLen: %u\n", | ||
246 | devAttr->numTransfers, devAttr->transferTicks, | ||
247 | devAttr->transferBytes, | ||
248 | devAttr->ring.bytesAllocated); | ||
249 | |||
250 | } | ||
251 | |||
252 | up(&gDMA.lock); | ||
253 | *eof = 1; | ||
254 | |||
255 | return len; | ||
256 | } | ||
257 | |||
258 | /****************************************************************************/ | ||
259 | /** | ||
260 | * Determines if a DMA_Device_t is "valid". | ||
261 | * | ||
262 | * @return | ||
263 | * TRUE - dma device is valid | ||
264 | * FALSE - dma device isn't valid | ||
265 | */ | ||
266 | /****************************************************************************/ | ||
267 | |||
268 | static inline int IsDeviceValid(DMA_Device_t device) | ||
269 | { | ||
270 | return (device >= 0) && (device < DMA_NUM_DEVICE_ENTRIES); | ||
271 | } | ||
272 | |||
273 | /****************************************************************************/ | ||
274 | /** | ||
275 | * Translates a DMA handle into a pointer to a channel. | ||
276 | * | ||
277 | * @return | ||
278 | * non-NULL - pointer to DMA_Channel_t | ||
279 | * NULL - DMA Handle was invalid | ||
280 | */ | ||
281 | /****************************************************************************/ | ||
282 | |||
283 | static inline DMA_Channel_t *HandleToChannel(DMA_Handle_t handle) | ||
284 | { | ||
285 | int controllerIdx; | ||
286 | int channelIdx; | ||
287 | |||
288 | controllerIdx = CONTROLLER_FROM_HANDLE(handle); | ||
289 | channelIdx = CHANNEL_FROM_HANDLE(handle); | ||
290 | |||
291 | if ((controllerIdx > DMA_NUM_CONTROLLERS) | ||
292 | || (channelIdx > DMA_NUM_CHANNELS)) { | ||
293 | return NULL; | ||
294 | } | ||
295 | return &gDMA.controller[controllerIdx].channel[channelIdx]; | ||
296 | } | ||
297 | |||
298 | /****************************************************************************/ | ||
299 | /** | ||
300 | * Interrupt handler which is called to process DMA interrupts. | ||
301 | */ | ||
302 | /****************************************************************************/ | ||
303 | |||
304 | static irqreturn_t dma_interrupt_handler(int irq, void *dev_id) | ||
305 | { | ||
306 | DMA_Channel_t *channel; | ||
307 | DMA_DeviceAttribute_t *devAttr; | ||
308 | int irqStatus; | ||
309 | |||
310 | channel = (DMA_Channel_t *) dev_id; | ||
311 | |||
312 | /* Figure out why we were called, and knock down the interrupt */ | ||
313 | |||
314 | irqStatus = dmacHw_getInterruptStatus(channel->dmacHwHandle); | ||
315 | dmacHw_clearInterrupt(channel->dmacHwHandle); | ||
316 | |||
317 | if ((channel->devType < 0) | ||
318 | || (channel->devType > DMA_NUM_DEVICE_ENTRIES)) { | ||
319 | printk(KERN_ERR "dma_interrupt_handler: Invalid devType: %d\n", | ||
320 | channel->devType); | ||
321 | return IRQ_NONE; | ||
322 | } | ||
323 | devAttr = &DMA_gDeviceAttribute[channel->devType]; | ||
324 | |||
325 | /* Update stats */ | ||
326 | |||
327 | if ((irqStatus & dmacHw_INTERRUPT_STATUS_TRANS) != 0) { | ||
328 | devAttr->transferTicks += | ||
329 | (timer_get_tick_count() - devAttr->transferStartTime); | ||
330 | } | ||
331 | |||
332 | if ((irqStatus & dmacHw_INTERRUPT_STATUS_ERROR) != 0) { | ||
333 | printk(KERN_ERR | ||
334 | "dma_interrupt_handler: devType :%d DMA error (%s)\n", | ||
335 | channel->devType, devAttr->name); | ||
336 | } else { | ||
337 | devAttr->numTransfers++; | ||
338 | devAttr->transferBytes += devAttr->numBytes; | ||
339 | } | ||
340 | |||
341 | /* Call any installed handler */ | ||
342 | |||
343 | if (devAttr->devHandler != NULL) { | ||
344 | devAttr->devHandler(channel->devType, irqStatus, | ||
345 | devAttr->userData); | ||
346 | } | ||
347 | |||
348 | return IRQ_HANDLED; | ||
349 | } | ||
350 | |||
351 | /****************************************************************************/ | ||
352 | /** | ||
353 | * Allocates memory to hold a descriptor ring. The descriptor ring then | ||
354 | * needs to be populated by making one or more calls to | ||
355 | * dna_add_descriptors. | ||
356 | * | ||
357 | * The returned descriptor ring will be automatically initialized. | ||
358 | * | ||
359 | * @return | ||
360 | * 0 Descriptor ring was allocated successfully | ||
361 | * -EINVAL Invalid parameters passed in | ||
362 | * -ENOMEM Unable to allocate memory for the desired number of descriptors. | ||
363 | */ | ||
364 | /****************************************************************************/ | ||
365 | |||
366 | int dma_alloc_descriptor_ring(DMA_DescriptorRing_t *ring, /* Descriptor ring to populate */ | ||
367 | int numDescriptors /* Number of descriptors that need to be allocated. */ | ||
368 | ) { | ||
369 | size_t bytesToAlloc = dmacHw_descriptorLen(numDescriptors); | ||
370 | |||
371 | if ((ring == NULL) || (numDescriptors <= 0)) { | ||
372 | return -EINVAL; | ||
373 | } | ||
374 | |||
375 | ring->physAddr = 0; | ||
376 | ring->descriptorsAllocated = 0; | ||
377 | ring->bytesAllocated = 0; | ||
378 | |||
379 | ring->virtAddr = dma_alloc_writecombine(NULL, | ||
380 | bytesToAlloc, | ||
381 | &ring->physAddr, | ||
382 | GFP_KERNEL); | ||
383 | if (ring->virtAddr == NULL) { | ||
384 | return -ENOMEM; | ||
385 | } | ||
386 | |||
387 | ring->bytesAllocated = bytesToAlloc; | ||
388 | ring->descriptorsAllocated = numDescriptors; | ||
389 | |||
390 | return dma_init_descriptor_ring(ring, numDescriptors); | ||
391 | } | ||
392 | |||
393 | EXPORT_SYMBOL(dma_alloc_descriptor_ring); | ||
394 | |||
395 | /****************************************************************************/ | ||
396 | /** | ||
397 | * Releases the memory which was previously allocated for a descriptor ring. | ||
398 | */ | ||
399 | /****************************************************************************/ | ||
400 | |||
401 | void dma_free_descriptor_ring(DMA_DescriptorRing_t *ring /* Descriptor to release */ | ||
402 | ) { | ||
403 | if (ring->virtAddr != NULL) { | ||
404 | dma_free_writecombine(NULL, | ||
405 | ring->bytesAllocated, | ||
406 | ring->virtAddr, ring->physAddr); | ||
407 | } | ||
408 | |||
409 | ring->bytesAllocated = 0; | ||
410 | ring->descriptorsAllocated = 0; | ||
411 | ring->virtAddr = NULL; | ||
412 | ring->physAddr = 0; | ||
413 | } | ||
414 | |||
415 | EXPORT_SYMBOL(dma_free_descriptor_ring); | ||
416 | |||
417 | /****************************************************************************/ | ||
418 | /** | ||
419 | * Initializes a descriptor ring, so that descriptors can be added to it. | ||
420 | * Once a descriptor ring has been allocated, it may be reinitialized for | ||
421 | * use with additional/different regions of memory. | ||
422 | * | ||
423 | * Note that if 7 descriptors are allocated, it's perfectly acceptable to | ||
424 | * initialize the ring with a smaller number of descriptors. The amount | ||
425 | * of memory allocated for the descriptor ring will not be reduced, and | ||
426 | * the descriptor ring may be reinitialized later | ||
427 | * | ||
428 | * @return | ||
429 | * 0 Descriptor ring was initialized successfully | ||
430 | * -ENOMEM The descriptor which was passed in has insufficient space | ||
431 | * to hold the desired number of descriptors. | ||
432 | */ | ||
433 | /****************************************************************************/ | ||
434 | |||
435 | int dma_init_descriptor_ring(DMA_DescriptorRing_t *ring, /* Descriptor ring to initialize */ | ||
436 | int numDescriptors /* Number of descriptors to initialize. */ | ||
437 | ) { | ||
438 | if (ring->virtAddr == NULL) { | ||
439 | return -EINVAL; | ||
440 | } | ||
441 | if (dmacHw_initDescriptor(ring->virtAddr, | ||
442 | ring->physAddr, | ||
443 | ring->bytesAllocated, numDescriptors) < 0) { | ||
444 | printk(KERN_ERR | ||
445 | "dma_init_descriptor_ring: dmacHw_initDescriptor failed\n"); | ||
446 | return -ENOMEM; | ||
447 | } | ||
448 | |||
449 | return 0; | ||
450 | } | ||
451 | |||
452 | EXPORT_SYMBOL(dma_init_descriptor_ring); | ||
453 | |||
454 | /****************************************************************************/ | ||
455 | /** | ||
456 | * Determines the number of descriptors which would be required for a | ||
457 | * transfer of the indicated memory region. | ||
458 | * | ||
459 | * This function also needs to know which DMA device this transfer will | ||
460 | * be destined for, so that the appropriate DMA configuration can be retrieved. | ||
461 | * DMA parameters such as transfer width, and whether this is a memory-to-memory | ||
462 | * or memory-to-peripheral, etc can all affect the actual number of descriptors | ||
463 | * required. | ||
464 | * | ||
465 | * @return | ||
466 | * > 0 Returns the number of descriptors required for the indicated transfer | ||
467 | * -ENODEV - Device handed in is invalid. | ||
468 | * -EINVAL Invalid parameters | ||
469 | * -ENOMEM Memory exhausted | ||
470 | */ | ||
471 | /****************************************************************************/ | ||
472 | |||
473 | int dma_calculate_descriptor_count(DMA_Device_t device, /* DMA Device that this will be associated with */ | ||
474 | dma_addr_t srcData, /* Place to get data to write to device */ | ||
475 | dma_addr_t dstData, /* Pointer to device data address */ | ||
476 | size_t numBytes /* Number of bytes to transfer to the device */ | ||
477 | ) { | ||
478 | int numDescriptors; | ||
479 | DMA_DeviceAttribute_t *devAttr; | ||
480 | |||
481 | if (!IsDeviceValid(device)) { | ||
482 | return -ENODEV; | ||
483 | } | ||
484 | devAttr = &DMA_gDeviceAttribute[device]; | ||
485 | |||
486 | numDescriptors = dmacHw_calculateDescriptorCount(&devAttr->config, | ||
487 | (void *)srcData, | ||
488 | (void *)dstData, | ||
489 | numBytes); | ||
490 | if (numDescriptors < 0) { | ||
491 | printk(KERN_ERR | ||
492 | "dma_calculate_descriptor_count: dmacHw_calculateDescriptorCount failed\n"); | ||
493 | return -EINVAL; | ||
494 | } | ||
495 | |||
496 | return numDescriptors; | ||
497 | } | ||
498 | |||
499 | EXPORT_SYMBOL(dma_calculate_descriptor_count); | ||
500 | |||
501 | /****************************************************************************/ | ||
502 | /** | ||
503 | * Adds a region of memory to the descriptor ring. Note that it may take | ||
504 | * multiple descriptors for each region of memory. It is the callers | ||
505 | * responsibility to allocate a sufficiently large descriptor ring. | ||
506 | * | ||
507 | * @return | ||
508 | * 0 Descriptors were added successfully | ||
509 | * -ENODEV Device handed in is invalid. | ||
510 | * -EINVAL Invalid parameters | ||
511 | * -ENOMEM Memory exhausted | ||
512 | */ | ||
513 | /****************************************************************************/ | ||
514 | |||
515 | int dma_add_descriptors(DMA_DescriptorRing_t *ring, /* Descriptor ring to add descriptors to */ | ||
516 | DMA_Device_t device, /* DMA Device that descriptors are for */ | ||
517 | dma_addr_t srcData, /* Place to get data (memory or device) */ | ||
518 | dma_addr_t dstData, /* Place to put data (memory or device) */ | ||
519 | size_t numBytes /* Number of bytes to transfer to the device */ | ||
520 | ) { | ||
521 | int rc; | ||
522 | DMA_DeviceAttribute_t *devAttr; | ||
523 | |||
524 | if (!IsDeviceValid(device)) { | ||
525 | return -ENODEV; | ||
526 | } | ||
527 | devAttr = &DMA_gDeviceAttribute[device]; | ||
528 | |||
529 | rc = dmacHw_setDataDescriptor(&devAttr->config, | ||
530 | ring->virtAddr, | ||
531 | (void *)srcData, | ||
532 | (void *)dstData, numBytes); | ||
533 | if (rc < 0) { | ||
534 | printk(KERN_ERR | ||
535 | "dma_add_descriptors: dmacHw_setDataDescriptor failed with code: %d\n", | ||
536 | rc); | ||
537 | return -ENOMEM; | ||
538 | } | ||
539 | |||
540 | return 0; | ||
541 | } | ||
542 | |||
543 | EXPORT_SYMBOL(dma_add_descriptors); | ||
544 | |||
545 | /****************************************************************************/ | ||
546 | /** | ||
547 | * Sets the descriptor ring associated with a device. | ||
548 | * | ||
549 | * Once set, the descriptor ring will be associated with the device, even | ||
550 | * across channel request/free calls. Passing in a NULL descriptor ring | ||
551 | * will release any descriptor ring currently associated with the device. | ||
552 | * | ||
553 | * Note: If you call dma_transfer, or one of the other dma_alloc_ functions | ||
554 | * the descriptor ring may be released and reallocated. | ||
555 | * | ||
556 | * Note: This function will release the descriptor memory for any current | ||
557 | * descriptor ring associated with this device. | ||
558 | * | ||
559 | * @return | ||
560 | * 0 Descriptors were added successfully | ||
561 | * -ENODEV Device handed in is invalid. | ||
562 | */ | ||
563 | /****************************************************************************/ | ||
564 | |||
565 | int dma_set_device_descriptor_ring(DMA_Device_t device, /* Device to update the descriptor ring for. */ | ||
566 | DMA_DescriptorRing_t *ring /* Descriptor ring to add descriptors to */ | ||
567 | ) { | ||
568 | DMA_DeviceAttribute_t *devAttr; | ||
569 | |||
570 | if (!IsDeviceValid(device)) { | ||
571 | return -ENODEV; | ||
572 | } | ||
573 | devAttr = &DMA_gDeviceAttribute[device]; | ||
574 | |||
575 | /* Free the previously allocated descriptor ring */ | ||
576 | |||
577 | dma_free_descriptor_ring(&devAttr->ring); | ||
578 | |||
579 | if (ring != NULL) { | ||
580 | /* Copy in the new one */ | ||
581 | |||
582 | devAttr->ring = *ring; | ||
583 | } | ||
584 | |||
585 | /* Set things up so that if dma_transfer is called then this descriptor */ | ||
586 | /* ring will get freed. */ | ||
587 | |||
588 | devAttr->prevSrcData = 0; | ||
589 | devAttr->prevDstData = 0; | ||
590 | devAttr->prevNumBytes = 0; | ||
591 | |||
592 | return 0; | ||
593 | } | ||
594 | |||
595 | EXPORT_SYMBOL(dma_set_device_descriptor_ring); | ||
596 | |||
597 | /****************************************************************************/ | ||
598 | /** | ||
599 | * Retrieves the descriptor ring associated with a device. | ||
600 | * | ||
601 | * @return | ||
602 | * 0 Descriptors were added successfully | ||
603 | * -ENODEV Device handed in is invalid. | ||
604 | */ | ||
605 | /****************************************************************************/ | ||
606 | |||
607 | int dma_get_device_descriptor_ring(DMA_Device_t device, /* Device to retrieve the descriptor ring for. */ | ||
608 | DMA_DescriptorRing_t *ring /* Place to store retrieved ring */ | ||
609 | ) { | ||
610 | DMA_DeviceAttribute_t *devAttr; | ||
611 | |||
612 | memset(ring, 0, sizeof(*ring)); | ||
613 | |||
614 | if (!IsDeviceValid(device)) { | ||
615 | return -ENODEV; | ||
616 | } | ||
617 | devAttr = &DMA_gDeviceAttribute[device]; | ||
618 | |||
619 | *ring = devAttr->ring; | ||
620 | |||
621 | return 0; | ||
622 | } | ||
623 | |||
624 | EXPORT_SYMBOL(dma_get_device_descriptor_ring); | ||
625 | |||
626 | /****************************************************************************/ | ||
627 | /** | ||
628 | * Configures a DMA channel. | ||
629 | * | ||
630 | * @return | ||
631 | * >= 0 - Initialization was successfull. | ||
632 | * | ||
633 | * -EBUSY - Device is currently being used. | ||
634 | * -ENODEV - Device handed in is invalid. | ||
635 | */ | ||
636 | /****************************************************************************/ | ||
637 | |||
638 | static int ConfigChannel(DMA_Handle_t handle) | ||
639 | { | ||
640 | DMA_Channel_t *channel; | ||
641 | DMA_DeviceAttribute_t *devAttr; | ||
642 | int controllerIdx; | ||
643 | |||
644 | channel = HandleToChannel(handle); | ||
645 | if (channel == NULL) { | ||
646 | return -ENODEV; | ||
647 | } | ||
648 | devAttr = &DMA_gDeviceAttribute[channel->devType]; | ||
649 | controllerIdx = CONTROLLER_FROM_HANDLE(handle); | ||
650 | |||
651 | if ((devAttr->flags & DMA_DEVICE_FLAG_PORT_PER_DMAC) != 0) { | ||
652 | if (devAttr->config.transferType == | ||
653 | dmacHw_TRANSFER_TYPE_MEM_TO_PERIPHERAL) { | ||
654 | devAttr->config.dstPeripheralPort = | ||
655 | devAttr->dmacPort[controllerIdx]; | ||
656 | } else if (devAttr->config.transferType == | ||
657 | dmacHw_TRANSFER_TYPE_PERIPHERAL_TO_MEM) { | ||
658 | devAttr->config.srcPeripheralPort = | ||
659 | devAttr->dmacPort[controllerIdx]; | ||
660 | } | ||
661 | } | ||
662 | |||
663 | if (dmacHw_configChannel(channel->dmacHwHandle, &devAttr->config) != 0) { | ||
664 | printk(KERN_ERR "ConfigChannel: dmacHw_configChannel failed\n"); | ||
665 | return -EIO; | ||
666 | } | ||
667 | |||
668 | return 0; | ||
669 | } | ||
670 | |||
671 | /****************************************************************************/ | ||
672 | /** | ||
673 | * Intializes all of the data structures associated with the DMA. | ||
674 | * @return | ||
675 | * >= 0 - Initialization was successfull. | ||
676 | * | ||
677 | * -EBUSY - Device is currently being used. | ||
678 | * -ENODEV - Device handed in is invalid. | ||
679 | */ | ||
680 | /****************************************************************************/ | ||
681 | |||
682 | int dma_init(void) | ||
683 | { | ||
684 | int rc = 0; | ||
685 | int controllerIdx; | ||
686 | int channelIdx; | ||
687 | DMA_Device_t devIdx; | ||
688 | DMA_Channel_t *channel; | ||
689 | DMA_Handle_t dedicatedHandle; | ||
690 | |||
691 | memset(&gDMA, 0, sizeof(gDMA)); | ||
692 | |||
693 | init_MUTEX_LOCKED(&gDMA.lock); | ||
694 | init_waitqueue_head(&gDMA.freeChannelQ); | ||
695 | |||
696 | /* Initialize the Hardware */ | ||
697 | |||
698 | dmacHw_initDma(); | ||
699 | |||
700 | /* Start off by marking all of the DMA channels as shared. */ | ||
701 | |||
702 | for (controllerIdx = 0; controllerIdx < DMA_NUM_CONTROLLERS; | ||
703 | controllerIdx++) { | ||
704 | for (channelIdx = 0; channelIdx < DMA_NUM_CHANNELS; | ||
705 | channelIdx++) { | ||
706 | channel = | ||
707 | &gDMA.controller[controllerIdx].channel[channelIdx]; | ||
708 | |||
709 | channel->flags = 0; | ||
710 | channel->devType = DMA_DEVICE_NONE; | ||
711 | channel->lastDevType = DMA_DEVICE_NONE; | ||
712 | |||
713 | #if (DMA_DEBUG_TRACK_RESERVATION) | ||
714 | channel->fileName = ""; | ||
715 | channel->lineNum = 0; | ||
716 | #endif | ||
717 | |||
718 | channel->dmacHwHandle = | ||
719 | dmacHw_getChannelHandle(dmacHw_MAKE_CHANNEL_ID | ||
720 | (controllerIdx, | ||
721 | channelIdx)); | ||
722 | dmacHw_initChannel(channel->dmacHwHandle); | ||
723 | } | ||
724 | } | ||
725 | |||
726 | /* Record any special attributes that channels may have */ | ||
727 | |||
728 | gDMA.controller[0].channel[0].flags |= DMA_CHANNEL_FLAG_LARGE_FIFO; | ||
729 | gDMA.controller[0].channel[1].flags |= DMA_CHANNEL_FLAG_LARGE_FIFO; | ||
730 | gDMA.controller[1].channel[0].flags |= DMA_CHANNEL_FLAG_LARGE_FIFO; | ||
731 | gDMA.controller[1].channel[1].flags |= DMA_CHANNEL_FLAG_LARGE_FIFO; | ||
732 | |||
733 | /* Now walk through and record the dedicated channels. */ | ||
734 | |||
735 | for (devIdx = 0; devIdx < DMA_NUM_DEVICE_ENTRIES; devIdx++) { | ||
736 | DMA_DeviceAttribute_t *devAttr = &DMA_gDeviceAttribute[devIdx]; | ||
737 | |||
738 | if (((devAttr->flags & DMA_DEVICE_FLAG_NO_ISR) != 0) | ||
739 | && ((devAttr->flags & DMA_DEVICE_FLAG_IS_DEDICATED) == 0)) { | ||
740 | printk(KERN_ERR | ||
741 | "DMA Device: %s Can only request NO_ISR for dedicated devices\n", | ||
742 | devAttr->name); | ||
743 | rc = -EINVAL; | ||
744 | goto out; | ||
745 | } | ||
746 | |||
747 | if ((devAttr->flags & DMA_DEVICE_FLAG_IS_DEDICATED) != 0) { | ||
748 | /* This is a dedicated device. Mark the channel as being reserved. */ | ||
749 | |||
750 | if (devAttr->dedicatedController >= DMA_NUM_CONTROLLERS) { | ||
751 | printk(KERN_ERR | ||
752 | "DMA Device: %s DMA Controller %d is out of range\n", | ||
753 | devAttr->name, | ||
754 | devAttr->dedicatedController); | ||
755 | rc = -EINVAL; | ||
756 | goto out; | ||
757 | } | ||
758 | |||
759 | if (devAttr->dedicatedChannel >= DMA_NUM_CHANNELS) { | ||
760 | printk(KERN_ERR | ||
761 | "DMA Device: %s DMA Channel %d is out of range\n", | ||
762 | devAttr->name, | ||
763 | devAttr->dedicatedChannel); | ||
764 | rc = -EINVAL; | ||
765 | goto out; | ||
766 | } | ||
767 | |||
768 | dedicatedHandle = | ||
769 | MAKE_HANDLE(devAttr->dedicatedController, | ||
770 | devAttr->dedicatedChannel); | ||
771 | channel = HandleToChannel(dedicatedHandle); | ||
772 | |||
773 | if ((channel->flags & DMA_CHANNEL_FLAG_IS_DEDICATED) != | ||
774 | 0) { | ||
775 | printk | ||
776 | ("DMA Device: %s attempting to use same DMA Controller:Channel (%d:%d) as %s\n", | ||
777 | devAttr->name, | ||
778 | devAttr->dedicatedController, | ||
779 | devAttr->dedicatedChannel, | ||
780 | DMA_gDeviceAttribute[channel->devType]. | ||
781 | name); | ||
782 | rc = -EBUSY; | ||
783 | goto out; | ||
784 | } | ||
785 | |||
786 | channel->flags |= DMA_CHANNEL_FLAG_IS_DEDICATED; | ||
787 | channel->devType = devIdx; | ||
788 | |||
789 | if (devAttr->flags & DMA_DEVICE_FLAG_NO_ISR) { | ||
790 | channel->flags |= DMA_CHANNEL_FLAG_NO_ISR; | ||
791 | } | ||
792 | |||
793 | /* For dedicated channels, we can go ahead and configure the DMA channel now */ | ||
794 | /* as well. */ | ||
795 | |||
796 | ConfigChannel(dedicatedHandle); | ||
797 | } | ||
798 | } | ||
799 | |||
800 | /* Go through and register the interrupt handlers */ | ||
801 | |||
802 | for (controllerIdx = 0; controllerIdx < DMA_NUM_CONTROLLERS; | ||
803 | controllerIdx++) { | ||
804 | for (channelIdx = 0; channelIdx < DMA_NUM_CHANNELS; | ||
805 | channelIdx++) { | ||
806 | channel = | ||
807 | &gDMA.controller[controllerIdx].channel[channelIdx]; | ||
808 | |||
809 | if ((channel->flags & DMA_CHANNEL_FLAG_NO_ISR) == 0) { | ||
810 | snprintf(channel->name, sizeof(channel->name), | ||
811 | "dma %d:%d %s", controllerIdx, | ||
812 | channelIdx, | ||
813 | channel->devType == | ||
814 | DMA_DEVICE_NONE ? "" : | ||
815 | DMA_gDeviceAttribute[channel->devType]. | ||
816 | name); | ||
817 | |||
818 | rc = | ||
819 | request_irq(IRQ_DMA0C0 + | ||
820 | (controllerIdx * | ||
821 | DMA_NUM_CHANNELS) + | ||
822 | channelIdx, | ||
823 | dma_interrupt_handler, | ||
824 | IRQF_DISABLED, channel->name, | ||
825 | channel); | ||
826 | if (rc != 0) { | ||
827 | printk(KERN_ERR | ||
828 | "request_irq for IRQ_DMA%dC%d failed\n", | ||
829 | controllerIdx, channelIdx); | ||
830 | } | ||
831 | } | ||
832 | } | ||
833 | } | ||
834 | |||
835 | /* Create /proc/dma/channels and /proc/dma/devices */ | ||
836 | |||
837 | gDmaDir = create_proc_entry("dma", S_IFDIR | S_IRUGO | S_IXUGO, NULL); | ||
838 | |||
839 | if (gDmaDir == NULL) { | ||
840 | printk(KERN_ERR "Unable to create /proc/dma\n"); | ||
841 | } else { | ||
842 | create_proc_read_entry("channels", 0, gDmaDir, | ||
843 | dma_proc_read_channels, NULL); | ||
844 | create_proc_read_entry("devices", 0, gDmaDir, | ||
845 | dma_proc_read_devices, NULL); | ||
846 | create_proc_read_entry("mem-type", 0, gDmaDir, | ||
847 | dma_proc_read_mem_type, NULL); | ||
848 | } | ||
849 | |||
850 | out: | ||
851 | |||
852 | up(&gDMA.lock); | ||
853 | |||
854 | return rc; | ||
855 | } | ||
856 | |||
857 | /****************************************************************************/ | ||
858 | /** | ||
859 | * Reserves a channel for use with @a dev. If the device is setup to use | ||
860 | * a shared channel, then this function will block until a free channel | ||
861 | * becomes available. | ||
862 | * | ||
863 | * @return | ||
864 | * >= 0 - A valid DMA Handle. | ||
865 | * -EBUSY - Device is currently being used. | ||
866 | * -ENODEV - Device handed in is invalid. | ||
867 | */ | ||
868 | /****************************************************************************/ | ||
869 | |||
870 | #if (DMA_DEBUG_TRACK_RESERVATION) | ||
871 | DMA_Handle_t dma_request_channel_dbg | ||
872 | (DMA_Device_t dev, const char *fileName, int lineNum) | ||
873 | #else | ||
874 | DMA_Handle_t dma_request_channel(DMA_Device_t dev) | ||
875 | #endif | ||
876 | { | ||
877 | DMA_Handle_t handle; | ||
878 | DMA_DeviceAttribute_t *devAttr; | ||
879 | DMA_Channel_t *channel; | ||
880 | int controllerIdx; | ||
881 | int controllerIdx2; | ||
882 | int channelIdx; | ||
883 | |||
884 | if (down_interruptible(&gDMA.lock) < 0) { | ||
885 | return -ERESTARTSYS; | ||
886 | } | ||
887 | |||
888 | if ((dev < 0) || (dev >= DMA_NUM_DEVICE_ENTRIES)) { | ||
889 | handle = -ENODEV; | ||
890 | goto out; | ||
891 | } | ||
892 | devAttr = &DMA_gDeviceAttribute[dev]; | ||
893 | |||
894 | #if (DMA_DEBUG_TRACK_RESERVATION) | ||
895 | { | ||
896 | char *s; | ||
897 | |||
898 | s = strrchr(fileName, '/'); | ||
899 | if (s != NULL) { | ||
900 | fileName = s + 1; | ||
901 | } | ||
902 | } | ||
903 | #endif | ||
904 | if ((devAttr->flags & DMA_DEVICE_FLAG_IN_USE) != 0) { | ||
905 | /* This device has already been requested and not been freed */ | ||
906 | |||
907 | printk(KERN_ERR "%s: device %s is already requested\n", | ||
908 | __func__, devAttr->name); | ||
909 | handle = -EBUSY; | ||
910 | goto out; | ||
911 | } | ||
912 | |||
913 | if ((devAttr->flags & DMA_DEVICE_FLAG_IS_DEDICATED) != 0) { | ||
914 | /* This device has a dedicated channel. */ | ||
915 | |||
916 | channel = | ||
917 | &gDMA.controller[devAttr->dedicatedController]. | ||
918 | channel[devAttr->dedicatedChannel]; | ||
919 | if ((channel->flags & DMA_CHANNEL_FLAG_IN_USE) != 0) { | ||
920 | handle = -EBUSY; | ||
921 | goto out; | ||
922 | } | ||
923 | |||
924 | channel->flags |= DMA_CHANNEL_FLAG_IN_USE; | ||
925 | devAttr->flags |= DMA_DEVICE_FLAG_IN_USE; | ||
926 | |||
927 | #if (DMA_DEBUG_TRACK_RESERVATION) | ||
928 | channel->fileName = fileName; | ||
929 | channel->lineNum = lineNum; | ||
930 | #endif | ||
931 | handle = | ||
932 | MAKE_HANDLE(devAttr->dedicatedController, | ||
933 | devAttr->dedicatedChannel); | ||
934 | goto out; | ||
935 | } | ||
936 | |||
937 | /* This device needs to use one of the shared channels. */ | ||
938 | |||
939 | handle = DMA_INVALID_HANDLE; | ||
940 | while (handle == DMA_INVALID_HANDLE) { | ||
941 | /* Scan through the shared channels and see if one is available */ | ||
942 | |||
943 | for (controllerIdx2 = 0; controllerIdx2 < DMA_NUM_CONTROLLERS; | ||
944 | controllerIdx2++) { | ||
945 | /* Check to see if we should try on controller 1 first. */ | ||
946 | |||
947 | controllerIdx = controllerIdx2; | ||
948 | if ((devAttr-> | ||
949 | flags & DMA_DEVICE_FLAG_ALLOC_DMA1_FIRST) != 0) { | ||
950 | controllerIdx = 1 - controllerIdx; | ||
951 | } | ||
952 | |||
953 | /* See if the device is available on the controller being tested */ | ||
954 | |||
955 | if ((devAttr-> | ||
956 | flags & (DMA_DEVICE_FLAG_ON_DMA0 << controllerIdx)) | ||
957 | != 0) { | ||
958 | for (channelIdx = 0; | ||
959 | channelIdx < DMA_NUM_CHANNELS; | ||
960 | channelIdx++) { | ||
961 | channel = | ||
962 | &gDMA.controller[controllerIdx]. | ||
963 | channel[channelIdx]; | ||
964 | |||
965 | if (((channel-> | ||
966 | flags & | ||
967 | DMA_CHANNEL_FLAG_IS_DEDICATED) == | ||
968 | 0) | ||
969 | && | ||
970 | ((channel-> | ||
971 | flags & DMA_CHANNEL_FLAG_IN_USE) | ||
972 | == 0)) { | ||
973 | if (((channel-> | ||
974 | flags & | ||
975 | DMA_CHANNEL_FLAG_LARGE_FIFO) | ||
976 | != 0) | ||
977 | && | ||
978 | ((devAttr-> | ||
979 | flags & | ||
980 | DMA_DEVICE_FLAG_ALLOW_LARGE_FIFO) | ||
981 | == 0)) { | ||
982 | /* This channel is a large fifo - don't tie it up */ | ||
983 | /* with devices that we don't want using it. */ | ||
984 | |||
985 | continue; | ||
986 | } | ||
987 | |||
988 | channel->flags |= | ||
989 | DMA_CHANNEL_FLAG_IN_USE; | ||
990 | channel->devType = dev; | ||
991 | devAttr->flags |= | ||
992 | DMA_DEVICE_FLAG_IN_USE; | ||
993 | |||
994 | #if (DMA_DEBUG_TRACK_RESERVATION) | ||
995 | channel->fileName = fileName; | ||
996 | channel->lineNum = lineNum; | ||
997 | #endif | ||
998 | handle = | ||
999 | MAKE_HANDLE(controllerIdx, | ||
1000 | channelIdx); | ||
1001 | |||
1002 | /* Now that we've reserved the channel - we can go ahead and configure it */ | ||
1003 | |||
1004 | if (ConfigChannel(handle) != 0) { | ||
1005 | handle = -EIO; | ||
1006 | printk(KERN_ERR | ||
1007 | "dma_request_channel: ConfigChannel failed\n"); | ||
1008 | } | ||
1009 | goto out; | ||
1010 | } | ||
1011 | } | ||
1012 | } | ||
1013 | } | ||
1014 | |||
1015 | /* No channels are currently available. Let's wait for one to free up. */ | ||
1016 | |||
1017 | { | ||
1018 | DEFINE_WAIT(wait); | ||
1019 | |||
1020 | prepare_to_wait(&gDMA.freeChannelQ, &wait, | ||
1021 | TASK_INTERRUPTIBLE); | ||
1022 | up(&gDMA.lock); | ||
1023 | schedule(); | ||
1024 | finish_wait(&gDMA.freeChannelQ, &wait); | ||
1025 | |||
1026 | if (signal_pending(current)) { | ||
1027 | /* We don't currently hold gDMA.lock, so we return directly */ | ||
1028 | |||
1029 | return -ERESTARTSYS; | ||
1030 | } | ||
1031 | } | ||
1032 | |||
1033 | if (down_interruptible(&gDMA.lock)) { | ||
1034 | return -ERESTARTSYS; | ||
1035 | } | ||
1036 | } | ||
1037 | |||
1038 | out: | ||
1039 | up(&gDMA.lock); | ||
1040 | |||
1041 | return handle; | ||
1042 | } | ||
1043 | |||
1044 | /* Create both _dbg and non _dbg functions for modules. */ | ||
1045 | |||
1046 | #if (DMA_DEBUG_TRACK_RESERVATION) | ||
1047 | #undef dma_request_channel | ||
1048 | DMA_Handle_t dma_request_channel(DMA_Device_t dev) | ||
1049 | { | ||
1050 | return dma_request_channel_dbg(dev, __FILE__, __LINE__); | ||
1051 | } | ||
1052 | |||
1053 | EXPORT_SYMBOL(dma_request_channel_dbg); | ||
1054 | #endif | ||
1055 | EXPORT_SYMBOL(dma_request_channel); | ||
1056 | |||
1057 | /****************************************************************************/ | ||
1058 | /** | ||
1059 | * Frees a previously allocated DMA Handle. | ||
1060 | */ | ||
1061 | /****************************************************************************/ | ||
1062 | |||
1063 | int dma_free_channel(DMA_Handle_t handle /* DMA handle. */ | ||
1064 | ) { | ||
1065 | int rc = 0; | ||
1066 | DMA_Channel_t *channel; | ||
1067 | DMA_DeviceAttribute_t *devAttr; | ||
1068 | |||
1069 | if (down_interruptible(&gDMA.lock) < 0) { | ||
1070 | return -ERESTARTSYS; | ||
1071 | } | ||
1072 | |||
1073 | channel = HandleToChannel(handle); | ||
1074 | if (channel == NULL) { | ||
1075 | rc = -EINVAL; | ||
1076 | goto out; | ||
1077 | } | ||
1078 | |||
1079 | devAttr = &DMA_gDeviceAttribute[channel->devType]; | ||
1080 | |||
1081 | if ((channel->flags & DMA_CHANNEL_FLAG_IS_DEDICATED) == 0) { | ||
1082 | channel->lastDevType = channel->devType; | ||
1083 | channel->devType = DMA_DEVICE_NONE; | ||
1084 | } | ||
1085 | channel->flags &= ~DMA_CHANNEL_FLAG_IN_USE; | ||
1086 | devAttr->flags &= ~DMA_DEVICE_FLAG_IN_USE; | ||
1087 | |||
1088 | out: | ||
1089 | up(&gDMA.lock); | ||
1090 | |||
1091 | wake_up_interruptible(&gDMA.freeChannelQ); | ||
1092 | |||
1093 | return rc; | ||
1094 | } | ||
1095 | |||
1096 | EXPORT_SYMBOL(dma_free_channel); | ||
1097 | |||
1098 | /****************************************************************************/ | ||
1099 | /** | ||
1100 | * Determines if a given device has been configured as using a shared | ||
1101 | * channel. | ||
1102 | * | ||
1103 | * @return | ||
1104 | * 0 Device uses a dedicated channel | ||
1105 | * > zero Device uses a shared channel | ||
1106 | * < zero Error code | ||
1107 | */ | ||
1108 | /****************************************************************************/ | ||
1109 | |||
1110 | int dma_device_is_channel_shared(DMA_Device_t device /* Device to check. */ | ||
1111 | ) { | ||
1112 | DMA_DeviceAttribute_t *devAttr; | ||
1113 | |||
1114 | if (!IsDeviceValid(device)) { | ||
1115 | return -ENODEV; | ||
1116 | } | ||
1117 | devAttr = &DMA_gDeviceAttribute[device]; | ||
1118 | |||
1119 | return ((devAttr->flags & DMA_DEVICE_FLAG_IS_DEDICATED) == 0); | ||
1120 | } | ||
1121 | |||
1122 | EXPORT_SYMBOL(dma_device_is_channel_shared); | ||
1123 | |||
1124 | /****************************************************************************/ | ||
1125 | /** | ||
1126 | * Allocates buffers for the descriptors. This is normally done automatically | ||
1127 | * but needs to be done explicitly when initiating a dma from interrupt | ||
1128 | * context. | ||
1129 | * | ||
1130 | * @return | ||
1131 | * 0 Descriptors were allocated successfully | ||
1132 | * -EINVAL Invalid device type for this kind of transfer | ||
1133 | * (i.e. the device is _MEM_TO_DEV and not _DEV_TO_MEM) | ||
1134 | * -ENOMEM Memory exhausted | ||
1135 | */ | ||
1136 | /****************************************************************************/ | ||
1137 | |||
1138 | int dma_alloc_descriptors(DMA_Handle_t handle, /* DMA Handle */ | ||
1139 | dmacHw_TRANSFER_TYPE_e transferType, /* Type of transfer being performed */ | ||
1140 | dma_addr_t srcData, /* Place to get data to write to device */ | ||
1141 | dma_addr_t dstData, /* Pointer to device data address */ | ||
1142 | size_t numBytes /* Number of bytes to transfer to the device */ | ||
1143 | ) { | ||
1144 | DMA_Channel_t *channel; | ||
1145 | DMA_DeviceAttribute_t *devAttr; | ||
1146 | int numDescriptors; | ||
1147 | size_t ringBytesRequired; | ||
1148 | int rc = 0; | ||
1149 | |||
1150 | channel = HandleToChannel(handle); | ||
1151 | if (channel == NULL) { | ||
1152 | return -ENODEV; | ||
1153 | } | ||
1154 | |||
1155 | devAttr = &DMA_gDeviceAttribute[channel->devType]; | ||
1156 | |||
1157 | if (devAttr->config.transferType != transferType) { | ||
1158 | return -EINVAL; | ||
1159 | } | ||
1160 | |||
1161 | /* Figure out how many descriptors we need. */ | ||
1162 | |||
1163 | /* printk("srcData: 0x%08x dstData: 0x%08x, numBytes: %d\n", */ | ||
1164 | /* srcData, dstData, numBytes); */ | ||
1165 | |||
1166 | numDescriptors = dmacHw_calculateDescriptorCount(&devAttr->config, | ||
1167 | (void *)srcData, | ||
1168 | (void *)dstData, | ||
1169 | numBytes); | ||
1170 | if (numDescriptors < 0) { | ||
1171 | printk(KERN_ERR "%s: dmacHw_calculateDescriptorCount failed\n", | ||
1172 | __func__); | ||
1173 | return -EINVAL; | ||
1174 | } | ||
1175 | |||
1176 | /* Check to see if we can reuse the existing descriptor ring, or if we need to allocate */ | ||
1177 | /* a new one. */ | ||
1178 | |||
1179 | ringBytesRequired = dmacHw_descriptorLen(numDescriptors); | ||
1180 | |||
1181 | /* printk("ringBytesRequired: %d\n", ringBytesRequired); */ | ||
1182 | |||
1183 | if (ringBytesRequired > devAttr->ring.bytesAllocated) { | ||
1184 | /* Make sure that this code path is never taken from interrupt context. */ | ||
1185 | /* It's OK for an interrupt to initiate a DMA transfer, but the descriptor */ | ||
1186 | /* allocation needs to have already been done. */ | ||
1187 | |||
1188 | might_sleep(); | ||
1189 | |||
1190 | /* Free the old descriptor ring and allocate a new one. */ | ||
1191 | |||
1192 | dma_free_descriptor_ring(&devAttr->ring); | ||
1193 | |||
1194 | /* And allocate a new one. */ | ||
1195 | |||
1196 | rc = | ||
1197 | dma_alloc_descriptor_ring(&devAttr->ring, | ||
1198 | numDescriptors); | ||
1199 | if (rc < 0) { | ||
1200 | printk(KERN_ERR | ||
1201 | "%s: dma_alloc_descriptor_ring(%d) failed\n", | ||
1202 | __func__, numDescriptors); | ||
1203 | return rc; | ||
1204 | } | ||
1205 | /* Setup the descriptor for this transfer */ | ||
1206 | |||
1207 | if (dmacHw_initDescriptor(devAttr->ring.virtAddr, | ||
1208 | devAttr->ring.physAddr, | ||
1209 | devAttr->ring.bytesAllocated, | ||
1210 | numDescriptors) < 0) { | ||
1211 | printk(KERN_ERR "%s: dmacHw_initDescriptor failed\n", | ||
1212 | __func__); | ||
1213 | return -EINVAL; | ||
1214 | } | ||
1215 | } else { | ||
1216 | /* We've already got enough ring buffer allocated. All we need to do is reset */ | ||
1217 | /* any control information, just in case the previous DMA was stopped. */ | ||
1218 | |||
1219 | dmacHw_resetDescriptorControl(devAttr->ring.virtAddr); | ||
1220 | } | ||
1221 | |||
1222 | /* dma_alloc/free both set the prevSrc/DstData to 0. If they happen to be the same */ | ||
1223 | /* as last time, then we don't need to call setDataDescriptor again. */ | ||
1224 | |||
1225 | if (dmacHw_setDataDescriptor(&devAttr->config, | ||
1226 | devAttr->ring.virtAddr, | ||
1227 | (void *)srcData, | ||
1228 | (void *)dstData, numBytes) < 0) { | ||
1229 | printk(KERN_ERR "%s: dmacHw_setDataDescriptor failed\n", | ||
1230 | __func__); | ||
1231 | return -EINVAL; | ||
1232 | } | ||
1233 | |||
1234 | /* Remember the critical information for this transfer so that we can eliminate */ | ||
1235 | /* another call to dma_alloc_descriptors if the caller reuses the same buffers */ | ||
1236 | |||
1237 | devAttr->prevSrcData = srcData; | ||
1238 | devAttr->prevDstData = dstData; | ||
1239 | devAttr->prevNumBytes = numBytes; | ||
1240 | |||
1241 | return 0; | ||
1242 | } | ||
1243 | |||
1244 | EXPORT_SYMBOL(dma_alloc_descriptors); | ||
1245 | |||
1246 | /****************************************************************************/ | ||
1247 | /** | ||
1248 | * Allocates and sets up descriptors for a double buffered circular buffer. | ||
1249 | * | ||
1250 | * This is primarily intended to be used for things like the ingress samples | ||
1251 | * from a microphone. | ||
1252 | * | ||
1253 | * @return | ||
1254 | * > 0 Number of descriptors actually allocated. | ||
1255 | * -EINVAL Invalid device type for this kind of transfer | ||
1256 | * (i.e. the device is _MEM_TO_DEV and not _DEV_TO_MEM) | ||
1257 | * -ENOMEM Memory exhausted | ||
1258 | */ | ||
1259 | /****************************************************************************/ | ||
1260 | |||
1261 | int dma_alloc_double_dst_descriptors(DMA_Handle_t handle, /* DMA Handle */ | ||
1262 | dma_addr_t srcData, /* Physical address of source data */ | ||
1263 | dma_addr_t dstData1, /* Physical address of first destination buffer */ | ||
1264 | dma_addr_t dstData2, /* Physical address of second destination buffer */ | ||
1265 | size_t numBytes /* Number of bytes in each destination buffer */ | ||
1266 | ) { | ||
1267 | DMA_Channel_t *channel; | ||
1268 | DMA_DeviceAttribute_t *devAttr; | ||
1269 | int numDst1Descriptors; | ||
1270 | int numDst2Descriptors; | ||
1271 | int numDescriptors; | ||
1272 | size_t ringBytesRequired; | ||
1273 | int rc = 0; | ||
1274 | |||
1275 | channel = HandleToChannel(handle); | ||
1276 | if (channel == NULL) { | ||
1277 | return -ENODEV; | ||
1278 | } | ||
1279 | |||
1280 | devAttr = &DMA_gDeviceAttribute[channel->devType]; | ||
1281 | |||
1282 | /* Figure out how many descriptors we need. */ | ||
1283 | |||
1284 | /* printk("srcData: 0x%08x dstData: 0x%08x, numBytes: %d\n", */ | ||
1285 | /* srcData, dstData, numBytes); */ | ||
1286 | |||
1287 | numDst1Descriptors = | ||
1288 | dmacHw_calculateDescriptorCount(&devAttr->config, (void *)srcData, | ||
1289 | (void *)dstData1, numBytes); | ||
1290 | if (numDst1Descriptors < 0) { | ||
1291 | return -EINVAL; | ||
1292 | } | ||
1293 | numDst2Descriptors = | ||
1294 | dmacHw_calculateDescriptorCount(&devAttr->config, (void *)srcData, | ||
1295 | (void *)dstData2, numBytes); | ||
1296 | if (numDst2Descriptors < 0) { | ||
1297 | return -EINVAL; | ||
1298 | } | ||
1299 | numDescriptors = numDst1Descriptors + numDst2Descriptors; | ||
1300 | /* printk("numDescriptors: %d\n", numDescriptors); */ | ||
1301 | |||
1302 | /* Check to see if we can reuse the existing descriptor ring, or if we need to allocate */ | ||
1303 | /* a new one. */ | ||
1304 | |||
1305 | ringBytesRequired = dmacHw_descriptorLen(numDescriptors); | ||
1306 | |||
1307 | /* printk("ringBytesRequired: %d\n", ringBytesRequired); */ | ||
1308 | |||
1309 | if (ringBytesRequired > devAttr->ring.bytesAllocated) { | ||
1310 | /* Make sure that this code path is never taken from interrupt context. */ | ||
1311 | /* It's OK for an interrupt to initiate a DMA transfer, but the descriptor */ | ||
1312 | /* allocation needs to have already been done. */ | ||
1313 | |||
1314 | might_sleep(); | ||
1315 | |||
1316 | /* Free the old descriptor ring and allocate a new one. */ | ||
1317 | |||
1318 | dma_free_descriptor_ring(&devAttr->ring); | ||
1319 | |||
1320 | /* And allocate a new one. */ | ||
1321 | |||
1322 | rc = | ||
1323 | dma_alloc_descriptor_ring(&devAttr->ring, | ||
1324 | numDescriptors); | ||
1325 | if (rc < 0) { | ||
1326 | printk(KERN_ERR | ||
1327 | "%s: dma_alloc_descriptor_ring(%d) failed\n", | ||
1328 | __func__, ringBytesRequired); | ||
1329 | return rc; | ||
1330 | } | ||
1331 | } | ||
1332 | |||
1333 | /* Setup the descriptor for this transfer. Since this function is used with */ | ||
1334 | /* CONTINUOUS DMA operations, we need to reinitialize every time, otherwise */ | ||
1335 | /* setDataDescriptor will keep trying to append onto the end. */ | ||
1336 | |||
1337 | if (dmacHw_initDescriptor(devAttr->ring.virtAddr, | ||
1338 | devAttr->ring.physAddr, | ||
1339 | devAttr->ring.bytesAllocated, | ||
1340 | numDescriptors) < 0) { | ||
1341 | printk(KERN_ERR "%s: dmacHw_initDescriptor failed\n", __func__); | ||
1342 | return -EINVAL; | ||
1343 | } | ||
1344 | |||
1345 | /* dma_alloc/free both set the prevSrc/DstData to 0. If they happen to be the same */ | ||
1346 | /* as last time, then we don't need to call setDataDescriptor again. */ | ||
1347 | |||
1348 | if (dmacHw_setDataDescriptor(&devAttr->config, | ||
1349 | devAttr->ring.virtAddr, | ||
1350 | (void *)srcData, | ||
1351 | (void *)dstData1, numBytes) < 0) { | ||
1352 | printk(KERN_ERR "%s: dmacHw_setDataDescriptor 1 failed\n", | ||
1353 | __func__); | ||
1354 | return -EINVAL; | ||
1355 | } | ||
1356 | if (dmacHw_setDataDescriptor(&devAttr->config, | ||
1357 | devAttr->ring.virtAddr, | ||
1358 | (void *)srcData, | ||
1359 | (void *)dstData2, numBytes) < 0) { | ||
1360 | printk(KERN_ERR "%s: dmacHw_setDataDescriptor 2 failed\n", | ||
1361 | __func__); | ||
1362 | return -EINVAL; | ||
1363 | } | ||
1364 | |||
1365 | /* You should use dma_start_transfer rather than dma_transfer_xxx so we don't */ | ||
1366 | /* try to make the 'prev' variables right. */ | ||
1367 | |||
1368 | devAttr->prevSrcData = 0; | ||
1369 | devAttr->prevDstData = 0; | ||
1370 | devAttr->prevNumBytes = 0; | ||
1371 | |||
1372 | return numDescriptors; | ||
1373 | } | ||
1374 | |||
1375 | EXPORT_SYMBOL(dma_alloc_double_dst_descriptors); | ||
1376 | |||
1377 | /****************************************************************************/ | ||
1378 | /** | ||
1379 | * Initiates a transfer when the descriptors have already been setup. | ||
1380 | * | ||
1381 | * This is a special case, and normally, the dma_transfer_xxx functions should | ||
1382 | * be used. | ||
1383 | * | ||
1384 | * @return | ||
1385 | * 0 Transfer was started successfully | ||
1386 | * -ENODEV Invalid handle | ||
1387 | */ | ||
1388 | /****************************************************************************/ | ||
1389 | |||
1390 | int dma_start_transfer(DMA_Handle_t handle) | ||
1391 | { | ||
1392 | DMA_Channel_t *channel; | ||
1393 | DMA_DeviceAttribute_t *devAttr; | ||
1394 | |||
1395 | channel = HandleToChannel(handle); | ||
1396 | if (channel == NULL) { | ||
1397 | return -ENODEV; | ||
1398 | } | ||
1399 | devAttr = &DMA_gDeviceAttribute[channel->devType]; | ||
1400 | |||
1401 | dmacHw_initiateTransfer(channel->dmacHwHandle, &devAttr->config, | ||
1402 | devAttr->ring.virtAddr); | ||
1403 | |||
1404 | /* Since we got this far, everything went successfully */ | ||
1405 | |||
1406 | return 0; | ||
1407 | } | ||
1408 | |||
1409 | EXPORT_SYMBOL(dma_start_transfer); | ||
1410 | |||
1411 | /****************************************************************************/ | ||
1412 | /** | ||
1413 | * Stops a previously started DMA transfer. | ||
1414 | * | ||
1415 | * @return | ||
1416 | * 0 Transfer was stopped successfully | ||
1417 | * -ENODEV Invalid handle | ||
1418 | */ | ||
1419 | /****************************************************************************/ | ||
1420 | |||
1421 | int dma_stop_transfer(DMA_Handle_t handle) | ||
1422 | { | ||
1423 | DMA_Channel_t *channel; | ||
1424 | |||
1425 | channel = HandleToChannel(handle); | ||
1426 | if (channel == NULL) { | ||
1427 | return -ENODEV; | ||
1428 | } | ||
1429 | |||
1430 | dmacHw_stopTransfer(channel->dmacHwHandle); | ||
1431 | |||
1432 | return 0; | ||
1433 | } | ||
1434 | |||
1435 | EXPORT_SYMBOL(dma_stop_transfer); | ||
1436 | |||
1437 | /****************************************************************************/ | ||
1438 | /** | ||
1439 | * Waits for a DMA to complete by polling. This function is only intended | ||
1440 | * to be used for testing. Interrupts should be used for most DMA operations. | ||
1441 | */ | ||
1442 | /****************************************************************************/ | ||
1443 | |||
1444 | int dma_wait_transfer_done(DMA_Handle_t handle) | ||
1445 | { | ||
1446 | DMA_Channel_t *channel; | ||
1447 | dmacHw_TRANSFER_STATUS_e status; | ||
1448 | |||
1449 | channel = HandleToChannel(handle); | ||
1450 | if (channel == NULL) { | ||
1451 | return -ENODEV; | ||
1452 | } | ||
1453 | |||
1454 | while ((status = | ||
1455 | dmacHw_transferCompleted(channel->dmacHwHandle)) == | ||
1456 | dmacHw_TRANSFER_STATUS_BUSY) { | ||
1457 | ; | ||
1458 | } | ||
1459 | |||
1460 | if (status == dmacHw_TRANSFER_STATUS_ERROR) { | ||
1461 | printk(KERN_ERR "%s: DMA transfer failed\n", __func__); | ||
1462 | return -EIO; | ||
1463 | } | ||
1464 | return 0; | ||
1465 | } | ||
1466 | |||
1467 | EXPORT_SYMBOL(dma_wait_transfer_done); | ||
1468 | |||
1469 | /****************************************************************************/ | ||
1470 | /** | ||
1471 | * Initiates a DMA, allocating the descriptors as required. | ||
1472 | * | ||
1473 | * @return | ||
1474 | * 0 Transfer was started successfully | ||
1475 | * -EINVAL Invalid device type for this kind of transfer | ||
1476 | * (i.e. the device is _DEV_TO_MEM and not _MEM_TO_DEV) | ||
1477 | */ | ||
1478 | /****************************************************************************/ | ||
1479 | |||
1480 | int dma_transfer(DMA_Handle_t handle, /* DMA Handle */ | ||
1481 | dmacHw_TRANSFER_TYPE_e transferType, /* Type of transfer being performed */ | ||
1482 | dma_addr_t srcData, /* Place to get data to write to device */ | ||
1483 | dma_addr_t dstData, /* Pointer to device data address */ | ||
1484 | size_t numBytes /* Number of bytes to transfer to the device */ | ||
1485 | ) { | ||
1486 | DMA_Channel_t *channel; | ||
1487 | DMA_DeviceAttribute_t *devAttr; | ||
1488 | int rc = 0; | ||
1489 | |||
1490 | channel = HandleToChannel(handle); | ||
1491 | if (channel == NULL) { | ||
1492 | return -ENODEV; | ||
1493 | } | ||
1494 | |||
1495 | devAttr = &DMA_gDeviceAttribute[channel->devType]; | ||
1496 | |||
1497 | if (devAttr->config.transferType != transferType) { | ||
1498 | return -EINVAL; | ||
1499 | } | ||
1500 | |||
1501 | /* We keep track of the information about the previous request for this */ | ||
1502 | /* device, and if the attributes match, then we can use the descriptors we setup */ | ||
1503 | /* the last time, and not have to reinitialize everything. */ | ||
1504 | |||
1505 | { | ||
1506 | rc = | ||
1507 | dma_alloc_descriptors(handle, transferType, srcData, | ||
1508 | dstData, numBytes); | ||
1509 | if (rc != 0) { | ||
1510 | return rc; | ||
1511 | } | ||
1512 | } | ||
1513 | |||
1514 | /* And kick off the transfer */ | ||
1515 | |||
1516 | devAttr->numBytes = numBytes; | ||
1517 | devAttr->transferStartTime = timer_get_tick_count(); | ||
1518 | |||
1519 | dmacHw_initiateTransfer(channel->dmacHwHandle, &devAttr->config, | ||
1520 | devAttr->ring.virtAddr); | ||
1521 | |||
1522 | /* Since we got this far, everything went successfully */ | ||
1523 | |||
1524 | return 0; | ||
1525 | } | ||
1526 | |||
1527 | EXPORT_SYMBOL(dma_transfer); | ||
1528 | |||
1529 | /****************************************************************************/ | ||
1530 | /** | ||
1531 | * Set the callback function which will be called when a transfer completes. | ||
1532 | * If a NULL callback function is set, then no callback will occur. | ||
1533 | * | ||
1534 | * @note @a devHandler will be called from IRQ context. | ||
1535 | * | ||
1536 | * @return | ||
1537 | * 0 - Success | ||
1538 | * -ENODEV - Device handed in is invalid. | ||
1539 | */ | ||
1540 | /****************************************************************************/ | ||
1541 | |||
1542 | int dma_set_device_handler(DMA_Device_t dev, /* Device to set the callback for. */ | ||
1543 | DMA_DeviceHandler_t devHandler, /* Function to call when the DMA completes */ | ||
1544 | void *userData /* Pointer which will be passed to devHandler. */ | ||
1545 | ) { | ||
1546 | DMA_DeviceAttribute_t *devAttr; | ||
1547 | unsigned long flags; | ||
1548 | |||
1549 | if (!IsDeviceValid(dev)) { | ||
1550 | return -ENODEV; | ||
1551 | } | ||
1552 | devAttr = &DMA_gDeviceAttribute[dev]; | ||
1553 | |||
1554 | local_irq_save(flags); | ||
1555 | |||
1556 | devAttr->userData = userData; | ||
1557 | devAttr->devHandler = devHandler; | ||
1558 | |||
1559 | local_irq_restore(flags); | ||
1560 | |||
1561 | return 0; | ||
1562 | } | ||
1563 | |||
1564 | EXPORT_SYMBOL(dma_set_device_handler); | ||
1565 | |||
1566 | /****************************************************************************/ | ||
1567 | /** | ||
1568 | * Initializes a memory mapping structure | ||
1569 | */ | ||
1570 | /****************************************************************************/ | ||
1571 | |||
1572 | int dma_init_mem_map(DMA_MemMap_t *memMap) | ||
1573 | { | ||
1574 | memset(memMap, 0, sizeof(*memMap)); | ||
1575 | |||
1576 | init_MUTEX(&memMap->lock); | ||
1577 | |||
1578 | return 0; | ||
1579 | } | ||
1580 | |||
1581 | EXPORT_SYMBOL(dma_init_mem_map); | ||
1582 | |||
1583 | /****************************************************************************/ | ||
1584 | /** | ||
1585 | * Releases any memory currently being held by a memory mapping structure. | ||
1586 | */ | ||
1587 | /****************************************************************************/ | ||
1588 | |||
1589 | int dma_term_mem_map(DMA_MemMap_t *memMap) | ||
1590 | { | ||
1591 | down(&memMap->lock); /* Just being paranoid */ | ||
1592 | |||
1593 | /* Free up any allocated memory */ | ||
1594 | |||
1595 | up(&memMap->lock); | ||
1596 | memset(memMap, 0, sizeof(*memMap)); | ||
1597 | |||
1598 | return 0; | ||
1599 | } | ||
1600 | |||
1601 | EXPORT_SYMBOL(dma_term_mem_map); | ||
1602 | |||
1603 | /****************************************************************************/ | ||
1604 | /** | ||
1605 | * Looks at a memory address and categorizes it. | ||
1606 | * | ||
1607 | * @return One of the values from the DMA_MemType_t enumeration. | ||
1608 | */ | ||
1609 | /****************************************************************************/ | ||
1610 | |||
1611 | DMA_MemType_t dma_mem_type(void *addr) | ||
1612 | { | ||
1613 | unsigned long addrVal = (unsigned long)addr; | ||
1614 | |||
1615 | if (addrVal >= VMALLOC_END) { | ||
1616 | /* NOTE: DMA virtual memory space starts at 0xFFxxxxxx */ | ||
1617 | |||
1618 | /* dma_alloc_xxx pages are physically and virtually contiguous */ | ||
1619 | |||
1620 | return DMA_MEM_TYPE_DMA; | ||
1621 | } | ||
1622 | |||
1623 | /* Technically, we could add one more classification. Addresses between VMALLOC_END */ | ||
1624 | /* and the beginning of the DMA virtual address could be considered to be I/O space. */ | ||
1625 | /* Right now, nobody cares about this particular classification, so we ignore it. */ | ||
1626 | |||
1627 | if (is_vmalloc_addr(addr)) { | ||
1628 | /* Address comes from the vmalloc'd region. Pages are virtually */ | ||
1629 | /* contiguous but NOT physically contiguous */ | ||
1630 | |||
1631 | return DMA_MEM_TYPE_VMALLOC; | ||
1632 | } | ||
1633 | |||
1634 | if (addrVal >= PAGE_OFFSET) { | ||
1635 | /* PAGE_OFFSET is typically 0xC0000000 */ | ||
1636 | |||
1637 | /* kmalloc'd pages are physically contiguous */ | ||
1638 | |||
1639 | return DMA_MEM_TYPE_KMALLOC; | ||
1640 | } | ||
1641 | |||
1642 | return DMA_MEM_TYPE_USER; | ||
1643 | } | ||
1644 | |||
1645 | EXPORT_SYMBOL(dma_mem_type); | ||
1646 | |||
1647 | /****************************************************************************/ | ||
1648 | /** | ||
1649 | * Looks at a memory address and determines if we support DMA'ing to/from | ||
1650 | * that type of memory. | ||
1651 | * | ||
1652 | * @return boolean - | ||
1653 | * return value != 0 means dma supported | ||
1654 | * return value == 0 means dma not supported | ||
1655 | */ | ||
1656 | /****************************************************************************/ | ||
1657 | |||
1658 | int dma_mem_supports_dma(void *addr) | ||
1659 | { | ||
1660 | DMA_MemType_t memType = dma_mem_type(addr); | ||
1661 | |||
1662 | return (memType == DMA_MEM_TYPE_DMA) | ||
1663 | #if ALLOW_MAP_OF_KMALLOC_MEMORY | ||
1664 | || (memType == DMA_MEM_TYPE_KMALLOC) | ||
1665 | #endif | ||
1666 | || (memType == DMA_MEM_TYPE_USER); | ||
1667 | } | ||
1668 | |||
1669 | EXPORT_SYMBOL(dma_mem_supports_dma); | ||
1670 | |||
1671 | /****************************************************************************/ | ||
1672 | /** | ||
1673 | * Maps in a memory region such that it can be used for performing a DMA. | ||
1674 | * | ||
1675 | * @return | ||
1676 | */ | ||
1677 | /****************************************************************************/ | ||
1678 | |||
1679 | int dma_map_start(DMA_MemMap_t *memMap, /* Stores state information about the map */ | ||
1680 | enum dma_data_direction dir /* Direction that the mapping will be going */ | ||
1681 | ) { | ||
1682 | int rc; | ||
1683 | |||
1684 | down(&memMap->lock); | ||
1685 | |||
1686 | DMA_MAP_PRINT("memMap: %p\n", memMap); | ||
1687 | |||
1688 | if (memMap->inUse) { | ||
1689 | printk(KERN_ERR "%s: memory map %p is already being used\n", | ||
1690 | __func__, memMap); | ||
1691 | rc = -EBUSY; | ||
1692 | goto out; | ||
1693 | } | ||
1694 | |||
1695 | memMap->inUse = 1; | ||
1696 | memMap->dir = dir; | ||
1697 | memMap->numRegionsUsed = 0; | ||
1698 | |||
1699 | rc = 0; | ||
1700 | |||
1701 | out: | ||
1702 | |||
1703 | DMA_MAP_PRINT("returning %d", rc); | ||
1704 | |||
1705 | up(&memMap->lock); | ||
1706 | |||
1707 | return rc; | ||
1708 | } | ||
1709 | |||
1710 | EXPORT_SYMBOL(dma_map_start); | ||
1711 | |||
1712 | /****************************************************************************/ | ||
1713 | /** | ||
1714 | * Adds a segment of memory to a memory map. Each segment is both | ||
1715 | * physically and virtually contiguous. | ||
1716 | * | ||
1717 | * @return 0 on success, error code otherwise. | ||
1718 | */ | ||
1719 | /****************************************************************************/ | ||
1720 | |||
1721 | static int dma_map_add_segment(DMA_MemMap_t *memMap, /* Stores state information about the map */ | ||
1722 | DMA_Region_t *region, /* Region that the segment belongs to */ | ||
1723 | void *virtAddr, /* Virtual address of the segment being added */ | ||
1724 | dma_addr_t physAddr, /* Physical address of the segment being added */ | ||
1725 | size_t numBytes /* Number of bytes of the segment being added */ | ||
1726 | ) { | ||
1727 | DMA_Segment_t *segment; | ||
1728 | |||
1729 | DMA_MAP_PRINT("memMap:%p va:%p pa:0x%x #:%d\n", memMap, virtAddr, | ||
1730 | physAddr, numBytes); | ||
1731 | |||
1732 | /* Sanity check */ | ||
1733 | |||
1734 | if (((unsigned long)virtAddr < (unsigned long)region->virtAddr) | ||
1735 | || (((unsigned long)virtAddr + numBytes)) > | ||
1736 | ((unsigned long)region->virtAddr + region->numBytes)) { | ||
1737 | printk(KERN_ERR | ||
1738 | "%s: virtAddr %p is outside region @ %p len: %d\n", | ||
1739 | __func__, virtAddr, region->virtAddr, region->numBytes); | ||
1740 | return -EINVAL; | ||
1741 | } | ||
1742 | |||
1743 | if (region->numSegmentsUsed > 0) { | ||
1744 | /* Check to see if this segment is physically contiguous with the previous one */ | ||
1745 | |||
1746 | segment = ®ion->segment[region->numSegmentsUsed - 1]; | ||
1747 | |||
1748 | if ((segment->physAddr + segment->numBytes) == physAddr) { | ||
1749 | /* It is - just add on to the end */ | ||
1750 | |||
1751 | DMA_MAP_PRINT("appending %d bytes to last segment\n", | ||
1752 | numBytes); | ||
1753 | |||
1754 | segment->numBytes += numBytes; | ||
1755 | |||
1756 | return 0; | ||
1757 | } | ||
1758 | } | ||
1759 | |||
1760 | /* Reallocate to hold more segments, if required. */ | ||
1761 | |||
1762 | if (region->numSegmentsUsed >= region->numSegmentsAllocated) { | ||
1763 | DMA_Segment_t *newSegment; | ||
1764 | size_t oldSize = | ||
1765 | region->numSegmentsAllocated * sizeof(*newSegment); | ||
1766 | int newAlloc = region->numSegmentsAllocated + 4; | ||
1767 | size_t newSize = newAlloc * sizeof(*newSegment); | ||
1768 | |||
1769 | newSegment = kmalloc(newSize, GFP_KERNEL); | ||
1770 | if (newSegment == NULL) { | ||
1771 | return -ENOMEM; | ||
1772 | } | ||
1773 | memcpy(newSegment, region->segment, oldSize); | ||
1774 | memset(&((uint8_t *) newSegment)[oldSize], 0, | ||
1775 | newSize - oldSize); | ||
1776 | kfree(region->segment); | ||
1777 | |||
1778 | region->numSegmentsAllocated = newAlloc; | ||
1779 | region->segment = newSegment; | ||
1780 | } | ||
1781 | |||
1782 | segment = ®ion->segment[region->numSegmentsUsed]; | ||
1783 | region->numSegmentsUsed++; | ||
1784 | |||
1785 | segment->virtAddr = virtAddr; | ||
1786 | segment->physAddr = physAddr; | ||
1787 | segment->numBytes = numBytes; | ||
1788 | |||
1789 | DMA_MAP_PRINT("returning success\n"); | ||
1790 | |||
1791 | return 0; | ||
1792 | } | ||
1793 | |||
1794 | /****************************************************************************/ | ||
1795 | /** | ||
1796 | * Adds a region of memory to a memory map. Each region is virtually | ||
1797 | * contiguous, but not necessarily physically contiguous. | ||
1798 | * | ||
1799 | * @return 0 on success, error code otherwise. | ||
1800 | */ | ||
1801 | /****************************************************************************/ | ||
1802 | |||
1803 | int dma_map_add_region(DMA_MemMap_t *memMap, /* Stores state information about the map */ | ||
1804 | void *mem, /* Virtual address that we want to get a map of */ | ||
1805 | size_t numBytes /* Number of bytes being mapped */ | ||
1806 | ) { | ||
1807 | unsigned long addr = (unsigned long)mem; | ||
1808 | unsigned int offset; | ||
1809 | int rc = 0; | ||
1810 | DMA_Region_t *region; | ||
1811 | dma_addr_t physAddr; | ||
1812 | |||
1813 | down(&memMap->lock); | ||
1814 | |||
1815 | DMA_MAP_PRINT("memMap:%p va:%p #:%d\n", memMap, mem, numBytes); | ||
1816 | |||
1817 | if (!memMap->inUse) { | ||
1818 | printk(KERN_ERR "%s: Make sure you call dma_map_start first\n", | ||
1819 | __func__); | ||
1820 | rc = -EINVAL; | ||
1821 | goto out; | ||
1822 | } | ||
1823 | |||
1824 | /* Reallocate to hold more regions. */ | ||
1825 | |||
1826 | if (memMap->numRegionsUsed >= memMap->numRegionsAllocated) { | ||
1827 | DMA_Region_t *newRegion; | ||
1828 | size_t oldSize = | ||
1829 | memMap->numRegionsAllocated * sizeof(*newRegion); | ||
1830 | int newAlloc = memMap->numRegionsAllocated + 4; | ||
1831 | size_t newSize = newAlloc * sizeof(*newRegion); | ||
1832 | |||
1833 | newRegion = kmalloc(newSize, GFP_KERNEL); | ||
1834 | if (newRegion == NULL) { | ||
1835 | rc = -ENOMEM; | ||
1836 | goto out; | ||
1837 | } | ||
1838 | memcpy(newRegion, memMap->region, oldSize); | ||
1839 | memset(&((uint8_t *) newRegion)[oldSize], 0, newSize - oldSize); | ||
1840 | |||
1841 | kfree(memMap->region); | ||
1842 | |||
1843 | memMap->numRegionsAllocated = newAlloc; | ||
1844 | memMap->region = newRegion; | ||
1845 | } | ||
1846 | |||
1847 | region = &memMap->region[memMap->numRegionsUsed]; | ||
1848 | memMap->numRegionsUsed++; | ||
1849 | |||
1850 | offset = addr & ~PAGE_MASK; | ||
1851 | |||
1852 | region->memType = dma_mem_type(mem); | ||
1853 | region->virtAddr = mem; | ||
1854 | region->numBytes = numBytes; | ||
1855 | region->numSegmentsUsed = 0; | ||
1856 | region->numLockedPages = 0; | ||
1857 | region->lockedPages = NULL; | ||
1858 | |||
1859 | switch (region->memType) { | ||
1860 | case DMA_MEM_TYPE_VMALLOC: | ||
1861 | { | ||
1862 | atomic_inc(&gDmaStatMemTypeVmalloc); | ||
1863 | |||
1864 | /* printk(KERN_ERR "%s: vmalloc'd pages are not supported\n", __func__); */ | ||
1865 | |||
1866 | /* vmalloc'd pages are not physically contiguous */ | ||
1867 | |||
1868 | rc = -EINVAL; | ||
1869 | break; | ||
1870 | } | ||
1871 | |||
1872 | case DMA_MEM_TYPE_KMALLOC: | ||
1873 | { | ||
1874 | atomic_inc(&gDmaStatMemTypeKmalloc); | ||
1875 | |||
1876 | /* kmalloc'd pages are physically contiguous, so they'll have exactly */ | ||
1877 | /* one segment */ | ||
1878 | |||
1879 | #if ALLOW_MAP_OF_KMALLOC_MEMORY | ||
1880 | physAddr = | ||
1881 | dma_map_single(NULL, mem, numBytes, memMap->dir); | ||
1882 | rc = dma_map_add_segment(memMap, region, mem, physAddr, | ||
1883 | numBytes); | ||
1884 | #else | ||
1885 | rc = -EINVAL; | ||
1886 | #endif | ||
1887 | break; | ||
1888 | } | ||
1889 | |||
1890 | case DMA_MEM_TYPE_DMA: | ||
1891 | { | ||
1892 | /* dma_alloc_xxx pages are physically contiguous */ | ||
1893 | |||
1894 | atomic_inc(&gDmaStatMemTypeCoherent); | ||
1895 | |||
1896 | physAddr = (vmalloc_to_pfn(mem) << PAGE_SHIFT) + offset; | ||
1897 | |||
1898 | dma_sync_single_for_cpu(NULL, physAddr, numBytes, | ||
1899 | memMap->dir); | ||
1900 | rc = dma_map_add_segment(memMap, region, mem, physAddr, | ||
1901 | numBytes); | ||
1902 | break; | ||
1903 | } | ||
1904 | |||
1905 | case DMA_MEM_TYPE_USER: | ||
1906 | { | ||
1907 | size_t firstPageOffset; | ||
1908 | size_t firstPageSize; | ||
1909 | struct page **pages; | ||
1910 | struct task_struct *userTask; | ||
1911 | |||
1912 | atomic_inc(&gDmaStatMemTypeUser); | ||
1913 | |||
1914 | #if 1 | ||
1915 | /* If the pages are user pages, then the dma_mem_map_set_user_task function */ | ||
1916 | /* must have been previously called. */ | ||
1917 | |||
1918 | if (memMap->userTask == NULL) { | ||
1919 | printk(KERN_ERR | ||
1920 | "%s: must call dma_mem_map_set_user_task when using user-mode memory\n", | ||
1921 | __func__); | ||
1922 | return -EINVAL; | ||
1923 | } | ||
1924 | |||
1925 | /* User pages need to be locked. */ | ||
1926 | |||
1927 | firstPageOffset = | ||
1928 | (unsigned long)region->virtAddr & (PAGE_SIZE - 1); | ||
1929 | firstPageSize = PAGE_SIZE - firstPageOffset; | ||
1930 | |||
1931 | region->numLockedPages = (firstPageOffset | ||
1932 | + region->numBytes + | ||
1933 | PAGE_SIZE - 1) / PAGE_SIZE; | ||
1934 | pages = | ||
1935 | kmalloc(region->numLockedPages * | ||
1936 | sizeof(struct page *), GFP_KERNEL); | ||
1937 | |||
1938 | if (pages == NULL) { | ||
1939 | region->numLockedPages = 0; | ||
1940 | return -ENOMEM; | ||
1941 | } | ||
1942 | |||
1943 | userTask = memMap->userTask; | ||
1944 | |||
1945 | down_read(&userTask->mm->mmap_sem); | ||
1946 | rc = get_user_pages(userTask, /* task */ | ||
1947 | userTask->mm, /* mm */ | ||
1948 | (unsigned long)region->virtAddr, /* start */ | ||
1949 | region->numLockedPages, /* len */ | ||
1950 | memMap->dir == DMA_FROM_DEVICE, /* write */ | ||
1951 | 0, /* force */ | ||
1952 | pages, /* pages (array of pointers to page) */ | ||
1953 | NULL); /* vmas */ | ||
1954 | up_read(&userTask->mm->mmap_sem); | ||
1955 | |||
1956 | if (rc != region->numLockedPages) { | ||
1957 | kfree(pages); | ||
1958 | region->numLockedPages = 0; | ||
1959 | |||
1960 | if (rc >= 0) { | ||
1961 | rc = -EINVAL; | ||
1962 | } | ||
1963 | } else { | ||
1964 | uint8_t *virtAddr = region->virtAddr; | ||
1965 | size_t bytesRemaining; | ||
1966 | int pageIdx; | ||
1967 | |||
1968 | rc = 0; /* Since get_user_pages returns +ve number */ | ||
1969 | |||
1970 | region->lockedPages = pages; | ||
1971 | |||
1972 | /* We've locked the user pages. Now we need to walk them and figure */ | ||
1973 | /* out the physical addresses. */ | ||
1974 | |||
1975 | /* The first page may be partial */ | ||
1976 | |||
1977 | dma_map_add_segment(memMap, | ||
1978 | region, | ||
1979 | virtAddr, | ||
1980 | PFN_PHYS(page_to_pfn | ||
1981 | (pages[0])) + | ||
1982 | firstPageOffset, | ||
1983 | firstPageSize); | ||
1984 | |||
1985 | virtAddr += firstPageSize; | ||
1986 | bytesRemaining = | ||
1987 | region->numBytes - firstPageSize; | ||
1988 | |||
1989 | for (pageIdx = 1; | ||
1990 | pageIdx < region->numLockedPages; | ||
1991 | pageIdx++) { | ||
1992 | size_t bytesThisPage = | ||
1993 | (bytesRemaining > | ||
1994 | PAGE_SIZE ? PAGE_SIZE : | ||
1995 | bytesRemaining); | ||
1996 | |||
1997 | DMA_MAP_PRINT | ||
1998 | ("pageIdx:%d pages[pageIdx]=%p pfn=%u phys=%u\n", | ||
1999 | pageIdx, pages[pageIdx], | ||
2000 | page_to_pfn(pages[pageIdx]), | ||
2001 | PFN_PHYS(page_to_pfn | ||
2002 | (pages[pageIdx]))); | ||
2003 | |||
2004 | dma_map_add_segment(memMap, | ||
2005 | region, | ||
2006 | virtAddr, | ||
2007 | PFN_PHYS(page_to_pfn | ||
2008 | (pages | ||
2009 | [pageIdx])), | ||
2010 | bytesThisPage); | ||
2011 | |||
2012 | virtAddr += bytesThisPage; | ||
2013 | bytesRemaining -= bytesThisPage; | ||
2014 | } | ||
2015 | } | ||
2016 | #else | ||
2017 | printk(KERN_ERR | ||
2018 | "%s: User mode pages are not yet supported\n", | ||
2019 | __func__); | ||
2020 | |||
2021 | /* user pages are not physically contiguous */ | ||
2022 | |||
2023 | rc = -EINVAL; | ||
2024 | #endif | ||
2025 | break; | ||
2026 | } | ||
2027 | |||
2028 | default: | ||
2029 | { | ||
2030 | printk(KERN_ERR "%s: Unsupported memory type: %d\n", | ||
2031 | __func__, region->memType); | ||
2032 | |||
2033 | rc = -EINVAL; | ||
2034 | break; | ||
2035 | } | ||
2036 | } | ||
2037 | |||
2038 | if (rc != 0) { | ||
2039 | memMap->numRegionsUsed--; | ||
2040 | } | ||
2041 | |||
2042 | out: | ||
2043 | |||
2044 | DMA_MAP_PRINT("returning %d\n", rc); | ||
2045 | |||
2046 | up(&memMap->lock); | ||
2047 | |||
2048 | return rc; | ||
2049 | } | ||
2050 | |||
2051 | EXPORT_SYMBOL(dma_map_add_segment); | ||
2052 | |||
2053 | /****************************************************************************/ | ||
2054 | /** | ||
2055 | * Maps in a memory region such that it can be used for performing a DMA. | ||
2056 | * | ||
2057 | * @return 0 on success, error code otherwise. | ||
2058 | */ | ||
2059 | /****************************************************************************/ | ||
2060 | |||
2061 | int dma_map_mem(DMA_MemMap_t *memMap, /* Stores state information about the map */ | ||
2062 | void *mem, /* Virtual address that we want to get a map of */ | ||
2063 | size_t numBytes, /* Number of bytes being mapped */ | ||
2064 | enum dma_data_direction dir /* Direction that the mapping will be going */ | ||
2065 | ) { | ||
2066 | int rc; | ||
2067 | |||
2068 | rc = dma_map_start(memMap, dir); | ||
2069 | if (rc == 0) { | ||
2070 | rc = dma_map_add_region(memMap, mem, numBytes); | ||
2071 | if (rc < 0) { | ||
2072 | /* Since the add fails, this function will fail, and the caller won't */ | ||
2073 | /* call unmap, so we need to do it here. */ | ||
2074 | |||
2075 | dma_unmap(memMap, 0); | ||
2076 | } | ||
2077 | } | ||
2078 | |||
2079 | return rc; | ||
2080 | } | ||
2081 | |||
2082 | EXPORT_SYMBOL(dma_map_mem); | ||
2083 | |||
2084 | /****************************************************************************/ | ||
2085 | /** | ||
2086 | * Setup a descriptor ring for a given memory map. | ||
2087 | * | ||
2088 | * It is assumed that the descriptor ring has already been initialized, and | ||
2089 | * this routine will only reallocate a new descriptor ring if the existing | ||
2090 | * one is too small. | ||
2091 | * | ||
2092 | * @return 0 on success, error code otherwise. | ||
2093 | */ | ||
2094 | /****************************************************************************/ | ||
2095 | |||
2096 | int dma_map_create_descriptor_ring(DMA_Device_t dev, /* DMA device (where the ring is stored) */ | ||
2097 | DMA_MemMap_t *memMap, /* Memory map that will be used */ | ||
2098 | dma_addr_t devPhysAddr /* Physical address of device */ | ||
2099 | ) { | ||
2100 | int rc; | ||
2101 | int numDescriptors; | ||
2102 | DMA_DeviceAttribute_t *devAttr; | ||
2103 | DMA_Region_t *region; | ||
2104 | DMA_Segment_t *segment; | ||
2105 | dma_addr_t srcPhysAddr; | ||
2106 | dma_addr_t dstPhysAddr; | ||
2107 | int regionIdx; | ||
2108 | int segmentIdx; | ||
2109 | |||
2110 | devAttr = &DMA_gDeviceAttribute[dev]; | ||
2111 | |||
2112 | down(&memMap->lock); | ||
2113 | |||
2114 | /* Figure out how many descriptors we need */ | ||
2115 | |||
2116 | numDescriptors = 0; | ||
2117 | for (regionIdx = 0; regionIdx < memMap->numRegionsUsed; regionIdx++) { | ||
2118 | region = &memMap->region[regionIdx]; | ||
2119 | |||
2120 | for (segmentIdx = 0; segmentIdx < region->numSegmentsUsed; | ||
2121 | segmentIdx++) { | ||
2122 | segment = ®ion->segment[segmentIdx]; | ||
2123 | |||
2124 | if (memMap->dir == DMA_TO_DEVICE) { | ||
2125 | srcPhysAddr = segment->physAddr; | ||
2126 | dstPhysAddr = devPhysAddr; | ||
2127 | } else { | ||
2128 | srcPhysAddr = devPhysAddr; | ||
2129 | dstPhysAddr = segment->physAddr; | ||
2130 | } | ||
2131 | |||
2132 | rc = | ||
2133 | dma_calculate_descriptor_count(dev, srcPhysAddr, | ||
2134 | dstPhysAddr, | ||
2135 | segment-> | ||
2136 | numBytes); | ||
2137 | if (rc < 0) { | ||
2138 | printk(KERN_ERR | ||
2139 | "%s: dma_calculate_descriptor_count failed: %d\n", | ||
2140 | __func__, rc); | ||
2141 | goto out; | ||
2142 | } | ||
2143 | numDescriptors += rc; | ||
2144 | } | ||
2145 | } | ||
2146 | |||
2147 | /* Adjust the size of the ring, if it isn't big enough */ | ||
2148 | |||
2149 | if (numDescriptors > devAttr->ring.descriptorsAllocated) { | ||
2150 | dma_free_descriptor_ring(&devAttr->ring); | ||
2151 | rc = | ||
2152 | dma_alloc_descriptor_ring(&devAttr->ring, | ||
2153 | numDescriptors); | ||
2154 | if (rc < 0) { | ||
2155 | printk(KERN_ERR | ||
2156 | "%s: dma_alloc_descriptor_ring failed: %d\n", | ||
2157 | __func__, rc); | ||
2158 | goto out; | ||
2159 | } | ||
2160 | } else { | ||
2161 | rc = | ||
2162 | dma_init_descriptor_ring(&devAttr->ring, | ||
2163 | numDescriptors); | ||
2164 | if (rc < 0) { | ||
2165 | printk(KERN_ERR | ||
2166 | "%s: dma_init_descriptor_ring failed: %d\n", | ||
2167 | __func__, rc); | ||
2168 | goto out; | ||
2169 | } | ||
2170 | } | ||
2171 | |||
2172 | /* Populate the descriptors */ | ||
2173 | |||
2174 | for (regionIdx = 0; regionIdx < memMap->numRegionsUsed; regionIdx++) { | ||
2175 | region = &memMap->region[regionIdx]; | ||
2176 | |||
2177 | for (segmentIdx = 0; segmentIdx < region->numSegmentsUsed; | ||
2178 | segmentIdx++) { | ||
2179 | segment = ®ion->segment[segmentIdx]; | ||
2180 | |||
2181 | if (memMap->dir == DMA_TO_DEVICE) { | ||
2182 | srcPhysAddr = segment->physAddr; | ||
2183 | dstPhysAddr = devPhysAddr; | ||
2184 | } else { | ||
2185 | srcPhysAddr = devPhysAddr; | ||
2186 | dstPhysAddr = segment->physAddr; | ||
2187 | } | ||
2188 | |||
2189 | rc = | ||
2190 | dma_add_descriptors(&devAttr->ring, dev, | ||
2191 | srcPhysAddr, dstPhysAddr, | ||
2192 | segment->numBytes); | ||
2193 | if (rc < 0) { | ||
2194 | printk(KERN_ERR | ||
2195 | "%s: dma_add_descriptors failed: %d\n", | ||
2196 | __func__, rc); | ||
2197 | goto out; | ||
2198 | } | ||
2199 | } | ||
2200 | } | ||
2201 | |||
2202 | rc = 0; | ||
2203 | |||
2204 | out: | ||
2205 | |||
2206 | up(&memMap->lock); | ||
2207 | return rc; | ||
2208 | } | ||
2209 | |||
2210 | EXPORT_SYMBOL(dma_map_create_descriptor_ring); | ||
2211 | |||
2212 | /****************************************************************************/ | ||
2213 | /** | ||
2214 | * Maps in a memory region such that it can be used for performing a DMA. | ||
2215 | * | ||
2216 | * @return | ||
2217 | */ | ||
2218 | /****************************************************************************/ | ||
2219 | |||
2220 | int dma_unmap(DMA_MemMap_t *memMap, /* Stores state information about the map */ | ||
2221 | int dirtied /* non-zero if any of the pages were modified */ | ||
2222 | ) { | ||
2223 | int regionIdx; | ||
2224 | int segmentIdx; | ||
2225 | DMA_Region_t *region; | ||
2226 | DMA_Segment_t *segment; | ||
2227 | |||
2228 | for (regionIdx = 0; regionIdx < memMap->numRegionsUsed; regionIdx++) { | ||
2229 | region = &memMap->region[regionIdx]; | ||
2230 | |||
2231 | for (segmentIdx = 0; segmentIdx < region->numSegmentsUsed; | ||
2232 | segmentIdx++) { | ||
2233 | segment = ®ion->segment[segmentIdx]; | ||
2234 | |||
2235 | switch (region->memType) { | ||
2236 | case DMA_MEM_TYPE_VMALLOC: | ||
2237 | { | ||
2238 | printk(KERN_ERR | ||
2239 | "%s: vmalloc'd pages are not yet supported\n", | ||
2240 | __func__); | ||
2241 | return -EINVAL; | ||
2242 | } | ||
2243 | |||
2244 | case DMA_MEM_TYPE_KMALLOC: | ||
2245 | { | ||
2246 | #if ALLOW_MAP_OF_KMALLOC_MEMORY | ||
2247 | dma_unmap_single(NULL, | ||
2248 | segment->physAddr, | ||
2249 | segment->numBytes, | ||
2250 | memMap->dir); | ||
2251 | #endif | ||
2252 | break; | ||
2253 | } | ||
2254 | |||
2255 | case DMA_MEM_TYPE_DMA: | ||
2256 | { | ||
2257 | dma_sync_single_for_cpu(NULL, | ||
2258 | segment-> | ||
2259 | physAddr, | ||
2260 | segment-> | ||
2261 | numBytes, | ||
2262 | memMap->dir); | ||
2263 | break; | ||
2264 | } | ||
2265 | |||
2266 | case DMA_MEM_TYPE_USER: | ||
2267 | { | ||
2268 | /* Nothing to do here. */ | ||
2269 | |||
2270 | break; | ||
2271 | } | ||
2272 | |||
2273 | default: | ||
2274 | { | ||
2275 | printk(KERN_ERR | ||
2276 | "%s: Unsupported memory type: %d\n", | ||
2277 | __func__, region->memType); | ||
2278 | return -EINVAL; | ||
2279 | } | ||
2280 | } | ||
2281 | |||
2282 | segment->virtAddr = NULL; | ||
2283 | segment->physAddr = 0; | ||
2284 | segment->numBytes = 0; | ||
2285 | } | ||
2286 | |||
2287 | if (region->numLockedPages > 0) { | ||
2288 | int pageIdx; | ||
2289 | |||
2290 | /* Some user pages were locked. We need to go and unlock them now. */ | ||
2291 | |||
2292 | for (pageIdx = 0; pageIdx < region->numLockedPages; | ||
2293 | pageIdx++) { | ||
2294 | struct page *page = | ||
2295 | region->lockedPages[pageIdx]; | ||
2296 | |||
2297 | if (memMap->dir == DMA_FROM_DEVICE) { | ||
2298 | SetPageDirty(page); | ||
2299 | } | ||
2300 | page_cache_release(page); | ||
2301 | } | ||
2302 | kfree(region->lockedPages); | ||
2303 | region->numLockedPages = 0; | ||
2304 | region->lockedPages = NULL; | ||
2305 | } | ||
2306 | |||
2307 | region->memType = DMA_MEM_TYPE_NONE; | ||
2308 | region->virtAddr = NULL; | ||
2309 | region->numBytes = 0; | ||
2310 | region->numSegmentsUsed = 0; | ||
2311 | } | ||
2312 | memMap->userTask = NULL; | ||
2313 | memMap->numRegionsUsed = 0; | ||
2314 | memMap->inUse = 0; | ||
2315 | |||
2316 | up(&memMap->lock); | ||
2317 | |||
2318 | return 0; | ||
2319 | } | ||
2320 | |||
2321 | EXPORT_SYMBOL(dma_unmap); | ||