diff options
Diffstat (limited to 'arch/arm/kvm/arm.c')
-rw-r--r-- | arch/arm/kvm/arm.c | 1015 |
1 files changed, 1015 insertions, 0 deletions
diff --git a/arch/arm/kvm/arm.c b/arch/arm/kvm/arm.c new file mode 100644 index 000000000000..2d30e3afdaf9 --- /dev/null +++ b/arch/arm/kvm/arm.c | |||
@@ -0,0 +1,1015 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2012 - Virtual Open Systems and Columbia University | ||
3 | * Author: Christoffer Dall <c.dall@virtualopensystems.com> | ||
4 | * | ||
5 | * This program is free software; you can redistribute it and/or modify | ||
6 | * it under the terms of the GNU General Public License, version 2, as | ||
7 | * published by the Free Software Foundation. | ||
8 | * | ||
9 | * This program is distributed in the hope that it will be useful, | ||
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
12 | * GNU General Public License for more details. | ||
13 | * | ||
14 | * You should have received a copy of the GNU General Public License | ||
15 | * along with this program; if not, write to the Free Software | ||
16 | * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. | ||
17 | */ | ||
18 | |||
19 | #include <linux/errno.h> | ||
20 | #include <linux/err.h> | ||
21 | #include <linux/kvm_host.h> | ||
22 | #include <linux/module.h> | ||
23 | #include <linux/vmalloc.h> | ||
24 | #include <linux/fs.h> | ||
25 | #include <linux/mman.h> | ||
26 | #include <linux/sched.h> | ||
27 | #include <linux/kvm.h> | ||
28 | #include <trace/events/kvm.h> | ||
29 | |||
30 | #define CREATE_TRACE_POINTS | ||
31 | #include "trace.h" | ||
32 | |||
33 | #include <asm/unified.h> | ||
34 | #include <asm/uaccess.h> | ||
35 | #include <asm/ptrace.h> | ||
36 | #include <asm/mman.h> | ||
37 | #include <asm/cputype.h> | ||
38 | #include <asm/tlbflush.h> | ||
39 | #include <asm/cacheflush.h> | ||
40 | #include <asm/virt.h> | ||
41 | #include <asm/kvm_arm.h> | ||
42 | #include <asm/kvm_asm.h> | ||
43 | #include <asm/kvm_mmu.h> | ||
44 | #include <asm/kvm_emulate.h> | ||
45 | #include <asm/kvm_coproc.h> | ||
46 | #include <asm/kvm_psci.h> | ||
47 | #include <asm/opcodes.h> | ||
48 | |||
49 | #ifdef REQUIRES_VIRT | ||
50 | __asm__(".arch_extension virt"); | ||
51 | #endif | ||
52 | |||
53 | static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page); | ||
54 | static struct vfp_hard_struct __percpu *kvm_host_vfp_state; | ||
55 | static unsigned long hyp_default_vectors; | ||
56 | |||
57 | /* The VMID used in the VTTBR */ | ||
58 | static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1); | ||
59 | static u8 kvm_next_vmid; | ||
60 | static DEFINE_SPINLOCK(kvm_vmid_lock); | ||
61 | |||
62 | int kvm_arch_hardware_enable(void *garbage) | ||
63 | { | ||
64 | return 0; | ||
65 | } | ||
66 | |||
67 | int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) | ||
68 | { | ||
69 | return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; | ||
70 | } | ||
71 | |||
72 | void kvm_arch_hardware_disable(void *garbage) | ||
73 | { | ||
74 | } | ||
75 | |||
76 | int kvm_arch_hardware_setup(void) | ||
77 | { | ||
78 | return 0; | ||
79 | } | ||
80 | |||
81 | void kvm_arch_hardware_unsetup(void) | ||
82 | { | ||
83 | } | ||
84 | |||
85 | void kvm_arch_check_processor_compat(void *rtn) | ||
86 | { | ||
87 | *(int *)rtn = 0; | ||
88 | } | ||
89 | |||
90 | void kvm_arch_sync_events(struct kvm *kvm) | ||
91 | { | ||
92 | } | ||
93 | |||
94 | /** | ||
95 | * kvm_arch_init_vm - initializes a VM data structure | ||
96 | * @kvm: pointer to the KVM struct | ||
97 | */ | ||
98 | int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) | ||
99 | { | ||
100 | int ret = 0; | ||
101 | |||
102 | if (type) | ||
103 | return -EINVAL; | ||
104 | |||
105 | ret = kvm_alloc_stage2_pgd(kvm); | ||
106 | if (ret) | ||
107 | goto out_fail_alloc; | ||
108 | |||
109 | ret = create_hyp_mappings(kvm, kvm + 1); | ||
110 | if (ret) | ||
111 | goto out_free_stage2_pgd; | ||
112 | |||
113 | /* Mark the initial VMID generation invalid */ | ||
114 | kvm->arch.vmid_gen = 0; | ||
115 | |||
116 | return ret; | ||
117 | out_free_stage2_pgd: | ||
118 | kvm_free_stage2_pgd(kvm); | ||
119 | out_fail_alloc: | ||
120 | return ret; | ||
121 | } | ||
122 | |||
123 | int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) | ||
124 | { | ||
125 | return VM_FAULT_SIGBUS; | ||
126 | } | ||
127 | |||
128 | void kvm_arch_free_memslot(struct kvm_memory_slot *free, | ||
129 | struct kvm_memory_slot *dont) | ||
130 | { | ||
131 | } | ||
132 | |||
133 | int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages) | ||
134 | { | ||
135 | return 0; | ||
136 | } | ||
137 | |||
138 | /** | ||
139 | * kvm_arch_destroy_vm - destroy the VM data structure | ||
140 | * @kvm: pointer to the KVM struct | ||
141 | */ | ||
142 | void kvm_arch_destroy_vm(struct kvm *kvm) | ||
143 | { | ||
144 | int i; | ||
145 | |||
146 | kvm_free_stage2_pgd(kvm); | ||
147 | |||
148 | for (i = 0; i < KVM_MAX_VCPUS; ++i) { | ||
149 | if (kvm->vcpus[i]) { | ||
150 | kvm_arch_vcpu_free(kvm->vcpus[i]); | ||
151 | kvm->vcpus[i] = NULL; | ||
152 | } | ||
153 | } | ||
154 | } | ||
155 | |||
156 | int kvm_dev_ioctl_check_extension(long ext) | ||
157 | { | ||
158 | int r; | ||
159 | switch (ext) { | ||
160 | case KVM_CAP_USER_MEMORY: | ||
161 | case KVM_CAP_SYNC_MMU: | ||
162 | case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: | ||
163 | case KVM_CAP_ONE_REG: | ||
164 | case KVM_CAP_ARM_PSCI: | ||
165 | r = 1; | ||
166 | break; | ||
167 | case KVM_CAP_COALESCED_MMIO: | ||
168 | r = KVM_COALESCED_MMIO_PAGE_OFFSET; | ||
169 | break; | ||
170 | case KVM_CAP_NR_VCPUS: | ||
171 | r = num_online_cpus(); | ||
172 | break; | ||
173 | case KVM_CAP_MAX_VCPUS: | ||
174 | r = KVM_MAX_VCPUS; | ||
175 | break; | ||
176 | default: | ||
177 | r = 0; | ||
178 | break; | ||
179 | } | ||
180 | return r; | ||
181 | } | ||
182 | |||
183 | long kvm_arch_dev_ioctl(struct file *filp, | ||
184 | unsigned int ioctl, unsigned long arg) | ||
185 | { | ||
186 | return -EINVAL; | ||
187 | } | ||
188 | |||
189 | int kvm_arch_set_memory_region(struct kvm *kvm, | ||
190 | struct kvm_userspace_memory_region *mem, | ||
191 | struct kvm_memory_slot old, | ||
192 | int user_alloc) | ||
193 | { | ||
194 | return 0; | ||
195 | } | ||
196 | |||
197 | int kvm_arch_prepare_memory_region(struct kvm *kvm, | ||
198 | struct kvm_memory_slot *memslot, | ||
199 | struct kvm_memory_slot old, | ||
200 | struct kvm_userspace_memory_region *mem, | ||
201 | int user_alloc) | ||
202 | { | ||
203 | return 0; | ||
204 | } | ||
205 | |||
206 | void kvm_arch_commit_memory_region(struct kvm *kvm, | ||
207 | struct kvm_userspace_memory_region *mem, | ||
208 | struct kvm_memory_slot old, | ||
209 | int user_alloc) | ||
210 | { | ||
211 | } | ||
212 | |||
213 | void kvm_arch_flush_shadow_all(struct kvm *kvm) | ||
214 | { | ||
215 | } | ||
216 | |||
217 | void kvm_arch_flush_shadow_memslot(struct kvm *kvm, | ||
218 | struct kvm_memory_slot *slot) | ||
219 | { | ||
220 | } | ||
221 | |||
222 | struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id) | ||
223 | { | ||
224 | int err; | ||
225 | struct kvm_vcpu *vcpu; | ||
226 | |||
227 | vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); | ||
228 | if (!vcpu) { | ||
229 | err = -ENOMEM; | ||
230 | goto out; | ||
231 | } | ||
232 | |||
233 | err = kvm_vcpu_init(vcpu, kvm, id); | ||
234 | if (err) | ||
235 | goto free_vcpu; | ||
236 | |||
237 | err = create_hyp_mappings(vcpu, vcpu + 1); | ||
238 | if (err) | ||
239 | goto vcpu_uninit; | ||
240 | |||
241 | return vcpu; | ||
242 | vcpu_uninit: | ||
243 | kvm_vcpu_uninit(vcpu); | ||
244 | free_vcpu: | ||
245 | kmem_cache_free(kvm_vcpu_cache, vcpu); | ||
246 | out: | ||
247 | return ERR_PTR(err); | ||
248 | } | ||
249 | |||
250 | int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) | ||
251 | { | ||
252 | return 0; | ||
253 | } | ||
254 | |||
255 | void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) | ||
256 | { | ||
257 | kvm_mmu_free_memory_caches(vcpu); | ||
258 | kmem_cache_free(kvm_vcpu_cache, vcpu); | ||
259 | } | ||
260 | |||
261 | void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) | ||
262 | { | ||
263 | kvm_arch_vcpu_free(vcpu); | ||
264 | } | ||
265 | |||
266 | int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) | ||
267 | { | ||
268 | return 0; | ||
269 | } | ||
270 | |||
271 | int __attribute_const__ kvm_target_cpu(void) | ||
272 | { | ||
273 | unsigned long implementor = read_cpuid_implementor(); | ||
274 | unsigned long part_number = read_cpuid_part_number(); | ||
275 | |||
276 | if (implementor != ARM_CPU_IMP_ARM) | ||
277 | return -EINVAL; | ||
278 | |||
279 | switch (part_number) { | ||
280 | case ARM_CPU_PART_CORTEX_A15: | ||
281 | return KVM_ARM_TARGET_CORTEX_A15; | ||
282 | default: | ||
283 | return -EINVAL; | ||
284 | } | ||
285 | } | ||
286 | |||
287 | int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) | ||
288 | { | ||
289 | /* Force users to call KVM_ARM_VCPU_INIT */ | ||
290 | vcpu->arch.target = -1; | ||
291 | return 0; | ||
292 | } | ||
293 | |||
294 | void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) | ||
295 | { | ||
296 | } | ||
297 | |||
298 | void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) | ||
299 | { | ||
300 | vcpu->cpu = cpu; | ||
301 | vcpu->arch.vfp_host = this_cpu_ptr(kvm_host_vfp_state); | ||
302 | |||
303 | /* | ||
304 | * Check whether this vcpu requires the cache to be flushed on | ||
305 | * this physical CPU. This is a consequence of doing dcache | ||
306 | * operations by set/way on this vcpu. We do it here to be in | ||
307 | * a non-preemptible section. | ||
308 | */ | ||
309 | if (cpumask_test_and_clear_cpu(cpu, &vcpu->arch.require_dcache_flush)) | ||
310 | flush_cache_all(); /* We'd really want v7_flush_dcache_all() */ | ||
311 | } | ||
312 | |||
313 | void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) | ||
314 | { | ||
315 | } | ||
316 | |||
317 | int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, | ||
318 | struct kvm_guest_debug *dbg) | ||
319 | { | ||
320 | return -EINVAL; | ||
321 | } | ||
322 | |||
323 | |||
324 | int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, | ||
325 | struct kvm_mp_state *mp_state) | ||
326 | { | ||
327 | return -EINVAL; | ||
328 | } | ||
329 | |||
330 | int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, | ||
331 | struct kvm_mp_state *mp_state) | ||
332 | { | ||
333 | return -EINVAL; | ||
334 | } | ||
335 | |||
336 | /** | ||
337 | * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled | ||
338 | * @v: The VCPU pointer | ||
339 | * | ||
340 | * If the guest CPU is not waiting for interrupts or an interrupt line is | ||
341 | * asserted, the CPU is by definition runnable. | ||
342 | */ | ||
343 | int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) | ||
344 | { | ||
345 | return !!v->arch.irq_lines; | ||
346 | } | ||
347 | |||
348 | /* Just ensure a guest exit from a particular CPU */ | ||
349 | static void exit_vm_noop(void *info) | ||
350 | { | ||
351 | } | ||
352 | |||
353 | void force_vm_exit(const cpumask_t *mask) | ||
354 | { | ||
355 | smp_call_function_many(mask, exit_vm_noop, NULL, true); | ||
356 | } | ||
357 | |||
358 | /** | ||
359 | * need_new_vmid_gen - check that the VMID is still valid | ||
360 | * @kvm: The VM's VMID to checkt | ||
361 | * | ||
362 | * return true if there is a new generation of VMIDs being used | ||
363 | * | ||
364 | * The hardware supports only 256 values with the value zero reserved for the | ||
365 | * host, so we check if an assigned value belongs to a previous generation, | ||
366 | * which which requires us to assign a new value. If we're the first to use a | ||
367 | * VMID for the new generation, we must flush necessary caches and TLBs on all | ||
368 | * CPUs. | ||
369 | */ | ||
370 | static bool need_new_vmid_gen(struct kvm *kvm) | ||
371 | { | ||
372 | return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen)); | ||
373 | } | ||
374 | |||
375 | /** | ||
376 | * update_vttbr - Update the VTTBR with a valid VMID before the guest runs | ||
377 | * @kvm The guest that we are about to run | ||
378 | * | ||
379 | * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the | ||
380 | * VM has a valid VMID, otherwise assigns a new one and flushes corresponding | ||
381 | * caches and TLBs. | ||
382 | */ | ||
383 | static void update_vttbr(struct kvm *kvm) | ||
384 | { | ||
385 | phys_addr_t pgd_phys; | ||
386 | u64 vmid; | ||
387 | |||
388 | if (!need_new_vmid_gen(kvm)) | ||
389 | return; | ||
390 | |||
391 | spin_lock(&kvm_vmid_lock); | ||
392 | |||
393 | /* | ||
394 | * We need to re-check the vmid_gen here to ensure that if another vcpu | ||
395 | * already allocated a valid vmid for this vm, then this vcpu should | ||
396 | * use the same vmid. | ||
397 | */ | ||
398 | if (!need_new_vmid_gen(kvm)) { | ||
399 | spin_unlock(&kvm_vmid_lock); | ||
400 | return; | ||
401 | } | ||
402 | |||
403 | /* First user of a new VMID generation? */ | ||
404 | if (unlikely(kvm_next_vmid == 0)) { | ||
405 | atomic64_inc(&kvm_vmid_gen); | ||
406 | kvm_next_vmid = 1; | ||
407 | |||
408 | /* | ||
409 | * On SMP we know no other CPUs can use this CPU's or each | ||
410 | * other's VMID after force_vm_exit returns since the | ||
411 | * kvm_vmid_lock blocks them from reentry to the guest. | ||
412 | */ | ||
413 | force_vm_exit(cpu_all_mask); | ||
414 | /* | ||
415 | * Now broadcast TLB + ICACHE invalidation over the inner | ||
416 | * shareable domain to make sure all data structures are | ||
417 | * clean. | ||
418 | */ | ||
419 | kvm_call_hyp(__kvm_flush_vm_context); | ||
420 | } | ||
421 | |||
422 | kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen); | ||
423 | kvm->arch.vmid = kvm_next_vmid; | ||
424 | kvm_next_vmid++; | ||
425 | |||
426 | /* update vttbr to be used with the new vmid */ | ||
427 | pgd_phys = virt_to_phys(kvm->arch.pgd); | ||
428 | vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK; | ||
429 | kvm->arch.vttbr = pgd_phys & VTTBR_BADDR_MASK; | ||
430 | kvm->arch.vttbr |= vmid; | ||
431 | |||
432 | spin_unlock(&kvm_vmid_lock); | ||
433 | } | ||
434 | |||
435 | static int handle_svc_hyp(struct kvm_vcpu *vcpu, struct kvm_run *run) | ||
436 | { | ||
437 | /* SVC called from Hyp mode should never get here */ | ||
438 | kvm_debug("SVC called from Hyp mode shouldn't go here\n"); | ||
439 | BUG(); | ||
440 | return -EINVAL; /* Squash warning */ | ||
441 | } | ||
442 | |||
443 | static int handle_hvc(struct kvm_vcpu *vcpu, struct kvm_run *run) | ||
444 | { | ||
445 | trace_kvm_hvc(*vcpu_pc(vcpu), *vcpu_reg(vcpu, 0), | ||
446 | vcpu->arch.hsr & HSR_HVC_IMM_MASK); | ||
447 | |||
448 | if (kvm_psci_call(vcpu)) | ||
449 | return 1; | ||
450 | |||
451 | kvm_inject_undefined(vcpu); | ||
452 | return 1; | ||
453 | } | ||
454 | |||
455 | static int handle_smc(struct kvm_vcpu *vcpu, struct kvm_run *run) | ||
456 | { | ||
457 | if (kvm_psci_call(vcpu)) | ||
458 | return 1; | ||
459 | |||
460 | kvm_inject_undefined(vcpu); | ||
461 | return 1; | ||
462 | } | ||
463 | |||
464 | static int handle_pabt_hyp(struct kvm_vcpu *vcpu, struct kvm_run *run) | ||
465 | { | ||
466 | /* The hypervisor should never cause aborts */ | ||
467 | kvm_err("Prefetch Abort taken from Hyp mode at %#08x (HSR: %#08x)\n", | ||
468 | vcpu->arch.hxfar, vcpu->arch.hsr); | ||
469 | return -EFAULT; | ||
470 | } | ||
471 | |||
472 | static int handle_dabt_hyp(struct kvm_vcpu *vcpu, struct kvm_run *run) | ||
473 | { | ||
474 | /* This is either an error in the ws. code or an external abort */ | ||
475 | kvm_err("Data Abort taken from Hyp mode at %#08x (HSR: %#08x)\n", | ||
476 | vcpu->arch.hxfar, vcpu->arch.hsr); | ||
477 | return -EFAULT; | ||
478 | } | ||
479 | |||
480 | typedef int (*exit_handle_fn)(struct kvm_vcpu *, struct kvm_run *); | ||
481 | static exit_handle_fn arm_exit_handlers[] = { | ||
482 | [HSR_EC_WFI] = kvm_handle_wfi, | ||
483 | [HSR_EC_CP15_32] = kvm_handle_cp15_32, | ||
484 | [HSR_EC_CP15_64] = kvm_handle_cp15_64, | ||
485 | [HSR_EC_CP14_MR] = kvm_handle_cp14_access, | ||
486 | [HSR_EC_CP14_LS] = kvm_handle_cp14_load_store, | ||
487 | [HSR_EC_CP14_64] = kvm_handle_cp14_access, | ||
488 | [HSR_EC_CP_0_13] = kvm_handle_cp_0_13_access, | ||
489 | [HSR_EC_CP10_ID] = kvm_handle_cp10_id, | ||
490 | [HSR_EC_SVC_HYP] = handle_svc_hyp, | ||
491 | [HSR_EC_HVC] = handle_hvc, | ||
492 | [HSR_EC_SMC] = handle_smc, | ||
493 | [HSR_EC_IABT] = kvm_handle_guest_abort, | ||
494 | [HSR_EC_IABT_HYP] = handle_pabt_hyp, | ||
495 | [HSR_EC_DABT] = kvm_handle_guest_abort, | ||
496 | [HSR_EC_DABT_HYP] = handle_dabt_hyp, | ||
497 | }; | ||
498 | |||
499 | /* | ||
500 | * A conditional instruction is allowed to trap, even though it | ||
501 | * wouldn't be executed. So let's re-implement the hardware, in | ||
502 | * software! | ||
503 | */ | ||
504 | static bool kvm_condition_valid(struct kvm_vcpu *vcpu) | ||
505 | { | ||
506 | unsigned long cpsr, cond, insn; | ||
507 | |||
508 | /* | ||
509 | * Exception Code 0 can only happen if we set HCR.TGE to 1, to | ||
510 | * catch undefined instructions, and then we won't get past | ||
511 | * the arm_exit_handlers test anyway. | ||
512 | */ | ||
513 | BUG_ON(((vcpu->arch.hsr & HSR_EC) >> HSR_EC_SHIFT) == 0); | ||
514 | |||
515 | /* Top two bits non-zero? Unconditional. */ | ||
516 | if (vcpu->arch.hsr >> 30) | ||
517 | return true; | ||
518 | |||
519 | cpsr = *vcpu_cpsr(vcpu); | ||
520 | |||
521 | /* Is condition field valid? */ | ||
522 | if ((vcpu->arch.hsr & HSR_CV) >> HSR_CV_SHIFT) | ||
523 | cond = (vcpu->arch.hsr & HSR_COND) >> HSR_COND_SHIFT; | ||
524 | else { | ||
525 | /* This can happen in Thumb mode: examine IT state. */ | ||
526 | unsigned long it; | ||
527 | |||
528 | it = ((cpsr >> 8) & 0xFC) | ((cpsr >> 25) & 0x3); | ||
529 | |||
530 | /* it == 0 => unconditional. */ | ||
531 | if (it == 0) | ||
532 | return true; | ||
533 | |||
534 | /* The cond for this insn works out as the top 4 bits. */ | ||
535 | cond = (it >> 4); | ||
536 | } | ||
537 | |||
538 | /* Shift makes it look like an ARM-mode instruction */ | ||
539 | insn = cond << 28; | ||
540 | return arm_check_condition(insn, cpsr) != ARM_OPCODE_CONDTEST_FAIL; | ||
541 | } | ||
542 | |||
543 | /* | ||
544 | * Return > 0 to return to guest, < 0 on error, 0 (and set exit_reason) on | ||
545 | * proper exit to QEMU. | ||
546 | */ | ||
547 | static int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run, | ||
548 | int exception_index) | ||
549 | { | ||
550 | unsigned long hsr_ec; | ||
551 | |||
552 | switch (exception_index) { | ||
553 | case ARM_EXCEPTION_IRQ: | ||
554 | return 1; | ||
555 | case ARM_EXCEPTION_UNDEFINED: | ||
556 | kvm_err("Undefined exception in Hyp mode at: %#08x\n", | ||
557 | vcpu->arch.hyp_pc); | ||
558 | BUG(); | ||
559 | panic("KVM: Hypervisor undefined exception!\n"); | ||
560 | case ARM_EXCEPTION_DATA_ABORT: | ||
561 | case ARM_EXCEPTION_PREF_ABORT: | ||
562 | case ARM_EXCEPTION_HVC: | ||
563 | hsr_ec = (vcpu->arch.hsr & HSR_EC) >> HSR_EC_SHIFT; | ||
564 | |||
565 | if (hsr_ec >= ARRAY_SIZE(arm_exit_handlers) | ||
566 | || !arm_exit_handlers[hsr_ec]) { | ||
567 | kvm_err("Unkown exception class: %#08lx, " | ||
568 | "hsr: %#08x\n", hsr_ec, | ||
569 | (unsigned int)vcpu->arch.hsr); | ||
570 | BUG(); | ||
571 | } | ||
572 | |||
573 | /* | ||
574 | * See ARM ARM B1.14.1: "Hyp traps on instructions | ||
575 | * that fail their condition code check" | ||
576 | */ | ||
577 | if (!kvm_condition_valid(vcpu)) { | ||
578 | bool is_wide = vcpu->arch.hsr & HSR_IL; | ||
579 | kvm_skip_instr(vcpu, is_wide); | ||
580 | return 1; | ||
581 | } | ||
582 | |||
583 | return arm_exit_handlers[hsr_ec](vcpu, run); | ||
584 | default: | ||
585 | kvm_pr_unimpl("Unsupported exception type: %d", | ||
586 | exception_index); | ||
587 | run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | ||
588 | return 0; | ||
589 | } | ||
590 | } | ||
591 | |||
592 | static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu) | ||
593 | { | ||
594 | if (likely(vcpu->arch.has_run_once)) | ||
595 | return 0; | ||
596 | |||
597 | vcpu->arch.has_run_once = true; | ||
598 | |||
599 | /* | ||
600 | * Handle the "start in power-off" case by calling into the | ||
601 | * PSCI code. | ||
602 | */ | ||
603 | if (test_and_clear_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features)) { | ||
604 | *vcpu_reg(vcpu, 0) = KVM_PSCI_FN_CPU_OFF; | ||
605 | kvm_psci_call(vcpu); | ||
606 | } | ||
607 | |||
608 | return 0; | ||
609 | } | ||
610 | |||
611 | static void vcpu_pause(struct kvm_vcpu *vcpu) | ||
612 | { | ||
613 | wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu); | ||
614 | |||
615 | wait_event_interruptible(*wq, !vcpu->arch.pause); | ||
616 | } | ||
617 | |||
618 | /** | ||
619 | * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code | ||
620 | * @vcpu: The VCPU pointer | ||
621 | * @run: The kvm_run structure pointer used for userspace state exchange | ||
622 | * | ||
623 | * This function is called through the VCPU_RUN ioctl called from user space. It | ||
624 | * will execute VM code in a loop until the time slice for the process is used | ||
625 | * or some emulation is needed from user space in which case the function will | ||
626 | * return with return value 0 and with the kvm_run structure filled in with the | ||
627 | * required data for the requested emulation. | ||
628 | */ | ||
629 | int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run) | ||
630 | { | ||
631 | int ret; | ||
632 | sigset_t sigsaved; | ||
633 | |||
634 | /* Make sure they initialize the vcpu with KVM_ARM_VCPU_INIT */ | ||
635 | if (unlikely(vcpu->arch.target < 0)) | ||
636 | return -ENOEXEC; | ||
637 | |||
638 | ret = kvm_vcpu_first_run_init(vcpu); | ||
639 | if (ret) | ||
640 | return ret; | ||
641 | |||
642 | if (run->exit_reason == KVM_EXIT_MMIO) { | ||
643 | ret = kvm_handle_mmio_return(vcpu, vcpu->run); | ||
644 | if (ret) | ||
645 | return ret; | ||
646 | } | ||
647 | |||
648 | if (vcpu->sigset_active) | ||
649 | sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); | ||
650 | |||
651 | ret = 1; | ||
652 | run->exit_reason = KVM_EXIT_UNKNOWN; | ||
653 | while (ret > 0) { | ||
654 | /* | ||
655 | * Check conditions before entering the guest | ||
656 | */ | ||
657 | cond_resched(); | ||
658 | |||
659 | update_vttbr(vcpu->kvm); | ||
660 | |||
661 | if (vcpu->arch.pause) | ||
662 | vcpu_pause(vcpu); | ||
663 | |||
664 | local_irq_disable(); | ||
665 | |||
666 | /* | ||
667 | * Re-check atomic conditions | ||
668 | */ | ||
669 | if (signal_pending(current)) { | ||
670 | ret = -EINTR; | ||
671 | run->exit_reason = KVM_EXIT_INTR; | ||
672 | } | ||
673 | |||
674 | if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) { | ||
675 | local_irq_enable(); | ||
676 | continue; | ||
677 | } | ||
678 | |||
679 | /************************************************************** | ||
680 | * Enter the guest | ||
681 | */ | ||
682 | trace_kvm_entry(*vcpu_pc(vcpu)); | ||
683 | kvm_guest_enter(); | ||
684 | vcpu->mode = IN_GUEST_MODE; | ||
685 | |||
686 | ret = kvm_call_hyp(__kvm_vcpu_run, vcpu); | ||
687 | |||
688 | vcpu->mode = OUTSIDE_GUEST_MODE; | ||
689 | vcpu->arch.last_pcpu = smp_processor_id(); | ||
690 | kvm_guest_exit(); | ||
691 | trace_kvm_exit(*vcpu_pc(vcpu)); | ||
692 | /* | ||
693 | * We may have taken a host interrupt in HYP mode (ie | ||
694 | * while executing the guest). This interrupt is still | ||
695 | * pending, as we haven't serviced it yet! | ||
696 | * | ||
697 | * We're now back in SVC mode, with interrupts | ||
698 | * disabled. Enabling the interrupts now will have | ||
699 | * the effect of taking the interrupt again, in SVC | ||
700 | * mode this time. | ||
701 | */ | ||
702 | local_irq_enable(); | ||
703 | |||
704 | /* | ||
705 | * Back from guest | ||
706 | *************************************************************/ | ||
707 | |||
708 | ret = handle_exit(vcpu, run, ret); | ||
709 | } | ||
710 | |||
711 | if (vcpu->sigset_active) | ||
712 | sigprocmask(SIG_SETMASK, &sigsaved, NULL); | ||
713 | return ret; | ||
714 | } | ||
715 | |||
716 | static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level) | ||
717 | { | ||
718 | int bit_index; | ||
719 | bool set; | ||
720 | unsigned long *ptr; | ||
721 | |||
722 | if (number == KVM_ARM_IRQ_CPU_IRQ) | ||
723 | bit_index = __ffs(HCR_VI); | ||
724 | else /* KVM_ARM_IRQ_CPU_FIQ */ | ||
725 | bit_index = __ffs(HCR_VF); | ||
726 | |||
727 | ptr = (unsigned long *)&vcpu->arch.irq_lines; | ||
728 | if (level) | ||
729 | set = test_and_set_bit(bit_index, ptr); | ||
730 | else | ||
731 | set = test_and_clear_bit(bit_index, ptr); | ||
732 | |||
733 | /* | ||
734 | * If we didn't change anything, no need to wake up or kick other CPUs | ||
735 | */ | ||
736 | if (set == level) | ||
737 | return 0; | ||
738 | |||
739 | /* | ||
740 | * The vcpu irq_lines field was updated, wake up sleeping VCPUs and | ||
741 | * trigger a world-switch round on the running physical CPU to set the | ||
742 | * virtual IRQ/FIQ fields in the HCR appropriately. | ||
743 | */ | ||
744 | kvm_vcpu_kick(vcpu); | ||
745 | |||
746 | return 0; | ||
747 | } | ||
748 | |||
749 | int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level) | ||
750 | { | ||
751 | u32 irq = irq_level->irq; | ||
752 | unsigned int irq_type, vcpu_idx, irq_num; | ||
753 | int nrcpus = atomic_read(&kvm->online_vcpus); | ||
754 | struct kvm_vcpu *vcpu = NULL; | ||
755 | bool level = irq_level->level; | ||
756 | |||
757 | irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK; | ||
758 | vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK; | ||
759 | irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK; | ||
760 | |||
761 | trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level); | ||
762 | |||
763 | if (irq_type != KVM_ARM_IRQ_TYPE_CPU) | ||
764 | return -EINVAL; | ||
765 | |||
766 | if (vcpu_idx >= nrcpus) | ||
767 | return -EINVAL; | ||
768 | |||
769 | vcpu = kvm_get_vcpu(kvm, vcpu_idx); | ||
770 | if (!vcpu) | ||
771 | return -EINVAL; | ||
772 | |||
773 | if (irq_num > KVM_ARM_IRQ_CPU_FIQ) | ||
774 | return -EINVAL; | ||
775 | |||
776 | return vcpu_interrupt_line(vcpu, irq_num, level); | ||
777 | } | ||
778 | |||
779 | long kvm_arch_vcpu_ioctl(struct file *filp, | ||
780 | unsigned int ioctl, unsigned long arg) | ||
781 | { | ||
782 | struct kvm_vcpu *vcpu = filp->private_data; | ||
783 | void __user *argp = (void __user *)arg; | ||
784 | |||
785 | switch (ioctl) { | ||
786 | case KVM_ARM_VCPU_INIT: { | ||
787 | struct kvm_vcpu_init init; | ||
788 | |||
789 | if (copy_from_user(&init, argp, sizeof(init))) | ||
790 | return -EFAULT; | ||
791 | |||
792 | return kvm_vcpu_set_target(vcpu, &init); | ||
793 | |||
794 | } | ||
795 | case KVM_SET_ONE_REG: | ||
796 | case KVM_GET_ONE_REG: { | ||
797 | struct kvm_one_reg reg; | ||
798 | if (copy_from_user(®, argp, sizeof(reg))) | ||
799 | return -EFAULT; | ||
800 | if (ioctl == KVM_SET_ONE_REG) | ||
801 | return kvm_arm_set_reg(vcpu, ®); | ||
802 | else | ||
803 | return kvm_arm_get_reg(vcpu, ®); | ||
804 | } | ||
805 | case KVM_GET_REG_LIST: { | ||
806 | struct kvm_reg_list __user *user_list = argp; | ||
807 | struct kvm_reg_list reg_list; | ||
808 | unsigned n; | ||
809 | |||
810 | if (copy_from_user(®_list, user_list, sizeof(reg_list))) | ||
811 | return -EFAULT; | ||
812 | n = reg_list.n; | ||
813 | reg_list.n = kvm_arm_num_regs(vcpu); | ||
814 | if (copy_to_user(user_list, ®_list, sizeof(reg_list))) | ||
815 | return -EFAULT; | ||
816 | if (n < reg_list.n) | ||
817 | return -E2BIG; | ||
818 | return kvm_arm_copy_reg_indices(vcpu, user_list->reg); | ||
819 | } | ||
820 | default: | ||
821 | return -EINVAL; | ||
822 | } | ||
823 | } | ||
824 | |||
825 | int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) | ||
826 | { | ||
827 | return -EINVAL; | ||
828 | } | ||
829 | |||
830 | long kvm_arch_vm_ioctl(struct file *filp, | ||
831 | unsigned int ioctl, unsigned long arg) | ||
832 | { | ||
833 | return -EINVAL; | ||
834 | } | ||
835 | |||
836 | static void cpu_init_hyp_mode(void *vector) | ||
837 | { | ||
838 | unsigned long long pgd_ptr; | ||
839 | unsigned long pgd_low, pgd_high; | ||
840 | unsigned long hyp_stack_ptr; | ||
841 | unsigned long stack_page; | ||
842 | unsigned long vector_ptr; | ||
843 | |||
844 | /* Switch from the HYP stub to our own HYP init vector */ | ||
845 | __hyp_set_vectors((unsigned long)vector); | ||
846 | |||
847 | pgd_ptr = (unsigned long long)kvm_mmu_get_httbr(); | ||
848 | pgd_low = (pgd_ptr & ((1ULL << 32) - 1)); | ||
849 | pgd_high = (pgd_ptr >> 32ULL); | ||
850 | stack_page = __get_cpu_var(kvm_arm_hyp_stack_page); | ||
851 | hyp_stack_ptr = stack_page + PAGE_SIZE; | ||
852 | vector_ptr = (unsigned long)__kvm_hyp_vector; | ||
853 | |||
854 | /* | ||
855 | * Call initialization code, and switch to the full blown | ||
856 | * HYP code. The init code doesn't need to preserve these registers as | ||
857 | * r1-r3 and r12 are already callee save according to the AAPCS. | ||
858 | * Note that we slightly misuse the prototype by casing the pgd_low to | ||
859 | * a void *. | ||
860 | */ | ||
861 | kvm_call_hyp((void *)pgd_low, pgd_high, hyp_stack_ptr, vector_ptr); | ||
862 | } | ||
863 | |||
864 | /** | ||
865 | * Inits Hyp-mode on all online CPUs | ||
866 | */ | ||
867 | static int init_hyp_mode(void) | ||
868 | { | ||
869 | phys_addr_t init_phys_addr; | ||
870 | int cpu; | ||
871 | int err = 0; | ||
872 | |||
873 | /* | ||
874 | * Allocate Hyp PGD and setup Hyp identity mapping | ||
875 | */ | ||
876 | err = kvm_mmu_init(); | ||
877 | if (err) | ||
878 | goto out_err; | ||
879 | |||
880 | /* | ||
881 | * It is probably enough to obtain the default on one | ||
882 | * CPU. It's unlikely to be different on the others. | ||
883 | */ | ||
884 | hyp_default_vectors = __hyp_get_vectors(); | ||
885 | |||
886 | /* | ||
887 | * Allocate stack pages for Hypervisor-mode | ||
888 | */ | ||
889 | for_each_possible_cpu(cpu) { | ||
890 | unsigned long stack_page; | ||
891 | |||
892 | stack_page = __get_free_page(GFP_KERNEL); | ||
893 | if (!stack_page) { | ||
894 | err = -ENOMEM; | ||
895 | goto out_free_stack_pages; | ||
896 | } | ||
897 | |||
898 | per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page; | ||
899 | } | ||
900 | |||
901 | /* | ||
902 | * Execute the init code on each CPU. | ||
903 | * | ||
904 | * Note: The stack is not mapped yet, so don't do anything else than | ||
905 | * initializing the hypervisor mode on each CPU using a local stack | ||
906 | * space for temporary storage. | ||
907 | */ | ||
908 | init_phys_addr = virt_to_phys(__kvm_hyp_init); | ||
909 | for_each_online_cpu(cpu) { | ||
910 | smp_call_function_single(cpu, cpu_init_hyp_mode, | ||
911 | (void *)(long)init_phys_addr, 1); | ||
912 | } | ||
913 | |||
914 | /* | ||
915 | * Unmap the identity mapping | ||
916 | */ | ||
917 | kvm_clear_hyp_idmap(); | ||
918 | |||
919 | /* | ||
920 | * Map the Hyp-code called directly from the host | ||
921 | */ | ||
922 | err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end); | ||
923 | if (err) { | ||
924 | kvm_err("Cannot map world-switch code\n"); | ||
925 | goto out_free_mappings; | ||
926 | } | ||
927 | |||
928 | /* | ||
929 | * Map the Hyp stack pages | ||
930 | */ | ||
931 | for_each_possible_cpu(cpu) { | ||
932 | char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu); | ||
933 | err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE); | ||
934 | |||
935 | if (err) { | ||
936 | kvm_err("Cannot map hyp stack\n"); | ||
937 | goto out_free_mappings; | ||
938 | } | ||
939 | } | ||
940 | |||
941 | /* | ||
942 | * Map the host VFP structures | ||
943 | */ | ||
944 | kvm_host_vfp_state = alloc_percpu(struct vfp_hard_struct); | ||
945 | if (!kvm_host_vfp_state) { | ||
946 | err = -ENOMEM; | ||
947 | kvm_err("Cannot allocate host VFP state\n"); | ||
948 | goto out_free_mappings; | ||
949 | } | ||
950 | |||
951 | for_each_possible_cpu(cpu) { | ||
952 | struct vfp_hard_struct *vfp; | ||
953 | |||
954 | vfp = per_cpu_ptr(kvm_host_vfp_state, cpu); | ||
955 | err = create_hyp_mappings(vfp, vfp + 1); | ||
956 | |||
957 | if (err) { | ||
958 | kvm_err("Cannot map host VFP state: %d\n", err); | ||
959 | goto out_free_vfp; | ||
960 | } | ||
961 | } | ||
962 | |||
963 | kvm_info("Hyp mode initialized successfully\n"); | ||
964 | return 0; | ||
965 | out_free_vfp: | ||
966 | free_percpu(kvm_host_vfp_state); | ||
967 | out_free_mappings: | ||
968 | free_hyp_pmds(); | ||
969 | out_free_stack_pages: | ||
970 | for_each_possible_cpu(cpu) | ||
971 | free_page(per_cpu(kvm_arm_hyp_stack_page, cpu)); | ||
972 | out_err: | ||
973 | kvm_err("error initializing Hyp mode: %d\n", err); | ||
974 | return err; | ||
975 | } | ||
976 | |||
977 | /** | ||
978 | * Initialize Hyp-mode and memory mappings on all CPUs. | ||
979 | */ | ||
980 | int kvm_arch_init(void *opaque) | ||
981 | { | ||
982 | int err; | ||
983 | |||
984 | if (!is_hyp_mode_available()) { | ||
985 | kvm_err("HYP mode not available\n"); | ||
986 | return -ENODEV; | ||
987 | } | ||
988 | |||
989 | if (kvm_target_cpu() < 0) { | ||
990 | kvm_err("Target CPU not supported!\n"); | ||
991 | return -ENODEV; | ||
992 | } | ||
993 | |||
994 | err = init_hyp_mode(); | ||
995 | if (err) | ||
996 | goto out_err; | ||
997 | |||
998 | kvm_coproc_table_init(); | ||
999 | return 0; | ||
1000 | out_err: | ||
1001 | return err; | ||
1002 | } | ||
1003 | |||
1004 | /* NOP: Compiling as a module not supported */ | ||
1005 | void kvm_arch_exit(void) | ||
1006 | { | ||
1007 | } | ||
1008 | |||
1009 | static int arm_init(void) | ||
1010 | { | ||
1011 | int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE); | ||
1012 | return rc; | ||
1013 | } | ||
1014 | |||
1015 | module_init(arm_init); | ||