diff options
Diffstat (limited to 'arch/arm/kernel/kprobes-test.c')
-rw-r--r-- | arch/arm/kernel/kprobes-test.c | 1748 |
1 files changed, 1748 insertions, 0 deletions
diff --git a/arch/arm/kernel/kprobes-test.c b/arch/arm/kernel/kprobes-test.c new file mode 100644 index 000000000000..e17cdd6d90d8 --- /dev/null +++ b/arch/arm/kernel/kprobes-test.c | |||
@@ -0,0 +1,1748 @@ | |||
1 | /* | ||
2 | * arch/arm/kernel/kprobes-test.c | ||
3 | * | ||
4 | * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>. | ||
5 | * | ||
6 | * This program is free software; you can redistribute it and/or modify | ||
7 | * it under the terms of the GNU General Public License version 2 as | ||
8 | * published by the Free Software Foundation. | ||
9 | */ | ||
10 | |||
11 | /* | ||
12 | * This file contains test code for ARM kprobes. | ||
13 | * | ||
14 | * The top level function run_all_tests() executes tests for all of the | ||
15 | * supported instruction sets: ARM, 16-bit Thumb, and 32-bit Thumb. These tests | ||
16 | * fall into two categories; run_api_tests() checks basic functionality of the | ||
17 | * kprobes API, and run_test_cases() is a comprehensive test for kprobes | ||
18 | * instruction decoding and simulation. | ||
19 | * | ||
20 | * run_test_cases() first checks the kprobes decoding table for self consistency | ||
21 | * (using table_test()) then executes a series of test cases for each of the CPU | ||
22 | * instruction forms. coverage_start() and coverage_end() are used to verify | ||
23 | * that these test cases cover all of the possible combinations of instructions | ||
24 | * described by the kprobes decoding tables. | ||
25 | * | ||
26 | * The individual test cases are in kprobes-test-arm.c and kprobes-test-thumb.c | ||
27 | * which use the macros defined in kprobes-test.h. The rest of this | ||
28 | * documentation will describe the operation of the framework used by these | ||
29 | * test cases. | ||
30 | */ | ||
31 | |||
32 | /* | ||
33 | * TESTING METHODOLOGY | ||
34 | * ------------------- | ||
35 | * | ||
36 | * The methodology used to test an ARM instruction 'test_insn' is to use | ||
37 | * inline assembler like: | ||
38 | * | ||
39 | * test_before: nop | ||
40 | * test_case: test_insn | ||
41 | * test_after: nop | ||
42 | * | ||
43 | * When the test case is run a kprobe is placed of each nop. The | ||
44 | * post-handler of the test_before probe is used to modify the saved CPU | ||
45 | * register context to that which we require for the test case. The | ||
46 | * pre-handler of the of the test_after probe saves a copy of the CPU | ||
47 | * register context. In this way we can execute test_insn with a specific | ||
48 | * register context and see the results afterwards. | ||
49 | * | ||
50 | * To actually test the kprobes instruction emulation we perform the above | ||
51 | * step a second time but with an additional kprobe on the test_case | ||
52 | * instruction itself. If the emulation is accurate then the results seen | ||
53 | * by the test_after probe will be identical to the first run which didn't | ||
54 | * have a probe on test_case. | ||
55 | * | ||
56 | * Each test case is run several times with a variety of variations in the | ||
57 | * flags value of stored in CPSR, and for Thumb code, different ITState. | ||
58 | * | ||
59 | * For instructions which can modify PC, a second test_after probe is used | ||
60 | * like this: | ||
61 | * | ||
62 | * test_before: nop | ||
63 | * test_case: test_insn | ||
64 | * test_after: nop | ||
65 | * b test_done | ||
66 | * test_after2: nop | ||
67 | * test_done: | ||
68 | * | ||
69 | * The test case is constructed such that test_insn branches to | ||
70 | * test_after2, or, if testing a conditional instruction, it may just | ||
71 | * continue to test_after. The probes inserted at both locations let us | ||
72 | * determine which happened. A similar approach is used for testing | ||
73 | * backwards branches... | ||
74 | * | ||
75 | * b test_before | ||
76 | * b test_done @ helps to cope with off by 1 branches | ||
77 | * test_after2: nop | ||
78 | * b test_done | ||
79 | * test_before: nop | ||
80 | * test_case: test_insn | ||
81 | * test_after: nop | ||
82 | * test_done: | ||
83 | * | ||
84 | * The macros used to generate the assembler instructions describe above | ||
85 | * are TEST_INSTRUCTION, TEST_BRANCH_F (branch forwards) and TEST_BRANCH_B | ||
86 | * (branch backwards). In these, the local variables numbered 1, 50, 2 and | ||
87 | * 99 represent: test_before, test_case, test_after2 and test_done. | ||
88 | * | ||
89 | * FRAMEWORK | ||
90 | * --------- | ||
91 | * | ||
92 | * Each test case is wrapped between the pair of macros TESTCASE_START and | ||
93 | * TESTCASE_END. As well as performing the inline assembler boilerplate, | ||
94 | * these call out to the kprobes_test_case_start() and | ||
95 | * kprobes_test_case_end() functions which drive the execution of the test | ||
96 | * case. The specific arguments to use for each test case are stored as | ||
97 | * inline data constructed using the various TEST_ARG_* macros. Putting | ||
98 | * this all together, a simple test case may look like: | ||
99 | * | ||
100 | * TESTCASE_START("Testing mov r0, r7") | ||
101 | * TEST_ARG_REG(7, 0x12345678) // Set r7=0x12345678 | ||
102 | * TEST_ARG_END("") | ||
103 | * TEST_INSTRUCTION("mov r0, r7") | ||
104 | * TESTCASE_END | ||
105 | * | ||
106 | * Note, in practice the single convenience macro TEST_R would be used for this | ||
107 | * instead. | ||
108 | * | ||
109 | * The above would expand to assembler looking something like: | ||
110 | * | ||
111 | * @ TESTCASE_START | ||
112 | * bl __kprobes_test_case_start | ||
113 | * @ start of inline data... | ||
114 | * .ascii "mov r0, r7" @ text title for test case | ||
115 | * .byte 0 | ||
116 | * .align 2 | ||
117 | * | ||
118 | * @ TEST_ARG_REG | ||
119 | * .byte ARG_TYPE_REG | ||
120 | * .byte 7 | ||
121 | * .short 0 | ||
122 | * .word 0x1234567 | ||
123 | * | ||
124 | * @ TEST_ARG_END | ||
125 | * .byte ARG_TYPE_END | ||
126 | * .byte TEST_ISA @ flags, including ISA being tested | ||
127 | * .short 50f-0f @ offset of 'test_before' | ||
128 | * .short 2f-0f @ offset of 'test_after2' (if relevent) | ||
129 | * .short 99f-0f @ offset of 'test_done' | ||
130 | * @ start of test case code... | ||
131 | * 0: | ||
132 | * .code TEST_ISA @ switch to ISA being tested | ||
133 | * | ||
134 | * @ TEST_INSTRUCTION | ||
135 | * 50: nop @ location for 'test_before' probe | ||
136 | * 1: mov r0, r7 @ the test case instruction 'test_insn' | ||
137 | * nop @ location for 'test_after' probe | ||
138 | * | ||
139 | * // TESTCASE_END | ||
140 | * 2: | ||
141 | * 99: bl __kprobes_test_case_end_##TEST_ISA | ||
142 | * .code NONMAL_ISA | ||
143 | * | ||
144 | * When the above is execute the following happens... | ||
145 | * | ||
146 | * __kprobes_test_case_start() is an assembler wrapper which sets up space | ||
147 | * for a stack buffer and calls the C function kprobes_test_case_start(). | ||
148 | * This C function will do some initial processing of the inline data and | ||
149 | * setup some global state. It then inserts the test_before and test_after | ||
150 | * kprobes and returns a value which causes the assembler wrapper to jump | ||
151 | * to the start of the test case code, (local label '0'). | ||
152 | * | ||
153 | * When the test case code executes, the test_before probe will be hit and | ||
154 | * test_before_post_handler will call setup_test_context(). This fills the | ||
155 | * stack buffer and CPU registers with a test pattern and then processes | ||
156 | * the test case arguments. In our example there is one TEST_ARG_REG which | ||
157 | * indicates that R7 should be loaded with the value 0x12345678. | ||
158 | * | ||
159 | * When the test_before probe ends, the test case continues and executes | ||
160 | * the "mov r0, r7" instruction. It then hits the test_after probe and the | ||
161 | * pre-handler for this (test_after_pre_handler) will save a copy of the | ||
162 | * CPU register context. This should now have R0 holding the same value as | ||
163 | * R7. | ||
164 | * | ||
165 | * Finally we get to the call to __kprobes_test_case_end_{32,16}. This is | ||
166 | * an assembler wrapper which switches back to the ISA used by the test | ||
167 | * code and calls the C function kprobes_test_case_end(). | ||
168 | * | ||
169 | * For each run through the test case, test_case_run_count is incremented | ||
170 | * by one. For even runs, kprobes_test_case_end() saves a copy of the | ||
171 | * register and stack buffer contents from the test case just run. It then | ||
172 | * inserts a kprobe on the test case instruction 'test_insn' and returns a | ||
173 | * value to cause the test case code to be re-run. | ||
174 | * | ||
175 | * For odd numbered runs, kprobes_test_case_end() compares the register and | ||
176 | * stack buffer contents to those that were saved on the previous even | ||
177 | * numbered run (the one without the kprobe on test_insn). These should be | ||
178 | * the same if the kprobe instruction simulation routine is correct. | ||
179 | * | ||
180 | * The pair of test case runs is repeated with different combinations of | ||
181 | * flag values in CPSR and, for Thumb, different ITState. This is | ||
182 | * controlled by test_context_cpsr(). | ||
183 | * | ||
184 | * BUILDING TEST CASES | ||
185 | * ------------------- | ||
186 | * | ||
187 | * | ||
188 | * As an aid to building test cases, the stack buffer is initialised with | ||
189 | * some special values: | ||
190 | * | ||
191 | * [SP+13*4] Contains SP+120. This can be used to test instructions | ||
192 | * which load a value into SP. | ||
193 | * | ||
194 | * [SP+15*4] When testing branching instructions using TEST_BRANCH_{F,B}, | ||
195 | * this holds the target address of the branch, 'test_after2'. | ||
196 | * This can be used to test instructions which load a PC value | ||
197 | * from memory. | ||
198 | */ | ||
199 | |||
200 | #include <linux/kernel.h> | ||
201 | #include <linux/module.h> | ||
202 | #include <linux/slab.h> | ||
203 | #include <linux/kprobes.h> | ||
204 | |||
205 | #include "kprobes.h" | ||
206 | #include "kprobes-test.h" | ||
207 | |||
208 | |||
209 | #define BENCHMARKING 1 | ||
210 | |||
211 | |||
212 | /* | ||
213 | * Test basic API | ||
214 | */ | ||
215 | |||
216 | static bool test_regs_ok; | ||
217 | static int test_func_instance; | ||
218 | static int pre_handler_called; | ||
219 | static int post_handler_called; | ||
220 | static int jprobe_func_called; | ||
221 | static int kretprobe_handler_called; | ||
222 | |||
223 | #define FUNC_ARG1 0x12345678 | ||
224 | #define FUNC_ARG2 0xabcdef | ||
225 | |||
226 | |||
227 | #ifndef CONFIG_THUMB2_KERNEL | ||
228 | |||
229 | long arm_func(long r0, long r1); | ||
230 | |||
231 | static void __used __naked __arm_kprobes_test_func(void) | ||
232 | { | ||
233 | __asm__ __volatile__ ( | ||
234 | ".arm \n\t" | ||
235 | ".type arm_func, %%function \n\t" | ||
236 | "arm_func: \n\t" | ||
237 | "adds r0, r0, r1 \n\t" | ||
238 | "bx lr \n\t" | ||
239 | ".code "NORMAL_ISA /* Back to Thumb if necessary */ | ||
240 | : : : "r0", "r1", "cc" | ||
241 | ); | ||
242 | } | ||
243 | |||
244 | #else /* CONFIG_THUMB2_KERNEL */ | ||
245 | |||
246 | long thumb16_func(long r0, long r1); | ||
247 | long thumb32even_func(long r0, long r1); | ||
248 | long thumb32odd_func(long r0, long r1); | ||
249 | |||
250 | static void __used __naked __thumb_kprobes_test_funcs(void) | ||
251 | { | ||
252 | __asm__ __volatile__ ( | ||
253 | ".type thumb16_func, %%function \n\t" | ||
254 | "thumb16_func: \n\t" | ||
255 | "adds.n r0, r0, r1 \n\t" | ||
256 | "bx lr \n\t" | ||
257 | |||
258 | ".align \n\t" | ||
259 | ".type thumb32even_func, %%function \n\t" | ||
260 | "thumb32even_func: \n\t" | ||
261 | "adds.w r0, r0, r1 \n\t" | ||
262 | "bx lr \n\t" | ||
263 | |||
264 | ".align \n\t" | ||
265 | "nop.n \n\t" | ||
266 | ".type thumb32odd_func, %%function \n\t" | ||
267 | "thumb32odd_func: \n\t" | ||
268 | "adds.w r0, r0, r1 \n\t" | ||
269 | "bx lr \n\t" | ||
270 | |||
271 | : : : "r0", "r1", "cc" | ||
272 | ); | ||
273 | } | ||
274 | |||
275 | #endif /* CONFIG_THUMB2_KERNEL */ | ||
276 | |||
277 | |||
278 | static int call_test_func(long (*func)(long, long), bool check_test_regs) | ||
279 | { | ||
280 | long ret; | ||
281 | |||
282 | ++test_func_instance; | ||
283 | test_regs_ok = false; | ||
284 | |||
285 | ret = (*func)(FUNC_ARG1, FUNC_ARG2); | ||
286 | if (ret != FUNC_ARG1 + FUNC_ARG2) { | ||
287 | pr_err("FAIL: call_test_func: func returned %lx\n", ret); | ||
288 | return false; | ||
289 | } | ||
290 | |||
291 | if (check_test_regs && !test_regs_ok) { | ||
292 | pr_err("FAIL: test regs not OK\n"); | ||
293 | return false; | ||
294 | } | ||
295 | |||
296 | return true; | ||
297 | } | ||
298 | |||
299 | static int __kprobes pre_handler(struct kprobe *p, struct pt_regs *regs) | ||
300 | { | ||
301 | pre_handler_called = test_func_instance; | ||
302 | if (regs->ARM_r0 == FUNC_ARG1 && regs->ARM_r1 == FUNC_ARG2) | ||
303 | test_regs_ok = true; | ||
304 | return 0; | ||
305 | } | ||
306 | |||
307 | static void __kprobes post_handler(struct kprobe *p, struct pt_regs *regs, | ||
308 | unsigned long flags) | ||
309 | { | ||
310 | post_handler_called = test_func_instance; | ||
311 | if (regs->ARM_r0 != FUNC_ARG1 + FUNC_ARG2 || regs->ARM_r1 != FUNC_ARG2) | ||
312 | test_regs_ok = false; | ||
313 | } | ||
314 | |||
315 | static struct kprobe the_kprobe = { | ||
316 | .addr = 0, | ||
317 | .pre_handler = pre_handler, | ||
318 | .post_handler = post_handler | ||
319 | }; | ||
320 | |||
321 | static int test_kprobe(long (*func)(long, long)) | ||
322 | { | ||
323 | int ret; | ||
324 | |||
325 | the_kprobe.addr = (kprobe_opcode_t *)func; | ||
326 | ret = register_kprobe(&the_kprobe); | ||
327 | if (ret < 0) { | ||
328 | pr_err("FAIL: register_kprobe failed with %d\n", ret); | ||
329 | return ret; | ||
330 | } | ||
331 | |||
332 | ret = call_test_func(func, true); | ||
333 | |||
334 | unregister_kprobe(&the_kprobe); | ||
335 | the_kprobe.flags = 0; /* Clear disable flag to allow reuse */ | ||
336 | |||
337 | if (!ret) | ||
338 | return -EINVAL; | ||
339 | if (pre_handler_called != test_func_instance) { | ||
340 | pr_err("FAIL: kprobe pre_handler not called\n"); | ||
341 | return -EINVAL; | ||
342 | } | ||
343 | if (post_handler_called != test_func_instance) { | ||
344 | pr_err("FAIL: kprobe post_handler not called\n"); | ||
345 | return -EINVAL; | ||
346 | } | ||
347 | if (!call_test_func(func, false)) | ||
348 | return -EINVAL; | ||
349 | if (pre_handler_called == test_func_instance || | ||
350 | post_handler_called == test_func_instance) { | ||
351 | pr_err("FAIL: probe called after unregistering\n"); | ||
352 | return -EINVAL; | ||
353 | } | ||
354 | |||
355 | return 0; | ||
356 | } | ||
357 | |||
358 | static void __kprobes jprobe_func(long r0, long r1) | ||
359 | { | ||
360 | jprobe_func_called = test_func_instance; | ||
361 | if (r0 == FUNC_ARG1 && r1 == FUNC_ARG2) | ||
362 | test_regs_ok = true; | ||
363 | jprobe_return(); | ||
364 | } | ||
365 | |||
366 | static struct jprobe the_jprobe = { | ||
367 | .entry = jprobe_func, | ||
368 | }; | ||
369 | |||
370 | static int test_jprobe(long (*func)(long, long)) | ||
371 | { | ||
372 | int ret; | ||
373 | |||
374 | the_jprobe.kp.addr = (kprobe_opcode_t *)func; | ||
375 | ret = register_jprobe(&the_jprobe); | ||
376 | if (ret < 0) { | ||
377 | pr_err("FAIL: register_jprobe failed with %d\n", ret); | ||
378 | return ret; | ||
379 | } | ||
380 | |||
381 | ret = call_test_func(func, true); | ||
382 | |||
383 | unregister_jprobe(&the_jprobe); | ||
384 | the_jprobe.kp.flags = 0; /* Clear disable flag to allow reuse */ | ||
385 | |||
386 | if (!ret) | ||
387 | return -EINVAL; | ||
388 | if (jprobe_func_called != test_func_instance) { | ||
389 | pr_err("FAIL: jprobe handler function not called\n"); | ||
390 | return -EINVAL; | ||
391 | } | ||
392 | if (!call_test_func(func, false)) | ||
393 | return -EINVAL; | ||
394 | if (jprobe_func_called == test_func_instance) { | ||
395 | pr_err("FAIL: probe called after unregistering\n"); | ||
396 | return -EINVAL; | ||
397 | } | ||
398 | |||
399 | return 0; | ||
400 | } | ||
401 | |||
402 | static int __kprobes | ||
403 | kretprobe_handler(struct kretprobe_instance *ri, struct pt_regs *regs) | ||
404 | { | ||
405 | kretprobe_handler_called = test_func_instance; | ||
406 | if (regs_return_value(regs) == FUNC_ARG1 + FUNC_ARG2) | ||
407 | test_regs_ok = true; | ||
408 | return 0; | ||
409 | } | ||
410 | |||
411 | static struct kretprobe the_kretprobe = { | ||
412 | .handler = kretprobe_handler, | ||
413 | }; | ||
414 | |||
415 | static int test_kretprobe(long (*func)(long, long)) | ||
416 | { | ||
417 | int ret; | ||
418 | |||
419 | the_kretprobe.kp.addr = (kprobe_opcode_t *)func; | ||
420 | ret = register_kretprobe(&the_kretprobe); | ||
421 | if (ret < 0) { | ||
422 | pr_err("FAIL: register_kretprobe failed with %d\n", ret); | ||
423 | return ret; | ||
424 | } | ||
425 | |||
426 | ret = call_test_func(func, true); | ||
427 | |||
428 | unregister_kretprobe(&the_kretprobe); | ||
429 | the_kretprobe.kp.flags = 0; /* Clear disable flag to allow reuse */ | ||
430 | |||
431 | if (!ret) | ||
432 | return -EINVAL; | ||
433 | if (kretprobe_handler_called != test_func_instance) { | ||
434 | pr_err("FAIL: kretprobe handler not called\n"); | ||
435 | return -EINVAL; | ||
436 | } | ||
437 | if (!call_test_func(func, false)) | ||
438 | return -EINVAL; | ||
439 | if (jprobe_func_called == test_func_instance) { | ||
440 | pr_err("FAIL: kretprobe called after unregistering\n"); | ||
441 | return -EINVAL; | ||
442 | } | ||
443 | |||
444 | return 0; | ||
445 | } | ||
446 | |||
447 | static int run_api_tests(long (*func)(long, long)) | ||
448 | { | ||
449 | int ret; | ||
450 | |||
451 | pr_info(" kprobe\n"); | ||
452 | ret = test_kprobe(func); | ||
453 | if (ret < 0) | ||
454 | return ret; | ||
455 | |||
456 | pr_info(" jprobe\n"); | ||
457 | ret = test_jprobe(func); | ||
458 | if (ret < 0) | ||
459 | return ret; | ||
460 | |||
461 | pr_info(" kretprobe\n"); | ||
462 | ret = test_kretprobe(func); | ||
463 | if (ret < 0) | ||
464 | return ret; | ||
465 | |||
466 | return 0; | ||
467 | } | ||
468 | |||
469 | |||
470 | /* | ||
471 | * Benchmarking | ||
472 | */ | ||
473 | |||
474 | #if BENCHMARKING | ||
475 | |||
476 | static void __naked benchmark_nop(void) | ||
477 | { | ||
478 | __asm__ __volatile__ ( | ||
479 | "nop \n\t" | ||
480 | "bx lr" | ||
481 | ); | ||
482 | } | ||
483 | |||
484 | #ifdef CONFIG_THUMB2_KERNEL | ||
485 | #define wide ".w" | ||
486 | #else | ||
487 | #define wide | ||
488 | #endif | ||
489 | |||
490 | static void __naked benchmark_pushpop1(void) | ||
491 | { | ||
492 | __asm__ __volatile__ ( | ||
493 | "stmdb"wide" sp!, {r3-r11,lr} \n\t" | ||
494 | "ldmia"wide" sp!, {r3-r11,pc}" | ||
495 | ); | ||
496 | } | ||
497 | |||
498 | static void __naked benchmark_pushpop2(void) | ||
499 | { | ||
500 | __asm__ __volatile__ ( | ||
501 | "stmdb"wide" sp!, {r0-r8,lr} \n\t" | ||
502 | "ldmia"wide" sp!, {r0-r8,pc}" | ||
503 | ); | ||
504 | } | ||
505 | |||
506 | static void __naked benchmark_pushpop3(void) | ||
507 | { | ||
508 | __asm__ __volatile__ ( | ||
509 | "stmdb"wide" sp!, {r4,lr} \n\t" | ||
510 | "ldmia"wide" sp!, {r4,pc}" | ||
511 | ); | ||
512 | } | ||
513 | |||
514 | static void __naked benchmark_pushpop4(void) | ||
515 | { | ||
516 | __asm__ __volatile__ ( | ||
517 | "stmdb"wide" sp!, {r0,lr} \n\t" | ||
518 | "ldmia"wide" sp!, {r0,pc}" | ||
519 | ); | ||
520 | } | ||
521 | |||
522 | |||
523 | #ifdef CONFIG_THUMB2_KERNEL | ||
524 | |||
525 | static void __naked benchmark_pushpop_thumb(void) | ||
526 | { | ||
527 | __asm__ __volatile__ ( | ||
528 | "push.n {r0-r7,lr} \n\t" | ||
529 | "pop.n {r0-r7,pc}" | ||
530 | ); | ||
531 | } | ||
532 | |||
533 | #endif | ||
534 | |||
535 | static int __kprobes | ||
536 | benchmark_pre_handler(struct kprobe *p, struct pt_regs *regs) | ||
537 | { | ||
538 | return 0; | ||
539 | } | ||
540 | |||
541 | static int benchmark(void(*fn)(void)) | ||
542 | { | ||
543 | unsigned n, i, t, t0; | ||
544 | |||
545 | for (n = 1000; ; n *= 2) { | ||
546 | t0 = sched_clock(); | ||
547 | for (i = n; i > 0; --i) | ||
548 | fn(); | ||
549 | t = sched_clock() - t0; | ||
550 | if (t >= 250000000) | ||
551 | break; /* Stop once we took more than 0.25 seconds */ | ||
552 | } | ||
553 | return t / n; /* Time for one iteration in nanoseconds */ | ||
554 | }; | ||
555 | |||
556 | static int kprobe_benchmark(void(*fn)(void), unsigned offset) | ||
557 | { | ||
558 | struct kprobe k = { | ||
559 | .addr = (kprobe_opcode_t *)((uintptr_t)fn + offset), | ||
560 | .pre_handler = benchmark_pre_handler, | ||
561 | }; | ||
562 | |||
563 | int ret = register_kprobe(&k); | ||
564 | if (ret < 0) { | ||
565 | pr_err("FAIL: register_kprobe failed with %d\n", ret); | ||
566 | return ret; | ||
567 | } | ||
568 | |||
569 | ret = benchmark(fn); | ||
570 | |||
571 | unregister_kprobe(&k); | ||
572 | return ret; | ||
573 | }; | ||
574 | |||
575 | struct benchmarks { | ||
576 | void (*fn)(void); | ||
577 | unsigned offset; | ||
578 | const char *title; | ||
579 | }; | ||
580 | |||
581 | static int run_benchmarks(void) | ||
582 | { | ||
583 | int ret; | ||
584 | struct benchmarks list[] = { | ||
585 | {&benchmark_nop, 0, "nop"}, | ||
586 | /* | ||
587 | * benchmark_pushpop{1,3} will have the optimised | ||
588 | * instruction emulation, whilst benchmark_pushpop{2,4} will | ||
589 | * be the equivalent unoptimised instructions. | ||
590 | */ | ||
591 | {&benchmark_pushpop1, 0, "stmdb sp!, {r3-r11,lr}"}, | ||
592 | {&benchmark_pushpop1, 4, "ldmia sp!, {r3-r11,pc}"}, | ||
593 | {&benchmark_pushpop2, 0, "stmdb sp!, {r0-r8,lr}"}, | ||
594 | {&benchmark_pushpop2, 4, "ldmia sp!, {r0-r8,pc}"}, | ||
595 | {&benchmark_pushpop3, 0, "stmdb sp!, {r4,lr}"}, | ||
596 | {&benchmark_pushpop3, 4, "ldmia sp!, {r4,pc}"}, | ||
597 | {&benchmark_pushpop4, 0, "stmdb sp!, {r0,lr}"}, | ||
598 | {&benchmark_pushpop4, 4, "ldmia sp!, {r0,pc}"}, | ||
599 | #ifdef CONFIG_THUMB2_KERNEL | ||
600 | {&benchmark_pushpop_thumb, 0, "push.n {r0-r7,lr}"}, | ||
601 | {&benchmark_pushpop_thumb, 2, "pop.n {r0-r7,pc}"}, | ||
602 | #endif | ||
603 | {0} | ||
604 | }; | ||
605 | |||
606 | struct benchmarks *b; | ||
607 | for (b = list; b->fn; ++b) { | ||
608 | ret = kprobe_benchmark(b->fn, b->offset); | ||
609 | if (ret < 0) | ||
610 | return ret; | ||
611 | pr_info(" %dns for kprobe %s\n", ret, b->title); | ||
612 | } | ||
613 | |||
614 | pr_info("\n"); | ||
615 | return 0; | ||
616 | } | ||
617 | |||
618 | #endif /* BENCHMARKING */ | ||
619 | |||
620 | |||
621 | /* | ||
622 | * Decoding table self-consistency tests | ||
623 | */ | ||
624 | |||
625 | static const int decode_struct_sizes[NUM_DECODE_TYPES] = { | ||
626 | [DECODE_TYPE_TABLE] = sizeof(struct decode_table), | ||
627 | [DECODE_TYPE_CUSTOM] = sizeof(struct decode_custom), | ||
628 | [DECODE_TYPE_SIMULATE] = sizeof(struct decode_simulate), | ||
629 | [DECODE_TYPE_EMULATE] = sizeof(struct decode_emulate), | ||
630 | [DECODE_TYPE_OR] = sizeof(struct decode_or), | ||
631 | [DECODE_TYPE_REJECT] = sizeof(struct decode_reject) | ||
632 | }; | ||
633 | |||
634 | static int table_iter(const union decode_item *table, | ||
635 | int (*fn)(const struct decode_header *, void *), | ||
636 | void *args) | ||
637 | { | ||
638 | const struct decode_header *h = (struct decode_header *)table; | ||
639 | int result; | ||
640 | |||
641 | for (;;) { | ||
642 | enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK; | ||
643 | |||
644 | if (type == DECODE_TYPE_END) | ||
645 | return 0; | ||
646 | |||
647 | result = fn(h, args); | ||
648 | if (result) | ||
649 | return result; | ||
650 | |||
651 | h = (struct decode_header *) | ||
652 | ((uintptr_t)h + decode_struct_sizes[type]); | ||
653 | |||
654 | } | ||
655 | } | ||
656 | |||
657 | static int table_test_fail(const struct decode_header *h, const char* message) | ||
658 | { | ||
659 | |||
660 | pr_err("FAIL: kprobes test failure \"%s\" (mask %08x, value %08x)\n", | ||
661 | message, h->mask.bits, h->value.bits); | ||
662 | return -EINVAL; | ||
663 | } | ||
664 | |||
665 | struct table_test_args { | ||
666 | const union decode_item *root_table; | ||
667 | u32 parent_mask; | ||
668 | u32 parent_value; | ||
669 | }; | ||
670 | |||
671 | static int table_test_fn(const struct decode_header *h, void *args) | ||
672 | { | ||
673 | struct table_test_args *a = (struct table_test_args *)args; | ||
674 | enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK; | ||
675 | |||
676 | if (h->value.bits & ~h->mask.bits) | ||
677 | return table_test_fail(h, "Match value has bits not in mask"); | ||
678 | |||
679 | if ((h->mask.bits & a->parent_mask) != a->parent_mask) | ||
680 | return table_test_fail(h, "Mask has bits not in parent mask"); | ||
681 | |||
682 | if ((h->value.bits ^ a->parent_value) & a->parent_mask) | ||
683 | return table_test_fail(h, "Value is inconsistent with parent"); | ||
684 | |||
685 | if (type == DECODE_TYPE_TABLE) { | ||
686 | struct decode_table *d = (struct decode_table *)h; | ||
687 | struct table_test_args args2 = *a; | ||
688 | args2.parent_mask = h->mask.bits; | ||
689 | args2.parent_value = h->value.bits; | ||
690 | return table_iter(d->table.table, table_test_fn, &args2); | ||
691 | } | ||
692 | |||
693 | return 0; | ||
694 | } | ||
695 | |||
696 | static int table_test(const union decode_item *table) | ||
697 | { | ||
698 | struct table_test_args args = { | ||
699 | .root_table = table, | ||
700 | .parent_mask = 0, | ||
701 | .parent_value = 0 | ||
702 | }; | ||
703 | return table_iter(args.root_table, table_test_fn, &args); | ||
704 | } | ||
705 | |||
706 | |||
707 | /* | ||
708 | * Decoding table test coverage analysis | ||
709 | * | ||
710 | * coverage_start() builds a coverage_table which contains a list of | ||
711 | * coverage_entry's to match each entry in the specified kprobes instruction | ||
712 | * decoding table. | ||
713 | * | ||
714 | * When test cases are run, coverage_add() is called to process each case. | ||
715 | * This looks up the corresponding entry in the coverage_table and sets it as | ||
716 | * being matched, as well as clearing the regs flag appropriate for the test. | ||
717 | * | ||
718 | * After all test cases have been run, coverage_end() is called to check that | ||
719 | * all entries in coverage_table have been matched and that all regs flags are | ||
720 | * cleared. I.e. that all possible combinations of instructions described by | ||
721 | * the kprobes decoding tables have had a test case executed for them. | ||
722 | */ | ||
723 | |||
724 | bool coverage_fail; | ||
725 | |||
726 | #define MAX_COVERAGE_ENTRIES 256 | ||
727 | |||
728 | struct coverage_entry { | ||
729 | const struct decode_header *header; | ||
730 | unsigned regs; | ||
731 | unsigned nesting; | ||
732 | char matched; | ||
733 | }; | ||
734 | |||
735 | struct coverage_table { | ||
736 | struct coverage_entry *base; | ||
737 | unsigned num_entries; | ||
738 | unsigned nesting; | ||
739 | }; | ||
740 | |||
741 | struct coverage_table coverage; | ||
742 | |||
743 | #define COVERAGE_ANY_REG (1<<0) | ||
744 | #define COVERAGE_SP (1<<1) | ||
745 | #define COVERAGE_PC (1<<2) | ||
746 | #define COVERAGE_PCWB (1<<3) | ||
747 | |||
748 | static const char coverage_register_lookup[16] = { | ||
749 | [REG_TYPE_ANY] = COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC, | ||
750 | [REG_TYPE_SAMEAS16] = COVERAGE_ANY_REG, | ||
751 | [REG_TYPE_SP] = COVERAGE_SP, | ||
752 | [REG_TYPE_PC] = COVERAGE_PC, | ||
753 | [REG_TYPE_NOSP] = COVERAGE_ANY_REG | COVERAGE_SP, | ||
754 | [REG_TYPE_NOSPPC] = COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC, | ||
755 | [REG_TYPE_NOPC] = COVERAGE_ANY_REG | COVERAGE_PC, | ||
756 | [REG_TYPE_NOPCWB] = COVERAGE_ANY_REG | COVERAGE_PC | COVERAGE_PCWB, | ||
757 | [REG_TYPE_NOPCX] = COVERAGE_ANY_REG, | ||
758 | [REG_TYPE_NOSPPCX] = COVERAGE_ANY_REG | COVERAGE_SP, | ||
759 | }; | ||
760 | |||
761 | unsigned coverage_start_registers(const struct decode_header *h) | ||
762 | { | ||
763 | unsigned regs = 0; | ||
764 | int i; | ||
765 | for (i = 0; i < 20; i += 4) { | ||
766 | int r = (h->type_regs.bits >> (DECODE_TYPE_BITS + i)) & 0xf; | ||
767 | regs |= coverage_register_lookup[r] << i; | ||
768 | } | ||
769 | return regs; | ||
770 | } | ||
771 | |||
772 | static int coverage_start_fn(const struct decode_header *h, void *args) | ||
773 | { | ||
774 | struct coverage_table *coverage = (struct coverage_table *)args; | ||
775 | enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK; | ||
776 | struct coverage_entry *entry = coverage->base + coverage->num_entries; | ||
777 | |||
778 | if (coverage->num_entries == MAX_COVERAGE_ENTRIES - 1) { | ||
779 | pr_err("FAIL: Out of space for test coverage data"); | ||
780 | return -ENOMEM; | ||
781 | } | ||
782 | |||
783 | ++coverage->num_entries; | ||
784 | |||
785 | entry->header = h; | ||
786 | entry->regs = coverage_start_registers(h); | ||
787 | entry->nesting = coverage->nesting; | ||
788 | entry->matched = false; | ||
789 | |||
790 | if (type == DECODE_TYPE_TABLE) { | ||
791 | struct decode_table *d = (struct decode_table *)h; | ||
792 | int ret; | ||
793 | ++coverage->nesting; | ||
794 | ret = table_iter(d->table.table, coverage_start_fn, coverage); | ||
795 | --coverage->nesting; | ||
796 | return ret; | ||
797 | } | ||
798 | |||
799 | return 0; | ||
800 | } | ||
801 | |||
802 | static int coverage_start(const union decode_item *table) | ||
803 | { | ||
804 | coverage.base = kmalloc(MAX_COVERAGE_ENTRIES * | ||
805 | sizeof(struct coverage_entry), GFP_KERNEL); | ||
806 | coverage.num_entries = 0; | ||
807 | coverage.nesting = 0; | ||
808 | return table_iter(table, coverage_start_fn, &coverage); | ||
809 | } | ||
810 | |||
811 | static void | ||
812 | coverage_add_registers(struct coverage_entry *entry, kprobe_opcode_t insn) | ||
813 | { | ||
814 | int regs = entry->header->type_regs.bits >> DECODE_TYPE_BITS; | ||
815 | int i; | ||
816 | for (i = 0; i < 20; i += 4) { | ||
817 | enum decode_reg_type reg_type = (regs >> i) & 0xf; | ||
818 | int reg = (insn >> i) & 0xf; | ||
819 | int flag; | ||
820 | |||
821 | if (!reg_type) | ||
822 | continue; | ||
823 | |||
824 | if (reg == 13) | ||
825 | flag = COVERAGE_SP; | ||
826 | else if (reg == 15) | ||
827 | flag = COVERAGE_PC; | ||
828 | else | ||
829 | flag = COVERAGE_ANY_REG; | ||
830 | entry->regs &= ~(flag << i); | ||
831 | |||
832 | switch (reg_type) { | ||
833 | |||
834 | case REG_TYPE_NONE: | ||
835 | case REG_TYPE_ANY: | ||
836 | case REG_TYPE_SAMEAS16: | ||
837 | break; | ||
838 | |||
839 | case REG_TYPE_SP: | ||
840 | if (reg != 13) | ||
841 | return; | ||
842 | break; | ||
843 | |||
844 | case REG_TYPE_PC: | ||
845 | if (reg != 15) | ||
846 | return; | ||
847 | break; | ||
848 | |||
849 | case REG_TYPE_NOSP: | ||
850 | if (reg == 13) | ||
851 | return; | ||
852 | break; | ||
853 | |||
854 | case REG_TYPE_NOSPPC: | ||
855 | case REG_TYPE_NOSPPCX: | ||
856 | if (reg == 13 || reg == 15) | ||
857 | return; | ||
858 | break; | ||
859 | |||
860 | case REG_TYPE_NOPCWB: | ||
861 | if (!is_writeback(insn)) | ||
862 | break; | ||
863 | if (reg == 15) { | ||
864 | entry->regs &= ~(COVERAGE_PCWB << i); | ||
865 | return; | ||
866 | } | ||
867 | break; | ||
868 | |||
869 | case REG_TYPE_NOPC: | ||
870 | case REG_TYPE_NOPCX: | ||
871 | if (reg == 15) | ||
872 | return; | ||
873 | break; | ||
874 | } | ||
875 | |||
876 | } | ||
877 | } | ||
878 | |||
879 | static void coverage_add(kprobe_opcode_t insn) | ||
880 | { | ||
881 | struct coverage_entry *entry = coverage.base; | ||
882 | struct coverage_entry *end = coverage.base + coverage.num_entries; | ||
883 | bool matched = false; | ||
884 | unsigned nesting = 0; | ||
885 | |||
886 | for (; entry < end; ++entry) { | ||
887 | const struct decode_header *h = entry->header; | ||
888 | enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK; | ||
889 | |||
890 | if (entry->nesting > nesting) | ||
891 | continue; /* Skip sub-table we didn't match */ | ||
892 | |||
893 | if (entry->nesting < nesting) | ||
894 | break; /* End of sub-table we were scanning */ | ||
895 | |||
896 | if (!matched) { | ||
897 | if ((insn & h->mask.bits) != h->value.bits) | ||
898 | continue; | ||
899 | entry->matched = true; | ||
900 | } | ||
901 | |||
902 | switch (type) { | ||
903 | |||
904 | case DECODE_TYPE_TABLE: | ||
905 | ++nesting; | ||
906 | break; | ||
907 | |||
908 | case DECODE_TYPE_CUSTOM: | ||
909 | case DECODE_TYPE_SIMULATE: | ||
910 | case DECODE_TYPE_EMULATE: | ||
911 | coverage_add_registers(entry, insn); | ||
912 | return; | ||
913 | |||
914 | case DECODE_TYPE_OR: | ||
915 | matched = true; | ||
916 | break; | ||
917 | |||
918 | case DECODE_TYPE_REJECT: | ||
919 | default: | ||
920 | return; | ||
921 | } | ||
922 | |||
923 | } | ||
924 | } | ||
925 | |||
926 | static void coverage_end(void) | ||
927 | { | ||
928 | struct coverage_entry *entry = coverage.base; | ||
929 | struct coverage_entry *end = coverage.base + coverage.num_entries; | ||
930 | |||
931 | for (; entry < end; ++entry) { | ||
932 | u32 mask = entry->header->mask.bits; | ||
933 | u32 value = entry->header->value.bits; | ||
934 | |||
935 | if (entry->regs) { | ||
936 | pr_err("FAIL: Register test coverage missing for %08x %08x (%05x)\n", | ||
937 | mask, value, entry->regs); | ||
938 | coverage_fail = true; | ||
939 | } | ||
940 | if (!entry->matched) { | ||
941 | pr_err("FAIL: Test coverage entry missing for %08x %08x\n", | ||
942 | mask, value); | ||
943 | coverage_fail = true; | ||
944 | } | ||
945 | } | ||
946 | |||
947 | kfree(coverage.base); | ||
948 | } | ||
949 | |||
950 | |||
951 | /* | ||
952 | * Framework for instruction set test cases | ||
953 | */ | ||
954 | |||
955 | void __naked __kprobes_test_case_start(void) | ||
956 | { | ||
957 | __asm__ __volatile__ ( | ||
958 | "stmdb sp!, {r4-r11} \n\t" | ||
959 | "sub sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t" | ||
960 | "bic r0, lr, #1 @ r0 = inline title string \n\t" | ||
961 | "mov r1, sp \n\t" | ||
962 | "bl kprobes_test_case_start \n\t" | ||
963 | "bx r0 \n\t" | ||
964 | ); | ||
965 | } | ||
966 | |||
967 | #ifndef CONFIG_THUMB2_KERNEL | ||
968 | |||
969 | void __naked __kprobes_test_case_end_32(void) | ||
970 | { | ||
971 | __asm__ __volatile__ ( | ||
972 | "mov r4, lr \n\t" | ||
973 | "bl kprobes_test_case_end \n\t" | ||
974 | "cmp r0, #0 \n\t" | ||
975 | "movne pc, r0 \n\t" | ||
976 | "mov r0, r4 \n\t" | ||
977 | "add sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t" | ||
978 | "ldmia sp!, {r4-r11} \n\t" | ||
979 | "mov pc, r0 \n\t" | ||
980 | ); | ||
981 | } | ||
982 | |||
983 | #else /* CONFIG_THUMB2_KERNEL */ | ||
984 | |||
985 | void __naked __kprobes_test_case_end_16(void) | ||
986 | { | ||
987 | __asm__ __volatile__ ( | ||
988 | "mov r4, lr \n\t" | ||
989 | "bl kprobes_test_case_end \n\t" | ||
990 | "cmp r0, #0 \n\t" | ||
991 | "bxne r0 \n\t" | ||
992 | "mov r0, r4 \n\t" | ||
993 | "add sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t" | ||
994 | "ldmia sp!, {r4-r11} \n\t" | ||
995 | "bx r0 \n\t" | ||
996 | ); | ||
997 | } | ||
998 | |||
999 | void __naked __kprobes_test_case_end_32(void) | ||
1000 | { | ||
1001 | __asm__ __volatile__ ( | ||
1002 | ".arm \n\t" | ||
1003 | "orr lr, lr, #1 @ will return to Thumb code \n\t" | ||
1004 | "ldr pc, 1f \n\t" | ||
1005 | "1: \n\t" | ||
1006 | ".word __kprobes_test_case_end_16 \n\t" | ||
1007 | ); | ||
1008 | } | ||
1009 | |||
1010 | #endif | ||
1011 | |||
1012 | |||
1013 | int kprobe_test_flags; | ||
1014 | int kprobe_test_cc_position; | ||
1015 | |||
1016 | static int test_try_count; | ||
1017 | static int test_pass_count; | ||
1018 | static int test_fail_count; | ||
1019 | |||
1020 | static struct pt_regs initial_regs; | ||
1021 | static struct pt_regs expected_regs; | ||
1022 | static struct pt_regs result_regs; | ||
1023 | |||
1024 | static u32 expected_memory[TEST_MEMORY_SIZE/sizeof(u32)]; | ||
1025 | |||
1026 | static const char *current_title; | ||
1027 | static struct test_arg *current_args; | ||
1028 | static u32 *current_stack; | ||
1029 | static uintptr_t current_branch_target; | ||
1030 | |||
1031 | static uintptr_t current_code_start; | ||
1032 | static kprobe_opcode_t current_instruction; | ||
1033 | |||
1034 | |||
1035 | #define TEST_CASE_PASSED -1 | ||
1036 | #define TEST_CASE_FAILED -2 | ||
1037 | |||
1038 | static int test_case_run_count; | ||
1039 | static bool test_case_is_thumb; | ||
1040 | static int test_instance; | ||
1041 | |||
1042 | /* | ||
1043 | * We ignore the state of the imprecise abort disable flag (CPSR.A) because this | ||
1044 | * can change randomly as the kernel doesn't take care to preserve or initialise | ||
1045 | * this across context switches. Also, with Security Extentions, the flag may | ||
1046 | * not be under control of the kernel; for this reason we ignore the state of | ||
1047 | * the FIQ disable flag CPSR.F as well. | ||
1048 | */ | ||
1049 | #define PSR_IGNORE_BITS (PSR_A_BIT | PSR_F_BIT) | ||
1050 | |||
1051 | static unsigned long test_check_cc(int cc, unsigned long cpsr) | ||
1052 | { | ||
1053 | unsigned long temp; | ||
1054 | |||
1055 | switch (cc) { | ||
1056 | case 0x0: /* eq */ | ||
1057 | return cpsr & PSR_Z_BIT; | ||
1058 | |||
1059 | case 0x1: /* ne */ | ||
1060 | return (~cpsr) & PSR_Z_BIT; | ||
1061 | |||
1062 | case 0x2: /* cs */ | ||
1063 | return cpsr & PSR_C_BIT; | ||
1064 | |||
1065 | case 0x3: /* cc */ | ||
1066 | return (~cpsr) & PSR_C_BIT; | ||
1067 | |||
1068 | case 0x4: /* mi */ | ||
1069 | return cpsr & PSR_N_BIT; | ||
1070 | |||
1071 | case 0x5: /* pl */ | ||
1072 | return (~cpsr) & PSR_N_BIT; | ||
1073 | |||
1074 | case 0x6: /* vs */ | ||
1075 | return cpsr & PSR_V_BIT; | ||
1076 | |||
1077 | case 0x7: /* vc */ | ||
1078 | return (~cpsr) & PSR_V_BIT; | ||
1079 | |||
1080 | case 0x8: /* hi */ | ||
1081 | cpsr &= ~(cpsr >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */ | ||
1082 | return cpsr & PSR_C_BIT; | ||
1083 | |||
1084 | case 0x9: /* ls */ | ||
1085 | cpsr &= ~(cpsr >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */ | ||
1086 | return (~cpsr) & PSR_C_BIT; | ||
1087 | |||
1088 | case 0xa: /* ge */ | ||
1089 | cpsr ^= (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */ | ||
1090 | return (~cpsr) & PSR_N_BIT; | ||
1091 | |||
1092 | case 0xb: /* lt */ | ||
1093 | cpsr ^= (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */ | ||
1094 | return cpsr & PSR_N_BIT; | ||
1095 | |||
1096 | case 0xc: /* gt */ | ||
1097 | temp = cpsr ^ (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */ | ||
1098 | temp |= (cpsr << 1); /* PSR_N_BIT |= PSR_Z_BIT */ | ||
1099 | return (~temp) & PSR_N_BIT; | ||
1100 | |||
1101 | case 0xd: /* le */ | ||
1102 | temp = cpsr ^ (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */ | ||
1103 | temp |= (cpsr << 1); /* PSR_N_BIT |= PSR_Z_BIT */ | ||
1104 | return temp & PSR_N_BIT; | ||
1105 | |||
1106 | case 0xe: /* al */ | ||
1107 | case 0xf: /* unconditional */ | ||
1108 | return true; | ||
1109 | } | ||
1110 | BUG(); | ||
1111 | return false; | ||
1112 | } | ||
1113 | |||
1114 | static int is_last_scenario; | ||
1115 | static int probe_should_run; /* 0 = no, 1 = yes, -1 = unknown */ | ||
1116 | static int memory_needs_checking; | ||
1117 | |||
1118 | static unsigned long test_context_cpsr(int scenario) | ||
1119 | { | ||
1120 | unsigned long cpsr; | ||
1121 | |||
1122 | probe_should_run = 1; | ||
1123 | |||
1124 | /* Default case is that we cycle through 16 combinations of flags */ | ||
1125 | cpsr = (scenario & 0xf) << 28; /* N,Z,C,V flags */ | ||
1126 | cpsr |= (scenario & 0xf) << 16; /* GE flags */ | ||
1127 | cpsr |= (scenario & 0x1) << 27; /* Toggle Q flag */ | ||
1128 | |||
1129 | if (!test_case_is_thumb) { | ||
1130 | /* Testing ARM code */ | ||
1131 | probe_should_run = test_check_cc(current_instruction >> 28, cpsr) != 0; | ||
1132 | if (scenario == 15) | ||
1133 | is_last_scenario = true; | ||
1134 | |||
1135 | } else if (kprobe_test_flags & TEST_FLAG_NO_ITBLOCK) { | ||
1136 | /* Testing Thumb code without setting ITSTATE */ | ||
1137 | if (kprobe_test_cc_position) { | ||
1138 | int cc = (current_instruction >> kprobe_test_cc_position) & 0xf; | ||
1139 | probe_should_run = test_check_cc(cc, cpsr) != 0; | ||
1140 | } | ||
1141 | |||
1142 | if (scenario == 15) | ||
1143 | is_last_scenario = true; | ||
1144 | |||
1145 | } else if (kprobe_test_flags & TEST_FLAG_FULL_ITBLOCK) { | ||
1146 | /* Testing Thumb code with all combinations of ITSTATE */ | ||
1147 | unsigned x = (scenario >> 4); | ||
1148 | unsigned cond_base = x % 7; /* ITSTATE<7:5> */ | ||
1149 | unsigned mask = x / 7 + 2; /* ITSTATE<4:0>, bits reversed */ | ||
1150 | |||
1151 | if (mask > 0x1f) { | ||
1152 | /* Finish by testing state from instruction 'itt al' */ | ||
1153 | cond_base = 7; | ||
1154 | mask = 0x4; | ||
1155 | if ((scenario & 0xf) == 0xf) | ||
1156 | is_last_scenario = true; | ||
1157 | } | ||
1158 | |||
1159 | cpsr |= cond_base << 13; /* ITSTATE<7:5> */ | ||
1160 | cpsr |= (mask & 0x1) << 12; /* ITSTATE<4> */ | ||
1161 | cpsr |= (mask & 0x2) << 10; /* ITSTATE<3> */ | ||
1162 | cpsr |= (mask & 0x4) << 8; /* ITSTATE<2> */ | ||
1163 | cpsr |= (mask & 0x8) << 23; /* ITSTATE<1> */ | ||
1164 | cpsr |= (mask & 0x10) << 21; /* ITSTATE<0> */ | ||
1165 | |||
1166 | probe_should_run = test_check_cc((cpsr >> 12) & 0xf, cpsr) != 0; | ||
1167 | |||
1168 | } else { | ||
1169 | /* Testing Thumb code with several combinations of ITSTATE */ | ||
1170 | switch (scenario) { | ||
1171 | case 16: /* Clear NZCV flags and 'it eq' state (false as Z=0) */ | ||
1172 | cpsr = 0x00000800; | ||
1173 | probe_should_run = 0; | ||
1174 | break; | ||
1175 | case 17: /* Set NZCV flags and 'it vc' state (false as V=1) */ | ||
1176 | cpsr = 0xf0007800; | ||
1177 | probe_should_run = 0; | ||
1178 | break; | ||
1179 | case 18: /* Clear NZCV flags and 'it ls' state (true as C=0) */ | ||
1180 | cpsr = 0x00009800; | ||
1181 | break; | ||
1182 | case 19: /* Set NZCV flags and 'it cs' state (true as C=1) */ | ||
1183 | cpsr = 0xf0002800; | ||
1184 | is_last_scenario = true; | ||
1185 | break; | ||
1186 | } | ||
1187 | } | ||
1188 | |||
1189 | return cpsr; | ||
1190 | } | ||
1191 | |||
1192 | static void setup_test_context(struct pt_regs *regs) | ||
1193 | { | ||
1194 | int scenario = test_case_run_count>>1; | ||
1195 | unsigned long val; | ||
1196 | struct test_arg *args; | ||
1197 | int i; | ||
1198 | |||
1199 | is_last_scenario = false; | ||
1200 | memory_needs_checking = false; | ||
1201 | |||
1202 | /* Initialise test memory on stack */ | ||
1203 | val = (scenario & 1) ? VALM : ~VALM; | ||
1204 | for (i = 0; i < TEST_MEMORY_SIZE / sizeof(current_stack[0]); ++i) | ||
1205 | current_stack[i] = val + (i << 8); | ||
1206 | /* Put target of branch on stack for tests which load PC from memory */ | ||
1207 | if (current_branch_target) | ||
1208 | current_stack[15] = current_branch_target; | ||
1209 | /* Put a value for SP on stack for tests which load SP from memory */ | ||
1210 | current_stack[13] = (u32)current_stack + 120; | ||
1211 | |||
1212 | /* Initialise register values to their default state */ | ||
1213 | val = (scenario & 2) ? VALR : ~VALR; | ||
1214 | for (i = 0; i < 13; ++i) | ||
1215 | regs->uregs[i] = val ^ (i << 8); | ||
1216 | regs->ARM_lr = val ^ (14 << 8); | ||
1217 | regs->ARM_cpsr &= ~(APSR_MASK | PSR_IT_MASK); | ||
1218 | regs->ARM_cpsr |= test_context_cpsr(scenario); | ||
1219 | |||
1220 | /* Perform testcase specific register setup */ | ||
1221 | args = current_args; | ||
1222 | for (; args[0].type != ARG_TYPE_END; ++args) | ||
1223 | switch (args[0].type) { | ||
1224 | case ARG_TYPE_REG: { | ||
1225 | struct test_arg_regptr *arg = | ||
1226 | (struct test_arg_regptr *)args; | ||
1227 | regs->uregs[arg->reg] = arg->val; | ||
1228 | break; | ||
1229 | } | ||
1230 | case ARG_TYPE_PTR: { | ||
1231 | struct test_arg_regptr *arg = | ||
1232 | (struct test_arg_regptr *)args; | ||
1233 | regs->uregs[arg->reg] = | ||
1234 | (unsigned long)current_stack + arg->val; | ||
1235 | memory_needs_checking = true; | ||
1236 | break; | ||
1237 | } | ||
1238 | case ARG_TYPE_MEM: { | ||
1239 | struct test_arg_mem *arg = (struct test_arg_mem *)args; | ||
1240 | current_stack[arg->index] = arg->val; | ||
1241 | break; | ||
1242 | } | ||
1243 | default: | ||
1244 | break; | ||
1245 | } | ||
1246 | } | ||
1247 | |||
1248 | struct test_probe { | ||
1249 | struct kprobe kprobe; | ||
1250 | bool registered; | ||
1251 | int hit; | ||
1252 | }; | ||
1253 | |||
1254 | static void unregister_test_probe(struct test_probe *probe) | ||
1255 | { | ||
1256 | if (probe->registered) { | ||
1257 | unregister_kprobe(&probe->kprobe); | ||
1258 | probe->kprobe.flags = 0; /* Clear disable flag to allow reuse */ | ||
1259 | } | ||
1260 | probe->registered = false; | ||
1261 | } | ||
1262 | |||
1263 | static int register_test_probe(struct test_probe *probe) | ||
1264 | { | ||
1265 | int ret; | ||
1266 | |||
1267 | if (probe->registered) | ||
1268 | BUG(); | ||
1269 | |||
1270 | ret = register_kprobe(&probe->kprobe); | ||
1271 | if (ret >= 0) { | ||
1272 | probe->registered = true; | ||
1273 | probe->hit = -1; | ||
1274 | } | ||
1275 | return ret; | ||
1276 | } | ||
1277 | |||
1278 | static int __kprobes | ||
1279 | test_before_pre_handler(struct kprobe *p, struct pt_regs *regs) | ||
1280 | { | ||
1281 | container_of(p, struct test_probe, kprobe)->hit = test_instance; | ||
1282 | return 0; | ||
1283 | } | ||
1284 | |||
1285 | static void __kprobes | ||
1286 | test_before_post_handler(struct kprobe *p, struct pt_regs *regs, | ||
1287 | unsigned long flags) | ||
1288 | { | ||
1289 | setup_test_context(regs); | ||
1290 | initial_regs = *regs; | ||
1291 | initial_regs.ARM_cpsr &= ~PSR_IGNORE_BITS; | ||
1292 | } | ||
1293 | |||
1294 | static int __kprobes | ||
1295 | test_case_pre_handler(struct kprobe *p, struct pt_regs *regs) | ||
1296 | { | ||
1297 | container_of(p, struct test_probe, kprobe)->hit = test_instance; | ||
1298 | return 0; | ||
1299 | } | ||
1300 | |||
1301 | static int __kprobes | ||
1302 | test_after_pre_handler(struct kprobe *p, struct pt_regs *regs) | ||
1303 | { | ||
1304 | if (container_of(p, struct test_probe, kprobe)->hit == test_instance) | ||
1305 | return 0; /* Already run for this test instance */ | ||
1306 | |||
1307 | result_regs = *regs; | ||
1308 | result_regs.ARM_cpsr &= ~PSR_IGNORE_BITS; | ||
1309 | |||
1310 | /* Undo any changes done to SP by the test case */ | ||
1311 | regs->ARM_sp = (unsigned long)current_stack; | ||
1312 | |||
1313 | container_of(p, struct test_probe, kprobe)->hit = test_instance; | ||
1314 | return 0; | ||
1315 | } | ||
1316 | |||
1317 | static struct test_probe test_before_probe = { | ||
1318 | .kprobe.pre_handler = test_before_pre_handler, | ||
1319 | .kprobe.post_handler = test_before_post_handler, | ||
1320 | }; | ||
1321 | |||
1322 | static struct test_probe test_case_probe = { | ||
1323 | .kprobe.pre_handler = test_case_pre_handler, | ||
1324 | }; | ||
1325 | |||
1326 | static struct test_probe test_after_probe = { | ||
1327 | .kprobe.pre_handler = test_after_pre_handler, | ||
1328 | }; | ||
1329 | |||
1330 | static struct test_probe test_after2_probe = { | ||
1331 | .kprobe.pre_handler = test_after_pre_handler, | ||
1332 | }; | ||
1333 | |||
1334 | static void test_case_cleanup(void) | ||
1335 | { | ||
1336 | unregister_test_probe(&test_before_probe); | ||
1337 | unregister_test_probe(&test_case_probe); | ||
1338 | unregister_test_probe(&test_after_probe); | ||
1339 | unregister_test_probe(&test_after2_probe); | ||
1340 | } | ||
1341 | |||
1342 | static void print_registers(struct pt_regs *regs) | ||
1343 | { | ||
1344 | pr_err("r0 %08lx | r1 %08lx | r2 %08lx | r3 %08lx\n", | ||
1345 | regs->ARM_r0, regs->ARM_r1, regs->ARM_r2, regs->ARM_r3); | ||
1346 | pr_err("r4 %08lx | r5 %08lx | r6 %08lx | r7 %08lx\n", | ||
1347 | regs->ARM_r4, regs->ARM_r5, regs->ARM_r6, regs->ARM_r7); | ||
1348 | pr_err("r8 %08lx | r9 %08lx | r10 %08lx | r11 %08lx\n", | ||
1349 | regs->ARM_r8, regs->ARM_r9, regs->ARM_r10, regs->ARM_fp); | ||
1350 | pr_err("r12 %08lx | sp %08lx | lr %08lx | pc %08lx\n", | ||
1351 | regs->ARM_ip, regs->ARM_sp, regs->ARM_lr, regs->ARM_pc); | ||
1352 | pr_err("cpsr %08lx\n", regs->ARM_cpsr); | ||
1353 | } | ||
1354 | |||
1355 | static void print_memory(u32 *mem, size_t size) | ||
1356 | { | ||
1357 | int i; | ||
1358 | for (i = 0; i < size / sizeof(u32); i += 4) | ||
1359 | pr_err("%08x %08x %08x %08x\n", mem[i], mem[i+1], | ||
1360 | mem[i+2], mem[i+3]); | ||
1361 | } | ||
1362 | |||
1363 | static size_t expected_memory_size(u32 *sp) | ||
1364 | { | ||
1365 | size_t size = sizeof(expected_memory); | ||
1366 | int offset = (uintptr_t)sp - (uintptr_t)current_stack; | ||
1367 | if (offset > 0) | ||
1368 | size -= offset; | ||
1369 | return size; | ||
1370 | } | ||
1371 | |||
1372 | static void test_case_failed(const char *message) | ||
1373 | { | ||
1374 | test_case_cleanup(); | ||
1375 | |||
1376 | pr_err("FAIL: %s\n", message); | ||
1377 | pr_err("FAIL: Test %s\n", current_title); | ||
1378 | pr_err("FAIL: Scenario %d\n", test_case_run_count >> 1); | ||
1379 | } | ||
1380 | |||
1381 | static unsigned long next_instruction(unsigned long pc) | ||
1382 | { | ||
1383 | #ifdef CONFIG_THUMB2_KERNEL | ||
1384 | if ((pc & 1) && !is_wide_instruction(*(u16 *)(pc - 1))) | ||
1385 | return pc + 2; | ||
1386 | else | ||
1387 | #endif | ||
1388 | return pc + 4; | ||
1389 | } | ||
1390 | |||
1391 | static uintptr_t __used kprobes_test_case_start(const char *title, void *stack) | ||
1392 | { | ||
1393 | struct test_arg *args; | ||
1394 | struct test_arg_end *end_arg; | ||
1395 | unsigned long test_code; | ||
1396 | |||
1397 | args = (struct test_arg *)PTR_ALIGN(title + strlen(title) + 1, 4); | ||
1398 | |||
1399 | current_title = title; | ||
1400 | current_args = args; | ||
1401 | current_stack = stack; | ||
1402 | |||
1403 | ++test_try_count; | ||
1404 | |||
1405 | while (args->type != ARG_TYPE_END) | ||
1406 | ++args; | ||
1407 | end_arg = (struct test_arg_end *)args; | ||
1408 | |||
1409 | test_code = (unsigned long)(args + 1); /* Code starts after args */ | ||
1410 | |||
1411 | test_case_is_thumb = end_arg->flags & ARG_FLAG_THUMB; | ||
1412 | if (test_case_is_thumb) | ||
1413 | test_code |= 1; | ||
1414 | |||
1415 | current_code_start = test_code; | ||
1416 | |||
1417 | current_branch_target = 0; | ||
1418 | if (end_arg->branch_offset != end_arg->end_offset) | ||
1419 | current_branch_target = test_code + end_arg->branch_offset; | ||
1420 | |||
1421 | test_code += end_arg->code_offset; | ||
1422 | test_before_probe.kprobe.addr = (kprobe_opcode_t *)test_code; | ||
1423 | |||
1424 | test_code = next_instruction(test_code); | ||
1425 | test_case_probe.kprobe.addr = (kprobe_opcode_t *)test_code; | ||
1426 | |||
1427 | if (test_case_is_thumb) { | ||
1428 | u16 *p = (u16 *)(test_code & ~1); | ||
1429 | current_instruction = p[0]; | ||
1430 | if (is_wide_instruction(current_instruction)) { | ||
1431 | current_instruction <<= 16; | ||
1432 | current_instruction |= p[1]; | ||
1433 | } | ||
1434 | } else { | ||
1435 | current_instruction = *(u32 *)test_code; | ||
1436 | } | ||
1437 | |||
1438 | if (current_title[0] == '.') | ||
1439 | verbose("%s\n", current_title); | ||
1440 | else | ||
1441 | verbose("%s\t@ %0*x\n", current_title, | ||
1442 | test_case_is_thumb ? 4 : 8, | ||
1443 | current_instruction); | ||
1444 | |||
1445 | test_code = next_instruction(test_code); | ||
1446 | test_after_probe.kprobe.addr = (kprobe_opcode_t *)test_code; | ||
1447 | |||
1448 | if (kprobe_test_flags & TEST_FLAG_NARROW_INSTR) { | ||
1449 | if (!test_case_is_thumb || | ||
1450 | is_wide_instruction(current_instruction)) { | ||
1451 | test_case_failed("expected 16-bit instruction"); | ||
1452 | goto fail; | ||
1453 | } | ||
1454 | } else { | ||
1455 | if (test_case_is_thumb && | ||
1456 | !is_wide_instruction(current_instruction)) { | ||
1457 | test_case_failed("expected 32-bit instruction"); | ||
1458 | goto fail; | ||
1459 | } | ||
1460 | } | ||
1461 | |||
1462 | coverage_add(current_instruction); | ||
1463 | |||
1464 | if (end_arg->flags & ARG_FLAG_UNSUPPORTED) { | ||
1465 | if (register_test_probe(&test_case_probe) < 0) | ||
1466 | goto pass; | ||
1467 | test_case_failed("registered probe for unsupported instruction"); | ||
1468 | goto fail; | ||
1469 | } | ||
1470 | |||
1471 | if (end_arg->flags & ARG_FLAG_SUPPORTED) { | ||
1472 | if (register_test_probe(&test_case_probe) >= 0) | ||
1473 | goto pass; | ||
1474 | test_case_failed("couldn't register probe for supported instruction"); | ||
1475 | goto fail; | ||
1476 | } | ||
1477 | |||
1478 | if (register_test_probe(&test_before_probe) < 0) { | ||
1479 | test_case_failed("register test_before_probe failed"); | ||
1480 | goto fail; | ||
1481 | } | ||
1482 | if (register_test_probe(&test_after_probe) < 0) { | ||
1483 | test_case_failed("register test_after_probe failed"); | ||
1484 | goto fail; | ||
1485 | } | ||
1486 | if (current_branch_target) { | ||
1487 | test_after2_probe.kprobe.addr = | ||
1488 | (kprobe_opcode_t *)current_branch_target; | ||
1489 | if (register_test_probe(&test_after2_probe) < 0) { | ||
1490 | test_case_failed("register test_after2_probe failed"); | ||
1491 | goto fail; | ||
1492 | } | ||
1493 | } | ||
1494 | |||
1495 | /* Start first run of test case */ | ||
1496 | test_case_run_count = 0; | ||
1497 | ++test_instance; | ||
1498 | return current_code_start; | ||
1499 | pass: | ||
1500 | test_case_run_count = TEST_CASE_PASSED; | ||
1501 | return (uintptr_t)test_after_probe.kprobe.addr; | ||
1502 | fail: | ||
1503 | test_case_run_count = TEST_CASE_FAILED; | ||
1504 | return (uintptr_t)test_after_probe.kprobe.addr; | ||
1505 | } | ||
1506 | |||
1507 | static bool check_test_results(void) | ||
1508 | { | ||
1509 | size_t mem_size = 0; | ||
1510 | u32 *mem = 0; | ||
1511 | |||
1512 | if (memcmp(&expected_regs, &result_regs, sizeof(expected_regs))) { | ||
1513 | test_case_failed("registers differ"); | ||
1514 | goto fail; | ||
1515 | } | ||
1516 | |||
1517 | if (memory_needs_checking) { | ||
1518 | mem = (u32 *)result_regs.ARM_sp; | ||
1519 | mem_size = expected_memory_size(mem); | ||
1520 | if (memcmp(expected_memory, mem, mem_size)) { | ||
1521 | test_case_failed("test memory differs"); | ||
1522 | goto fail; | ||
1523 | } | ||
1524 | } | ||
1525 | |||
1526 | return true; | ||
1527 | |||
1528 | fail: | ||
1529 | pr_err("initial_regs:\n"); | ||
1530 | print_registers(&initial_regs); | ||
1531 | pr_err("expected_regs:\n"); | ||
1532 | print_registers(&expected_regs); | ||
1533 | pr_err("result_regs:\n"); | ||
1534 | print_registers(&result_regs); | ||
1535 | |||
1536 | if (mem) { | ||
1537 | pr_err("current_stack=%p\n", current_stack); | ||
1538 | pr_err("expected_memory:\n"); | ||
1539 | print_memory(expected_memory, mem_size); | ||
1540 | pr_err("result_memory:\n"); | ||
1541 | print_memory(mem, mem_size); | ||
1542 | } | ||
1543 | |||
1544 | return false; | ||
1545 | } | ||
1546 | |||
1547 | static uintptr_t __used kprobes_test_case_end(void) | ||
1548 | { | ||
1549 | if (test_case_run_count < 0) { | ||
1550 | if (test_case_run_count == TEST_CASE_PASSED) | ||
1551 | /* kprobes_test_case_start did all the needed testing */ | ||
1552 | goto pass; | ||
1553 | else | ||
1554 | /* kprobes_test_case_start failed */ | ||
1555 | goto fail; | ||
1556 | } | ||
1557 | |||
1558 | if (test_before_probe.hit != test_instance) { | ||
1559 | test_case_failed("test_before_handler not run"); | ||
1560 | goto fail; | ||
1561 | } | ||
1562 | |||
1563 | if (test_after_probe.hit != test_instance && | ||
1564 | test_after2_probe.hit != test_instance) { | ||
1565 | test_case_failed("test_after_handler not run"); | ||
1566 | goto fail; | ||
1567 | } | ||
1568 | |||
1569 | /* | ||
1570 | * Even numbered test runs ran without a probe on the test case so | ||
1571 | * we can gather reference results. The subsequent odd numbered run | ||
1572 | * will have the probe inserted. | ||
1573 | */ | ||
1574 | if ((test_case_run_count & 1) == 0) { | ||
1575 | /* Save results from run without probe */ | ||
1576 | u32 *mem = (u32 *)result_regs.ARM_sp; | ||
1577 | expected_regs = result_regs; | ||
1578 | memcpy(expected_memory, mem, expected_memory_size(mem)); | ||
1579 | |||
1580 | /* Insert probe onto test case instruction */ | ||
1581 | if (register_test_probe(&test_case_probe) < 0) { | ||
1582 | test_case_failed("register test_case_probe failed"); | ||
1583 | goto fail; | ||
1584 | } | ||
1585 | } else { | ||
1586 | /* Check probe ran as expected */ | ||
1587 | if (probe_should_run == 1) { | ||
1588 | if (test_case_probe.hit != test_instance) { | ||
1589 | test_case_failed("test_case_handler not run"); | ||
1590 | goto fail; | ||
1591 | } | ||
1592 | } else if (probe_should_run == 0) { | ||
1593 | if (test_case_probe.hit == test_instance) { | ||
1594 | test_case_failed("test_case_handler ran"); | ||
1595 | goto fail; | ||
1596 | } | ||
1597 | } | ||
1598 | |||
1599 | /* Remove probe for any subsequent reference run */ | ||
1600 | unregister_test_probe(&test_case_probe); | ||
1601 | |||
1602 | if (!check_test_results()) | ||
1603 | goto fail; | ||
1604 | |||
1605 | if (is_last_scenario) | ||
1606 | goto pass; | ||
1607 | } | ||
1608 | |||
1609 | /* Do next test run */ | ||
1610 | ++test_case_run_count; | ||
1611 | ++test_instance; | ||
1612 | return current_code_start; | ||
1613 | fail: | ||
1614 | ++test_fail_count; | ||
1615 | goto end; | ||
1616 | pass: | ||
1617 | ++test_pass_count; | ||
1618 | end: | ||
1619 | test_case_cleanup(); | ||
1620 | return 0; | ||
1621 | } | ||
1622 | |||
1623 | |||
1624 | /* | ||
1625 | * Top level test functions | ||
1626 | */ | ||
1627 | |||
1628 | static int run_test_cases(void (*tests)(void), const union decode_item *table) | ||
1629 | { | ||
1630 | int ret; | ||
1631 | |||
1632 | pr_info(" Check decoding tables\n"); | ||
1633 | ret = table_test(table); | ||
1634 | if (ret) | ||
1635 | return ret; | ||
1636 | |||
1637 | pr_info(" Run test cases\n"); | ||
1638 | ret = coverage_start(table); | ||
1639 | if (ret) | ||
1640 | return ret; | ||
1641 | |||
1642 | tests(); | ||
1643 | |||
1644 | coverage_end(); | ||
1645 | return 0; | ||
1646 | } | ||
1647 | |||
1648 | |||
1649 | static int __init run_all_tests(void) | ||
1650 | { | ||
1651 | int ret = 0; | ||
1652 | |||
1653 | pr_info("Begining kprobe tests...\n"); | ||
1654 | |||
1655 | #ifndef CONFIG_THUMB2_KERNEL | ||
1656 | |||
1657 | pr_info("Probe ARM code\n"); | ||
1658 | ret = run_api_tests(arm_func); | ||
1659 | if (ret) | ||
1660 | goto out; | ||
1661 | |||
1662 | pr_info("ARM instruction simulation\n"); | ||
1663 | ret = run_test_cases(kprobe_arm_test_cases, kprobe_decode_arm_table); | ||
1664 | if (ret) | ||
1665 | goto out; | ||
1666 | |||
1667 | #else /* CONFIG_THUMB2_KERNEL */ | ||
1668 | |||
1669 | pr_info("Probe 16-bit Thumb code\n"); | ||
1670 | ret = run_api_tests(thumb16_func); | ||
1671 | if (ret) | ||
1672 | goto out; | ||
1673 | |||
1674 | pr_info("Probe 32-bit Thumb code, even halfword\n"); | ||
1675 | ret = run_api_tests(thumb32even_func); | ||
1676 | if (ret) | ||
1677 | goto out; | ||
1678 | |||
1679 | pr_info("Probe 32-bit Thumb code, odd halfword\n"); | ||
1680 | ret = run_api_tests(thumb32odd_func); | ||
1681 | if (ret) | ||
1682 | goto out; | ||
1683 | |||
1684 | pr_info("16-bit Thumb instruction simulation\n"); | ||
1685 | ret = run_test_cases(kprobe_thumb16_test_cases, | ||
1686 | kprobe_decode_thumb16_table); | ||
1687 | if (ret) | ||
1688 | goto out; | ||
1689 | |||
1690 | pr_info("32-bit Thumb instruction simulation\n"); | ||
1691 | ret = run_test_cases(kprobe_thumb32_test_cases, | ||
1692 | kprobe_decode_thumb32_table); | ||
1693 | if (ret) | ||
1694 | goto out; | ||
1695 | #endif | ||
1696 | |||
1697 | pr_info("Total instruction simulation tests=%d, pass=%d fail=%d\n", | ||
1698 | test_try_count, test_pass_count, test_fail_count); | ||
1699 | if (test_fail_count) { | ||
1700 | ret = -EINVAL; | ||
1701 | goto out; | ||
1702 | } | ||
1703 | |||
1704 | #if BENCHMARKING | ||
1705 | pr_info("Benchmarks\n"); | ||
1706 | ret = run_benchmarks(); | ||
1707 | if (ret) | ||
1708 | goto out; | ||
1709 | #endif | ||
1710 | |||
1711 | #if __LINUX_ARM_ARCH__ >= 7 | ||
1712 | /* We are able to run all test cases so coverage should be complete */ | ||
1713 | if (coverage_fail) { | ||
1714 | pr_err("FAIL: Test coverage checks failed\n"); | ||
1715 | ret = -EINVAL; | ||
1716 | goto out; | ||
1717 | } | ||
1718 | #endif | ||
1719 | |||
1720 | out: | ||
1721 | if (ret == 0) | ||
1722 | pr_info("Finished kprobe tests OK\n"); | ||
1723 | else | ||
1724 | pr_err("kprobe tests failed\n"); | ||
1725 | |||
1726 | return ret; | ||
1727 | } | ||
1728 | |||
1729 | |||
1730 | /* | ||
1731 | * Module setup | ||
1732 | */ | ||
1733 | |||
1734 | #ifdef MODULE | ||
1735 | |||
1736 | static void __exit kprobe_test_exit(void) | ||
1737 | { | ||
1738 | } | ||
1739 | |||
1740 | module_init(run_all_tests) | ||
1741 | module_exit(kprobe_test_exit) | ||
1742 | MODULE_LICENSE("GPL"); | ||
1743 | |||
1744 | #else /* !MODULE */ | ||
1745 | |||
1746 | late_initcall(run_all_tests); | ||
1747 | |||
1748 | #endif | ||