diff options
Diffstat (limited to 'arch/arm/kernel/arch_timer.c')
-rw-r--r-- | arch/arm/kernel/arch_timer.c | 504 |
1 files changed, 20 insertions, 484 deletions
diff --git a/arch/arm/kernel/arch_timer.c b/arch/arm/kernel/arch_timer.c index c8ef20747ee7..36ebcf4b516f 100644 --- a/arch/arm/kernel/arch_timer.c +++ b/arch/arm/kernel/arch_timer.c | |||
@@ -9,516 +9,52 @@ | |||
9 | * published by the Free Software Foundation. | 9 | * published by the Free Software Foundation. |
10 | */ | 10 | */ |
11 | #include <linux/init.h> | 11 | #include <linux/init.h> |
12 | #include <linux/kernel.h> | 12 | #include <linux/types.h> |
13 | #include <linux/delay.h> | ||
14 | #include <linux/device.h> | ||
15 | #include <linux/smp.h> | ||
16 | #include <linux/cpu.h> | ||
17 | #include <linux/jiffies.h> | ||
18 | #include <linux/clockchips.h> | ||
19 | #include <linux/interrupt.h> | ||
20 | #include <linux/of_irq.h> | ||
21 | #include <linux/io.h> | ||
22 | 13 | ||
23 | #include <asm/cputype.h> | ||
24 | #include <asm/delay.h> | 14 | #include <asm/delay.h> |
25 | #include <asm/localtimer.h> | ||
26 | #include <asm/arch_timer.h> | ||
27 | #include <asm/system_info.h> | ||
28 | #include <asm/sched_clock.h> | 15 | #include <asm/sched_clock.h> |
29 | 16 | ||
30 | static unsigned long arch_timer_rate; | 17 | #include <clocksource/arm_arch_timer.h> |
31 | 18 | ||
32 | enum ppi_nr { | 19 | static unsigned long arch_timer_read_counter_long(void) |
33 | PHYS_SECURE_PPI, | ||
34 | PHYS_NONSECURE_PPI, | ||
35 | VIRT_PPI, | ||
36 | HYP_PPI, | ||
37 | MAX_TIMER_PPI | ||
38 | }; | ||
39 | |||
40 | static int arch_timer_ppi[MAX_TIMER_PPI]; | ||
41 | |||
42 | static struct clock_event_device __percpu **arch_timer_evt; | ||
43 | static struct delay_timer arch_delay_timer; | ||
44 | |||
45 | static bool arch_timer_use_virtual = true; | ||
46 | |||
47 | /* | ||
48 | * Architected system timer support. | ||
49 | */ | ||
50 | |||
51 | #define ARCH_TIMER_CTRL_ENABLE (1 << 0) | ||
52 | #define ARCH_TIMER_CTRL_IT_MASK (1 << 1) | ||
53 | #define ARCH_TIMER_CTRL_IT_STAT (1 << 2) | ||
54 | |||
55 | #define ARCH_TIMER_REG_CTRL 0 | ||
56 | #define ARCH_TIMER_REG_FREQ 1 | ||
57 | #define ARCH_TIMER_REG_TVAL 2 | ||
58 | |||
59 | #define ARCH_TIMER_PHYS_ACCESS 0 | ||
60 | #define ARCH_TIMER_VIRT_ACCESS 1 | ||
61 | |||
62 | /* | ||
63 | * These register accessors are marked inline so the compiler can | ||
64 | * nicely work out which register we want, and chuck away the rest of | ||
65 | * the code. At least it does so with a recent GCC (4.6.3). | ||
66 | */ | ||
67 | static inline void arch_timer_reg_write(const int access, const int reg, u32 val) | ||
68 | { | ||
69 | if (access == ARCH_TIMER_PHYS_ACCESS) { | ||
70 | switch (reg) { | ||
71 | case ARCH_TIMER_REG_CTRL: | ||
72 | asm volatile("mcr p15, 0, %0, c14, c2, 1" : : "r" (val)); | ||
73 | break; | ||
74 | case ARCH_TIMER_REG_TVAL: | ||
75 | asm volatile("mcr p15, 0, %0, c14, c2, 0" : : "r" (val)); | ||
76 | break; | ||
77 | } | ||
78 | } | ||
79 | |||
80 | if (access == ARCH_TIMER_VIRT_ACCESS) { | ||
81 | switch (reg) { | ||
82 | case ARCH_TIMER_REG_CTRL: | ||
83 | asm volatile("mcr p15, 0, %0, c14, c3, 1" : : "r" (val)); | ||
84 | break; | ||
85 | case ARCH_TIMER_REG_TVAL: | ||
86 | asm volatile("mcr p15, 0, %0, c14, c3, 0" : : "r" (val)); | ||
87 | break; | ||
88 | } | ||
89 | } | ||
90 | |||
91 | isb(); | ||
92 | } | ||
93 | |||
94 | static inline u32 arch_timer_reg_read(const int access, const int reg) | ||
95 | { | ||
96 | u32 val = 0; | ||
97 | |||
98 | if (access == ARCH_TIMER_PHYS_ACCESS) { | ||
99 | switch (reg) { | ||
100 | case ARCH_TIMER_REG_CTRL: | ||
101 | asm volatile("mrc p15, 0, %0, c14, c2, 1" : "=r" (val)); | ||
102 | break; | ||
103 | case ARCH_TIMER_REG_TVAL: | ||
104 | asm volatile("mrc p15, 0, %0, c14, c2, 0" : "=r" (val)); | ||
105 | break; | ||
106 | case ARCH_TIMER_REG_FREQ: | ||
107 | asm volatile("mrc p15, 0, %0, c14, c0, 0" : "=r" (val)); | ||
108 | break; | ||
109 | } | ||
110 | } | ||
111 | |||
112 | if (access == ARCH_TIMER_VIRT_ACCESS) { | ||
113 | switch (reg) { | ||
114 | case ARCH_TIMER_REG_CTRL: | ||
115 | asm volatile("mrc p15, 0, %0, c14, c3, 1" : "=r" (val)); | ||
116 | break; | ||
117 | case ARCH_TIMER_REG_TVAL: | ||
118 | asm volatile("mrc p15, 0, %0, c14, c3, 0" : "=r" (val)); | ||
119 | break; | ||
120 | } | ||
121 | } | ||
122 | |||
123 | return val; | ||
124 | } | ||
125 | |||
126 | static inline cycle_t arch_timer_counter_read(const int access) | ||
127 | { | ||
128 | cycle_t cval = 0; | ||
129 | |||
130 | if (access == ARCH_TIMER_PHYS_ACCESS) | ||
131 | asm volatile("mrrc p15, 0, %Q0, %R0, c14" : "=r" (cval)); | ||
132 | |||
133 | if (access == ARCH_TIMER_VIRT_ACCESS) | ||
134 | asm volatile("mrrc p15, 1, %Q0, %R0, c14" : "=r" (cval)); | ||
135 | |||
136 | return cval; | ||
137 | } | ||
138 | |||
139 | static inline cycle_t arch_counter_get_cntpct(void) | ||
140 | { | ||
141 | return arch_timer_counter_read(ARCH_TIMER_PHYS_ACCESS); | ||
142 | } | ||
143 | |||
144 | static inline cycle_t arch_counter_get_cntvct(void) | ||
145 | { | ||
146 | return arch_timer_counter_read(ARCH_TIMER_VIRT_ACCESS); | ||
147 | } | ||
148 | |||
149 | static irqreturn_t inline timer_handler(const int access, | ||
150 | struct clock_event_device *evt) | ||
151 | { | ||
152 | unsigned long ctrl; | ||
153 | ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL); | ||
154 | if (ctrl & ARCH_TIMER_CTRL_IT_STAT) { | ||
155 | ctrl |= ARCH_TIMER_CTRL_IT_MASK; | ||
156 | arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl); | ||
157 | evt->event_handler(evt); | ||
158 | return IRQ_HANDLED; | ||
159 | } | ||
160 | |||
161 | return IRQ_NONE; | ||
162 | } | ||
163 | |||
164 | static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id) | ||
165 | { | ||
166 | struct clock_event_device *evt = *(struct clock_event_device **)dev_id; | ||
167 | |||
168 | return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt); | ||
169 | } | ||
170 | |||
171 | static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id) | ||
172 | { | ||
173 | struct clock_event_device *evt = *(struct clock_event_device **)dev_id; | ||
174 | |||
175 | return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt); | ||
176 | } | ||
177 | |||
178 | static inline void timer_set_mode(const int access, int mode) | ||
179 | { | ||
180 | unsigned long ctrl; | ||
181 | switch (mode) { | ||
182 | case CLOCK_EVT_MODE_UNUSED: | ||
183 | case CLOCK_EVT_MODE_SHUTDOWN: | ||
184 | ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL); | ||
185 | ctrl &= ~ARCH_TIMER_CTRL_ENABLE; | ||
186 | arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl); | ||
187 | break; | ||
188 | default: | ||
189 | break; | ||
190 | } | ||
191 | } | ||
192 | |||
193 | static void arch_timer_set_mode_virt(enum clock_event_mode mode, | ||
194 | struct clock_event_device *clk) | ||
195 | { | ||
196 | timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode); | ||
197 | } | ||
198 | |||
199 | static void arch_timer_set_mode_phys(enum clock_event_mode mode, | ||
200 | struct clock_event_device *clk) | ||
201 | { | ||
202 | timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode); | ||
203 | } | ||
204 | |||
205 | static inline void set_next_event(const int access, unsigned long evt) | ||
206 | { | ||
207 | unsigned long ctrl; | ||
208 | ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL); | ||
209 | ctrl |= ARCH_TIMER_CTRL_ENABLE; | ||
210 | ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; | ||
211 | arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt); | ||
212 | arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl); | ||
213 | } | ||
214 | |||
215 | static int arch_timer_set_next_event_virt(unsigned long evt, | ||
216 | struct clock_event_device *unused) | ||
217 | { | ||
218 | set_next_event(ARCH_TIMER_VIRT_ACCESS, evt); | ||
219 | return 0; | ||
220 | } | ||
221 | |||
222 | static int arch_timer_set_next_event_phys(unsigned long evt, | ||
223 | struct clock_event_device *unused) | ||
224 | { | ||
225 | set_next_event(ARCH_TIMER_PHYS_ACCESS, evt); | ||
226 | return 0; | ||
227 | } | ||
228 | |||
229 | static int __cpuinit arch_timer_setup(struct clock_event_device *clk) | ||
230 | { | ||
231 | clk->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP; | ||
232 | clk->name = "arch_sys_timer"; | ||
233 | clk->rating = 450; | ||
234 | if (arch_timer_use_virtual) { | ||
235 | clk->irq = arch_timer_ppi[VIRT_PPI]; | ||
236 | clk->set_mode = arch_timer_set_mode_virt; | ||
237 | clk->set_next_event = arch_timer_set_next_event_virt; | ||
238 | } else { | ||
239 | clk->irq = arch_timer_ppi[PHYS_SECURE_PPI]; | ||
240 | clk->set_mode = arch_timer_set_mode_phys; | ||
241 | clk->set_next_event = arch_timer_set_next_event_phys; | ||
242 | } | ||
243 | |||
244 | clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, NULL); | ||
245 | |||
246 | clockevents_config_and_register(clk, arch_timer_rate, | ||
247 | 0xf, 0x7fffffff); | ||
248 | |||
249 | *__this_cpu_ptr(arch_timer_evt) = clk; | ||
250 | |||
251 | if (arch_timer_use_virtual) | ||
252 | enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0); | ||
253 | else { | ||
254 | enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0); | ||
255 | if (arch_timer_ppi[PHYS_NONSECURE_PPI]) | ||
256 | enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0); | ||
257 | } | ||
258 | |||
259 | return 0; | ||
260 | } | ||
261 | |||
262 | /* Is the optional system timer available? */ | ||
263 | static int local_timer_is_architected(void) | ||
264 | { | ||
265 | return (cpu_architecture() >= CPU_ARCH_ARMv7) && | ||
266 | ((read_cpuid_ext(CPUID_EXT_PFR1) >> 16) & 0xf) == 1; | ||
267 | } | ||
268 | |||
269 | static int arch_timer_available(void) | ||
270 | { | ||
271 | unsigned long freq; | ||
272 | |||
273 | if (!local_timer_is_architected()) | ||
274 | return -ENXIO; | ||
275 | |||
276 | if (arch_timer_rate == 0) { | ||
277 | freq = arch_timer_reg_read(ARCH_TIMER_PHYS_ACCESS, | ||
278 | ARCH_TIMER_REG_FREQ); | ||
279 | |||
280 | /* Check the timer frequency. */ | ||
281 | if (freq == 0) { | ||
282 | pr_warn("Architected timer frequency not available\n"); | ||
283 | return -EINVAL; | ||
284 | } | ||
285 | |||
286 | arch_timer_rate = freq; | ||
287 | } | ||
288 | |||
289 | pr_info_once("Architected local timer running at %lu.%02luMHz (%s).\n", | ||
290 | arch_timer_rate / 1000000, (arch_timer_rate / 10000) % 100, | ||
291 | arch_timer_use_virtual ? "virt" : "phys"); | ||
292 | return 0; | ||
293 | } | ||
294 | |||
295 | static u32 notrace arch_counter_get_cntpct32(void) | ||
296 | { | ||
297 | cycle_t cnt = arch_counter_get_cntpct(); | ||
298 | |||
299 | /* | ||
300 | * The sched_clock infrastructure only knows about counters | ||
301 | * with at most 32bits. Forget about the upper 24 bits for the | ||
302 | * time being... | ||
303 | */ | ||
304 | return (u32)cnt; | ||
305 | } | ||
306 | |||
307 | static u32 notrace arch_counter_get_cntvct32(void) | ||
308 | { | ||
309 | cycle_t cnt = arch_counter_get_cntvct(); | ||
310 | |||
311 | /* | ||
312 | * The sched_clock infrastructure only knows about counters | ||
313 | * with at most 32bits. Forget about the upper 24 bits for the | ||
314 | * time being... | ||
315 | */ | ||
316 | return (u32)cnt; | ||
317 | } | ||
318 | |||
319 | static cycle_t arch_counter_read(struct clocksource *cs) | ||
320 | { | ||
321 | /* | ||
322 | * Always use the physical counter for the clocksource. | ||
323 | * CNTHCTL.PL1PCTEN must be set to 1. | ||
324 | */ | ||
325 | return arch_counter_get_cntpct(); | ||
326 | } | ||
327 | |||
328 | static unsigned long arch_timer_read_current_timer(void) | ||
329 | { | 20 | { |
330 | return arch_counter_get_cntpct(); | 21 | return arch_timer_read_counter(); |
331 | } | 22 | } |
332 | 23 | ||
333 | static cycle_t arch_counter_read_cc(const struct cyclecounter *cc) | 24 | static u32 arch_timer_read_counter_u32(void) |
334 | { | 25 | { |
335 | /* | 26 | return arch_timer_read_counter(); |
336 | * Always use the physical counter for the clocksource. | ||
337 | * CNTHCTL.PL1PCTEN must be set to 1. | ||
338 | */ | ||
339 | return arch_counter_get_cntpct(); | ||
340 | } | 27 | } |
341 | 28 | ||
342 | static struct clocksource clocksource_counter = { | 29 | static struct delay_timer arch_delay_timer; |
343 | .name = "arch_sys_counter", | ||
344 | .rating = 400, | ||
345 | .read = arch_counter_read, | ||
346 | .mask = CLOCKSOURCE_MASK(56), | ||
347 | .flags = CLOCK_SOURCE_IS_CONTINUOUS, | ||
348 | }; | ||
349 | |||
350 | static struct cyclecounter cyclecounter = { | ||
351 | .read = arch_counter_read_cc, | ||
352 | .mask = CLOCKSOURCE_MASK(56), | ||
353 | }; | ||
354 | |||
355 | static struct timecounter timecounter; | ||
356 | |||
357 | struct timecounter *arch_timer_get_timecounter(void) | ||
358 | { | ||
359 | return &timecounter; | ||
360 | } | ||
361 | |||
362 | static void __cpuinit arch_timer_stop(struct clock_event_device *clk) | ||
363 | { | ||
364 | pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n", | ||
365 | clk->irq, smp_processor_id()); | ||
366 | |||
367 | if (arch_timer_use_virtual) | ||
368 | disable_percpu_irq(arch_timer_ppi[VIRT_PPI]); | ||
369 | else { | ||
370 | disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]); | ||
371 | if (arch_timer_ppi[PHYS_NONSECURE_PPI]) | ||
372 | disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]); | ||
373 | } | ||
374 | |||
375 | clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk); | ||
376 | } | ||
377 | |||
378 | static struct local_timer_ops arch_timer_ops __cpuinitdata = { | ||
379 | .setup = arch_timer_setup, | ||
380 | .stop = arch_timer_stop, | ||
381 | }; | ||
382 | |||
383 | static struct clock_event_device arch_timer_global_evt; | ||
384 | 30 | ||
385 | static int __init arch_timer_register(void) | 31 | static void __init arch_timer_delay_timer_register(void) |
386 | { | 32 | { |
387 | int err; | ||
388 | int ppi; | ||
389 | |||
390 | err = arch_timer_available(); | ||
391 | if (err) | ||
392 | goto out; | ||
393 | |||
394 | arch_timer_evt = alloc_percpu(struct clock_event_device *); | ||
395 | if (!arch_timer_evt) { | ||
396 | err = -ENOMEM; | ||
397 | goto out; | ||
398 | } | ||
399 | |||
400 | clocksource_register_hz(&clocksource_counter, arch_timer_rate); | ||
401 | cyclecounter.mult = clocksource_counter.mult; | ||
402 | cyclecounter.shift = clocksource_counter.shift; | ||
403 | timecounter_init(&timecounter, &cyclecounter, | ||
404 | arch_counter_get_cntpct()); | ||
405 | |||
406 | if (arch_timer_use_virtual) { | ||
407 | ppi = arch_timer_ppi[VIRT_PPI]; | ||
408 | err = request_percpu_irq(ppi, arch_timer_handler_virt, | ||
409 | "arch_timer", arch_timer_evt); | ||
410 | } else { | ||
411 | ppi = arch_timer_ppi[PHYS_SECURE_PPI]; | ||
412 | err = request_percpu_irq(ppi, arch_timer_handler_phys, | ||
413 | "arch_timer", arch_timer_evt); | ||
414 | if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) { | ||
415 | ppi = arch_timer_ppi[PHYS_NONSECURE_PPI]; | ||
416 | err = request_percpu_irq(ppi, arch_timer_handler_phys, | ||
417 | "arch_timer", arch_timer_evt); | ||
418 | if (err) | ||
419 | free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], | ||
420 | arch_timer_evt); | ||
421 | } | ||
422 | } | ||
423 | |||
424 | if (err) { | ||
425 | pr_err("arch_timer: can't register interrupt %d (%d)\n", | ||
426 | ppi, err); | ||
427 | goto out_free; | ||
428 | } | ||
429 | |||
430 | err = local_timer_register(&arch_timer_ops); | ||
431 | if (err) { | ||
432 | /* | ||
433 | * We couldn't register as a local timer (could be | ||
434 | * because we're on a UP platform, or because some | ||
435 | * other local timer is already present...). Try as a | ||
436 | * global timer instead. | ||
437 | */ | ||
438 | arch_timer_global_evt.cpumask = cpumask_of(0); | ||
439 | err = arch_timer_setup(&arch_timer_global_evt); | ||
440 | } | ||
441 | if (err) | ||
442 | goto out_free_irq; | ||
443 | |||
444 | /* Use the architected timer for the delay loop. */ | 33 | /* Use the architected timer for the delay loop. */ |
445 | arch_delay_timer.read_current_timer = &arch_timer_read_current_timer; | 34 | arch_delay_timer.read_current_timer = arch_timer_read_counter_long; |
446 | arch_delay_timer.freq = arch_timer_rate; | 35 | arch_delay_timer.freq = arch_timer_get_rate(); |
447 | register_current_timer_delay(&arch_delay_timer); | 36 | register_current_timer_delay(&arch_delay_timer); |
448 | return 0; | ||
449 | |||
450 | out_free_irq: | ||
451 | if (arch_timer_use_virtual) | ||
452 | free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt); | ||
453 | else { | ||
454 | free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], | ||
455 | arch_timer_evt); | ||
456 | if (arch_timer_ppi[PHYS_NONSECURE_PPI]) | ||
457 | free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], | ||
458 | arch_timer_evt); | ||
459 | } | ||
460 | |||
461 | out_free: | ||
462 | free_percpu(arch_timer_evt); | ||
463 | out: | ||
464 | return err; | ||
465 | } | 37 | } |
466 | 38 | ||
467 | static const struct of_device_id arch_timer_of_match[] __initconst = { | ||
468 | { .compatible = "arm,armv7-timer", }, | ||
469 | {}, | ||
470 | }; | ||
471 | |||
472 | int __init arch_timer_of_register(void) | 39 | int __init arch_timer_of_register(void) |
473 | { | 40 | { |
474 | struct device_node *np; | 41 | int ret; |
475 | u32 freq; | ||
476 | int i; | ||
477 | |||
478 | np = of_find_matching_node(NULL, arch_timer_of_match); | ||
479 | if (!np) { | ||
480 | pr_err("arch_timer: can't find DT node\n"); | ||
481 | return -ENODEV; | ||
482 | } | ||
483 | |||
484 | /* Try to determine the frequency from the device tree or CNTFRQ */ | ||
485 | if (!of_property_read_u32(np, "clock-frequency", &freq)) | ||
486 | arch_timer_rate = freq; | ||
487 | |||
488 | for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++) | ||
489 | arch_timer_ppi[i] = irq_of_parse_and_map(np, i); | ||
490 | 42 | ||
491 | /* | 43 | ret = arch_timer_init(); |
492 | * If no interrupt provided for virtual timer, we'll have to | 44 | if (ret) |
493 | * stick to the physical timer. It'd better be accessible... | 45 | return ret; |
494 | */ | ||
495 | if (!arch_timer_ppi[VIRT_PPI]) { | ||
496 | arch_timer_use_virtual = false; | ||
497 | 46 | ||
498 | if (!arch_timer_ppi[PHYS_SECURE_PPI] || | 47 | arch_timer_delay_timer_register(); |
499 | !arch_timer_ppi[PHYS_NONSECURE_PPI]) { | ||
500 | pr_warn("arch_timer: No interrupt available, giving up\n"); | ||
501 | return -EINVAL; | ||
502 | } | ||
503 | } | ||
504 | 48 | ||
505 | return arch_timer_register(); | 49 | return 0; |
506 | } | 50 | } |
507 | 51 | ||
508 | int __init arch_timer_sched_clock_init(void) | 52 | int __init arch_timer_sched_clock_init(void) |
509 | { | 53 | { |
510 | u32 (*cnt32)(void); | 54 | if (arch_timer_get_rate() == 0) |
511 | int err; | 55 | return -ENXIO; |
512 | |||
513 | err = arch_timer_available(); | ||
514 | if (err) | ||
515 | return err; | ||
516 | |||
517 | if (arch_timer_use_virtual) | ||
518 | cnt32 = arch_counter_get_cntvct32; | ||
519 | else | ||
520 | cnt32 = arch_counter_get_cntpct32; | ||
521 | 56 | ||
522 | setup_sched_clock(cnt32, 32, arch_timer_rate); | 57 | setup_sched_clock(arch_timer_read_counter_u32, |
58 | 32, arch_timer_get_rate()); | ||
523 | return 0; | 59 | return 0; |
524 | } | 60 | } |