diff options
Diffstat (limited to 'arch/alpha/lib/ev6-strncpy_from_user.S')
-rw-r--r-- | arch/alpha/lib/ev6-strncpy_from_user.S | 424 |
1 files changed, 0 insertions, 424 deletions
diff --git a/arch/alpha/lib/ev6-strncpy_from_user.S b/arch/alpha/lib/ev6-strncpy_from_user.S deleted file mode 100644 index d2e28178cacc..000000000000 --- a/arch/alpha/lib/ev6-strncpy_from_user.S +++ /dev/null | |||
@@ -1,424 +0,0 @@ | |||
1 | /* | ||
2 | * arch/alpha/lib/ev6-strncpy_from_user.S | ||
3 | * 21264 version contributed by Rick Gorton <rick.gorton@alpha-processor.com> | ||
4 | * | ||
5 | * Just like strncpy except in the return value: | ||
6 | * | ||
7 | * -EFAULT if an exception occurs before the terminator is copied. | ||
8 | * N if the buffer filled. | ||
9 | * | ||
10 | * Otherwise the length of the string is returned. | ||
11 | * | ||
12 | * Much of the information about 21264 scheduling/coding comes from: | ||
13 | * Compiler Writer's Guide for the Alpha 21264 | ||
14 | * abbreviated as 'CWG' in other comments here | ||
15 | * ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc-library.html | ||
16 | * Scheduling notation: | ||
17 | * E - either cluster | ||
18 | * U - upper subcluster; U0 - subcluster U0; U1 - subcluster U1 | ||
19 | * L - lower subcluster; L0 - subcluster L0; L1 - subcluster L1 | ||
20 | * A bunch of instructions got moved and temp registers were changed | ||
21 | * to aid in scheduling. Control flow was also re-arranged to eliminate | ||
22 | * branches, and to provide longer code sequences to enable better scheduling. | ||
23 | * A total rewrite (using byte load/stores for start & tail sequences) | ||
24 | * is desirable, but very difficult to do without a from-scratch rewrite. | ||
25 | * Save that for the future. | ||
26 | */ | ||
27 | |||
28 | |||
29 | #include <asm/errno.h> | ||
30 | #include <asm/regdef.h> | ||
31 | |||
32 | |||
33 | /* Allow an exception for an insn; exit if we get one. */ | ||
34 | #define EX(x,y...) \ | ||
35 | 99: x,##y; \ | ||
36 | .section __ex_table,"a"; \ | ||
37 | .long 99b - .; \ | ||
38 | lda $31, $exception-99b($0); \ | ||
39 | .previous | ||
40 | |||
41 | |||
42 | .set noat | ||
43 | .set noreorder | ||
44 | .text | ||
45 | |||
46 | .globl __strncpy_from_user | ||
47 | .ent __strncpy_from_user | ||
48 | .frame $30, 0, $26 | ||
49 | .prologue 0 | ||
50 | |||
51 | .align 4 | ||
52 | __strncpy_from_user: | ||
53 | and a0, 7, t3 # E : find dest misalignment | ||
54 | beq a2, $zerolength # U : | ||
55 | |||
56 | /* Are source and destination co-aligned? */ | ||
57 | mov a0, v0 # E : save the string start | ||
58 | xor a0, a1, t4 # E : | ||
59 | EX( ldq_u t1, 0(a1) ) # L : Latency=3 load first quadword | ||
60 | ldq_u t0, 0(a0) # L : load first (partial) aligned dest quadword | ||
61 | |||
62 | addq a2, t3, a2 # E : bias count by dest misalignment | ||
63 | subq a2, 1, a3 # E : | ||
64 | addq zero, 1, t10 # E : | ||
65 | and t4, 7, t4 # E : misalignment between the two | ||
66 | |||
67 | and a3, 7, t6 # E : number of tail bytes | ||
68 | sll t10, t6, t10 # E : t10 = bitmask of last count byte | ||
69 | bne t4, $unaligned # U : | ||
70 | lda t2, -1 # E : build a mask against false zero | ||
71 | |||
72 | /* | ||
73 | * We are co-aligned; take care of a partial first word. | ||
74 | * On entry to this basic block: | ||
75 | * t0 == the first destination word for masking back in | ||
76 | * t1 == the first source word. | ||
77 | */ | ||
78 | |||
79 | srl a3, 3, a2 # E : a2 = loop counter = (count - 1)/8 | ||
80 | addq a1, 8, a1 # E : | ||
81 | mskqh t2, a1, t2 # U : detection in the src word | ||
82 | nop | ||
83 | |||
84 | /* Create the 1st output word and detect 0's in the 1st input word. */ | ||
85 | mskqh t1, a1, t3 # U : | ||
86 | mskql t0, a1, t0 # U : assemble the first output word | ||
87 | ornot t1, t2, t2 # E : | ||
88 | nop | ||
89 | |||
90 | cmpbge zero, t2, t8 # E : bits set iff null found | ||
91 | or t0, t3, t0 # E : | ||
92 | beq a2, $a_eoc # U : | ||
93 | bne t8, $a_eos # U : 2nd branch in a quad. Bad. | ||
94 | |||
95 | /* On entry to this basic block: | ||
96 | * t0 == a source quad not containing a null. | ||
97 | * a0 - current aligned destination address | ||
98 | * a1 - current aligned source address | ||
99 | * a2 - count of quadwords to move. | ||
100 | * NOTE: Loop improvement - unrolling this is going to be | ||
101 | * a huge win, since we're going to stall otherwise. | ||
102 | * Fix this later. For _really_ large copies, look | ||
103 | * at using wh64 on a look-ahead basis. See the code | ||
104 | * in clear_user.S and copy_user.S. | ||
105 | * Presumably, since (a0) and (a1) do not overlap (by C definition) | ||
106 | * Lots of nops here: | ||
107 | * - Separate loads from stores | ||
108 | * - Keep it to 1 branch/quadpack so the branch predictor | ||
109 | * can train. | ||
110 | */ | ||
111 | $a_loop: | ||
112 | stq_u t0, 0(a0) # L : | ||
113 | addq a0, 8, a0 # E : | ||
114 | nop | ||
115 | subq a2, 1, a2 # E : | ||
116 | |||
117 | EX( ldq_u t0, 0(a1) ) # L : | ||
118 | addq a1, 8, a1 # E : | ||
119 | cmpbge zero, t0, t8 # E : Stall 2 cycles on t0 | ||
120 | beq a2, $a_eoc # U : | ||
121 | |||
122 | beq t8, $a_loop # U : | ||
123 | nop | ||
124 | nop | ||
125 | nop | ||
126 | |||
127 | /* Take care of the final (partial) word store. At this point | ||
128 | * the end-of-count bit is set in t8 iff it applies. | ||
129 | * | ||
130 | * On entry to this basic block we have: | ||
131 | * t0 == the source word containing the null | ||
132 | * t8 == the cmpbge mask that found it. | ||
133 | */ | ||
134 | $a_eos: | ||
135 | negq t8, t12 # E : find low bit set | ||
136 | and t8, t12, t12 # E : | ||
137 | |||
138 | /* We're doing a partial word store and so need to combine | ||
139 | our source and original destination words. */ | ||
140 | ldq_u t1, 0(a0) # L : | ||
141 | subq t12, 1, t6 # E : | ||
142 | |||
143 | or t12, t6, t8 # E : | ||
144 | zapnot t0, t8, t0 # U : clear src bytes > null | ||
145 | zap t1, t8, t1 # U : clear dst bytes <= null | ||
146 | or t0, t1, t0 # E : | ||
147 | |||
148 | stq_u t0, 0(a0) # L : | ||
149 | br $finish_up # L0 : | ||
150 | nop | ||
151 | nop | ||
152 | |||
153 | /* Add the end-of-count bit to the eos detection bitmask. */ | ||
154 | .align 4 | ||
155 | $a_eoc: | ||
156 | or t10, t8, t8 | ||
157 | br $a_eos | ||
158 | nop | ||
159 | nop | ||
160 | |||
161 | |||
162 | /* The source and destination are not co-aligned. Align the destination | ||
163 | and cope. We have to be very careful about not reading too much and | ||
164 | causing a SEGV. */ | ||
165 | |||
166 | .align 4 | ||
167 | $u_head: | ||
168 | /* We know just enough now to be able to assemble the first | ||
169 | full source word. We can still find a zero at the end of it | ||
170 | that prevents us from outputting the whole thing. | ||
171 | |||
172 | On entry to this basic block: | ||
173 | t0 == the first dest word, unmasked | ||
174 | t1 == the shifted low bits of the first source word | ||
175 | t6 == bytemask that is -1 in dest word bytes */ | ||
176 | |||
177 | EX( ldq_u t2, 8(a1) ) # L : load second src word | ||
178 | addq a1, 8, a1 # E : | ||
179 | mskql t0, a0, t0 # U : mask trailing garbage in dst | ||
180 | extqh t2, a1, t4 # U : | ||
181 | |||
182 | or t1, t4, t1 # E : first aligned src word complete | ||
183 | mskqh t1, a0, t1 # U : mask leading garbage in src | ||
184 | or t0, t1, t0 # E : first output word complete | ||
185 | or t0, t6, t6 # E : mask original data for zero test | ||
186 | |||
187 | cmpbge zero, t6, t8 # E : | ||
188 | beq a2, $u_eocfin # U : | ||
189 | bne t8, $u_final # U : bad news - 2nd branch in a quad | ||
190 | lda t6, -1 # E : mask out the bits we have | ||
191 | |||
192 | mskql t6, a1, t6 # U : already seen | ||
193 | stq_u t0, 0(a0) # L : store first output word | ||
194 | or t6, t2, t2 # E : | ||
195 | cmpbge zero, t2, t8 # E : find nulls in second partial | ||
196 | |||
197 | addq a0, 8, a0 # E : | ||
198 | subq a2, 1, a2 # E : | ||
199 | bne t8, $u_late_head_exit # U : | ||
200 | nop | ||
201 | |||
202 | /* Finally, we've got all the stupid leading edge cases taken care | ||
203 | of and we can set up to enter the main loop. */ | ||
204 | |||
205 | extql t2, a1, t1 # U : position hi-bits of lo word | ||
206 | EX( ldq_u t2, 8(a1) ) # L : read next high-order source word | ||
207 | addq a1, 8, a1 # E : | ||
208 | cmpbge zero, t2, t8 # E : | ||
209 | |||
210 | beq a2, $u_eoc # U : | ||
211 | bne t8, $u_eos # U : | ||
212 | nop | ||
213 | nop | ||
214 | |||
215 | /* Unaligned copy main loop. In order to avoid reading too much, | ||
216 | the loop is structured to detect zeros in aligned source words. | ||
217 | This has, unfortunately, effectively pulled half of a loop | ||
218 | iteration out into the head and half into the tail, but it does | ||
219 | prevent nastiness from accumulating in the very thing we want | ||
220 | to run as fast as possible. | ||
221 | |||
222 | On entry to this basic block: | ||
223 | t1 == the shifted high-order bits from the previous source word | ||
224 | t2 == the unshifted current source word | ||
225 | |||
226 | We further know that t2 does not contain a null terminator. */ | ||
227 | |||
228 | /* | ||
229 | * Extra nops here: | ||
230 | * separate load quads from store quads | ||
231 | * only one branch/quad to permit predictor training | ||
232 | */ | ||
233 | |||
234 | .align 4 | ||
235 | $u_loop: | ||
236 | extqh t2, a1, t0 # U : extract high bits for current word | ||
237 | addq a1, 8, a1 # E : | ||
238 | extql t2, a1, t3 # U : extract low bits for next time | ||
239 | addq a0, 8, a0 # E : | ||
240 | |||
241 | or t0, t1, t0 # E : current dst word now complete | ||
242 | EX( ldq_u t2, 0(a1) ) # L : load high word for next time | ||
243 | subq a2, 1, a2 # E : | ||
244 | nop | ||
245 | |||
246 | stq_u t0, -8(a0) # L : save the current word | ||
247 | mov t3, t1 # E : | ||
248 | cmpbge zero, t2, t8 # E : test new word for eos | ||
249 | beq a2, $u_eoc # U : | ||
250 | |||
251 | beq t8, $u_loop # U : | ||
252 | nop | ||
253 | nop | ||
254 | nop | ||
255 | |||
256 | /* We've found a zero somewhere in the source word we just read. | ||
257 | If it resides in the lower half, we have one (probably partial) | ||
258 | word to write out, and if it resides in the upper half, we | ||
259 | have one full and one partial word left to write out. | ||
260 | |||
261 | On entry to this basic block: | ||
262 | t1 == the shifted high-order bits from the previous source word | ||
263 | t2 == the unshifted current source word. */ | ||
264 | .align 4 | ||
265 | $u_eos: | ||
266 | extqh t2, a1, t0 # U : | ||
267 | or t0, t1, t0 # E : first (partial) source word complete | ||
268 | cmpbge zero, t0, t8 # E : is the null in this first bit? | ||
269 | nop | ||
270 | |||
271 | bne t8, $u_final # U : | ||
272 | stq_u t0, 0(a0) # L : the null was in the high-order bits | ||
273 | addq a0, 8, a0 # E : | ||
274 | subq a2, 1, a2 # E : | ||
275 | |||
276 | .align 4 | ||
277 | $u_late_head_exit: | ||
278 | extql t2, a1, t0 # U : | ||
279 | cmpbge zero, t0, t8 # E : | ||
280 | or t8, t10, t6 # E : | ||
281 | cmoveq a2, t6, t8 # E : | ||
282 | |||
283 | /* Take care of a final (probably partial) result word. | ||
284 | On entry to this basic block: | ||
285 | t0 == assembled source word | ||
286 | t8 == cmpbge mask that found the null. */ | ||
287 | .align 4 | ||
288 | $u_final: | ||
289 | negq t8, t6 # E : isolate low bit set | ||
290 | and t6, t8, t12 # E : | ||
291 | ldq_u t1, 0(a0) # L : | ||
292 | subq t12, 1, t6 # E : | ||
293 | |||
294 | or t6, t12, t8 # E : | ||
295 | zapnot t0, t8, t0 # U : kill source bytes > null | ||
296 | zap t1, t8, t1 # U : kill dest bytes <= null | ||
297 | or t0, t1, t0 # E : | ||
298 | |||
299 | stq_u t0, 0(a0) # E : | ||
300 | br $finish_up # U : | ||
301 | nop | ||
302 | nop | ||
303 | |||
304 | .align 4 | ||
305 | $u_eoc: # end-of-count | ||
306 | extqh t2, a1, t0 # U : | ||
307 | or t0, t1, t0 # E : | ||
308 | cmpbge zero, t0, t8 # E : | ||
309 | nop | ||
310 | |||
311 | .align 4 | ||
312 | $u_eocfin: # end-of-count, final word | ||
313 | or t10, t8, t8 # E : | ||
314 | br $u_final # U : | ||
315 | nop | ||
316 | nop | ||
317 | |||
318 | /* Unaligned copy entry point. */ | ||
319 | .align 4 | ||
320 | $unaligned: | ||
321 | |||
322 | srl a3, 3, a2 # U : a2 = loop counter = (count - 1)/8 | ||
323 | and a0, 7, t4 # E : find dest misalignment | ||
324 | and a1, 7, t5 # E : find src misalignment | ||
325 | mov zero, t0 # E : | ||
326 | |||
327 | /* Conditionally load the first destination word and a bytemask | ||
328 | with 0xff indicating that the destination byte is sacrosanct. */ | ||
329 | |||
330 | mov zero, t6 # E : | ||
331 | beq t4, 1f # U : | ||
332 | ldq_u t0, 0(a0) # L : | ||
333 | lda t6, -1 # E : | ||
334 | |||
335 | mskql t6, a0, t6 # E : | ||
336 | nop | ||
337 | nop | ||
338 | nop | ||
339 | |||
340 | .align 4 | ||
341 | 1: | ||
342 | subq a1, t4, a1 # E : sub dest misalignment from src addr | ||
343 | /* If source misalignment is larger than dest misalignment, we need | ||
344 | extra startup checks to avoid SEGV. */ | ||
345 | cmplt t4, t5, t12 # E : | ||
346 | extql t1, a1, t1 # U : shift src into place | ||
347 | lda t2, -1 # E : for creating masks later | ||
348 | |||
349 | beq t12, $u_head # U : | ||
350 | mskqh t2, t5, t2 # U : begin src byte validity mask | ||
351 | cmpbge zero, t1, t8 # E : is there a zero? | ||
352 | nop | ||
353 | |||
354 | extql t2, a1, t2 # U : | ||
355 | or t8, t10, t5 # E : test for end-of-count too | ||
356 | cmpbge zero, t2, t3 # E : | ||
357 | cmoveq a2, t5, t8 # E : Latency=2, extra map slot | ||
358 | |||
359 | nop # E : goes with cmov | ||
360 | andnot t8, t3, t8 # E : | ||
361 | beq t8, $u_head # U : | ||
362 | nop | ||
363 | |||
364 | /* At this point we've found a zero in the first partial word of | ||
365 | the source. We need to isolate the valid source data and mask | ||
366 | it into the original destination data. (Incidentally, we know | ||
367 | that we'll need at least one byte of that original dest word.) */ | ||
368 | |||
369 | ldq_u t0, 0(a0) # L : | ||
370 | negq t8, t6 # E : build bitmask of bytes <= zero | ||
371 | mskqh t1, t4, t1 # U : | ||
372 | and t6, t8, t12 # E : | ||
373 | |||
374 | subq t12, 1, t6 # E : | ||
375 | or t6, t12, t8 # E : | ||
376 | zapnot t2, t8, t2 # U : prepare source word; mirror changes | ||
377 | zapnot t1, t8, t1 # U : to source validity mask | ||
378 | |||
379 | andnot t0, t2, t0 # E : zero place for source to reside | ||
380 | or t0, t1, t0 # E : and put it there | ||
381 | stq_u t0, 0(a0) # L : | ||
382 | nop | ||
383 | |||
384 | .align 4 | ||
385 | $finish_up: | ||
386 | zapnot t0, t12, t4 # U : was last byte written null? | ||
387 | and t12, 0xf0, t3 # E : binary search for the address of the | ||
388 | cmovne t4, 1, t4 # E : Latency=2, extra map slot | ||
389 | nop # E : with cmovne | ||
390 | |||
391 | and t12, 0xcc, t2 # E : last byte written | ||
392 | and t12, 0xaa, t1 # E : | ||
393 | cmovne t3, 4, t3 # E : Latency=2, extra map slot | ||
394 | nop # E : with cmovne | ||
395 | |||
396 | bic a0, 7, t0 | ||
397 | cmovne t2, 2, t2 # E : Latency=2, extra map slot | ||
398 | nop # E : with cmovne | ||
399 | nop | ||
400 | |||
401 | cmovne t1, 1, t1 # E : Latency=2, extra map slot | ||
402 | nop # E : with cmovne | ||
403 | addq t0, t3, t0 # E : | ||
404 | addq t1, t2, t1 # E : | ||
405 | |||
406 | addq t0, t1, t0 # E : | ||
407 | addq t0, t4, t0 # add one if we filled the buffer | ||
408 | subq t0, v0, v0 # find string length | ||
409 | ret # L0 : | ||
410 | |||
411 | .align 4 | ||
412 | $zerolength: | ||
413 | nop | ||
414 | nop | ||
415 | nop | ||
416 | clr v0 | ||
417 | |||
418 | $exception: | ||
419 | nop | ||
420 | nop | ||
421 | nop | ||
422 | ret | ||
423 | |||
424 | .end __strncpy_from_user | ||