diff options
Diffstat (limited to 'arch/alpha/lib/ev6-copy_user.S')
-rw-r--r-- | arch/alpha/lib/ev6-copy_user.S | 259 |
1 files changed, 259 insertions, 0 deletions
diff --git a/arch/alpha/lib/ev6-copy_user.S b/arch/alpha/lib/ev6-copy_user.S new file mode 100644 index 000000000000..db42ffe9c350 --- /dev/null +++ b/arch/alpha/lib/ev6-copy_user.S | |||
@@ -0,0 +1,259 @@ | |||
1 | /* | ||
2 | * arch/alpha/lib/ev6-copy_user.S | ||
3 | * | ||
4 | * 21264 version contributed by Rick Gorton <rick.gorton@alpha-processor.com> | ||
5 | * | ||
6 | * Copy to/from user space, handling exceptions as we go.. This | ||
7 | * isn't exactly pretty. | ||
8 | * | ||
9 | * This is essentially the same as "memcpy()", but with a few twists. | ||
10 | * Notably, we have to make sure that $0 is always up-to-date and | ||
11 | * contains the right "bytes left to copy" value (and that it is updated | ||
12 | * only _after_ a successful copy). There is also some rather minor | ||
13 | * exception setup stuff.. | ||
14 | * | ||
15 | * NOTE! This is not directly C-callable, because the calling semantics are | ||
16 | * different: | ||
17 | * | ||
18 | * Inputs: | ||
19 | * length in $0 | ||
20 | * destination address in $6 | ||
21 | * source address in $7 | ||
22 | * return address in $28 | ||
23 | * | ||
24 | * Outputs: | ||
25 | * bytes left to copy in $0 | ||
26 | * | ||
27 | * Clobbers: | ||
28 | * $1,$2,$3,$4,$5,$6,$7 | ||
29 | * | ||
30 | * Much of the information about 21264 scheduling/coding comes from: | ||
31 | * Compiler Writer's Guide for the Alpha 21264 | ||
32 | * abbreviated as 'CWG' in other comments here | ||
33 | * ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc-library.html | ||
34 | * Scheduling notation: | ||
35 | * E - either cluster | ||
36 | * U - upper subcluster; U0 - subcluster U0; U1 - subcluster U1 | ||
37 | * L - lower subcluster; L0 - subcluster L0; L1 - subcluster L1 | ||
38 | */ | ||
39 | |||
40 | /* Allow an exception for an insn; exit if we get one. */ | ||
41 | #define EXI(x,y...) \ | ||
42 | 99: x,##y; \ | ||
43 | .section __ex_table,"a"; \ | ||
44 | .long 99b - .; \ | ||
45 | lda $31, $exitin-99b($31); \ | ||
46 | .previous | ||
47 | |||
48 | #define EXO(x,y...) \ | ||
49 | 99: x,##y; \ | ||
50 | .section __ex_table,"a"; \ | ||
51 | .long 99b - .; \ | ||
52 | lda $31, $exitout-99b($31); \ | ||
53 | .previous | ||
54 | |||
55 | .set noat | ||
56 | .align 4 | ||
57 | .globl __copy_user | ||
58 | .ent __copy_user | ||
59 | # Pipeline info: Slotting & Comments | ||
60 | __copy_user: | ||
61 | .prologue 0 | ||
62 | subq $0, 32, $1 # .. E .. .. : Is this going to be a small copy? | ||
63 | beq $0, $zerolength # U .. .. .. : U L U L | ||
64 | |||
65 | and $6,7,$3 # .. .. .. E : is leading dest misalignment | ||
66 | ble $1, $onebyteloop # .. .. U .. : 1st branch : small amount of data | ||
67 | beq $3, $destaligned # .. U .. .. : 2nd (one cycle fetcher stall) | ||
68 | subq $3, 8, $3 # E .. .. .. : L U U L : trip counter | ||
69 | /* | ||
70 | * The fetcher stall also hides the 1 cycle cross-cluster stall for $3 (L --> U) | ||
71 | * This loop aligns the destination a byte at a time | ||
72 | * We know we have at least one trip through this loop | ||
73 | */ | ||
74 | $aligndest: | ||
75 | EXI( ldbu $1,0($7) ) # .. .. .. L : Keep loads separate from stores | ||
76 | addq $6,1,$6 # .. .. E .. : Section 3.8 in the CWG | ||
77 | addq $3,1,$3 # .. E .. .. : | ||
78 | nop # E .. .. .. : U L U L | ||
79 | |||
80 | /* | ||
81 | * the -1 is to compensate for the inc($6) done in a previous quadpack | ||
82 | * which allows us zero dependencies within either quadpack in the loop | ||
83 | */ | ||
84 | EXO( stb $1,-1($6) ) # .. .. .. L : | ||
85 | addq $7,1,$7 # .. .. E .. : Section 3.8 in the CWG | ||
86 | subq $0,1,$0 # .. E .. .. : | ||
87 | bne $3, $aligndest # U .. .. .. : U L U L | ||
88 | |||
89 | /* | ||
90 | * If we fell through into here, we have a minimum of 33 - 7 bytes | ||
91 | * If we arrived via branch, we have a minimum of 32 bytes | ||
92 | */ | ||
93 | $destaligned: | ||
94 | and $7,7,$1 # .. .. .. E : Check _current_ source alignment | ||
95 | bic $0,7,$4 # .. .. E .. : number bytes as a quadword loop | ||
96 | EXI( ldq_u $3,0($7) ) # .. L .. .. : Forward fetch for fallthrough code | ||
97 | beq $1,$quadaligned # U .. .. .. : U L U L | ||
98 | |||
99 | /* | ||
100 | * In the worst case, we've just executed an ldq_u here from 0($7) | ||
101 | * and we'll repeat it once if we take the branch | ||
102 | */ | ||
103 | |||
104 | /* Misaligned quadword loop - not unrolled. Leave it that way. */ | ||
105 | $misquad: | ||
106 | EXI( ldq_u $2,8($7) ) # .. .. .. L : | ||
107 | subq $4,8,$4 # .. .. E .. : | ||
108 | extql $3,$7,$3 # .. U .. .. : | ||
109 | extqh $2,$7,$1 # U .. .. .. : U U L L | ||
110 | |||
111 | bis $3,$1,$1 # .. .. .. E : | ||
112 | EXO( stq $1,0($6) ) # .. .. L .. : | ||
113 | addq $7,8,$7 # .. E .. .. : | ||
114 | subq $0,8,$0 # E .. .. .. : U L L U | ||
115 | |||
116 | addq $6,8,$6 # .. .. .. E : | ||
117 | bis $2,$2,$3 # .. .. E .. : | ||
118 | nop # .. E .. .. : | ||
119 | bne $4,$misquad # U .. .. .. : U L U L | ||
120 | |||
121 | nop # .. .. .. E | ||
122 | nop # .. .. E .. | ||
123 | nop # .. E .. .. | ||
124 | beq $0,$zerolength # U .. .. .. : U L U L | ||
125 | |||
126 | /* We know we have at least one trip through the byte loop */ | ||
127 | EXI ( ldbu $2,0($7) ) # .. .. .. L : No loads in the same quad | ||
128 | addq $6,1,$6 # .. .. E .. : as the store (Section 3.8 in CWG) | ||
129 | nop # .. E .. .. : | ||
130 | br $31, $dirtyentry # L0 .. .. .. : L U U L | ||
131 | /* Do the trailing byte loop load, then hop into the store part of the loop */ | ||
132 | |||
133 | /* | ||
134 | * A minimum of (33 - 7) bytes to do a quad at a time. | ||
135 | * Based upon the usage context, it's worth the effort to unroll this loop | ||
136 | * $0 - number of bytes to be moved | ||
137 | * $4 - number of bytes to move as quadwords | ||
138 | * $6 is current destination address | ||
139 | * $7 is current source address | ||
140 | */ | ||
141 | $quadaligned: | ||
142 | subq $4, 32, $2 # .. .. .. E : do not unroll for small stuff | ||
143 | nop # .. .. E .. | ||
144 | nop # .. E .. .. | ||
145 | blt $2, $onequad # U .. .. .. : U L U L | ||
146 | |||
147 | /* | ||
148 | * There is a significant assumption here that the source and destination | ||
149 | * addresses differ by more than 32 bytes. In this particular case, a | ||
150 | * sparsity of registers further bounds this to be a minimum of 8 bytes. | ||
151 | * But if this isn't met, then the output result will be incorrect. | ||
152 | * Furthermore, due to a lack of available registers, we really can't | ||
153 | * unroll this to be an 8x loop (which would enable us to use the wh64 | ||
154 | * instruction memory hint instruction). | ||
155 | */ | ||
156 | $unroll4: | ||
157 | EXI( ldq $1,0($7) ) # .. .. .. L | ||
158 | EXI( ldq $2,8($7) ) # .. .. L .. | ||
159 | subq $4,32,$4 # .. E .. .. | ||
160 | nop # E .. .. .. : U U L L | ||
161 | |||
162 | addq $7,16,$7 # .. .. .. E | ||
163 | EXO( stq $1,0($6) ) # .. .. L .. | ||
164 | EXO( stq $2,8($6) ) # .. L .. .. | ||
165 | subq $0,16,$0 # E .. .. .. : U L L U | ||
166 | |||
167 | addq $6,16,$6 # .. .. .. E | ||
168 | EXI( ldq $1,0($7) ) # .. .. L .. | ||
169 | EXI( ldq $2,8($7) ) # .. L .. .. | ||
170 | subq $4, 32, $3 # E .. .. .. : U U L L : is there enough for another trip? | ||
171 | |||
172 | EXO( stq $1,0($6) ) # .. .. .. L | ||
173 | EXO( stq $2,8($6) ) # .. .. L .. | ||
174 | subq $0,16,$0 # .. E .. .. | ||
175 | addq $7,16,$7 # E .. .. .. : U L L U | ||
176 | |||
177 | nop # .. .. .. E | ||
178 | nop # .. .. E .. | ||
179 | addq $6,16,$6 # .. E .. .. | ||
180 | bgt $3,$unroll4 # U .. .. .. : U L U L | ||
181 | |||
182 | nop | ||
183 | nop | ||
184 | nop | ||
185 | beq $4, $noquads | ||
186 | |||
187 | $onequad: | ||
188 | EXI( ldq $1,0($7) ) | ||
189 | subq $4,8,$4 | ||
190 | addq $7,8,$7 | ||
191 | nop | ||
192 | |||
193 | EXO( stq $1,0($6) ) | ||
194 | subq $0,8,$0 | ||
195 | addq $6,8,$6 | ||
196 | bne $4,$onequad | ||
197 | |||
198 | $noquads: | ||
199 | nop | ||
200 | nop | ||
201 | nop | ||
202 | beq $0,$zerolength | ||
203 | |||
204 | /* | ||
205 | * For small copies (or the tail of a larger copy), do a very simple byte loop. | ||
206 | * There's no point in doing a lot of complex alignment calculations to try to | ||
207 | * to quadword stuff for a small amount of data. | ||
208 | * $0 - remaining number of bytes left to copy | ||
209 | * $6 - current dest addr | ||
210 | * $7 - current source addr | ||
211 | */ | ||
212 | |||
213 | $onebyteloop: | ||
214 | EXI ( ldbu $2,0($7) ) # .. .. .. L : No loads in the same quad | ||
215 | addq $6,1,$6 # .. .. E .. : as the store (Section 3.8 in CWG) | ||
216 | nop # .. E .. .. : | ||
217 | nop # E .. .. .. : U L U L | ||
218 | |||
219 | $dirtyentry: | ||
220 | /* | ||
221 | * the -1 is to compensate for the inc($6) done in a previous quadpack | ||
222 | * which allows us zero dependencies within either quadpack in the loop | ||
223 | */ | ||
224 | EXO ( stb $2,-1($6) ) # .. .. .. L : | ||
225 | addq $7,1,$7 # .. .. E .. : quadpack as the load | ||
226 | subq $0,1,$0 # .. E .. .. : change count _after_ copy | ||
227 | bgt $0,$onebyteloop # U .. .. .. : U L U L | ||
228 | |||
229 | $zerolength: | ||
230 | $exitout: # Destination for exception recovery(?) | ||
231 | nop # .. .. .. E | ||
232 | nop # .. .. E .. | ||
233 | nop # .. E .. .. | ||
234 | ret $31,($28),1 # L0 .. .. .. : L U L U | ||
235 | |||
236 | $exitin: | ||
237 | |||
238 | /* A stupid byte-by-byte zeroing of the rest of the output | ||
239 | buffer. This cures security holes by never leaving | ||
240 | random kernel data around to be copied elsewhere. */ | ||
241 | |||
242 | nop | ||
243 | nop | ||
244 | nop | ||
245 | mov $0,$1 | ||
246 | |||
247 | $101: | ||
248 | EXO ( stb $31,0($6) ) # L | ||
249 | subq $1,1,$1 # E | ||
250 | addq $6,1,$6 # E | ||
251 | bgt $1,$101 # U | ||
252 | |||
253 | nop | ||
254 | nop | ||
255 | nop | ||
256 | ret $31,($28),1 # L0 | ||
257 | |||
258 | .end __copy_user | ||
259 | |||