diff options
Diffstat (limited to 'arch/alpha/kernel/perf_event.c')
-rw-r--r-- | arch/alpha/kernel/perf_event.c | 842 |
1 files changed, 842 insertions, 0 deletions
diff --git a/arch/alpha/kernel/perf_event.c b/arch/alpha/kernel/perf_event.c new file mode 100644 index 000000000000..51c39fa41693 --- /dev/null +++ b/arch/alpha/kernel/perf_event.c | |||
@@ -0,0 +1,842 @@ | |||
1 | /* | ||
2 | * Hardware performance events for the Alpha. | ||
3 | * | ||
4 | * We implement HW counts on the EV67 and subsequent CPUs only. | ||
5 | * | ||
6 | * (C) 2010 Michael J. Cree | ||
7 | * | ||
8 | * Somewhat based on the Sparc code, and to a lesser extent the PowerPC and | ||
9 | * ARM code, which are copyright by their respective authors. | ||
10 | */ | ||
11 | |||
12 | #include <linux/perf_event.h> | ||
13 | #include <linux/kprobes.h> | ||
14 | #include <linux/kernel.h> | ||
15 | #include <linux/kdebug.h> | ||
16 | #include <linux/mutex.h> | ||
17 | |||
18 | #include <asm/hwrpb.h> | ||
19 | #include <asm/atomic.h> | ||
20 | #include <asm/irq.h> | ||
21 | #include <asm/irq_regs.h> | ||
22 | #include <asm/pal.h> | ||
23 | #include <asm/wrperfmon.h> | ||
24 | #include <asm/hw_irq.h> | ||
25 | |||
26 | |||
27 | /* The maximum number of PMCs on any Alpha CPU whatsoever. */ | ||
28 | #define MAX_HWEVENTS 3 | ||
29 | #define PMC_NO_INDEX -1 | ||
30 | |||
31 | /* For tracking PMCs and the hw events they monitor on each CPU. */ | ||
32 | struct cpu_hw_events { | ||
33 | int enabled; | ||
34 | /* Number of events scheduled; also number entries valid in arrays below. */ | ||
35 | int n_events; | ||
36 | /* Number events added since last hw_perf_disable(). */ | ||
37 | int n_added; | ||
38 | /* Events currently scheduled. */ | ||
39 | struct perf_event *event[MAX_HWEVENTS]; | ||
40 | /* Event type of each scheduled event. */ | ||
41 | unsigned long evtype[MAX_HWEVENTS]; | ||
42 | /* Current index of each scheduled event; if not yet determined | ||
43 | * contains PMC_NO_INDEX. | ||
44 | */ | ||
45 | int current_idx[MAX_HWEVENTS]; | ||
46 | /* The active PMCs' config for easy use with wrperfmon(). */ | ||
47 | unsigned long config; | ||
48 | /* The active counters' indices for easy use with wrperfmon(). */ | ||
49 | unsigned long idx_mask; | ||
50 | }; | ||
51 | DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events); | ||
52 | |||
53 | |||
54 | |||
55 | /* | ||
56 | * A structure to hold the description of the PMCs available on a particular | ||
57 | * type of Alpha CPU. | ||
58 | */ | ||
59 | struct alpha_pmu_t { | ||
60 | /* Mapping of the perf system hw event types to indigenous event types */ | ||
61 | const int *event_map; | ||
62 | /* The number of entries in the event_map */ | ||
63 | int max_events; | ||
64 | /* The number of PMCs on this Alpha */ | ||
65 | int num_pmcs; | ||
66 | /* | ||
67 | * All PMC counters reside in the IBOX register PCTR. This is the | ||
68 | * LSB of the counter. | ||
69 | */ | ||
70 | int pmc_count_shift[MAX_HWEVENTS]; | ||
71 | /* | ||
72 | * The mask that isolates the PMC bits when the LSB of the counter | ||
73 | * is shifted to bit 0. | ||
74 | */ | ||
75 | unsigned long pmc_count_mask[MAX_HWEVENTS]; | ||
76 | /* The maximum period the PMC can count. */ | ||
77 | unsigned long pmc_max_period[MAX_HWEVENTS]; | ||
78 | /* | ||
79 | * The maximum value that may be written to the counter due to | ||
80 | * hardware restrictions is pmc_max_period - pmc_left. | ||
81 | */ | ||
82 | long pmc_left[3]; | ||
83 | /* Subroutine for allocation of PMCs. Enforces constraints. */ | ||
84 | int (*check_constraints)(struct perf_event **, unsigned long *, int); | ||
85 | }; | ||
86 | |||
87 | /* | ||
88 | * The Alpha CPU PMU description currently in operation. This is set during | ||
89 | * the boot process to the specific CPU of the machine. | ||
90 | */ | ||
91 | static const struct alpha_pmu_t *alpha_pmu; | ||
92 | |||
93 | |||
94 | #define HW_OP_UNSUPPORTED -1 | ||
95 | |||
96 | /* | ||
97 | * The hardware description of the EV67, EV68, EV69, EV7 and EV79 PMUs | ||
98 | * follow. Since they are identical we refer to them collectively as the | ||
99 | * EV67 henceforth. | ||
100 | */ | ||
101 | |||
102 | /* | ||
103 | * EV67 PMC event types | ||
104 | * | ||
105 | * There is no one-to-one mapping of the possible hw event types to the | ||
106 | * actual codes that are used to program the PMCs hence we introduce our | ||
107 | * own hw event type identifiers. | ||
108 | */ | ||
109 | enum ev67_pmc_event_type { | ||
110 | EV67_CYCLES = 1, | ||
111 | EV67_INSTRUCTIONS, | ||
112 | EV67_BCACHEMISS, | ||
113 | EV67_MBOXREPLAY, | ||
114 | EV67_LAST_ET | ||
115 | }; | ||
116 | #define EV67_NUM_EVENT_TYPES (EV67_LAST_ET-EV67_CYCLES) | ||
117 | |||
118 | |||
119 | /* Mapping of the hw event types to the perf tool interface */ | ||
120 | static const int ev67_perfmon_event_map[] = { | ||
121 | [PERF_COUNT_HW_CPU_CYCLES] = EV67_CYCLES, | ||
122 | [PERF_COUNT_HW_INSTRUCTIONS] = EV67_INSTRUCTIONS, | ||
123 | [PERF_COUNT_HW_CACHE_REFERENCES] = HW_OP_UNSUPPORTED, | ||
124 | [PERF_COUNT_HW_CACHE_MISSES] = EV67_BCACHEMISS, | ||
125 | }; | ||
126 | |||
127 | struct ev67_mapping_t { | ||
128 | int config; | ||
129 | int idx; | ||
130 | }; | ||
131 | |||
132 | /* | ||
133 | * The mapping used for one event only - these must be in same order as enum | ||
134 | * ev67_pmc_event_type definition. | ||
135 | */ | ||
136 | static const struct ev67_mapping_t ev67_mapping[] = { | ||
137 | {EV67_PCTR_INSTR_CYCLES, 1}, /* EV67_CYCLES, */ | ||
138 | {EV67_PCTR_INSTR_CYCLES, 0}, /* EV67_INSTRUCTIONS */ | ||
139 | {EV67_PCTR_INSTR_BCACHEMISS, 1}, /* EV67_BCACHEMISS */ | ||
140 | {EV67_PCTR_CYCLES_MBOX, 1} /* EV67_MBOXREPLAY */ | ||
141 | }; | ||
142 | |||
143 | |||
144 | /* | ||
145 | * Check that a group of events can be simultaneously scheduled on to the | ||
146 | * EV67 PMU. Also allocate counter indices and config. | ||
147 | */ | ||
148 | static int ev67_check_constraints(struct perf_event **event, | ||
149 | unsigned long *evtype, int n_ev) | ||
150 | { | ||
151 | int idx0; | ||
152 | unsigned long config; | ||
153 | |||
154 | idx0 = ev67_mapping[evtype[0]-1].idx; | ||
155 | config = ev67_mapping[evtype[0]-1].config; | ||
156 | if (n_ev == 1) | ||
157 | goto success; | ||
158 | |||
159 | BUG_ON(n_ev != 2); | ||
160 | |||
161 | if (evtype[0] == EV67_MBOXREPLAY || evtype[1] == EV67_MBOXREPLAY) { | ||
162 | /* MBOX replay traps must be on PMC 1 */ | ||
163 | idx0 = (evtype[0] == EV67_MBOXREPLAY) ? 1 : 0; | ||
164 | /* Only cycles can accompany MBOX replay traps */ | ||
165 | if (evtype[idx0] == EV67_CYCLES) { | ||
166 | config = EV67_PCTR_CYCLES_MBOX; | ||
167 | goto success; | ||
168 | } | ||
169 | } | ||
170 | |||
171 | if (evtype[0] == EV67_BCACHEMISS || evtype[1] == EV67_BCACHEMISS) { | ||
172 | /* Bcache misses must be on PMC 1 */ | ||
173 | idx0 = (evtype[0] == EV67_BCACHEMISS) ? 1 : 0; | ||
174 | /* Only instructions can accompany Bcache misses */ | ||
175 | if (evtype[idx0] == EV67_INSTRUCTIONS) { | ||
176 | config = EV67_PCTR_INSTR_BCACHEMISS; | ||
177 | goto success; | ||
178 | } | ||
179 | } | ||
180 | |||
181 | if (evtype[0] == EV67_INSTRUCTIONS || evtype[1] == EV67_INSTRUCTIONS) { | ||
182 | /* Instructions must be on PMC 0 */ | ||
183 | idx0 = (evtype[0] == EV67_INSTRUCTIONS) ? 0 : 1; | ||
184 | /* By this point only cycles can accompany instructions */ | ||
185 | if (evtype[idx0^1] == EV67_CYCLES) { | ||
186 | config = EV67_PCTR_INSTR_CYCLES; | ||
187 | goto success; | ||
188 | } | ||
189 | } | ||
190 | |||
191 | /* Otherwise, darn it, there is a conflict. */ | ||
192 | return -1; | ||
193 | |||
194 | success: | ||
195 | event[0]->hw.idx = idx0; | ||
196 | event[0]->hw.config_base = config; | ||
197 | if (n_ev == 2) { | ||
198 | event[1]->hw.idx = idx0 ^ 1; | ||
199 | event[1]->hw.config_base = config; | ||
200 | } | ||
201 | return 0; | ||
202 | } | ||
203 | |||
204 | |||
205 | static const struct alpha_pmu_t ev67_pmu = { | ||
206 | .event_map = ev67_perfmon_event_map, | ||
207 | .max_events = ARRAY_SIZE(ev67_perfmon_event_map), | ||
208 | .num_pmcs = 2, | ||
209 | .pmc_count_shift = {EV67_PCTR_0_COUNT_SHIFT, EV67_PCTR_1_COUNT_SHIFT, 0}, | ||
210 | .pmc_count_mask = {EV67_PCTR_0_COUNT_MASK, EV67_PCTR_1_COUNT_MASK, 0}, | ||
211 | .pmc_max_period = {(1UL<<20) - 1, (1UL<<20) - 1, 0}, | ||
212 | .pmc_left = {16, 4, 0}, | ||
213 | .check_constraints = ev67_check_constraints | ||
214 | }; | ||
215 | |||
216 | |||
217 | |||
218 | /* | ||
219 | * Helper routines to ensure that we read/write only the correct PMC bits | ||
220 | * when calling the wrperfmon PALcall. | ||
221 | */ | ||
222 | static inline void alpha_write_pmc(int idx, unsigned long val) | ||
223 | { | ||
224 | val &= alpha_pmu->pmc_count_mask[idx]; | ||
225 | val <<= alpha_pmu->pmc_count_shift[idx]; | ||
226 | val |= (1<<idx); | ||
227 | wrperfmon(PERFMON_CMD_WRITE, val); | ||
228 | } | ||
229 | |||
230 | static inline unsigned long alpha_read_pmc(int idx) | ||
231 | { | ||
232 | unsigned long val; | ||
233 | |||
234 | val = wrperfmon(PERFMON_CMD_READ, 0); | ||
235 | val >>= alpha_pmu->pmc_count_shift[idx]; | ||
236 | val &= alpha_pmu->pmc_count_mask[idx]; | ||
237 | return val; | ||
238 | } | ||
239 | |||
240 | /* Set a new period to sample over */ | ||
241 | static int alpha_perf_event_set_period(struct perf_event *event, | ||
242 | struct hw_perf_event *hwc, int idx) | ||
243 | { | ||
244 | long left = atomic64_read(&hwc->period_left); | ||
245 | long period = hwc->sample_period; | ||
246 | int ret = 0; | ||
247 | |||
248 | if (unlikely(left <= -period)) { | ||
249 | left = period; | ||
250 | atomic64_set(&hwc->period_left, left); | ||
251 | hwc->last_period = period; | ||
252 | ret = 1; | ||
253 | } | ||
254 | |||
255 | if (unlikely(left <= 0)) { | ||
256 | left += period; | ||
257 | atomic64_set(&hwc->period_left, left); | ||
258 | hwc->last_period = period; | ||
259 | ret = 1; | ||
260 | } | ||
261 | |||
262 | /* | ||
263 | * Hardware restrictions require that the counters must not be | ||
264 | * written with values that are too close to the maximum period. | ||
265 | */ | ||
266 | if (unlikely(left < alpha_pmu->pmc_left[idx])) | ||
267 | left = alpha_pmu->pmc_left[idx]; | ||
268 | |||
269 | if (left > (long)alpha_pmu->pmc_max_period[idx]) | ||
270 | left = alpha_pmu->pmc_max_period[idx]; | ||
271 | |||
272 | atomic64_set(&hwc->prev_count, (unsigned long)(-left)); | ||
273 | |||
274 | alpha_write_pmc(idx, (unsigned long)(-left)); | ||
275 | |||
276 | perf_event_update_userpage(event); | ||
277 | |||
278 | return ret; | ||
279 | } | ||
280 | |||
281 | |||
282 | /* | ||
283 | * Calculates the count (the 'delta') since the last time the PMC was read. | ||
284 | * | ||
285 | * As the PMCs' full period can easily be exceeded within the perf system | ||
286 | * sampling period we cannot use any high order bits as a guard bit in the | ||
287 | * PMCs to detect overflow as is done by other architectures. The code here | ||
288 | * calculates the delta on the basis that there is no overflow when ovf is | ||
289 | * zero. The value passed via ovf by the interrupt handler corrects for | ||
290 | * overflow. | ||
291 | * | ||
292 | * This can be racey on rare occasions -- a call to this routine can occur | ||
293 | * with an overflowed counter just before the PMI service routine is called. | ||
294 | * The check for delta negative hopefully always rectifies this situation. | ||
295 | */ | ||
296 | static unsigned long alpha_perf_event_update(struct perf_event *event, | ||
297 | struct hw_perf_event *hwc, int idx, long ovf) | ||
298 | { | ||
299 | long prev_raw_count, new_raw_count; | ||
300 | long delta; | ||
301 | |||
302 | again: | ||
303 | prev_raw_count = atomic64_read(&hwc->prev_count); | ||
304 | new_raw_count = alpha_read_pmc(idx); | ||
305 | |||
306 | if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count, | ||
307 | new_raw_count) != prev_raw_count) | ||
308 | goto again; | ||
309 | |||
310 | delta = (new_raw_count - (prev_raw_count & alpha_pmu->pmc_count_mask[idx])) + ovf; | ||
311 | |||
312 | /* It is possible on very rare occasions that the PMC has overflowed | ||
313 | * but the interrupt is yet to come. Detect and fix this situation. | ||
314 | */ | ||
315 | if (unlikely(delta < 0)) { | ||
316 | delta += alpha_pmu->pmc_max_period[idx] + 1; | ||
317 | } | ||
318 | |||
319 | atomic64_add(delta, &event->count); | ||
320 | atomic64_sub(delta, &hwc->period_left); | ||
321 | |||
322 | return new_raw_count; | ||
323 | } | ||
324 | |||
325 | |||
326 | /* | ||
327 | * Collect all HW events into the array event[]. | ||
328 | */ | ||
329 | static int collect_events(struct perf_event *group, int max_count, | ||
330 | struct perf_event *event[], unsigned long *evtype, | ||
331 | int *current_idx) | ||
332 | { | ||
333 | struct perf_event *pe; | ||
334 | int n = 0; | ||
335 | |||
336 | if (!is_software_event(group)) { | ||
337 | if (n >= max_count) | ||
338 | return -1; | ||
339 | event[n] = group; | ||
340 | evtype[n] = group->hw.event_base; | ||
341 | current_idx[n++] = PMC_NO_INDEX; | ||
342 | } | ||
343 | list_for_each_entry(pe, &group->sibling_list, group_entry) { | ||
344 | if (!is_software_event(pe) && pe->state != PERF_EVENT_STATE_OFF) { | ||
345 | if (n >= max_count) | ||
346 | return -1; | ||
347 | event[n] = pe; | ||
348 | evtype[n] = pe->hw.event_base; | ||
349 | current_idx[n++] = PMC_NO_INDEX; | ||
350 | } | ||
351 | } | ||
352 | return n; | ||
353 | } | ||
354 | |||
355 | |||
356 | |||
357 | /* | ||
358 | * Check that a group of events can be simultaneously scheduled on to the PMU. | ||
359 | */ | ||
360 | static int alpha_check_constraints(struct perf_event **events, | ||
361 | unsigned long *evtypes, int n_ev) | ||
362 | { | ||
363 | |||
364 | /* No HW events is possible from hw_perf_group_sched_in(). */ | ||
365 | if (n_ev == 0) | ||
366 | return 0; | ||
367 | |||
368 | if (n_ev > alpha_pmu->num_pmcs) | ||
369 | return -1; | ||
370 | |||
371 | return alpha_pmu->check_constraints(events, evtypes, n_ev); | ||
372 | } | ||
373 | |||
374 | |||
375 | /* | ||
376 | * If new events have been scheduled then update cpuc with the new | ||
377 | * configuration. This may involve shifting cycle counts from one PMC to | ||
378 | * another. | ||
379 | */ | ||
380 | static void maybe_change_configuration(struct cpu_hw_events *cpuc) | ||
381 | { | ||
382 | int j; | ||
383 | |||
384 | if (cpuc->n_added == 0) | ||
385 | return; | ||
386 | |||
387 | /* Find counters that are moving to another PMC and update */ | ||
388 | for (j = 0; j < cpuc->n_events; j++) { | ||
389 | struct perf_event *pe = cpuc->event[j]; | ||
390 | |||
391 | if (cpuc->current_idx[j] != PMC_NO_INDEX && | ||
392 | cpuc->current_idx[j] != pe->hw.idx) { | ||
393 | alpha_perf_event_update(pe, &pe->hw, cpuc->current_idx[j], 0); | ||
394 | cpuc->current_idx[j] = PMC_NO_INDEX; | ||
395 | } | ||
396 | } | ||
397 | |||
398 | /* Assign to counters all unassigned events. */ | ||
399 | cpuc->idx_mask = 0; | ||
400 | for (j = 0; j < cpuc->n_events; j++) { | ||
401 | struct perf_event *pe = cpuc->event[j]; | ||
402 | struct hw_perf_event *hwc = &pe->hw; | ||
403 | int idx = hwc->idx; | ||
404 | |||
405 | if (cpuc->current_idx[j] != PMC_NO_INDEX) { | ||
406 | cpuc->idx_mask |= (1<<cpuc->current_idx[j]); | ||
407 | continue; | ||
408 | } | ||
409 | |||
410 | alpha_perf_event_set_period(pe, hwc, idx); | ||
411 | cpuc->current_idx[j] = idx; | ||
412 | cpuc->idx_mask |= (1<<cpuc->current_idx[j]); | ||
413 | } | ||
414 | cpuc->config = cpuc->event[0]->hw.config_base; | ||
415 | } | ||
416 | |||
417 | |||
418 | |||
419 | /* Schedule perf HW event on to PMU. | ||
420 | * - this function is called from outside this module via the pmu struct | ||
421 | * returned from perf event initialisation. | ||
422 | */ | ||
423 | static int alpha_pmu_enable(struct perf_event *event) | ||
424 | { | ||
425 | struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); | ||
426 | int n0; | ||
427 | int ret; | ||
428 | unsigned long flags; | ||
429 | |||
430 | /* | ||
431 | * The Sparc code has the IRQ disable first followed by the perf | ||
432 | * disable, however this can lead to an overflowed counter with the | ||
433 | * PMI disabled on rare occasions. The alpha_perf_event_update() | ||
434 | * routine should detect this situation by noting a negative delta, | ||
435 | * nevertheless we disable the PMCs first to enable a potential | ||
436 | * final PMI to occur before we disable interrupts. | ||
437 | */ | ||
438 | perf_disable(); | ||
439 | local_irq_save(flags); | ||
440 | |||
441 | /* Default to error to be returned */ | ||
442 | ret = -EAGAIN; | ||
443 | |||
444 | /* Insert event on to PMU and if successful modify ret to valid return */ | ||
445 | n0 = cpuc->n_events; | ||
446 | if (n0 < alpha_pmu->num_pmcs) { | ||
447 | cpuc->event[n0] = event; | ||
448 | cpuc->evtype[n0] = event->hw.event_base; | ||
449 | cpuc->current_idx[n0] = PMC_NO_INDEX; | ||
450 | |||
451 | if (!alpha_check_constraints(cpuc->event, cpuc->evtype, n0+1)) { | ||
452 | cpuc->n_events++; | ||
453 | cpuc->n_added++; | ||
454 | ret = 0; | ||
455 | } | ||
456 | } | ||
457 | |||
458 | local_irq_restore(flags); | ||
459 | perf_enable(); | ||
460 | |||
461 | return ret; | ||
462 | } | ||
463 | |||
464 | |||
465 | |||
466 | /* Disable performance monitoring unit | ||
467 | * - this function is called from outside this module via the pmu struct | ||
468 | * returned from perf event initialisation. | ||
469 | */ | ||
470 | static void alpha_pmu_disable(struct perf_event *event) | ||
471 | { | ||
472 | struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); | ||
473 | struct hw_perf_event *hwc = &event->hw; | ||
474 | unsigned long flags; | ||
475 | int j; | ||
476 | |||
477 | perf_disable(); | ||
478 | local_irq_save(flags); | ||
479 | |||
480 | for (j = 0; j < cpuc->n_events; j++) { | ||
481 | if (event == cpuc->event[j]) { | ||
482 | int idx = cpuc->current_idx[j]; | ||
483 | |||
484 | /* Shift remaining entries down into the existing | ||
485 | * slot. | ||
486 | */ | ||
487 | while (++j < cpuc->n_events) { | ||
488 | cpuc->event[j - 1] = cpuc->event[j]; | ||
489 | cpuc->evtype[j - 1] = cpuc->evtype[j]; | ||
490 | cpuc->current_idx[j - 1] = | ||
491 | cpuc->current_idx[j]; | ||
492 | } | ||
493 | |||
494 | /* Absorb the final count and turn off the event. */ | ||
495 | alpha_perf_event_update(event, hwc, idx, 0); | ||
496 | perf_event_update_userpage(event); | ||
497 | |||
498 | cpuc->idx_mask &= ~(1UL<<idx); | ||
499 | cpuc->n_events--; | ||
500 | break; | ||
501 | } | ||
502 | } | ||
503 | |||
504 | local_irq_restore(flags); | ||
505 | perf_enable(); | ||
506 | } | ||
507 | |||
508 | |||
509 | static void alpha_pmu_read(struct perf_event *event) | ||
510 | { | ||
511 | struct hw_perf_event *hwc = &event->hw; | ||
512 | |||
513 | alpha_perf_event_update(event, hwc, hwc->idx, 0); | ||
514 | } | ||
515 | |||
516 | |||
517 | static void alpha_pmu_unthrottle(struct perf_event *event) | ||
518 | { | ||
519 | struct hw_perf_event *hwc = &event->hw; | ||
520 | struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); | ||
521 | |||
522 | cpuc->idx_mask |= 1UL<<hwc->idx; | ||
523 | wrperfmon(PERFMON_CMD_ENABLE, (1UL<<hwc->idx)); | ||
524 | } | ||
525 | |||
526 | |||
527 | /* | ||
528 | * Check that CPU performance counters are supported. | ||
529 | * - currently support EV67 and later CPUs. | ||
530 | * - actually some later revisions of the EV6 have the same PMC model as the | ||
531 | * EV67 but we don't do suffiently deep CPU detection to detect them. | ||
532 | * Bad luck to the very few people who might have one, I guess. | ||
533 | */ | ||
534 | static int supported_cpu(void) | ||
535 | { | ||
536 | struct percpu_struct *cpu; | ||
537 | unsigned long cputype; | ||
538 | |||
539 | /* Get cpu type from HW */ | ||
540 | cpu = (struct percpu_struct *)((char *)hwrpb + hwrpb->processor_offset); | ||
541 | cputype = cpu->type & 0xffffffff; | ||
542 | /* Include all of EV67, EV68, EV7, EV79 and EV69 as supported. */ | ||
543 | return (cputype >= EV67_CPU) && (cputype <= EV69_CPU); | ||
544 | } | ||
545 | |||
546 | |||
547 | |||
548 | static void hw_perf_event_destroy(struct perf_event *event) | ||
549 | { | ||
550 | /* Nothing to be done! */ | ||
551 | return; | ||
552 | } | ||
553 | |||
554 | |||
555 | |||
556 | static int __hw_perf_event_init(struct perf_event *event) | ||
557 | { | ||
558 | struct perf_event_attr *attr = &event->attr; | ||
559 | struct hw_perf_event *hwc = &event->hw; | ||
560 | struct perf_event *evts[MAX_HWEVENTS]; | ||
561 | unsigned long evtypes[MAX_HWEVENTS]; | ||
562 | int idx_rubbish_bin[MAX_HWEVENTS]; | ||
563 | int ev; | ||
564 | int n; | ||
565 | |||
566 | /* We only support a limited range of HARDWARE event types with one | ||
567 | * only programmable via a RAW event type. | ||
568 | */ | ||
569 | if (attr->type == PERF_TYPE_HARDWARE) { | ||
570 | if (attr->config >= alpha_pmu->max_events) | ||
571 | return -EINVAL; | ||
572 | ev = alpha_pmu->event_map[attr->config]; | ||
573 | } else if (attr->type == PERF_TYPE_HW_CACHE) { | ||
574 | return -EOPNOTSUPP; | ||
575 | } else if (attr->type == PERF_TYPE_RAW) { | ||
576 | ev = attr->config & 0xff; | ||
577 | } else { | ||
578 | return -EOPNOTSUPP; | ||
579 | } | ||
580 | |||
581 | if (ev < 0) { | ||
582 | return ev; | ||
583 | } | ||
584 | |||
585 | /* The EV67 does not support mode exclusion */ | ||
586 | if (attr->exclude_kernel || attr->exclude_user | ||
587 | || attr->exclude_hv || attr->exclude_idle) { | ||
588 | return -EPERM; | ||
589 | } | ||
590 | |||
591 | /* | ||
592 | * We place the event type in event_base here and leave calculation | ||
593 | * of the codes to programme the PMU for alpha_pmu_enable() because | ||
594 | * it is only then we will know what HW events are actually | ||
595 | * scheduled on to the PMU. At that point the code to programme the | ||
596 | * PMU is put into config_base and the PMC to use is placed into | ||
597 | * idx. We initialise idx (below) to PMC_NO_INDEX to indicate that | ||
598 | * it is yet to be determined. | ||
599 | */ | ||
600 | hwc->event_base = ev; | ||
601 | |||
602 | /* Collect events in a group together suitable for calling | ||
603 | * alpha_check_constraints() to verify that the group as a whole can | ||
604 | * be scheduled on to the PMU. | ||
605 | */ | ||
606 | n = 0; | ||
607 | if (event->group_leader != event) { | ||
608 | n = collect_events(event->group_leader, | ||
609 | alpha_pmu->num_pmcs - 1, | ||
610 | evts, evtypes, idx_rubbish_bin); | ||
611 | if (n < 0) | ||
612 | return -EINVAL; | ||
613 | } | ||
614 | evtypes[n] = hwc->event_base; | ||
615 | evts[n] = event; | ||
616 | |||
617 | if (alpha_check_constraints(evts, evtypes, n + 1)) | ||
618 | return -EINVAL; | ||
619 | |||
620 | /* Indicate that PMU config and idx are yet to be determined. */ | ||
621 | hwc->config_base = 0; | ||
622 | hwc->idx = PMC_NO_INDEX; | ||
623 | |||
624 | event->destroy = hw_perf_event_destroy; | ||
625 | |||
626 | /* | ||
627 | * Most architectures reserve the PMU for their use at this point. | ||
628 | * As there is no existing mechanism to arbitrate usage and there | ||
629 | * appears to be no other user of the Alpha PMU we just assume | ||
630 | * that we can just use it, hence a NO-OP here. | ||
631 | * | ||
632 | * Maybe an alpha_reserve_pmu() routine should be implemented but is | ||
633 | * anything else ever going to use it? | ||
634 | */ | ||
635 | |||
636 | if (!hwc->sample_period) { | ||
637 | hwc->sample_period = alpha_pmu->pmc_max_period[0]; | ||
638 | hwc->last_period = hwc->sample_period; | ||
639 | atomic64_set(&hwc->period_left, hwc->sample_period); | ||
640 | } | ||
641 | |||
642 | return 0; | ||
643 | } | ||
644 | |||
645 | static const struct pmu pmu = { | ||
646 | .enable = alpha_pmu_enable, | ||
647 | .disable = alpha_pmu_disable, | ||
648 | .read = alpha_pmu_read, | ||
649 | .unthrottle = alpha_pmu_unthrottle, | ||
650 | }; | ||
651 | |||
652 | |||
653 | /* | ||
654 | * Main entry point to initialise a HW performance event. | ||
655 | */ | ||
656 | const struct pmu *hw_perf_event_init(struct perf_event *event) | ||
657 | { | ||
658 | int err; | ||
659 | |||
660 | if (!alpha_pmu) | ||
661 | return ERR_PTR(-ENODEV); | ||
662 | |||
663 | /* Do the real initialisation work. */ | ||
664 | err = __hw_perf_event_init(event); | ||
665 | |||
666 | if (err) | ||
667 | return ERR_PTR(err); | ||
668 | |||
669 | return &pmu; | ||
670 | } | ||
671 | |||
672 | |||
673 | |||
674 | /* | ||
675 | * Main entry point - enable HW performance counters. | ||
676 | */ | ||
677 | void hw_perf_enable(void) | ||
678 | { | ||
679 | struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); | ||
680 | |||
681 | if (cpuc->enabled) | ||
682 | return; | ||
683 | |||
684 | cpuc->enabled = 1; | ||
685 | barrier(); | ||
686 | |||
687 | if (cpuc->n_events > 0) { | ||
688 | /* Update cpuc with information from any new scheduled events. */ | ||
689 | maybe_change_configuration(cpuc); | ||
690 | |||
691 | /* Start counting the desired events. */ | ||
692 | wrperfmon(PERFMON_CMD_LOGGING_OPTIONS, EV67_PCTR_MODE_AGGREGATE); | ||
693 | wrperfmon(PERFMON_CMD_DESIRED_EVENTS, cpuc->config); | ||
694 | wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask); | ||
695 | } | ||
696 | } | ||
697 | |||
698 | |||
699 | /* | ||
700 | * Main entry point - disable HW performance counters. | ||
701 | */ | ||
702 | |||
703 | void hw_perf_disable(void) | ||
704 | { | ||
705 | struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); | ||
706 | |||
707 | if (!cpuc->enabled) | ||
708 | return; | ||
709 | |||
710 | cpuc->enabled = 0; | ||
711 | cpuc->n_added = 0; | ||
712 | |||
713 | wrperfmon(PERFMON_CMD_DISABLE, cpuc->idx_mask); | ||
714 | } | ||
715 | |||
716 | |||
717 | /* | ||
718 | * Main entry point - don't know when this is called but it | ||
719 | * obviously dumps debug info. | ||
720 | */ | ||
721 | void perf_event_print_debug(void) | ||
722 | { | ||
723 | unsigned long flags; | ||
724 | unsigned long pcr; | ||
725 | int pcr0, pcr1; | ||
726 | int cpu; | ||
727 | |||
728 | if (!supported_cpu()) | ||
729 | return; | ||
730 | |||
731 | local_irq_save(flags); | ||
732 | |||
733 | cpu = smp_processor_id(); | ||
734 | |||
735 | pcr = wrperfmon(PERFMON_CMD_READ, 0); | ||
736 | pcr0 = (pcr >> alpha_pmu->pmc_count_shift[0]) & alpha_pmu->pmc_count_mask[0]; | ||
737 | pcr1 = (pcr >> alpha_pmu->pmc_count_shift[1]) & alpha_pmu->pmc_count_mask[1]; | ||
738 | |||
739 | pr_info("CPU#%d: PCTR0[%06x] PCTR1[%06x]\n", cpu, pcr0, pcr1); | ||
740 | |||
741 | local_irq_restore(flags); | ||
742 | } | ||
743 | |||
744 | |||
745 | /* | ||
746 | * Performance Monitoring Interrupt Service Routine called when a PMC | ||
747 | * overflows. The PMC that overflowed is passed in la_ptr. | ||
748 | */ | ||
749 | static void alpha_perf_event_irq_handler(unsigned long la_ptr, | ||
750 | struct pt_regs *regs) | ||
751 | { | ||
752 | struct cpu_hw_events *cpuc; | ||
753 | struct perf_sample_data data; | ||
754 | struct perf_event *event; | ||
755 | struct hw_perf_event *hwc; | ||
756 | int idx, j; | ||
757 | |||
758 | __get_cpu_var(irq_pmi_count)++; | ||
759 | cpuc = &__get_cpu_var(cpu_hw_events); | ||
760 | |||
761 | /* Completely counting through the PMC's period to trigger a new PMC | ||
762 | * overflow interrupt while in this interrupt routine is utterly | ||
763 | * disastrous! The EV6 and EV67 counters are sufficiently large to | ||
764 | * prevent this but to be really sure disable the PMCs. | ||
765 | */ | ||
766 | wrperfmon(PERFMON_CMD_DISABLE, cpuc->idx_mask); | ||
767 | |||
768 | /* la_ptr is the counter that overflowed. */ | ||
769 | if (unlikely(la_ptr >= perf_max_events)) { | ||
770 | /* This should never occur! */ | ||
771 | irq_err_count++; | ||
772 | pr_warning("PMI: silly index %ld\n", la_ptr); | ||
773 | wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask); | ||
774 | return; | ||
775 | } | ||
776 | |||
777 | idx = la_ptr; | ||
778 | |||
779 | perf_sample_data_init(&data, 0); | ||
780 | for (j = 0; j < cpuc->n_events; j++) { | ||
781 | if (cpuc->current_idx[j] == idx) | ||
782 | break; | ||
783 | } | ||
784 | |||
785 | if (unlikely(j == cpuc->n_events)) { | ||
786 | /* This can occur if the event is disabled right on a PMC overflow. */ | ||
787 | wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask); | ||
788 | return; | ||
789 | } | ||
790 | |||
791 | event = cpuc->event[j]; | ||
792 | |||
793 | if (unlikely(!event)) { | ||
794 | /* This should never occur! */ | ||
795 | irq_err_count++; | ||
796 | pr_warning("PMI: No event at index %d!\n", idx); | ||
797 | wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask); | ||
798 | return; | ||
799 | } | ||
800 | |||
801 | hwc = &event->hw; | ||
802 | alpha_perf_event_update(event, hwc, idx, alpha_pmu->pmc_max_period[idx]+1); | ||
803 | data.period = event->hw.last_period; | ||
804 | |||
805 | if (alpha_perf_event_set_period(event, hwc, idx)) { | ||
806 | if (perf_event_overflow(event, 1, &data, regs)) { | ||
807 | /* Interrupts coming too quickly; "throttle" the | ||
808 | * counter, i.e., disable it for a little while. | ||
809 | */ | ||
810 | cpuc->idx_mask &= ~(1UL<<idx); | ||
811 | } | ||
812 | } | ||
813 | wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask); | ||
814 | |||
815 | return; | ||
816 | } | ||
817 | |||
818 | |||
819 | |||
820 | /* | ||
821 | * Init call to initialise performance events at kernel startup. | ||
822 | */ | ||
823 | void __init init_hw_perf_events(void) | ||
824 | { | ||
825 | pr_info("Performance events: "); | ||
826 | |||
827 | if (!supported_cpu()) { | ||
828 | pr_cont("No support for your CPU.\n"); | ||
829 | return; | ||
830 | } | ||
831 | |||
832 | pr_cont("Supported CPU type!\n"); | ||
833 | |||
834 | /* Override performance counter IRQ vector */ | ||
835 | |||
836 | perf_irq = alpha_perf_event_irq_handler; | ||
837 | |||
838 | /* And set up PMU specification */ | ||
839 | alpha_pmu = &ev67_pmu; | ||
840 | perf_max_events = alpha_pmu->num_pmcs; | ||
841 | } | ||
842 | |||