diff options
Diffstat (limited to 'Documentation')
-rw-r--r-- | Documentation/leds-class.txt | 71 |
1 files changed, 71 insertions, 0 deletions
diff --git a/Documentation/leds-class.txt b/Documentation/leds-class.txt new file mode 100644 index 000000000000..8c35c0426110 --- /dev/null +++ b/Documentation/leds-class.txt | |||
@@ -0,0 +1,71 @@ | |||
1 | LED handling under Linux | ||
2 | ======================== | ||
3 | |||
4 | If you're reading this and thinking about keyboard leds, these are | ||
5 | handled by the input subsystem and the led class is *not* needed. | ||
6 | |||
7 | In its simplest form, the LED class just allows control of LEDs from | ||
8 | userspace. LEDs appear in /sys/class/leds/. The brightness file will | ||
9 | set the brightness of the LED (taking a value 0-255). Most LEDs don't | ||
10 | have hardware brightness support so will just be turned on for non-zero | ||
11 | brightness settings. | ||
12 | |||
13 | The class also introduces the optional concept of an LED trigger. A trigger | ||
14 | is a kernel based source of led events. Triggers can either be simple or | ||
15 | complex. A simple trigger isn't configurable and is designed to slot into | ||
16 | existing subsystems with minimal additional code. Examples are the ide-disk, | ||
17 | nand-disk and sharpsl-charge triggers. With led triggers disabled, the code | ||
18 | optimises away. | ||
19 | |||
20 | Complex triggers whilst available to all LEDs have LED specific | ||
21 | parameters and work on a per LED basis. The timer trigger is an example. | ||
22 | |||
23 | You can change triggers in a similar manner to the way an IO scheduler | ||
24 | is chosen (via /sys/class/leds/<device>/trigger). Trigger specific | ||
25 | parameters can appear in /sys/class/leds/<device> once a given trigger is | ||
26 | selected. | ||
27 | |||
28 | |||
29 | Design Philosophy | ||
30 | ================= | ||
31 | |||
32 | The underlying design philosophy is simplicity. LEDs are simple devices | ||
33 | and the aim is to keep a small amount of code giving as much functionality | ||
34 | as possible. Please keep this in mind when suggesting enhancements. | ||
35 | |||
36 | |||
37 | LED Device Naming | ||
38 | ================= | ||
39 | |||
40 | Is currently of the form: | ||
41 | |||
42 | "devicename:colour" | ||
43 | |||
44 | There have been calls for LED properties such as colour to be exported as | ||
45 | individual led class attributes. As a solution which doesn't incur as much | ||
46 | overhead, I suggest these become part of the device name. The naming scheme | ||
47 | above leaves scope for further attributes should they be needed. | ||
48 | |||
49 | |||
50 | Known Issues | ||
51 | ============ | ||
52 | |||
53 | The LED Trigger core cannot be a module as the simple trigger functions | ||
54 | would cause nightmare dependency issues. I see this as a minor issue | ||
55 | compared to the benefits the simple trigger functionality brings. The | ||
56 | rest of the LED subsystem can be modular. | ||
57 | |||
58 | Some leds can be programmed to flash in hardware. As this isn't a generic | ||
59 | LED device property, this should be exported as a device specific sysfs | ||
60 | attribute rather than part of the class if this functionality is required. | ||
61 | |||
62 | |||
63 | Future Development | ||
64 | ================== | ||
65 | |||
66 | At the moment, a trigger can't be created specifically for a single LED. | ||
67 | There are a number of cases where a trigger might only be mappable to a | ||
68 | particular LED (ACPI?). The addition of triggers provided by the LED driver | ||
69 | should cover this option and be possible to add without breaking the | ||
70 | current interface. | ||
71 | |||