aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/feature-removal-schedule.txt9
-rw-r--r--Documentation/fujitsu/frv/kernel-ABI.txt234
-rw-r--r--Documentation/hwmon/f71805f105
-rw-r--r--Documentation/hwmon/it872
-rw-r--r--Documentation/hwmon/sysfs-interface18
-rw-r--r--Documentation/hwmon/w83627hf4
-rw-r--r--Documentation/i2c/busses/i2c-sis96x (renamed from Documentation/i2c/busses/i2c-sis69x)4
-rw-r--r--Documentation/kernel-parameters.txt2
-rw-r--r--Documentation/kprobes.txt81
-rw-r--r--Documentation/mips/AU1xxx_IDE.README6
-rw-r--r--Documentation/powerpc/booting-without-of.txt68
-rw-r--r--Documentation/spi/butterfly23
-rw-r--r--Documentation/unshare.txt295
-rw-r--r--Documentation/video4linux/CARDLIST.cx882
-rw-r--r--Documentation/video4linux/CARDLIST.saa71346
-rw-r--r--Documentation/x86_64/boot-options.txt12
16 files changed, 816 insertions, 55 deletions
diff --git a/Documentation/feature-removal-schedule.txt b/Documentation/feature-removal-schedule.txt
index 4d4897c8ef96..b730d765b525 100644
--- a/Documentation/feature-removal-schedule.txt
+++ b/Documentation/feature-removal-schedule.txt
@@ -162,3 +162,12 @@ What: pci_module_init(driver)
162When: January 2007 162When: January 2007
163Why: Is replaced by pci_register_driver(pci_driver). 163Why: Is replaced by pci_register_driver(pci_driver).
164Who: Richard Knutsson <ricknu-0@student.ltu.se> and Greg Kroah-Hartman <gregkh@suse.de> 164Who: Richard Knutsson <ricknu-0@student.ltu.se> and Greg Kroah-Hartman <gregkh@suse.de>
165
166---------------------------
167
168What: I2C interface of the it87 driver
169When: January 2007
170Why: The ISA interface is faster and should be always available. The I2C
171 probing is also known to cause trouble in at least one case (see
172 bug #5889.)
173Who: Jean Delvare <khali@linux-fr.org>
diff --git a/Documentation/fujitsu/frv/kernel-ABI.txt b/Documentation/fujitsu/frv/kernel-ABI.txt
new file mode 100644
index 000000000000..0ed9b0a779bc
--- /dev/null
+++ b/Documentation/fujitsu/frv/kernel-ABI.txt
@@ -0,0 +1,234 @@
1 =================================
2 INTERNAL KERNEL ABI FOR FR-V ARCH
3 =================================
4
5The internal FRV kernel ABI is not quite the same as the userspace ABI. A number of the registers
6are used for special purposed, and the ABI is not consistent between modules vs core, and MMU vs
7no-MMU.
8
9This partly stems from the fact that FRV CPUs do not have a separate supervisor stack pointer, and
10most of them do not have any scratch registers, thus requiring at least one general purpose
11register to be clobbered in such an event. Also, within the kernel core, it is possible to simply
12jump or call directly between functions using a relative offset. This cannot be extended to modules
13for the displacement is likely to be too far. Thus in modules the address of a function to call
14must be calculated in a register and then used, requiring two extra instructions.
15
16This document has the following sections:
17
18 (*) System call register ABI
19 (*) CPU operating modes
20 (*) Internal kernel-mode register ABI
21 (*) Internal debug-mode register ABI
22 (*) Virtual interrupt handling
23
24
25========================
26SYSTEM CALL REGISTER ABI
27========================
28
29When a system call is made, the following registers are effective:
30
31 REGISTERS CALL RETURN
32 =============== ======================= =======================
33 GR7 System call number Preserved
34 GR8 Syscall arg #1 Return value
35 GR9-GR13 Syscall arg #2-6 Preserved
36
37
38===================
39CPU OPERATING MODES
40===================
41
42The FR-V CPU has three basic operating modes. In order of increasing capability:
43
44 (1) User mode.
45
46 Basic userspace running mode.
47
48 (2) Kernel mode.
49
50 Normal kernel mode. There are many additional control registers available that may be
51 accessed in this mode, in addition to all the stuff available to user mode. This has two
52 submodes:
53
54 (a) Exceptions enabled (PSR.T == 1).
55
56 Exceptions will invoke the appropriate normal kernel mode handler. On entry to the
57 handler, the PSR.T bit will be cleared.
58
59 (b) Exceptions disabled (PSR.T == 0).
60
61 No exceptions or interrupts may happen. Any mandatory exceptions will cause the CPU to
62 halt unless the CPU is told to jump into debug mode instead.
63
64 (3) Debug mode.
65
66 No exceptions may happen in this mode. Memory protection and management exceptions will be
67 flagged for later consideration, but the exception handler won't be invoked. Debugging traps
68 such as hardware breakpoints and watchpoints will be ignored. This mode is entered only by
69 debugging events obtained from the other two modes.
70
71 All kernel mode registers may be accessed, plus a few extra debugging specific registers.
72
73
74=================================
75INTERNAL KERNEL-MODE REGISTER ABI
76=================================
77
78There are a number of permanent register assignments that are set up by entry.S in the exception
79prologue. Note that there is a complete set of exception prologues for each of user->kernel
80transition and kernel->kernel transition. There are also user->debug and kernel->debug mode
81transition prologues.
82
83
84 REGISTER FLAVOUR USE
85 =============== ======= ====================================================
86 GR1 Supervisor stack pointer
87 GR15 Current thread info pointer
88 GR16 GP-Rel base register for small data
89 GR28 Current exception frame pointer (__frame)
90 GR29 Current task pointer (current)
91 GR30 Destroyed by kernel mode entry
92 GR31 NOMMU Destroyed by debug mode entry
93 GR31 MMU Destroyed by TLB miss kernel mode entry
94 CCR.ICC2 Virtual interrupt disablement tracking
95 CCCR.CC3 Cleared by exception prologue (atomic op emulation)
96 SCR0 MMU See mmu-layout.txt.
97 SCR1 MMU See mmu-layout.txt.
98 SCR2 MMU Save for EAR0 (destroyed by icache insns in debug mode)
99 SCR3 MMU Save for GR31 during debug exceptions
100 DAMR/IAMR NOMMU Fixed memory protection layout.
101 DAMR/IAMR MMU See mmu-layout.txt.
102
103
104Certain registers are also used or modified across function calls:
105
106 REGISTER CALL RETURN
107 =============== =============================== ===============================
108 GR0 Fixed Zero -
109 GR2 Function call frame pointer
110 GR3 Special Preserved
111 GR3-GR7 - Clobbered
112 GR8 Function call arg #1 Return value (or clobbered)
113 GR9 Function call arg #2 Return value MSW (or clobbered)
114 GR10-GR13 Function call arg #3-#6 Clobbered
115 GR14 - Clobbered
116 GR15-GR16 Special Preserved
117 GR17-GR27 - Preserved
118 GR28-GR31 Special Only accessed explicitly
119 LR Return address after CALL Clobbered
120 CCR/CCCR - Mostly Clobbered
121
122
123================================
124INTERNAL DEBUG-MODE REGISTER ABI
125================================
126
127This is the same as the kernel-mode register ABI for functions calls. The difference is that in
128debug-mode there's a different stack and a different exception frame. Almost all the global
129registers from kernel-mode (including the stack pointer) may be changed.
130
131 REGISTER FLAVOUR USE
132 =============== ======= ====================================================
133 GR1 Debug stack pointer
134 GR16 GP-Rel base register for small data
135 GR31 Current debug exception frame pointer (__debug_frame)
136 SCR3 MMU Saved value of GR31
137
138
139Note that debug mode is able to interfere with the kernel's emulated atomic ops, so it must be
140exceedingly careful not to do any that would interact with the main kernel in this regard. Hence
141the debug mode code (gdbstub) is almost completely self-contained. The only external code used is
142the sprintf family of functions.
143
144Futhermore, break.S is so complicated because single-step mode does not switch off on entry to an
145exception. That means unless manually disabled, single-stepping will blithely go on stepping into
146things like interrupts. See gdbstub.txt for more information.
147
148
149==========================
150VIRTUAL INTERRUPT HANDLING
151==========================
152
153Because accesses to the PSR is so slow, and to disable interrupts we have to access it twice (once
154to read and once to write), we don't actually disable interrupts at all if we don't have to. What
155we do instead is use the ICC2 condition code flags to note virtual disablement, such that if we
156then do take an interrupt, we note the flag, really disable interrupts, set another flag and resume
157execution at the point the interrupt happened. Setting condition flags as a side effect of an
158arithmetic or logical instruction is really fast. This use of the ICC2 only occurs within the
159kernel - it does not affect userspace.
160
161The flags we use are:
162
163 (*) CCR.ICC2.Z [Zero flag]
164
165 Set to virtually disable interrupts, clear when interrupts are virtually enabled. Can be
166 modified by logical instructions without affecting the Carry flag.
167
168 (*) CCR.ICC2.C [Carry flag]
169
170 Clear to indicate hardware interrupts are really disabled, set otherwise.
171
172
173What happens is this:
174
175 (1) Normal kernel-mode operation.
176
177 ICC2.Z is 0, ICC2.C is 1.
178
179 (2) An interrupt occurs. The exception prologue examines ICC2.Z and determines that nothing needs
180 doing. This is done simply with an unlikely BEQ instruction.
181
182 (3) The interrupts are disabled (local_irq_disable)
183
184 ICC2.Z is set to 1.
185
186 (4) If interrupts were then re-enabled (local_irq_enable):
187
188 ICC2.Z would be set to 0.
189
190 A TIHI #2 instruction (trap #2 if condition HI - Z==0 && C==0) would be used to trap if
191 interrupts were now virtually enabled, but physically disabled - which they're not, so the
192 trap isn't taken. The kernel would then be back to state (1).
193
194 (5) An interrupt occurs. The exception prologue examines ICC2.Z and determines that the interrupt
195 shouldn't actually have happened. It jumps aside, and there disabled interrupts by setting
196 PSR.PIL to 14 and then it clears ICC2.C.
197
198 (6) If interrupts were then saved and disabled again (local_irq_save):
199
200 ICC2.Z would be shifted into the save variable and masked off (giving a 1).
201
202 ICC2.Z would then be set to 1 (thus unchanged), and ICC2.C would be unaffected (ie: 0).
203
204 (7) If interrupts were then restored from state (6) (local_irq_restore):
205
206 ICC2.Z would be set to indicate the result of XOR'ing the saved value (ie: 1) with 1, which
207 gives a result of 0 - thus leaving ICC2.Z set.
208
209 ICC2.C would remain unaffected (ie: 0).
210
211 A TIHI #2 instruction would be used to again assay the current state, but this would do
212 nothing as Z==1.
213
214 (8) If interrupts were then enabled (local_irq_enable):
215
216 ICC2.Z would be cleared. ICC2.C would be left unaffected. Both flags would now be 0.
217
218 A TIHI #2 instruction again issued to assay the current state would then trap as both Z==0
219 [interrupts virtually enabled] and C==0 [interrupts really disabled] would then be true.
220
221 (9) The trap #2 handler would simply enable hardware interrupts (set PSR.PIL to 0), set ICC2.C to
222 1 and return.
223
224(10) Immediately upon returning, the pending interrupt would be taken.
225
226(11) The interrupt handler would take the path of actually processing the interrupt (ICC2.Z is
227 clear, BEQ fails as per step (2)).
228
229(12) The interrupt handler would then set ICC2.C to 1 since hardware interrupts are definitely
230 enabled - or else the kernel wouldn't be here.
231
232(13) On return from the interrupt handler, things would be back to state (1).
233
234This trap (#2) is only available in kernel mode. In user mode it will result in SIGILL.
diff --git a/Documentation/hwmon/f71805f b/Documentation/hwmon/f71805f
new file mode 100644
index 000000000000..28c5b7d1eb90
--- /dev/null
+++ b/Documentation/hwmon/f71805f
@@ -0,0 +1,105 @@
1Kernel driver f71805f
2=====================
3
4Supported chips:
5 * Fintek F71805F/FG
6 Prefix: 'f71805f'
7 Addresses scanned: none, address read from Super I/O config space
8 Datasheet: Provided by Fintek on request
9
10Author: Jean Delvare <khali@linux-fr.org>
11
12Thanks to Denis Kieft from Barracuda Networks for the donation of a
13test system (custom Jetway K8M8MS motherboard, with CPU and RAM) and
14for providing initial documentation.
15
16Thanks to Kris Chen from Fintek for answering technical questions and
17providing additional documentation.
18
19Thanks to Chris Lin from Jetway for providing wiring schematics and
20anwsering technical questions.
21
22
23Description
24-----------
25
26The Fintek F71805F/FG Super I/O chip includes complete hardware monitoring
27capabilities. It can monitor up to 9 voltages (counting its own power
28source), 3 fans and 3 temperature sensors.
29
30This chip also has fan controlling features, using either DC or PWM, in
31three different modes (one manual, two automatic). The driver doesn't
32support these features yet.
33
34The driver assumes that no more than one chip is present, which seems
35reasonable.
36
37
38Voltage Monitoring
39------------------
40
41Voltages are sampled by an 8-bit ADC with a LSB of 8 mV. The supported
42range is thus from 0 to 2.040 V. Voltage values outside of this range
43need external resistors. An exception is in0, which is used to monitor
44the chip's own power source (+3.3V), and is divided internally by a
45factor 2.
46
47The two LSB of the voltage limit registers are not used (always 0), so
48you can only set the limits in steps of 32 mV (before scaling).
49
50The wirings and resistor values suggested by Fintek are as follow:
51
52 pin expected
53 name use R1 R2 divider raw val.
54
55in0 VCC VCC3.3V int. int. 2.00 1.65 V
56in1 VIN1 VTT1.2V 10K - 1.00 1.20 V
57in2 VIN2 VRAM 100K 100K 2.00 ~1.25 V (1)
58in3 VIN3 VCHIPSET 47K 100K 1.47 2.24 V (2)
59in4 VIN4 VCC5V 200K 47K 5.25 0.95 V
60in5 VIN5 +12V 200K 20K 11.00 1.05 V
61in6 VIN6 VCC1.5V 10K - 1.00 1.50 V
62in7 VIN7 VCORE 10K - 1.00 ~1.40 V (1)
63in8 VIN8 VSB5V 200K 47K 1.00 0.95 V
64
65(1) Depends on your hardware setup.
66(2) Obviously not correct, swapping R1 and R2 would make more sense.
67
68These values can be used as hints at best, as motherboard manufacturers
69are free to use a completely different setup. As a matter of fact, the
70Jetway K8M8MS uses a significantly different setup. You will have to
71find out documentation about your own motherboard, and edit sensors.conf
72accordingly.
73
74Each voltage measured has associated low and high limits, each of which
75triggers an alarm when crossed.
76
77
78Fan Monitoring
79--------------
80
81Fan rotation speeds are reported as 12-bit values from a gated clock
82signal. Speeds down to 366 RPM can be measured. There is no theoretical
83high limit, but values over 6000 RPM seem to cause problem. The effective
84resolution is much lower than you would expect, the step between different
85register values being 10 rather than 1.
86
87The chip assumes 2 pulse-per-revolution fans.
88
89An alarm is triggered if the rotation speed drops below a programmable
90limit or is too low to be measured.
91
92
93Temperature Monitoring
94----------------------
95
96Temperatures are reported in degrees Celsius. Each temperature measured
97has a high limit, those crossing triggers an alarm. There is an associated
98hysteresis value, below which the temperature has to drop before the
99alarm is cleared.
100
101All temperature channels are external, there is no embedded temperature
102sensor. Each channel can be used for connecting either a thermal diode
103or a thermistor. The driver reports the currently selected mode, but
104doesn't allow changing it. In theory, the BIOS should have configured
105everything properly.
diff --git a/Documentation/hwmon/it87 b/Documentation/hwmon/it87
index 7f42e441c645..9555be1ed999 100644
--- a/Documentation/hwmon/it87
+++ b/Documentation/hwmon/it87
@@ -9,7 +9,7 @@ Supported chips:
9 http://www.ite.com.tw/ 9 http://www.ite.com.tw/
10 * IT8712F 10 * IT8712F
11 Prefix: 'it8712' 11 Prefix: 'it8712'
12 Addresses scanned: I2C 0x28 - 0x2f 12 Addresses scanned: I2C 0x2d
13 from Super I/O config space (8 I/O ports) 13 from Super I/O config space (8 I/O ports)
14 Datasheet: Publicly available at the ITE website 14 Datasheet: Publicly available at the ITE website
15 http://www.ite.com.tw/ 15 http://www.ite.com.tw/
diff --git a/Documentation/hwmon/sysfs-interface b/Documentation/hwmon/sysfs-interface
index 764cdc5480e7..a0d0ab24288e 100644
--- a/Documentation/hwmon/sysfs-interface
+++ b/Documentation/hwmon/sysfs-interface
@@ -179,11 +179,12 @@ temp[1-*]_auto_point[1-*]_temp_hyst
179**************** 179****************
180 180
181temp[1-3]_type Sensor type selection. 181temp[1-3]_type Sensor type selection.
182 Integers 1, 2, 3 or thermistor Beta value (3435) 182 Integers 1 to 4 or thermistor Beta value (typically 3435)
183 Read/Write. 183 Read/Write.
184 1: PII/Celeron Diode 184 1: PII/Celeron Diode
185 2: 3904 transistor 185 2: 3904 transistor
186 3: thermal diode 186 3: thermal diode
187 4: thermistor (default/unknown Beta)
187 Not all types are supported by all chips 188 Not all types are supported by all chips
188 189
189temp[1-4]_max Temperature max value. 190temp[1-4]_max Temperature max value.
@@ -261,6 +262,21 @@ alarms Alarm bitmask.
261 of individual bits. 262 of individual bits.
262 Bits are defined in kernel/include/sensors.h. 263 Bits are defined in kernel/include/sensors.h.
263 264
265alarms_in Alarm bitmask relative to in (voltage) channels
266 Read only
267 A '1' bit means an alarm, LSB corresponds to in0 and so on
268 Prefered to 'alarms' for newer chips
269
270alarms_fan Alarm bitmask relative to fan channels
271 Read only
272 A '1' bit means an alarm, LSB corresponds to fan1 and so on
273 Prefered to 'alarms' for newer chips
274
275alarms_temp Alarm bitmask relative to temp (temperature) channels
276 Read only
277 A '1' bit means an alarm, LSB corresponds to temp1 and so on
278 Prefered to 'alarms' for newer chips
279
264beep_enable Beep/interrupt enable 280beep_enable Beep/interrupt enable
265 0 to disable. 281 0 to disable.
266 1 to enable. 282 1 to enable.
diff --git a/Documentation/hwmon/w83627hf b/Documentation/hwmon/w83627hf
index 5d23776e9907..bbeaba680443 100644
--- a/Documentation/hwmon/w83627hf
+++ b/Documentation/hwmon/w83627hf
@@ -36,6 +36,10 @@ Module Parameters
36 (default is 1) 36 (default is 1)
37 Use 'init=0' to bypass initializing the chip. 37 Use 'init=0' to bypass initializing the chip.
38 Try this if your computer crashes when you load the module. 38 Try this if your computer crashes when you load the module.
39* reset: int
40 (default is 0)
41 The driver used to reset the chip on load, but does no more. Use
42 'reset=1' to restore the old behavior. Report if you need to do this.
39 43
40Description 44Description
41----------- 45-----------
diff --git a/Documentation/i2c/busses/i2c-sis69x b/Documentation/i2c/busses/i2c-sis96x
index b88953dfd580..00a009b977e9 100644
--- a/Documentation/i2c/busses/i2c-sis69x
+++ b/Documentation/i2c/busses/i2c-sis96x
@@ -7,7 +7,7 @@ Supported adapters:
7 Any combination of these host bridges: 7 Any combination of these host bridges:
8 645, 645DX (aka 646), 648, 650, 651, 655, 735, 745, 746 8 645, 645DX (aka 646), 648, 650, 651, 655, 735, 745, 746
9 and these south bridges: 9 and these south bridges:
10 961, 962, 963(L) 10 961, 962, 963(L)
11 11
12Author: Mark M. Hoffman <mhoffman@lightlink.com> 12Author: Mark M. Hoffman <mhoffman@lightlink.com>
13 13
@@ -29,7 +29,7 @@ The command "lspci" as root should produce something like these lines:
29 29
30or perhaps this... 30or perhaps this...
31 31
3200:00.0 Host bridge: Silicon Integrated Systems [SiS]: Unknown device 0645 3200:00.0 Host bridge: Silicon Integrated Systems [SiS]: Unknown device 0645
3300:02.0 ISA bridge: Silicon Integrated Systems [SiS]: Unknown device 0961 3300:02.0 ISA bridge: Silicon Integrated Systems [SiS]: Unknown device 0961
3400:02.1 SMBus: Silicon Integrated Systems [SiS]: Unknown device 0016 3400:02.1 SMBus: Silicon Integrated Systems [SiS]: Unknown device 0016
35 35
diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt
index 84370363da80..ac75b57edf2e 100644
--- a/Documentation/kernel-parameters.txt
+++ b/Documentation/kernel-parameters.txt
@@ -1133,6 +1133,8 @@ running once the system is up.
1133 Mechanism 1. 1133 Mechanism 1.
1134 conf2 [IA-32] Force use of PCI Configuration 1134 conf2 [IA-32] Force use of PCI Configuration
1135 Mechanism 2. 1135 Mechanism 2.
1136 nommconf [IA-32,X86_64] Disable use of MMCONFIG for PCI
1137 Configuration
1136 nosort [IA-32] Don't sort PCI devices according to 1138 nosort [IA-32] Don't sort PCI devices according to
1137 order given by the PCI BIOS. This sorting is 1139 order given by the PCI BIOS. This sorting is
1138 done to get a device order compatible with 1140 done to get a device order compatible with
diff --git a/Documentation/kprobes.txt b/Documentation/kprobes.txt
index 0ea5a0c6e827..2c3b1eae4280 100644
--- a/Documentation/kprobes.txt
+++ b/Documentation/kprobes.txt
@@ -136,17 +136,20 @@ Kprobes, jprobes, and return probes are implemented on the following
136architectures: 136architectures:
137 137
138- i386 138- i386
139- x86_64 (AMD-64, E64MT) 139- x86_64 (AMD-64, EM64T)
140- ppc64 140- ppc64
141- ia64 (Support for probes on certain instruction types is still in progress.) 141- ia64 (Does not support probes on instruction slot1.)
142- sparc64 (Return probes not yet implemented.) 142- sparc64 (Return probes not yet implemented.)
143 143
1443. Configuring Kprobes 1443. Configuring Kprobes
145 145
146When configuring the kernel using make menuconfig/xconfig/oldconfig, 146When configuring the kernel using make menuconfig/xconfig/oldconfig,
147ensure that CONFIG_KPROBES is set to "y". Under "Kernel hacking", 147ensure that CONFIG_KPROBES is set to "y". Under "Instrumentation
148look for "Kprobes". You may have to enable "Kernel debugging" 148Support", look for "Kprobes".
149(CONFIG_DEBUG_KERNEL) before you can enable Kprobes. 149
150So that you can load and unload Kprobes-based instrumentation modules,
151make sure "Loadable module support" (CONFIG_MODULES) and "Module
152unloading" (CONFIG_MODULE_UNLOAD) are set to "y".
150 153
151You may also want to ensure that CONFIG_KALLSYMS and perhaps even 154You may also want to ensure that CONFIG_KALLSYMS and perhaps even
152CONFIG_KALLSYMS_ALL are set to "y", since kallsyms_lookup_name() 155CONFIG_KALLSYMS_ALL are set to "y", since kallsyms_lookup_name()
@@ -262,18 +265,18 @@ at any time after the probe has been registered.
262 265
2635. Kprobes Features and Limitations 2665. Kprobes Features and Limitations
264 267
265As of Linux v2.6.12, Kprobes allows multiple probes at the same 268Kprobes allows multiple probes at the same address. Currently,
266address. Currently, however, there cannot be multiple jprobes on 269however, there cannot be multiple jprobes on the same function at
267the same function at the same time. 270the same time.
268 271
269In general, you can install a probe anywhere in the kernel. 272In general, you can install a probe anywhere in the kernel.
270In particular, you can probe interrupt handlers. Known exceptions 273In particular, you can probe interrupt handlers. Known exceptions
271are discussed in this section. 274are discussed in this section.
272 275
273For obvious reasons, it's a bad idea to install a probe in 276The register_*probe functions will return -EINVAL if you attempt
274the code that implements Kprobes (mostly kernel/kprobes.c and 277to install a probe in the code that implements Kprobes (mostly
275arch/*/kernel/kprobes.c). A patch in the v2.6.13 timeframe instructs 278kernel/kprobes.c and arch/*/kernel/kprobes.c, but also functions such
276Kprobes to reject such requests. 279as do_page_fault and notifier_call_chain).
277 280
278If you install a probe in an inline-able function, Kprobes makes 281If you install a probe in an inline-able function, Kprobes makes
279no attempt to chase down all inline instances of the function and 282no attempt to chase down all inline instances of the function and
@@ -290,18 +293,14 @@ from the accidental ones. Don't drink and probe.
290 293
291Kprobes makes no attempt to prevent probe handlers from stepping on 294Kprobes makes no attempt to prevent probe handlers from stepping on
292each other -- e.g., probing printk() and then calling printk() from a 295each other -- e.g., probing printk() and then calling printk() from a
293probe handler. As of Linux v2.6.12, if a probe handler hits a probe, 296probe handler. If a probe handler hits a probe, that second probe's
294that second probe's handlers won't be run in that instance. 297handlers won't be run in that instance, and the kprobe.nmissed member
295 298of the second probe will be incremented.
296In Linux v2.6.12 and previous versions, Kprobes' data structures are 299
297protected by a single lock that is held during probe registration and 300As of Linux v2.6.15-rc1, multiple handlers (or multiple instances of
298unregistration and while handlers are run. Thus, no two handlers 301the same handler) may run concurrently on different CPUs.
299can run simultaneously. To improve scalability on SMP systems, 302
300this restriction will probably be removed soon, in which case 303Kprobes does not use mutexes or allocate memory except during
301multiple handlers (or multiple instances of the same handler) may
302run concurrently on different CPUs. Code your handlers accordingly.
303
304Kprobes does not use semaphores or allocate memory except during
305registration and unregistration. 304registration and unregistration.
306 305
307Probe handlers are run with preemption disabled. Depending on the 306Probe handlers are run with preemption disabled. Depending on the
@@ -316,11 +315,18 @@ address instead of the real return address for kretprobed functions.
316(As far as we can tell, __builtin_return_address() is used only 315(As far as we can tell, __builtin_return_address() is used only
317for instrumentation and error reporting.) 316for instrumentation and error reporting.)
318 317
319If the number of times a function is called does not match the 318If the number of times a function is called does not match the number
320number of times it returns, registering a return probe on that 319of times it returns, registering a return probe on that function may
321function may produce undesirable results. We have the do_exit() 320produce undesirable results. We have the do_exit() case covered.
322and do_execve() cases covered. do_fork() is not an issue. We're 321do_execve() and do_fork() are not an issue. We're unaware of other
323unaware of other specific cases where this could be a problem. 322specific cases where this could be a problem.
323
324If, upon entry to or exit from a function, the CPU is running on
325a stack other than that of the current task, registering a return
326probe on that function may produce undesirable results. For this
327reason, Kprobes doesn't support return probes (or kprobes or jprobes)
328on the x86_64 version of __switch_to(); the registration functions
329return -EINVAL.
324 330
3256. Probe Overhead 3316. Probe Overhead
326 332
@@ -347,14 +353,12 @@ k = 0.77 usec; j = 1.31; r = 1.26; kr = 1.45; jr = 1.99
347 353
3487. TODO 3547. TODO
349 355
350a. SystemTap (http://sourceware.org/systemtap): Work in progress 356a. SystemTap (http://sourceware.org/systemtap): Provides a simplified
351to provide a simplified programming interface for probe-based 357programming interface for probe-based instrumentation. Try it out.
352instrumentation. 358b. Kernel return probes for sparc64.
353b. Improved SMP scalability: Currently, work is in progress to handle 359c. Support for other architectures.
354multiple kprobes in parallel. 360d. User-space probes.
355c. Kernel return probes for sparc64. 361e. Watchpoint probes (which fire on data references).
356d. Support for other architectures.
357e. User-space probes.
358 362
3598. Kprobes Example 3638. Kprobes Example
360 364
@@ -411,8 +415,7 @@ int init_module(void)
411 printk("Couldn't find %s to plant kprobe\n", "do_fork"); 415 printk("Couldn't find %s to plant kprobe\n", "do_fork");
412 return -1; 416 return -1;
413 } 417 }
414 ret = register_kprobe(&kp); 418 if ((ret = register_kprobe(&kp) < 0)) {
415 if (ret < 0) {
416 printk("register_kprobe failed, returned %d\n", ret); 419 printk("register_kprobe failed, returned %d\n", ret);
417 return -1; 420 return -1;
418 } 421 }
diff --git a/Documentation/mips/AU1xxx_IDE.README b/Documentation/mips/AU1xxx_IDE.README
index a7e4c4ea3560..afb31c141d9d 100644
--- a/Documentation/mips/AU1xxx_IDE.README
+++ b/Documentation/mips/AU1xxx_IDE.README
@@ -95,11 +95,13 @@ CONFIG_BLK_DEV_IDEDMA_PCI=y
95CONFIG_IDEDMA_PCI_AUTO=y 95CONFIG_IDEDMA_PCI_AUTO=y
96CONFIG_BLK_DEV_IDE_AU1XXX=y 96CONFIG_BLK_DEV_IDE_AU1XXX=y
97CONFIG_BLK_DEV_IDE_AU1XXX_MDMA2_DBDMA=y 97CONFIG_BLK_DEV_IDE_AU1XXX_MDMA2_DBDMA=y
98CONFIG_BLK_DEV_IDE_AU1XXX_BURSTABLE_ON=y
99CONFIG_BLK_DEV_IDE_AU1XXX_SEQTS_PER_RQ=128 98CONFIG_BLK_DEV_IDE_AU1XXX_SEQTS_PER_RQ=128
100CONFIG_BLK_DEV_IDEDMA=y 99CONFIG_BLK_DEV_IDEDMA=y
101CONFIG_IDEDMA_AUTO=y 100CONFIG_IDEDMA_AUTO=y
102 101
102Also define 'IDE_AU1XXX_BURSTMODE' in 'drivers/ide/mips/au1xxx-ide.c' to enable
103the burst support on DBDMA controller.
104
103If the used system need the USB support enable the following kernel configs for 105If the used system need the USB support enable the following kernel configs for
104high IDE to USB throughput. 106high IDE to USB throughput.
105 107
@@ -115,6 +117,8 @@ CONFIG_BLK_DEV_IDE_AU1XXX_SEQTS_PER_RQ=128
115CONFIG_BLK_DEV_IDEDMA=y 117CONFIG_BLK_DEV_IDEDMA=y
116CONFIG_IDEDMA_AUTO=y 118CONFIG_IDEDMA_AUTO=y
117 119
120Also undefine 'IDE_AU1XXX_BURSTMODE' in 'drivers/ide/mips/au1xxx-ide.c' to
121disable the burst support on DBDMA controller.
118 122
119ADD NEW HARD DISC TO WHITE OR BLACK LIST 123ADD NEW HARD DISC TO WHITE OR BLACK LIST
120---------------------------------------- 124----------------------------------------
diff --git a/Documentation/powerpc/booting-without-of.txt b/Documentation/powerpc/booting-without-of.txt
index 1284498e847c..d02c64953dcd 100644
--- a/Documentation/powerpc/booting-without-of.txt
+++ b/Documentation/powerpc/booting-without-of.txt
@@ -44,7 +44,6 @@
44 compiler and the textural representation of 44 compiler and the textural representation of
45 the tree that can be "compiled" by dtc. 45 the tree that can be "compiled" by dtc.
46 46
47
48 November 21, 2005: Rev 0.5 47 November 21, 2005: Rev 0.5
49 - Additions/generalizations for 32-bit 48 - Additions/generalizations for 32-bit
50 - Changed to reflect the new arch/powerpc 49 - Changed to reflect the new arch/powerpc
@@ -880,6 +879,10 @@ address which can extend beyond that limit.
880 - device_type : Should be "soc" 879 - device_type : Should be "soc"
881 - ranges : Should be defined as specified in 1) to describe the 880 - ranges : Should be defined as specified in 1) to describe the
882 translation of SOC addresses for memory mapped SOC registers. 881 translation of SOC addresses for memory mapped SOC registers.
882 - bus-frequency: Contains the bus frequency for the SOC node.
883 Typically, the value of this field is filled in by the boot
884 loader.
885
883 886
884 Recommended properties: 887 Recommended properties:
885 888
@@ -919,6 +922,7 @@ SOC.
919 device_type = "soc"; 922 device_type = "soc";
920 ranges = <00000000 e0000000 00100000> 923 ranges = <00000000 e0000000 00100000>
921 reg = <e0000000 00003000>; 924 reg = <e0000000 00003000>;
925 bus-frequency = <0>;
922 } 926 }
923 927
924 928
@@ -1170,6 +1174,8 @@ platforms are moved over to use the flattened-device-tree model.
1170 1174
1171 mdio@24520 { 1175 mdio@24520 {
1172 reg = <24520 20>; 1176 reg = <24520 20>;
1177 device_type = "mdio";
1178 compatible = "gianfar";
1173 1179
1174 ethernet-phy@0 { 1180 ethernet-phy@0 {
1175 ...... 1181 ......
@@ -1300,6 +1306,65 @@ platforms are moved over to use the flattened-device-tree model.
1300 }; 1306 };
1301 1307
1302 1308
1309 f) Freescale SOC USB controllers
1310
1311 The device node for a USB controller that is part of a Freescale
1312 SOC is as described in the document "Open Firmware Recommended
1313 Practice : Universal Serial Bus" with the following modifications
1314 and additions :
1315
1316 Required properties :
1317 - compatible : Should be "fsl-usb2-mph" for multi port host usb
1318 controllers, or "fsl-usb2-dr" for dual role usb controllers
1319 - phy_type : For multi port host usb controllers, should be one of
1320 "ulpi", or "serial". For dual role usb controllers, should be
1321 one of "ulpi", "utmi", "utmi_wide", or "serial".
1322 - reg : Offset and length of the register set for the device
1323 - port0 : boolean; if defined, indicates port0 is connected for
1324 fsl-usb2-mph compatible controllers. Either this property or
1325 "port1" (or both) must be defined for "fsl-usb2-mph" compatible
1326 controllers.
1327 - port1 : boolean; if defined, indicates port1 is connected for
1328 fsl-usb2-mph compatible controllers. Either this property or
1329 "port0" (or both) must be defined for "fsl-usb2-mph" compatible
1330 controllers.
1331
1332 Recommended properties :
1333 - interrupts : <a b> where a is the interrupt number and b is a
1334 field that represents an encoding of the sense and level
1335 information for the interrupt. This should be encoded based on
1336 the information in section 2) depending on the type of interrupt
1337 controller you have.
1338 - interrupt-parent : the phandle for the interrupt controller that
1339 services interrupts for this device.
1340
1341 Example multi port host usb controller device node :
1342 usb@22000 {
1343 device_type = "usb";
1344 compatible = "fsl-usb2-mph";
1345 reg = <22000 1000>;
1346 #address-cells = <1>;
1347 #size-cells = <0>;
1348 interrupt-parent = <700>;
1349 interrupts = <27 1>;
1350 phy_type = "ulpi";
1351 port0;
1352 port1;
1353 };
1354
1355 Example dual role usb controller device node :
1356 usb@23000 {
1357 device_type = "usb";
1358 compatible = "fsl-usb2-dr";
1359 reg = <23000 1000>;
1360 #address-cells = <1>;
1361 #size-cells = <0>;
1362 interrupt-parent = <700>;
1363 interrupts = <26 1>;
1364 phy = "ulpi";
1365 };
1366
1367
1303 More devices will be defined as this spec matures. 1368 More devices will be defined as this spec matures.
1304 1369
1305 1370
@@ -1317,6 +1382,7 @@ not necessary as they are usually the same as the root node.
1317 device_type = "soc"; 1382 device_type = "soc";
1318 ranges = <00000000 e0000000 00100000> 1383 ranges = <00000000 e0000000 00100000>
1319 reg = <e0000000 00003000>; 1384 reg = <e0000000 00003000>;
1385 bus-frequency = <0>;
1320 1386
1321 mdio@24520 { 1387 mdio@24520 {
1322 reg = <24520 20>; 1388 reg = <24520 20>;
diff --git a/Documentation/spi/butterfly b/Documentation/spi/butterfly
index a2e8c8d90e35..9927af7a629c 100644
--- a/Documentation/spi/butterfly
+++ b/Documentation/spi/butterfly
@@ -12,13 +12,20 @@ You can make this adapter from an old printer cable and solder things
12directly to the Butterfly. Or (if you have the parts and skills) you 12directly to the Butterfly. Or (if you have the parts and skills) you
13can come up with something fancier, providing ciruit protection to the 13can come up with something fancier, providing ciruit protection to the
14Butterfly and the printer port, or with a better power supply than two 14Butterfly and the printer port, or with a better power supply than two
15signal pins from the printer port. 15signal pins from the printer port. Or for that matter, you can use
16similar cables to talk to many AVR boards, even a breadboard.
17
18This is more powerful than "ISP programming" cables since it lets kernel
19SPI protocol drivers interact with the AVR, and could even let the AVR
20issue interrupts to them. Later, your protocol driver should work
21easily with a "real SPI controller", instead of this bitbanger.
16 22
17 23
18The first cable connections will hook Linux up to one SPI bus, with the 24The first cable connections will hook Linux up to one SPI bus, with the
19AVR and a DataFlash chip; and to the AVR reset line. This is all you 25AVR and a DataFlash chip; and to the AVR reset line. This is all you
20need to reflash the firmware, and the pins are the standard Atmel "ISP" 26need to reflash the firmware, and the pins are the standard Atmel "ISP"
21connector pins (used also on non-Butterfly AVR boards). 27connector pins (used also on non-Butterfly AVR boards). On the parport
28side this is like "sp12" programming cables.
22 29
23 Signal Butterfly Parport (DB-25) 30 Signal Butterfly Parport (DB-25)
24 ------ --------- --------------- 31 ------ --------- ---------------
@@ -40,10 +47,14 @@ by clearing PORTB.[0-3]); (b) configure the mtd_dataflash driver; and
40 SELECT = J400.PB0/nSS = pin 17/C3,nSELECT 47 SELECT = J400.PB0/nSS = pin 17/C3,nSELECT
41 GND = J400.GND = pin 24/GND 48 GND = J400.GND = pin 24/GND
42 49
43The "USI" controller, using J405, can be used for a second SPI bus. That 50Or you could flash firmware making the AVR into an SPI slave (keeping the
44would let you talk to the AVR over SPI, running firmware that makes it act 51DataFlash in reset) and tweak the spi_butterfly driver to make it bind to
45as an SPI slave, while letting either Linux or the AVR use the DataFlash. 52the driver for your custom SPI-based protocol.
46There are plenty of spare parport pins to wire this one up, such as: 53
54The "USI" controller, using J405, can also be used for a second SPI bus.
55That would let you talk to the AVR using custom SPI-with-USI firmware,
56while letting either Linux or the AVR use the DataFlash. There are plenty
57of spare parport pins to wire this one up, such as:
47 58
48 Signal Butterfly Parport (DB-25) 59 Signal Butterfly Parport (DB-25)
49 ------ --------- --------------- 60 ------ --------- ---------------
diff --git a/Documentation/unshare.txt b/Documentation/unshare.txt
new file mode 100644
index 000000000000..90a5e9e5bef1
--- /dev/null
+++ b/Documentation/unshare.txt
@@ -0,0 +1,295 @@
1
2unshare system call:
3--------------------
4This document describes the new system call, unshare. The document
5provides an overview of the feature, why it is needed, how it can
6be used, its interface specification, design, implementation and
7how it can be tested.
8
9Change Log:
10-----------
11version 0.1 Initial document, Janak Desai (janak@us.ibm.com), Jan 11, 2006
12
13Contents:
14---------
15 1) Overview
16 2) Benefits
17 3) Cost
18 4) Requirements
19 5) Functional Specification
20 6) High Level Design
21 7) Low Level Design
22 8) Test Specification
23 9) Future Work
24
251) Overview
26-----------
27Most legacy operating system kernels support an abstraction of threads
28as multiple execution contexts within a process. These kernels provide
29special resources and mechanisms to maintain these "threads". The Linux
30kernel, in a clever and simple manner, does not make distinction
31between processes and "threads". The kernel allows processes to share
32resources and thus they can achieve legacy "threads" behavior without
33requiring additional data structures and mechanisms in the kernel. The
34power of implementing threads in this manner comes not only from
35its simplicity but also from allowing application programmers to work
36outside the confinement of all-or-nothing shared resources of legacy
37threads. On Linux, at the time of thread creation using the clone system
38call, applications can selectively choose which resources to share
39between threads.
40
41unshare system call adds a primitive to the Linux thread model that
42allows threads to selectively 'unshare' any resources that were being
43shared at the time of their creation. unshare was conceptualized by
44Al Viro in the August of 2000, on the Linux-Kernel mailing list, as part
45of the discussion on POSIX threads on Linux. unshare augments the
46usefulness of Linux threads for applications that would like to control
47shared resources without creating a new process. unshare is a natural
48addition to the set of available primitives on Linux that implement
49the concept of process/thread as a virtual machine.
50
512) Benefits
52-----------
53unshare would be useful to large application frameworks such as PAM
54where creating a new process to control sharing/unsharing of process
55resources is not possible. Since namespaces are shared by default
56when creating a new process using fork or clone, unshare can benefit
57even non-threaded applications if they have a need to disassociate
58from default shared namespace. The following lists two use-cases
59where unshare can be used.
60
612.1 Per-security context namespaces
62-----------------------------------
63unshare can be used to implement polyinstantiated directories using
64the kernel's per-process namespace mechanism. Polyinstantiated directories,
65such as per-user and/or per-security context instance of /tmp, /var/tmp or
66per-security context instance of a user's home directory, isolate user
67processes when working with these directories. Using unshare, a PAM
68module can easily setup a private namespace for a user at login.
69Polyinstantiated directories are required for Common Criteria certification
70with Labeled System Protection Profile, however, with the availability
71of shared-tree feature in the Linux kernel, even regular Linux systems
72can benefit from setting up private namespaces at login and
73polyinstantiating /tmp, /var/tmp and other directories deemed
74appropriate by system administrators.
75
762.2 unsharing of virtual memory and/or open files
77-------------------------------------------------
78Consider a client/server application where the server is processing
79client requests by creating processes that share resources such as
80virtual memory and open files. Without unshare, the server has to
81decide what needs to be shared at the time of creating the process
82which services the request. unshare allows the server an ability to
83disassociate parts of the context during the servicing of the
84request. For large and complex middleware application frameworks, this
85ability to unshare after the process was created can be very
86useful.
87
883) Cost
89-------
90In order to not duplicate code and to handle the fact that unshare
91works on an active task (as opposed to clone/fork working on a newly
92allocated inactive task) unshare had to make minor reorganizational
93changes to copy_* functions utilized by clone/fork system call.
94There is a cost associated with altering existing, well tested and
95stable code to implement a new feature that may not get exercised
96extensively in the beginning. However, with proper design and code
97review of the changes and creation of an unshare test for the LTP
98the benefits of this new feature can exceed its cost.
99
1004) Requirements
101---------------
102unshare reverses sharing that was done using clone(2) system call,
103so unshare should have a similar interface as clone(2). That is,
104since flags in clone(int flags, void *stack) specifies what should
105be shared, similar flags in unshare(int flags) should specify
106what should be unshared. Unfortunately, this may appear to invert
107the meaning of the flags from the way they are used in clone(2).
108However, there was no easy solution that was less confusing and that
109allowed incremental context unsharing in future without an ABI change.
110
111unshare interface should accommodate possible future addition of
112new context flags without requiring a rebuild of old applications.
113If and when new context flags are added, unshare design should allow
114incremental unsharing of those resources on an as needed basis.
115
1165) Functional Specification
117---------------------------
118NAME
119 unshare - disassociate parts of the process execution context
120
121SYNOPSIS
122 #include <sched.h>
123
124 int unshare(int flags);
125
126DESCRIPTION
127 unshare allows a process to disassociate parts of its execution
128 context that are currently being shared with other processes. Part
129 of execution context, such as the namespace, is shared by default
130 when a new process is created using fork(2), while other parts,
131 such as the virtual memory, open file descriptors, etc, may be
132 shared by explicit request to share them when creating a process
133 using clone(2).
134
135 The main use of unshare is to allow a process to control its
136 shared execution context without creating a new process.
137
138 The flags argument specifies one or bitwise-or'ed of several of
139 the following constants.
140
141 CLONE_FS
142 If CLONE_FS is set, file system information of the caller
143 is disassociated from the shared file system information.
144
145 CLONE_FILES
146 If CLONE_FILES is set, the file descriptor table of the
147 caller is disassociated from the shared file descriptor
148 table.
149
150 CLONE_NEWNS
151 If CLONE_NEWNS is set, the namespace of the caller is
152 disassociated from the shared namespace.
153
154 CLONE_VM
155 If CLONE_VM is set, the virtual memory of the caller is
156 disassociated from the shared virtual memory.
157
158RETURN VALUE
159 On success, zero returned. On failure, -1 is returned and errno is
160
161ERRORS
162 EPERM CLONE_NEWNS was specified by a non-root process (process
163 without CAP_SYS_ADMIN).
164
165 ENOMEM Cannot allocate sufficient memory to copy parts of caller's
166 context that need to be unshared.
167
168 EINVAL Invalid flag was specified as an argument.
169
170CONFORMING TO
171 The unshare() call is Linux-specific and should not be used
172 in programs intended to be portable.
173
174SEE ALSO
175 clone(2), fork(2)
176
1776) High Level Design
178--------------------
179Depending on the flags argument, the unshare system call allocates
180appropriate process context structures, populates it with values from
181the current shared version, associates newly duplicated structures
182with the current task structure and releases corresponding shared
183versions. Helper functions of clone (copy_*) could not be used
184directly by unshare because of the following two reasons.
185 1) clone operates on a newly allocated not-yet-active task
186 structure, where as unshare operates on the current active
187 task. Therefore unshare has to take appropriate task_lock()
188 before associating newly duplicated context structures
189 2) unshare has to allocate and duplicate all context structures
190 that are being unshared, before associating them with the
191 current task and releasing older shared structures. Failure
192 do so will create race conditions and/or oops when trying
193 to backout due to an error. Consider the case of unsharing
194 both virtual memory and namespace. After successfully unsharing
195 vm, if the system call encounters an error while allocating
196 new namespace structure, the error return code will have to
197 reverse the unsharing of vm. As part of the reversal the
198 system call will have to go back to older, shared, vm
199 structure, which may not exist anymore.
200
201Therefore code from copy_* functions that allocated and duplicated
202current context structure was moved into new dup_* functions. Now,
203copy_* functions call dup_* functions to allocate and duplicate
204appropriate context structures and then associate them with the
205task structure that is being constructed. unshare system call on
206the other hand performs the following:
207 1) Check flags to force missing, but implied, flags
208 2) For each context structure, call the corresponding unshare
209 helper function to allocate and duplicate a new context
210 structure, if the appropriate bit is set in the flags argument.
211 3) If there is no error in allocation and duplication and there
212 are new context structures then lock the current task structure,
213 associate new context structures with the current task structure,
214 and release the lock on the current task structure.
215 4) Appropriately release older, shared, context structures.
216
2177) Low Level Design
218-------------------
219Implementation of unshare can be grouped in the following 4 different
220items:
221 a) Reorganization of existing copy_* functions
222 b) unshare system call service function
223 c) unshare helper functions for each different process context
224 d) Registration of system call number for different architectures
225
226 7.1) Reorganization of copy_* functions
227 Each copy function such as copy_mm, copy_namespace, copy_files,
228 etc, had roughly two components. The first component allocated
229 and duplicated the appropriate structure and the second component
230 linked it to the task structure passed in as an argument to the copy
231 function. The first component was split into its own function.
232 These dup_* functions allocated and duplicated the appropriate
233 context structure. The reorganized copy_* functions invoked
234 their corresponding dup_* functions and then linked the newly
235 duplicated structures to the task structure with which the
236 copy function was called.
237
238 7.2) unshare system call service function
239 * Check flags
240 Force implied flags. If CLONE_THREAD is set force CLONE_VM.
241 If CLONE_VM is set, force CLONE_SIGHAND. If CLONE_SIGHAND is
242 set and signals are also being shared, force CLONE_THREAD. If
243 CLONE_NEWNS is set, force CLONE_FS.
244 * For each context flag, invoke the corresponding unshare_*
245 helper routine with flags passed into the system call and a
246 reference to pointer pointing the new unshared structure
247 * If any new structures are created by unshare_* helper
248 functions, take the task_lock() on the current task,
249 modify appropriate context pointers, and release the
250 task lock.
251 * For all newly unshared structures, release the corresponding
252 older, shared, structures.
253
254 7.3) unshare_* helper functions
255 For unshare_* helpers corresponding to CLONE_SYSVSEM, CLONE_SIGHAND,
256 and CLONE_THREAD, return -EINVAL since they are not implemented yet.
257 For others, check the flag value to see if the unsharing is
258 required for that structure. If it is, invoke the corresponding
259 dup_* function to allocate and duplicate the structure and return
260 a pointer to it.
261
262 7.4) Appropriately modify architecture specific code to register the
263 the new system call.
264
2658) Test Specification
266---------------------
267The test for unshare should test the following:
268 1) Valid flags: Test to check that clone flags for signal and
269 signal handlers, for which unsharing is not implemented
270 yet, return -EINVAL.
271 2) Missing/implied flags: Test to make sure that if unsharing
272 namespace without specifying unsharing of filesystem, correctly
273 unshares both namespace and filesystem information.
274 3) For each of the four (namespace, filesystem, files and vm)
275 supported unsharing, verify that the system call correctly
276 unshares the appropriate structure. Verify that unsharing
277 them individually as well as in combination with each
278 other works as expected.
279 4) Concurrent execution: Use shared memory segments and futex on
280 an address in the shm segment to synchronize execution of
281 about 10 threads. Have a couple of threads execute execve,
282 a couple _exit and the rest unshare with different combination
283 of flags. Verify that unsharing is performed as expected and
284 that there are no oops or hangs.
285
2869) Future Work
287--------------
288The current implementation of unshare does not allow unsharing of
289signals and signal handlers. Signals are complex to begin with and
290to unshare signals and/or signal handlers of a currently running
291process is even more complex. If in the future there is a specific
292need to allow unsharing of signals and/or signal handlers, it can
293be incrementally added to unshare without affecting legacy
294applications using unshare.
295
diff --git a/Documentation/video4linux/CARDLIST.cx88 b/Documentation/video4linux/CARDLIST.cx88
index 56e194f1a0b0..8bea3fbd0548 100644
--- a/Documentation/video4linux/CARDLIST.cx88
+++ b/Documentation/video4linux/CARDLIST.cx88
@@ -42,4 +42,4 @@
42 41 -> Hauppauge WinTV-HVR1100 DVB-T/Hybrid (Low Profile) [0070:9800,0070:9802] 42 41 -> Hauppauge WinTV-HVR1100 DVB-T/Hybrid (Low Profile) [0070:9800,0070:9802]
43 42 -> digitalnow DNTV Live! DVB-T Pro [1822:0025] 43 42 -> digitalnow DNTV Live! DVB-T Pro [1822:0025]
44 43 -> KWorld/VStream XPert DVB-T with cx22702 [17de:08a1] 44 43 -> KWorld/VStream XPert DVB-T with cx22702 [17de:08a1]
45 44 -> DViCO FusionHDTV DVB-T Dual Digital [18ac:db50] 45 44 -> DViCO FusionHDTV DVB-T Dual Digital [18ac:db50,18ac:db54]
diff --git a/Documentation/video4linux/CARDLIST.saa7134 b/Documentation/video4linux/CARDLIST.saa7134
index cb3a59bbeb17..8a352597830f 100644
--- a/Documentation/video4linux/CARDLIST.saa7134
+++ b/Documentation/video4linux/CARDLIST.saa7134
@@ -1,7 +1,7 @@
1 0 -> UNKNOWN/GENERIC 1 0 -> UNKNOWN/GENERIC
2 1 -> Proteus Pro [philips reference design] [1131:2001,1131:2001] 2 1 -> Proteus Pro [philips reference design] [1131:2001,1131:2001]
3 2 -> LifeView FlyVIDEO3000 [5168:0138,4e42:0138] 3 2 -> LifeView FlyVIDEO3000 [5168:0138,4e42:0138]
4 3 -> LifeView FlyVIDEO2000 [5168:0138] 4 3 -> LifeView/Typhoon FlyVIDEO2000 [5168:0138,4e42:0138]
5 4 -> EMPRESS [1131:6752] 5 4 -> EMPRESS [1131:6752]
6 5 -> SKNet Monster TV [1131:4e85] 6 5 -> SKNet Monster TV [1131:4e85]
7 6 -> Tevion MD 9717 7 6 -> Tevion MD 9717
@@ -53,12 +53,12 @@
53 52 -> AverMedia AverTV/305 [1461:2108] 53 52 -> AverMedia AverTV/305 [1461:2108]
54 53 -> ASUS TV-FM 7135 [1043:4845] 54 53 -> ASUS TV-FM 7135 [1043:4845]
55 54 -> LifeView FlyTV Platinum FM [5168:0214,1489:0214] 55 54 -> LifeView FlyTV Platinum FM [5168:0214,1489:0214]
56 55 -> LifeView FlyDVB-T DUO [5168:0502,5168:0306] 56 55 -> LifeView FlyDVB-T DUO [5168:0306]
57 56 -> Avermedia AVerTV 307 [1461:a70a] 57 56 -> Avermedia AVerTV 307 [1461:a70a]
58 57 -> Avermedia AVerTV GO 007 FM [1461:f31f] 58 57 -> Avermedia AVerTV GO 007 FM [1461:f31f]
59 58 -> ADS Tech Instant TV (saa7135) [1421:0350,1421:0351,1421:0370,1421:1370] 59 58 -> ADS Tech Instant TV (saa7135) [1421:0350,1421:0351,1421:0370,1421:1370]
60 59 -> Kworld/Tevion V-Stream Xpert TV PVR7134 60 59 -> Kworld/Tevion V-Stream Xpert TV PVR7134
61 60 -> Typhoon DVB-T Duo Digital/Analog Cardbus [4e42:0502] 61 60 -> LifeView/Typhoon FlyDVB-T Duo Cardbus [5168:0502,4e42:0502]
62 61 -> Philips TOUGH DVB-T reference design [1131:2004] 62 61 -> Philips TOUGH DVB-T reference design [1131:2004]
63 62 -> Compro VideoMate TV Gold+II 63 62 -> Compro VideoMate TV Gold+II
64 63 -> Kworld Xpert TV PVR7134 64 63 -> Kworld Xpert TV PVR7134
diff --git a/Documentation/x86_64/boot-options.txt b/Documentation/x86_64/boot-options.txt
index 9c5fc15d03d1..153740f460a6 100644
--- a/Documentation/x86_64/boot-options.txt
+++ b/Documentation/x86_64/boot-options.txt
@@ -40,6 +40,18 @@ APICs
40 no_timer_check Don't check the IO-APIC timer. This can work around 40 no_timer_check Don't check the IO-APIC timer. This can work around
41 problems with incorrect timer initialization on some boards. 41 problems with incorrect timer initialization on some boards.
42 42
43 apicmaintimer Run time keeping from the local APIC timer instead
44 of using the PIT/HPET interrupt for this. This is useful
45 when the PIT/HPET interrupts are unreliable.
46
47 noapicmaintimer Don't do time keeping using the APIC timer.
48 Useful when this option was auto selected, but doesn't work.
49
50 apicpmtimer
51 Do APIC timer calibration using the pmtimer. Implies
52 apicmaintimer. Useful when your PIT timer is totally
53 broken.
54
43Early Console 55Early Console
44 56
45 syntax: earlyprintk=vga 57 syntax: earlyprintk=vga