diff options
Diffstat (limited to 'Documentation')
-rw-r--r-- | Documentation/DocBook/Makefile | 2 | ||||
-rw-r--r-- | Documentation/DocBook/s390-drivers.tmpl | 149 | ||||
-rw-r--r-- | Documentation/filesystems/ntfs.txt | 4 | ||||
-rw-r--r-- | Documentation/kernel-parameters.txt | 7 | ||||
-rw-r--r-- | Documentation/s390/00-INDEX | 26 | ||||
-rw-r--r-- | Documentation/s390/CommonIO | 51 | ||||
-rw-r--r-- | Documentation/s390/cds.txt | 8 | ||||
-rw-r--r-- | Documentation/usb/authorization.txt | 92 | ||||
-rw-r--r-- | Documentation/usb/power-management.txt | 517 | ||||
-rw-r--r-- | Documentation/usb/usb-serial.txt | 11 | ||||
-rw-r--r-- | Documentation/usb/usbmon.txt | 9 |
11 files changed, 847 insertions, 29 deletions
diff --git a/Documentation/DocBook/Makefile b/Documentation/DocBook/Makefile index 08687e45e19d..1a7f53068ec2 100644 --- a/Documentation/DocBook/Makefile +++ b/Documentation/DocBook/Makefile | |||
@@ -11,7 +11,7 @@ DOCBOOKS := wanbook.xml z8530book.xml mcabook.xml videobook.xml \ | |||
11 | procfs-guide.xml writing_usb_driver.xml \ | 11 | procfs-guide.xml writing_usb_driver.xml \ |
12 | kernel-api.xml filesystems.xml lsm.xml usb.xml \ | 12 | kernel-api.xml filesystems.xml lsm.xml usb.xml \ |
13 | gadget.xml libata.xml mtdnand.xml librs.xml rapidio.xml \ | 13 | gadget.xml libata.xml mtdnand.xml librs.xml rapidio.xml \ |
14 | genericirq.xml | 14 | genericirq.xml s390-drivers.xml |
15 | 15 | ||
16 | ### | 16 | ### |
17 | # The build process is as follows (targets): | 17 | # The build process is as follows (targets): |
diff --git a/Documentation/DocBook/s390-drivers.tmpl b/Documentation/DocBook/s390-drivers.tmpl new file mode 100644 index 000000000000..254e769282a4 --- /dev/null +++ b/Documentation/DocBook/s390-drivers.tmpl | |||
@@ -0,0 +1,149 @@ | |||
1 | <?xml version="1.0" encoding="UTF-8"?> | ||
2 | <!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN" | ||
3 | "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []> | ||
4 | |||
5 | <book id="s390drivers"> | ||
6 | <bookinfo> | ||
7 | <title>Writing s390 channel device drivers</title> | ||
8 | |||
9 | <authorgroup> | ||
10 | <author> | ||
11 | <firstname>Cornelia</firstname> | ||
12 | <surname>Huck</surname> | ||
13 | <affiliation> | ||
14 | <address> | ||
15 | <email>cornelia.huck@de.ibm.com</email> | ||
16 | </address> | ||
17 | </affiliation> | ||
18 | </author> | ||
19 | </authorgroup> | ||
20 | |||
21 | <copyright> | ||
22 | <year>2007</year> | ||
23 | <holder>IBM Corp.</holder> | ||
24 | </copyright> | ||
25 | |||
26 | <legalnotice> | ||
27 | <para> | ||
28 | This documentation is free software; you can redistribute | ||
29 | it and/or modify it under the terms of the GNU General Public | ||
30 | License as published by the Free Software Foundation; either | ||
31 | version 2 of the License, or (at your option) any later | ||
32 | version. | ||
33 | </para> | ||
34 | |||
35 | <para> | ||
36 | This program is distributed in the hope that it will be | ||
37 | useful, but WITHOUT ANY WARRANTY; without even the implied | ||
38 | warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. | ||
39 | See the GNU General Public License for more details. | ||
40 | </para> | ||
41 | |||
42 | <para> | ||
43 | You should have received a copy of the GNU General Public | ||
44 | License along with this program; if not, write to the Free | ||
45 | Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, | ||
46 | MA 02111-1307 USA | ||
47 | </para> | ||
48 | |||
49 | <para> | ||
50 | For more details see the file COPYING in the source | ||
51 | distribution of Linux. | ||
52 | </para> | ||
53 | </legalnotice> | ||
54 | </bookinfo> | ||
55 | |||
56 | <toc></toc> | ||
57 | |||
58 | <chapter id="intro"> | ||
59 | <title>Introduction</title> | ||
60 | <para> | ||
61 | This document describes the interfaces available for device drivers that | ||
62 | drive s390 based channel attached devices. This includes interfaces for | ||
63 | interaction with the hardware and interfaces for interacting with the | ||
64 | common driver core. Those interfaces are provided by the s390 common I/O | ||
65 | layer. | ||
66 | </para> | ||
67 | <para> | ||
68 | The document assumes a familarity with the technical terms associated | ||
69 | with the s390 channel I/O architecture. For a description of this | ||
70 | architecture, please refer to the "z/Architecture: Principles of | ||
71 | Operation", IBM publication no. SA22-7832. | ||
72 | </para> | ||
73 | <para> | ||
74 | While most I/O devices on a s390 system are typically driven through the | ||
75 | channel I/O mechanism described here, there are various other methods | ||
76 | (like the diag interface). These are out of the scope of this document. | ||
77 | </para> | ||
78 | <para> | ||
79 | Some additional information can also be found in the kernel source | ||
80 | under Documentation/s390/driver-model.txt. | ||
81 | </para> | ||
82 | </chapter> | ||
83 | <chapter id="ccw"> | ||
84 | <title>The ccw bus</title> | ||
85 | <para> | ||
86 | The ccw bus typically contains the majority of devices available to | ||
87 | a s390 system. Named after the channel command word (ccw), the basic | ||
88 | command structure used to address its devices, the ccw bus contains | ||
89 | so-called channel attached devices. They are addressed via subchannels, | ||
90 | visible on the css bus. A device driver, however, will never interact | ||
91 | with the subchannel directly, but only via the device on the ccw bus, | ||
92 | the ccw device. | ||
93 | </para> | ||
94 | <sect1 id="channelIO"> | ||
95 | <title>I/O functions for channel-attached devices</title> | ||
96 | <para> | ||
97 | Some hardware structures have been translated into C structures for use | ||
98 | by the common I/O layer and device drivers. For more information on | ||
99 | the hardware structures represented here, please consult the Principles | ||
100 | of Operation. | ||
101 | </para> | ||
102 | !Iinclude/asm-s390/cio.h | ||
103 | </sect1> | ||
104 | <sect1 id="ccwdev"> | ||
105 | <title>ccw devices</title> | ||
106 | <para> | ||
107 | Devices that want to initiate channel I/O need to attach to the ccw bus. | ||
108 | Interaction with the driver core is done via the common I/O layer, which | ||
109 | provides the abstractions of ccw devices and ccw device drivers. | ||
110 | </para> | ||
111 | <para> | ||
112 | The functions that initiate or terminate channel I/O all act upon a | ||
113 | ccw device structure. Device drivers must not bypass those functions | ||
114 | or strange side effects may happen. | ||
115 | </para> | ||
116 | !Iinclude/asm-s390/ccwdev.h | ||
117 | !Edrivers/s390/cio/device.c | ||
118 | !Edrivers/s390/cio/device_ops.c | ||
119 | </sect1> | ||
120 | <sect1 id="cmf"> | ||
121 | <title>The channel-measurement facility</title> | ||
122 | <para> | ||
123 | The channel-measurement facility provides a means to collect | ||
124 | measurement data which is made available by the channel subsystem | ||
125 | for each channel attached device. | ||
126 | </para> | ||
127 | !Iinclude/asm-s390/cmb.h | ||
128 | !Edrivers/s390/cio/cmf.c | ||
129 | </sect1> | ||
130 | </chapter> | ||
131 | |||
132 | <chapter id="ccwgroup"> | ||
133 | <title>The ccwgroup bus</title> | ||
134 | <para> | ||
135 | The ccwgroup bus only contains artificial devices, created by the user. | ||
136 | Many networking devices (e.g. qeth) are in fact composed of several | ||
137 | ccw devices (like read, write and data channel for qeth). The | ||
138 | ccwgroup bus provides a mechanism to create a meta-device which | ||
139 | contains those ccw devices as slave devices and can be associated | ||
140 | with the netdevice. | ||
141 | </para> | ||
142 | <sect1 id="ccwgroupdevices"> | ||
143 | <title>ccw group devices</title> | ||
144 | !Iinclude/asm-s390/ccwgroup.h | ||
145 | !Edrivers/s390/cio/ccwgroup.c | ||
146 | </sect1> | ||
147 | </chapter> | ||
148 | |||
149 | </book> | ||
diff --git a/Documentation/filesystems/ntfs.txt b/Documentation/filesystems/ntfs.txt index 8ee10ec88293..e79ee2db183a 100644 --- a/Documentation/filesystems/ntfs.txt +++ b/Documentation/filesystems/ntfs.txt | |||
@@ -407,7 +407,7 @@ raiddev /dev/md0 | |||
407 | device /dev/hda5 | 407 | device /dev/hda5 |
408 | raid-disk 0 | 408 | raid-disk 0 |
409 | device /dev/hdb1 | 409 | device /dev/hdb1 |
410 | raid-disl 1 | 410 | raid-disk 1 |
411 | 411 | ||
412 | For linear raid, just change the raid-level above to "raid-level linear", for | 412 | For linear raid, just change the raid-level above to "raid-level linear", for |
413 | mirrors, change it to "raid-level 1", and for stripe sets with parity, change | 413 | mirrors, change it to "raid-level 1", and for stripe sets with parity, change |
@@ -457,6 +457,8 @@ ChangeLog | |||
457 | 457 | ||
458 | Note, a technical ChangeLog aimed at kernel hackers is in fs/ntfs/ChangeLog. | 458 | Note, a technical ChangeLog aimed at kernel hackers is in fs/ntfs/ChangeLog. |
459 | 459 | ||
460 | 2.1.29: | ||
461 | - Fix a deadlock when mounting read-write. | ||
460 | 2.1.28: | 462 | 2.1.28: |
461 | - Fix a deadlock. | 463 | - Fix a deadlock. |
462 | 2.1.27: | 464 | 2.1.27: |
diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt index bdddd3cd46dd..912c57c2334e 100644 --- a/Documentation/kernel-parameters.txt +++ b/Documentation/kernel-parameters.txt | |||
@@ -1009,6 +1009,10 @@ and is between 256 and 4096 characters. It is defined in the file | |||
1009 | meye.*= [HW] Set MotionEye Camera parameters | 1009 | meye.*= [HW] Set MotionEye Camera parameters |
1010 | See Documentation/video4linux/meye.txt. | 1010 | See Documentation/video4linux/meye.txt. |
1011 | 1011 | ||
1012 | mfgpt_irq= [IA-32] Specify the IRQ to use for the | ||
1013 | Multi-Function General Purpose Timers on AMD Geode | ||
1014 | platforms. | ||
1015 | |||
1012 | mga= [HW,DRM] | 1016 | mga= [HW,DRM] |
1013 | 1017 | ||
1014 | mousedev.tap_time= | 1018 | mousedev.tap_time= |
@@ -1160,6 +1164,9 @@ and is between 256 and 4096 characters. It is defined in the file | |||
1160 | 1164 | ||
1161 | nomce [X86-32] Machine Check Exception | 1165 | nomce [X86-32] Machine Check Exception |
1162 | 1166 | ||
1167 | nomfgpt [X86-32] Disable Multi-Function General Purpose | ||
1168 | Timer usage (for AMD Geode machines). | ||
1169 | |||
1163 | noreplace-paravirt [X86-32,PV_OPS] Don't patch paravirt_ops | 1170 | noreplace-paravirt [X86-32,PV_OPS] Don't patch paravirt_ops |
1164 | 1171 | ||
1165 | noreplace-smp [X86-32,SMP] Don't replace SMP instructions | 1172 | noreplace-smp [X86-32,SMP] Don't replace SMP instructions |
diff --git a/Documentation/s390/00-INDEX b/Documentation/s390/00-INDEX new file mode 100644 index 000000000000..3a2b96302ecc --- /dev/null +++ b/Documentation/s390/00-INDEX | |||
@@ -0,0 +1,26 @@ | |||
1 | 00-INDEX | ||
2 | - this file. | ||
3 | 3270.ChangeLog | ||
4 | - ChangeLog for the UTS Global 3270-support patch (outdated). | ||
5 | 3270.txt | ||
6 | - how to use the IBM 3270 display system support. | ||
7 | cds.txt | ||
8 | - s390 common device support (common I/O layer). | ||
9 | CommonIO | ||
10 | - common I/O layer command line parameters, procfs and debugfs entries | ||
11 | config3270.sh | ||
12 | - example configuration for 3270 devices. | ||
13 | DASD | ||
14 | - information on the DASD disk device driver. | ||
15 | Debugging390.txt | ||
16 | - hints for debugging on s390 systems. | ||
17 | driver-model.txt | ||
18 | - information on s390 devices and the driver model. | ||
19 | monreader.txt | ||
20 | - information on accessing the z/VM monitor stream from Linux. | ||
21 | s390dbf.txt | ||
22 | - information on using the s390 debug feature. | ||
23 | TAPE | ||
24 | - information on the driver for channel-attached tapes. | ||
25 | zfcpdump | ||
26 | - information on the s390 SCSI dump tool. | ||
diff --git a/Documentation/s390/CommonIO b/Documentation/s390/CommonIO index 22f82f21bc60..86320aa3fb0b 100644 --- a/Documentation/s390/CommonIO +++ b/Documentation/s390/CommonIO | |||
@@ -1,5 +1,5 @@ | |||
1 | S/390 common I/O-Layer - command line parameters and /proc entries | 1 | S/390 common I/O-Layer - command line parameters, procfs and debugfs entries |
2 | ================================================================== | 2 | ============================================================================ |
3 | 3 | ||
4 | Command line parameters | 4 | Command line parameters |
5 | ----------------------- | 5 | ----------------------- |
@@ -7,9 +7,9 @@ Command line parameters | |||
7 | * cio_msg = yes | no | 7 | * cio_msg = yes | no |
8 | 8 | ||
9 | Determines whether information on found devices and sensed device | 9 | Determines whether information on found devices and sensed device |
10 | characteristics should be shown during startup, i. e. messages of the types | 10 | characteristics should be shown during startup or when new devices are |
11 | "Detected device 0.0.4711 on subchannel 0.0.0042" and "SenseID: Device | 11 | found, i. e. messages of the types "Detected device 0.0.4711 on subchannel |
12 | 0.0.4711 reports: ...". | 12 | 0.0.0042" and "SenseID: Device 0.0.4711 reports: ...". |
13 | 13 | ||
14 | Default is off. | 14 | Default is off. |
15 | 15 | ||
@@ -26,8 +26,10 @@ Command line parameters | |||
26 | An ignored device can be un-ignored later; see the "/proc entries"-section for | 26 | An ignored device can be un-ignored later; see the "/proc entries"-section for |
27 | details. | 27 | details. |
28 | 28 | ||
29 | The devices must be given either as bus ids (0.0.abcd) or as hexadecimal | 29 | The devices must be given either as bus ids (0.x.abcd) or as hexadecimal |
30 | device numbers (0xabcd or abcd, for 2.4 backward compatibility). | 30 | device numbers (0xabcd or abcd, for 2.4 backward compatibility). If you |
31 | give a device number 0xabcd, it will be interpreted as 0.0.abcd. | ||
32 | |||
31 | You can use the 'all' keyword to ignore all devices. | 33 | You can use the 'all' keyword to ignore all devices. |
32 | The '!' operator will cause the I/O-layer to _not_ ignore a device. | 34 | The '!' operator will cause the I/O-layer to _not_ ignore a device. |
33 | The command line is parsed from left to right. | 35 | The command line is parsed from left to right. |
@@ -81,31 +83,36 @@ Command line parameters | |||
81 | will add 0.0.a000-0.0.accc and 0.0.af00-0.0.afff to the list of ignored | 83 | will add 0.0.a000-0.0.accc and 0.0.af00-0.0.afff to the list of ignored |
82 | devices. | 84 | devices. |
83 | 85 | ||
84 | The devices can be specified either by bus id (0.0.abcd) or, for 2.4 backward | 86 | The devices can be specified either by bus id (0.x.abcd) or, for 2.4 backward |
85 | compatibility, by the device number in hexadecimal (0xabcd or abcd). | 87 | compatibility, by the device number in hexadecimal (0xabcd or abcd). Device |
88 | numbers given as 0xabcd will be interpreted as 0.0.abcd. | ||
89 | |||
90 | * For some of the information present in the /proc filesystem in 2.4 (namely, | ||
91 | /proc/subchannels and /proc/chpids), see driver-model.txt. | ||
92 | Information formerly in /proc/irq_count is now in /proc/interrupts. | ||
93 | |||
86 | 94 | ||
95 | debugfs entries | ||
96 | --------------- | ||
87 | 97 | ||
88 | * /proc/s390dbf/cio_*/ (S/390 debug feature) | 98 | * /sys/kernel/debug/s390dbf/cio_*/ (S/390 debug feature) |
89 | 99 | ||
90 | Some views generated by the debug feature to hold various debug outputs. | 100 | Some views generated by the debug feature to hold various debug outputs. |
91 | 101 | ||
92 | - /proc/s390dbf/cio_crw/sprintf | 102 | - /sys/kernel/debug/s390dbf/cio_crw/sprintf |
93 | Messages from the processing of pending channel report words (machine check | 103 | Messages from the processing of pending channel report words (machine check |
94 | handling), which will also show when CONFIG_DEBUG_CRW is defined. | 104 | handling). |
95 | 105 | ||
96 | - /proc/s390dbf/cio_msg/sprintf | 106 | - /sys/kernel/debug/s390dbf/cio_msg/sprintf |
97 | Various debug messages from the common I/O-layer; generally, messages which | 107 | Various debug messages from the common I/O-layer, including messages |
98 | will also show when CONFIG_DEBUG_IO is defined. | 108 | printed when cio_msg=yes. |
99 | 109 | ||
100 | - /proc/s390dbf/cio_trace/hex_ascii | 110 | - /sys/kernel/debug/s390dbf/cio_trace/hex_ascii |
101 | Logs the calling of functions in the common I/O-layer and, if applicable, | 111 | Logs the calling of functions in the common I/O-layer and, if applicable, |
102 | which subchannel they were called for, as well as dumps of some data | 112 | which subchannel they were called for, as well as dumps of some data |
103 | structures (like irb in an error case). | 113 | structures (like irb in an error case). |
104 | 114 | ||
105 | The level of logging can be changed to be more or less verbose by piping to | 115 | The level of logging can be changed to be more or less verbose by piping to |
106 | /proc/s390dbf/cio_*/level a number between 0 and 6; see the documentation on | 116 | /sys/kernel/debug/s390dbf/cio_*/level a number between 0 and 6; see the |
107 | the S/390 debug feature (Documentation/s390/s390dbf.txt) for details. | 117 | documentation on the S/390 debug feature (Documentation/s390/s390dbf.txt) |
108 | 118 | for details. | |
109 | * For some of the information present in the /proc filesystem in 2.4 (namely, | ||
110 | /proc/subchannels and /proc/chpids), see driver-model.txt. | ||
111 | Information formerly in /proc/irq_count is now in /proc/interrupts. | ||
diff --git a/Documentation/s390/cds.txt b/Documentation/s390/cds.txt index 58919d6a593a..3081927cc2d6 100644 --- a/Documentation/s390/cds.txt +++ b/Documentation/s390/cds.txt | |||
@@ -286,10 +286,10 @@ first: | |||
286 | timeout value | 286 | timeout value |
287 | -EIO: the common I/O layer terminated the request due to an error state | 287 | -EIO: the common I/O layer terminated the request due to an error state |
288 | 288 | ||
289 | If the concurrent sense flag in the extended status word in the irb is set, the | 289 | If the concurrent sense flag in the extended status word (esw) in the irb is |
290 | field irb->scsw.count describes the number of device specific sense bytes | 290 | set, the field erw.scnt in the esw describes the number of device specific |
291 | available in the extended control word irb->scsw.ecw[0]. No device sensing by | 291 | sense bytes available in the extended control word irb->scsw.ecw[]. No device |
292 | the device driver itself is required. | 292 | sensing by the device driver itself is required. |
293 | 293 | ||
294 | The device interrupt handler can use the following definitions to investigate | 294 | The device interrupt handler can use the following definitions to investigate |
295 | the primary unit check source coded in sense byte 0 : | 295 | the primary unit check source coded in sense byte 0 : |
diff --git a/Documentation/usb/authorization.txt b/Documentation/usb/authorization.txt new file mode 100644 index 000000000000..2af400609498 --- /dev/null +++ b/Documentation/usb/authorization.txt | |||
@@ -0,0 +1,92 @@ | |||
1 | |||
2 | Authorizing (or not) your USB devices to connect to the system | ||
3 | |||
4 | (C) 2007 Inaky Perez-Gonzalez <inaky@linux.intel.com> Intel Corporation | ||
5 | |||
6 | This feature allows you to control if a USB device can be used (or | ||
7 | not) in a system. This feature will allow you to implement a lock-down | ||
8 | of USB devices, fully controlled by user space. | ||
9 | |||
10 | As of now, when a USB device is connected it is configured and | ||
11 | it's interfaces inmediately made available to the users. With this | ||
12 | modification, only if root authorizes the device to be configured will | ||
13 | then it be possible to use it. | ||
14 | |||
15 | Usage: | ||
16 | |||
17 | Authorize a device to connect: | ||
18 | |||
19 | $ echo 1 > /sys/usb/devices/DEVICE/authorized | ||
20 | |||
21 | Deauthorize a device: | ||
22 | |||
23 | $ echo 0 > /sys/usb/devices/DEVICE/authorized | ||
24 | |||
25 | Set new devices connected to hostX to be deauthorized by default (ie: | ||
26 | lock down): | ||
27 | |||
28 | $ echo 0 > /sys/bus/devices/usbX/authorized_default | ||
29 | |||
30 | Remove the lock down: | ||
31 | |||
32 | $ echo 1 > /sys/bus/devices/usbX/authorized_default | ||
33 | |||
34 | By default, Wired USB devices are authorized by default to | ||
35 | connect. Wireless USB hosts deauthorize by default all new connected | ||
36 | devices (this is so because we need to do an authentication phase | ||
37 | before authorizing). | ||
38 | |||
39 | |||
40 | Example system lockdown (lame) | ||
41 | ----------------------- | ||
42 | |||
43 | Imagine you want to implement a lockdown so only devices of type XYZ | ||
44 | can be connected (for example, it is a kiosk machine with a visible | ||
45 | USB port): | ||
46 | |||
47 | boot up | ||
48 | rc.local -> | ||
49 | |||
50 | for host in /sys/bus/devices/usb* | ||
51 | do | ||
52 | echo 0 > $host/authorized_default | ||
53 | done | ||
54 | |||
55 | Hookup an script to udev, for new USB devices | ||
56 | |||
57 | if device_is_my_type $DEV | ||
58 | then | ||
59 | echo 1 > $device_path/authorized | ||
60 | done | ||
61 | |||
62 | |||
63 | Now, device_is_my_type() is where the juice for a lockdown is. Just | ||
64 | checking if the class, type and protocol match something is the worse | ||
65 | security verification you can make (or the best, for someone willing | ||
66 | to break it). If you need something secure, use crypto and Certificate | ||
67 | Authentication or stuff like that. Something simple for an storage key | ||
68 | could be: | ||
69 | |||
70 | function device_is_my_type() | ||
71 | { | ||
72 | echo 1 > authorized # temporarily authorize it | ||
73 | # FIXME: make sure none can mount it | ||
74 | mount DEVICENODE /mntpoint | ||
75 | sum=$(md5sum /mntpoint/.signature) | ||
76 | if [ $sum = $(cat /etc/lockdown/keysum) ] | ||
77 | then | ||
78 | echo "We are good, connected" | ||
79 | umount /mntpoint | ||
80 | # Other stuff so others can use it | ||
81 | else | ||
82 | echo 0 > authorized | ||
83 | fi | ||
84 | } | ||
85 | |||
86 | |||
87 | Of course, this is lame, you'd want to do a real certificate | ||
88 | verification stuff with PKI, so you don't depend on a shared secret, | ||
89 | etc, but you get the idea. Anybody with access to a device gadget kit | ||
90 | can fake descriptors and device info. Don't trust that. You are | ||
91 | welcome. | ||
92 | |||
diff --git a/Documentation/usb/power-management.txt b/Documentation/usb/power-management.txt new file mode 100644 index 000000000000..97842deec471 --- /dev/null +++ b/Documentation/usb/power-management.txt | |||
@@ -0,0 +1,517 @@ | |||
1 | Power Management for USB | ||
2 | |||
3 | Alan Stern <stern@rowland.harvard.edu> | ||
4 | |||
5 | October 5, 2007 | ||
6 | |||
7 | |||
8 | |||
9 | What is Power Management? | ||
10 | ------------------------- | ||
11 | |||
12 | Power Management (PM) is the practice of saving energy by suspending | ||
13 | parts of a computer system when they aren't being used. While a | ||
14 | component is "suspended" it is in a nonfunctional low-power state; it | ||
15 | might even be turned off completely. A suspended component can be | ||
16 | "resumed" (returned to a functional full-power state) when the kernel | ||
17 | needs to use it. (There also are forms of PM in which components are | ||
18 | placed in a less functional but still usable state instead of being | ||
19 | suspended; an example would be reducing the CPU's clock rate. This | ||
20 | document will not discuss those other forms.) | ||
21 | |||
22 | When the parts being suspended include the CPU and most of the rest of | ||
23 | the system, we speak of it as a "system suspend". When a particular | ||
24 | device is turned off while the system as a whole remains running, we | ||
25 | call it a "dynamic suspend" (also known as a "runtime suspend" or | ||
26 | "selective suspend"). This document concentrates mostly on how | ||
27 | dynamic PM is implemented in the USB subsystem, although system PM is | ||
28 | covered to some extent (see Documentation/power/*.txt for more | ||
29 | information about system PM). | ||
30 | |||
31 | Note: Dynamic PM support for USB is present only if the kernel was | ||
32 | built with CONFIG_USB_SUSPEND enabled. System PM support is present | ||
33 | only if the kernel was built with CONFIG_SUSPEND or CONFIG_HIBERNATION | ||
34 | enabled. | ||
35 | |||
36 | |||
37 | What is Remote Wakeup? | ||
38 | ---------------------- | ||
39 | |||
40 | When a device has been suspended, it generally doesn't resume until | ||
41 | the computer tells it to. Likewise, if the entire computer has been | ||
42 | suspended, it generally doesn't resume until the user tells it to, say | ||
43 | by pressing a power button or opening the cover. | ||
44 | |||
45 | However some devices have the capability of resuming by themselves, or | ||
46 | asking the kernel to resume them, or even telling the entire computer | ||
47 | to resume. This capability goes by several names such as "Wake On | ||
48 | LAN"; we will refer to it generically as "remote wakeup". When a | ||
49 | device is enabled for remote wakeup and it is suspended, it may resume | ||
50 | itself (or send a request to be resumed) in response to some external | ||
51 | event. Examples include a suspended keyboard resuming when a key is | ||
52 | pressed, or a suspended USB hub resuming when a device is plugged in. | ||
53 | |||
54 | |||
55 | When is a USB device idle? | ||
56 | -------------------------- | ||
57 | |||
58 | A device is idle whenever the kernel thinks it's not busy doing | ||
59 | anything important and thus is a candidate for being suspended. The | ||
60 | exact definition depends on the device's driver; drivers are allowed | ||
61 | to declare that a device isn't idle even when there's no actual | ||
62 | communication taking place. (For example, a hub isn't considered idle | ||
63 | unless all the devices plugged into that hub are already suspended.) | ||
64 | In addition, a device isn't considered idle so long as a program keeps | ||
65 | its usbfs file open, whether or not any I/O is going on. | ||
66 | |||
67 | If a USB device has no driver, its usbfs file isn't open, and it isn't | ||
68 | being accessed through sysfs, then it definitely is idle. | ||
69 | |||
70 | |||
71 | Forms of dynamic PM | ||
72 | ------------------- | ||
73 | |||
74 | Dynamic suspends can occur in two ways: manual and automatic. | ||
75 | "Manual" means that the user has told the kernel to suspend a device, | ||
76 | whereas "automatic" means that the kernel has decided all by itself to | ||
77 | suspend a device. Automatic suspend is called "autosuspend" for | ||
78 | short. In general, a device won't be autosuspended unless it has been | ||
79 | idle for some minimum period of time, the so-called idle-delay time. | ||
80 | |||
81 | Of course, nothing the kernel does on its own initiative should | ||
82 | prevent the computer or its devices from working properly. If a | ||
83 | device has been autosuspended and a program tries to use it, the | ||
84 | kernel will automatically resume the device (autoresume). For the | ||
85 | same reason, an autosuspended device will usually have remote wakeup | ||
86 | enabled, if the device supports remote wakeup. | ||
87 | |||
88 | It is worth mentioning that many USB drivers don't support | ||
89 | autosuspend. In fact, at the time of this writing (Linux 2.6.23) the | ||
90 | only drivers which do support it are the hub driver, kaweth, asix, | ||
91 | usblp, usblcd, and usb-skeleton (which doesn't count). If a | ||
92 | non-supporting driver is bound to a device, the device won't be | ||
93 | autosuspended. In effect, the kernel pretends the device is never | ||
94 | idle. | ||
95 | |||
96 | We can categorize power management events in two broad classes: | ||
97 | external and internal. External events are those triggered by some | ||
98 | agent outside the USB stack: system suspend/resume (triggered by | ||
99 | userspace), manual dynamic suspend/resume (also triggered by | ||
100 | userspace), and remote wakeup (triggered by the device). Internal | ||
101 | events are those triggered within the USB stack: autosuspend and | ||
102 | autoresume. | ||
103 | |||
104 | |||
105 | The user interface for dynamic PM | ||
106 | --------------------------------- | ||
107 | |||
108 | The user interface for controlling dynamic PM is located in the power/ | ||
109 | subdirectory of each USB device's sysfs directory, that is, in | ||
110 | /sys/bus/usb/devices/.../power/ where "..." is the device's ID. The | ||
111 | relevant attribute files are: wakeup, level, and autosuspend. | ||
112 | |||
113 | power/wakeup | ||
114 | |||
115 | This file is empty if the device does not support | ||
116 | remote wakeup. Otherwise the file contains either the | ||
117 | word "enabled" or the word "disabled", and you can | ||
118 | write those words to the file. The setting determines | ||
119 | whether or not remote wakeup will be enabled when the | ||
120 | device is next suspended. (If the setting is changed | ||
121 | while the device is suspended, the change won't take | ||
122 | effect until the following suspend.) | ||
123 | |||
124 | power/level | ||
125 | |||
126 | This file contains one of three words: "on", "auto", | ||
127 | or "suspend". You can write those words to the file | ||
128 | to change the device's setting. | ||
129 | |||
130 | "on" means that the device should be resumed and | ||
131 | autosuspend is not allowed. (Of course, system | ||
132 | suspends are still allowed.) | ||
133 | |||
134 | "auto" is the normal state in which the kernel is | ||
135 | allowed to autosuspend and autoresume the device. | ||
136 | |||
137 | "suspend" means that the device should remain | ||
138 | suspended, and autoresume is not allowed. (But remote | ||
139 | wakeup may still be allowed, since it is controlled | ||
140 | separately by the power/wakeup attribute.) | ||
141 | |||
142 | power/autosuspend | ||
143 | |||
144 | This file contains an integer value, which is the | ||
145 | number of seconds the device should remain idle before | ||
146 | the kernel will autosuspend it (the idle-delay time). | ||
147 | The default is 2. 0 means to autosuspend as soon as | ||
148 | the device becomes idle, and -1 means never to | ||
149 | autosuspend. You can write a number to the file to | ||
150 | change the autosuspend idle-delay time. | ||
151 | |||
152 | Writing "-1" to power/autosuspend and writing "on" to power/level do | ||
153 | essentially the same thing -- they both prevent the device from being | ||
154 | autosuspended. Yes, this is a redundancy in the API. | ||
155 | |||
156 | (In 2.6.21 writing "0" to power/autosuspend would prevent the device | ||
157 | from being autosuspended; the behavior was changed in 2.6.22. The | ||
158 | power/autosuspend attribute did not exist prior to 2.6.21, and the | ||
159 | power/level attribute did not exist prior to 2.6.22.) | ||
160 | |||
161 | |||
162 | Changing the default idle-delay time | ||
163 | ------------------------------------ | ||
164 | |||
165 | The default autosuspend idle-delay time is controlled by a module | ||
166 | parameter in usbcore. You can specify the value when usbcore is | ||
167 | loaded. For example, to set it to 5 seconds instead of 2 you would | ||
168 | do: | ||
169 | |||
170 | modprobe usbcore autosuspend=5 | ||
171 | |||
172 | Equivalently, you could add to /etc/modprobe.conf a line saying: | ||
173 | |||
174 | options usbcore autosuspend=5 | ||
175 | |||
176 | Some distributions load the usbcore module very early during the boot | ||
177 | process, by means of a program or script running from an initramfs | ||
178 | image. To alter the parameter value you would have to rebuild that | ||
179 | image. | ||
180 | |||
181 | If usbcore is compiled into the kernel rather than built as a loadable | ||
182 | module, you can add | ||
183 | |||
184 | usbcore.autosuspend=5 | ||
185 | |||
186 | to the kernel's boot command line. | ||
187 | |||
188 | Finally, the parameter value can be changed while the system is | ||
189 | running. If you do: | ||
190 | |||
191 | echo 5 >/sys/module/usbcore/parameters/autosuspend | ||
192 | |||
193 | then each new USB device will have its autosuspend idle-delay | ||
194 | initialized to 5. (The idle-delay values for already existing devices | ||
195 | will not be affected.) | ||
196 | |||
197 | Setting the initial default idle-delay to -1 will prevent any | ||
198 | autosuspend of any USB device. This is a simple alternative to | ||
199 | disabling CONFIG_USB_SUSPEND and rebuilding the kernel, and it has the | ||
200 | added benefit of allowing you to enable autosuspend for selected | ||
201 | devices. | ||
202 | |||
203 | |||
204 | Warnings | ||
205 | -------- | ||
206 | |||
207 | The USB specification states that all USB devices must support power | ||
208 | management. Nevertheless, the sad fact is that many devices do not | ||
209 | support it very well. You can suspend them all right, but when you | ||
210 | try to resume them they disconnect themselves from the USB bus or | ||
211 | they stop working entirely. This seems to be especially prevalent | ||
212 | among printers and scanners, but plenty of other types of device have | ||
213 | the same deficiency. | ||
214 | |||
215 | For this reason, by default the kernel disables autosuspend (the | ||
216 | power/level attribute is initialized to "on") for all devices other | ||
217 | than hubs. Hubs, at least, appear to be reasonably well-behaved in | ||
218 | this regard. | ||
219 | |||
220 | (In 2.6.21 and 2.6.22 this wasn't the case. Autosuspend was enabled | ||
221 | by default for almost all USB devices. A number of people experienced | ||
222 | problems as a result.) | ||
223 | |||
224 | This means that non-hub devices won't be autosuspended unless the user | ||
225 | or a program explicitly enables it. As of this writing there aren't | ||
226 | any widespread programs which will do this; we hope that in the near | ||
227 | future device managers such as HAL will take on this added | ||
228 | responsibility. In the meantime you can always carry out the | ||
229 | necessary operations by hand or add them to a udev script. You can | ||
230 | also change the idle-delay time; 2 seconds is not the best choice for | ||
231 | every device. | ||
232 | |||
233 | Sometimes it turns out that even when a device does work okay with | ||
234 | autosuspend there are still problems. For example, there are | ||
235 | experimental patches adding autosuspend support to the usbhid driver, | ||
236 | which manages keyboards and mice, among other things. Tests with a | ||
237 | number of keyboards showed that typing on a suspended keyboard, while | ||
238 | causing the keyboard to do a remote wakeup all right, would | ||
239 | nonetheless frequently result in lost keystrokes. Tests with mice | ||
240 | showed that some of them would issue a remote-wakeup request in | ||
241 | response to button presses but not to motion, and some in response to | ||
242 | neither. | ||
243 | |||
244 | The kernel will not prevent you from enabling autosuspend on devices | ||
245 | that can't handle it. It is even possible in theory to damage a | ||
246 | device by suspending it at the wrong time -- for example, suspending a | ||
247 | USB hard disk might cause it to spin down without parking the heads. | ||
248 | (Highly unlikely, but possible.) Take care. | ||
249 | |||
250 | |||
251 | The driver interface for Power Management | ||
252 | ----------------------------------------- | ||
253 | |||
254 | The requirements for a USB driver to support external power management | ||
255 | are pretty modest; the driver need only define | ||
256 | |||
257 | .suspend | ||
258 | .resume | ||
259 | .reset_resume | ||
260 | |||
261 | methods in its usb_driver structure, and the reset_resume method is | ||
262 | optional. The methods' jobs are quite simple: | ||
263 | |||
264 | The suspend method is called to warn the driver that the | ||
265 | device is going to be suspended. If the driver returns a | ||
266 | negative error code, the suspend will be aborted. Normally | ||
267 | the driver will return 0, in which case it must cancel all | ||
268 | outstanding URBs (usb_kill_urb()) and not submit any more. | ||
269 | |||
270 | The resume method is called to tell the driver that the | ||
271 | device has been resumed and the driver can return to normal | ||
272 | operation. URBs may once more be submitted. | ||
273 | |||
274 | The reset_resume method is called to tell the driver that | ||
275 | the device has been resumed and it also has been reset. | ||
276 | The driver should redo any necessary device initialization, | ||
277 | since the device has probably lost most or all of its state | ||
278 | (although the interfaces will be in the same altsettings as | ||
279 | before the suspend). | ||
280 | |||
281 | The reset_resume method is used by the USB Persist facility (see | ||
282 | Documentation/usb/persist.txt) and it can also be used under certain | ||
283 | circumstances when CONFIG_USB_PERSIST is not enabled. Currently, if a | ||
284 | device is reset during a resume and the driver does not have a | ||
285 | reset_resume method, the driver won't receive any notification about | ||
286 | the resume. Later kernels will call the driver's disconnect method; | ||
287 | 2.6.23 doesn't do this. | ||
288 | |||
289 | USB drivers are bound to interfaces, so their suspend and resume | ||
290 | methods get called when the interfaces are suspended or resumed. In | ||
291 | principle one might want to suspend some interfaces on a device (i.e., | ||
292 | force the drivers for those interface to stop all activity) without | ||
293 | suspending the other interfaces. The USB core doesn't allow this; all | ||
294 | interfaces are suspended when the device itself is suspended and all | ||
295 | interfaces are resumed when the device is resumed. It isn't possible | ||
296 | to suspend or resume some but not all of a device's interfaces. The | ||
297 | closest you can come is to unbind the interfaces' drivers. | ||
298 | |||
299 | |||
300 | The driver interface for autosuspend and autoresume | ||
301 | --------------------------------------------------- | ||
302 | |||
303 | To support autosuspend and autoresume, a driver should implement all | ||
304 | three of the methods listed above. In addition, a driver indicates | ||
305 | that it supports autosuspend by setting the .supports_autosuspend flag | ||
306 | in its usb_driver structure. It is then responsible for informing the | ||
307 | USB core whenever one of its interfaces becomes busy or idle. The | ||
308 | driver does so by calling these three functions: | ||
309 | |||
310 | int usb_autopm_get_interface(struct usb_interface *intf); | ||
311 | void usb_autopm_put_interface(struct usb_interface *intf); | ||
312 | int usb_autopm_set_interface(struct usb_interface *intf); | ||
313 | |||
314 | The functions work by maintaining a counter in the usb_interface | ||
315 | structure. When intf->pm_usage_count is > 0 then the interface is | ||
316 | deemed to be busy, and the kernel will not autosuspend the interface's | ||
317 | device. When intf->pm_usage_count is <= 0 then the interface is | ||
318 | considered to be idle, and the kernel may autosuspend the device. | ||
319 | |||
320 | (There is a similar pm_usage_count field in struct usb_device, | ||
321 | associated with the device itself rather than any of its interfaces. | ||
322 | This field is used only by the USB core.) | ||
323 | |||
324 | The driver owns intf->pm_usage_count; it can modify the value however | ||
325 | and whenever it likes. A nice aspect of the usb_autopm_* routines is | ||
326 | that the changes they make are protected by the usb_device structure's | ||
327 | PM mutex (udev->pm_mutex); however drivers may change pm_usage_count | ||
328 | without holding the mutex. | ||
329 | |||
330 | usb_autopm_get_interface() increments pm_usage_count and | ||
331 | attempts an autoresume if the new value is > 0 and the | ||
332 | device is suspended. | ||
333 | |||
334 | usb_autopm_put_interface() decrements pm_usage_count and | ||
335 | attempts an autosuspend if the new value is <= 0 and the | ||
336 | device isn't suspended. | ||
337 | |||
338 | usb_autopm_set_interface() leaves pm_usage_count alone. | ||
339 | It attempts an autoresume if the value is > 0 and the device | ||
340 | is suspended, and it attempts an autosuspend if the value is | ||
341 | <= 0 and the device isn't suspended. | ||
342 | |||
343 | There also are a couple of utility routines drivers can use: | ||
344 | |||
345 | usb_autopm_enable() sets pm_usage_cnt to 1 and then calls | ||
346 | usb_autopm_set_interface(), which will attempt an autoresume. | ||
347 | |||
348 | usb_autopm_disable() sets pm_usage_cnt to 0 and then calls | ||
349 | usb_autopm_set_interface(), which will attempt an autosuspend. | ||
350 | |||
351 | The conventional usage pattern is that a driver calls | ||
352 | usb_autopm_get_interface() in its open routine and | ||
353 | usb_autopm_put_interface() in its close or release routine. But | ||
354 | other patterns are possible. | ||
355 | |||
356 | The autosuspend attempts mentioned above will often fail for one | ||
357 | reason or another. For example, the power/level attribute might be | ||
358 | set to "on", or another interface in the same device might not be | ||
359 | idle. This is perfectly normal. If the reason for failure was that | ||
360 | the device hasn't been idle for long enough, a delayed workqueue | ||
361 | routine is automatically set up to carry out the operation when the | ||
362 | autosuspend idle-delay has expired. | ||
363 | |||
364 | Autoresume attempts also can fail. This will happen if power/level is | ||
365 | set to "suspend" or if the device doesn't manage to resume properly. | ||
366 | Unlike autosuspend, there's no delay for an autoresume. | ||
367 | |||
368 | |||
369 | Other parts of the driver interface | ||
370 | ----------------------------------- | ||
371 | |||
372 | Sometimes a driver needs to make sure that remote wakeup is enabled | ||
373 | during autosuspend. For example, there's not much point | ||
374 | autosuspending a keyboard if the user can't cause the keyboard to do a | ||
375 | remote wakeup by typing on it. If the driver sets | ||
376 | intf->needs_remote_wakeup to 1, the kernel won't autosuspend the | ||
377 | device if remote wakeup isn't available or has been disabled through | ||
378 | the power/wakeup attribute. (If the device is already autosuspended, | ||
379 | though, setting this flag won't cause the kernel to autoresume it. | ||
380 | Normally a driver would set this flag in its probe method, at which | ||
381 | time the device is guaranteed not to be autosuspended.) | ||
382 | |||
383 | The usb_autopm_* routines have to run in a sleepable process context; | ||
384 | they must not be called from an interrupt handler or while holding a | ||
385 | spinlock. In fact, the entire autosuspend mechanism is not well geared | ||
386 | toward interrupt-driven operation. However there is one thing a | ||
387 | driver can do in an interrupt handler: | ||
388 | |||
389 | usb_mark_last_busy(struct usb_device *udev); | ||
390 | |||
391 | This sets udev->last_busy to the current time. udev->last_busy is the | ||
392 | field used for idle-delay calculations; updating it will cause any | ||
393 | pending autosuspend to be moved back. The usb_autopm_* routines will | ||
394 | also set the last_busy field to the current time. | ||
395 | |||
396 | Calling urb_mark_last_busy() from within an URB completion handler is | ||
397 | subject to races: The kernel may have just finished deciding the | ||
398 | device has been idle for long enough but not yet gotten around to | ||
399 | calling the driver's suspend method. The driver would have to be | ||
400 | responsible for synchronizing its suspend method with its URB | ||
401 | completion handler and causing the autosuspend to fail with -EBUSY if | ||
402 | an URB had completed too recently. | ||
403 | |||
404 | External suspend calls should never be allowed to fail in this way, | ||
405 | only autosuspend calls. The driver can tell them apart by checking | ||
406 | udev->auto_pm; this flag will be set to 1 for internal PM events | ||
407 | (autosuspend or autoresume) and 0 for external PM events. | ||
408 | |||
409 | Many of the ingredients in the autosuspend framework are oriented | ||
410 | towards interfaces: The usb_interface structure contains the | ||
411 | pm_usage_cnt field, and the usb_autopm_* routines take an interface | ||
412 | pointer as their argument. But somewhat confusingly, a few of the | ||
413 | pieces (usb_mark_last_busy() and udev->auto_pm) use the usb_device | ||
414 | structure instead. Drivers need to keep this straight; they can call | ||
415 | interface_to_usbdev() to find the device structure for a given | ||
416 | interface. | ||
417 | |||
418 | |||
419 | Locking requirements | ||
420 | -------------------- | ||
421 | |||
422 | All three suspend/resume methods are always called while holding the | ||
423 | usb_device's PM mutex. For external events -- but not necessarily for | ||
424 | autosuspend or autoresume -- the device semaphore (udev->dev.sem) will | ||
425 | also be held. This implies that external suspend/resume events are | ||
426 | mutually exclusive with calls to probe, disconnect, pre_reset, and | ||
427 | post_reset; the USB core guarantees that this is true of internal | ||
428 | suspend/resume events as well. | ||
429 | |||
430 | If a driver wants to block all suspend/resume calls during some | ||
431 | critical section, it can simply acquire udev->pm_mutex. | ||
432 | Alternatively, if the critical section might call some of the | ||
433 | usb_autopm_* routines, the driver can avoid deadlock by doing: | ||
434 | |||
435 | down(&udev->dev.sem); | ||
436 | rc = usb_autopm_get_interface(intf); | ||
437 | |||
438 | and at the end of the critical section: | ||
439 | |||
440 | if (!rc) | ||
441 | usb_autopm_put_interface(intf); | ||
442 | up(&udev->dev.sem); | ||
443 | |||
444 | Holding the device semaphore will block all external PM calls, and the | ||
445 | usb_autopm_get_interface() will prevent any internal PM calls, even if | ||
446 | it fails. (Exercise: Why?) | ||
447 | |||
448 | The rules for locking order are: | ||
449 | |||
450 | Never acquire any device semaphore while holding any PM mutex. | ||
451 | |||
452 | Never acquire udev->pm_mutex while holding the PM mutex for | ||
453 | a device that isn't a descendant of udev. | ||
454 | |||
455 | In other words, PM mutexes should only be acquired going up the device | ||
456 | tree, and they should be acquired only after locking all the device | ||
457 | semaphores you need to hold. These rules don't matter to drivers very | ||
458 | much; they usually affect just the USB core. | ||
459 | |||
460 | Still, drivers do need to be careful. For example, many drivers use a | ||
461 | private mutex to synchronize their normal I/O activities with their | ||
462 | disconnect method. Now if the driver supports autosuspend then it | ||
463 | must call usb_autopm_put_interface() from somewhere -- maybe from its | ||
464 | close method. It should make the call while holding the private mutex, | ||
465 | since a driver shouldn't call any of the usb_autopm_* functions for an | ||
466 | interface from which it has been unbound. | ||
467 | |||
468 | But the usb_autpm_* routines always acquire the device's PM mutex, and | ||
469 | consequently the locking order has to be: private mutex first, PM | ||
470 | mutex second. Since the suspend method is always called with the PM | ||
471 | mutex held, it mustn't try to acquire the private mutex. It has to | ||
472 | synchronize with the driver's I/O activities in some other way. | ||
473 | |||
474 | |||
475 | Interaction between dynamic PM and system PM | ||
476 | -------------------------------------------- | ||
477 | |||
478 | Dynamic power management and system power management can interact in | ||
479 | a couple of ways. | ||
480 | |||
481 | Firstly, a device may already be manually suspended or autosuspended | ||
482 | when a system suspend occurs. Since system suspends are supposed to | ||
483 | be as transparent as possible, the device should remain suspended | ||
484 | following the system resume. The 2.6.23 kernel obeys this principle | ||
485 | for manually suspended devices but not for autosuspended devices; they | ||
486 | do get resumed when the system wakes up. (Presumably they will be | ||
487 | autosuspended again after their idle-delay time expires.) In later | ||
488 | kernels this behavior will be fixed. | ||
489 | |||
490 | (There is an exception. If a device would undergo a reset-resume | ||
491 | instead of a normal resume, and the device is enabled for remote | ||
492 | wakeup, then the reset-resume takes place even if the device was | ||
493 | already suspended when the system suspend began. The justification is | ||
494 | that a reset-resume is a kind of remote-wakeup event. Or to put it | ||
495 | another way, a device which needs a reset won't be able to generate | ||
496 | normal remote-wakeup signals, so it ought to be resumed immediately.) | ||
497 | |||
498 | Secondly, a dynamic power-management event may occur as a system | ||
499 | suspend is underway. The window for this is short, since system | ||
500 | suspends don't take long (a few seconds usually), but it can happen. | ||
501 | For example, a suspended device may send a remote-wakeup signal while | ||
502 | the system is suspending. The remote wakeup may succeed, which would | ||
503 | cause the system suspend to abort. If the remote wakeup doesn't | ||
504 | succeed, it may still remain active and thus cause the system to | ||
505 | resume as soon as the system suspend is complete. Or the remote | ||
506 | wakeup may fail and get lost. Which outcome occurs depends on timing | ||
507 | and on the hardware and firmware design. | ||
508 | |||
509 | More interestingly, a device might undergo a manual resume or | ||
510 | autoresume during system suspend. With current kernels this shouldn't | ||
511 | happen, because manual resumes must be initiated by userspace and | ||
512 | autoresumes happen in response to I/O requests, but all user processes | ||
513 | and I/O should be quiescent during a system suspend -- thanks to the | ||
514 | freezer. However there are plans to do away with the freezer, which | ||
515 | would mean these things would become possible. If and when this comes | ||
516 | about, the USB core will carefully arrange matters so that either type | ||
517 | of resume will block until the entire system has resumed. | ||
diff --git a/Documentation/usb/usb-serial.txt b/Documentation/usb/usb-serial.txt index 5b635ae84944..4e0b62b8566f 100644 --- a/Documentation/usb/usb-serial.txt +++ b/Documentation/usb/usb-serial.txt | |||
@@ -428,6 +428,17 @@ Options supported: | |||
428 | See http://www.uuhaus.de/linux/palmconnect.html for up-to-date | 428 | See http://www.uuhaus.de/linux/palmconnect.html for up-to-date |
429 | information on this driver. | 429 | information on this driver. |
430 | 430 | ||
431 | Winchiphead CH341 Driver | ||
432 | |||
433 | This driver is for the Winchiphead CH341 USB-RS232 Converter. This chip | ||
434 | also implements an IEEE 1284 parallel port, I2C and SPI, but that is not | ||
435 | supported by the driver. The protocol was analyzed from the behaviour | ||
436 | of the Windows driver, no datasheet is available at present. | ||
437 | The manufacturer's website: http://www.winchiphead.com/. | ||
438 | For any questions or problems with this driver, please contact | ||
439 | frank@kingswood-consulting.co.uk. | ||
440 | |||
441 | |||
431 | Generic Serial driver | 442 | Generic Serial driver |
432 | 443 | ||
433 | If your device is not one of the above listed devices, compatible with | 444 | If your device is not one of the above listed devices, compatible with |
diff --git a/Documentation/usb/usbmon.txt b/Documentation/usb/usbmon.txt index 53ae866ae37b..2917ce4ffdc4 100644 --- a/Documentation/usb/usbmon.txt +++ b/Documentation/usb/usbmon.txt | |||
@@ -34,9 +34,12 @@ if usbmon is built into the kernel. | |||
34 | Verify that bus sockets are present. | 34 | Verify that bus sockets are present. |
35 | 35 | ||
36 | # ls /sys/kernel/debug/usbmon | 36 | # ls /sys/kernel/debug/usbmon |
37 | 1s 1t 1u 2s 2t 2u 3s 3t 3u 4s 4t 4u | 37 | 0s 0t 0u 1s 1t 1u 2s 2t 2u 3s 3t 3u 4s 4t 4u |
38 | # | 38 | # |
39 | 39 | ||
40 | Now you can choose to either use the sockets numbered '0' (to capture packets on | ||
41 | all buses), and skip to step #3, or find the bus used by your device with step #2. | ||
42 | |||
40 | 2. Find which bus connects to the desired device | 43 | 2. Find which bus connects to the desired device |
41 | 44 | ||
42 | Run "cat /proc/bus/usb/devices", and find the T-line which corresponds to | 45 | Run "cat /proc/bus/usb/devices", and find the T-line which corresponds to |
@@ -56,6 +59,10 @@ Bus=03 means it's bus 3. | |||
56 | 59 | ||
57 | # cat /sys/kernel/debug/usbmon/3u > /tmp/1.mon.out | 60 | # cat /sys/kernel/debug/usbmon/3u > /tmp/1.mon.out |
58 | 61 | ||
62 | to listen on a single bus, otherwise, to listen on all buses, type: | ||
63 | |||
64 | # cat /sys/kernel/debug/usbmon/0u > /tmp/1.mon.out | ||
65 | |||
59 | This process will be reading until killed. Naturally, the output can be | 66 | This process will be reading until killed. Naturally, the output can be |
60 | redirected to a desirable location. This is preferred, because it is going | 67 | redirected to a desirable location. This is preferred, because it is going |
61 | to be quite long. | 68 | to be quite long. |