aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/DMA-API.txt122
-rw-r--r--Documentation/HOWTO113
-rw-r--r--Documentation/IPMI.txt12
-rw-r--r--Documentation/Makefile4
-rw-r--r--Documentation/PCI/PCI-DMA-mapping.txt352
-rw-r--r--Documentation/SubmitChecklist8
-rw-r--r--Documentation/arm/Samsung/Overview.txt86
-rwxr-xr-xDocumentation/arm/Samsung/clksrc-change-registers.awk167
-rw-r--r--Documentation/cgroups/cgroup_event_listener.c110
-rw-r--r--Documentation/cgroups/cgroups.txt39
-rw-r--r--Documentation/cgroups/memcg_test.txt47
-rw-r--r--Documentation/cgroups/memory.txt80
-rw-r--r--Documentation/email-clients.txt30
-rw-r--r--Documentation/filesystems/00-INDEX2
-rw-r--r--Documentation/filesystems/Makefile8
-rw-r--r--Documentation/filesystems/dnotify.txt39
-rw-r--r--Documentation/filesystems/dnotify_test.c34
-rw-r--r--Documentation/kobject.txt2
-rw-r--r--Documentation/laptops/00-INDEX2
-rw-r--r--Documentation/laptops/Makefile8
-rw-r--r--Documentation/laptops/dslm.c166
-rw-r--r--Documentation/laptops/laptop-mode.txt170
-rw-r--r--Documentation/serial/tty.txt4
-rw-r--r--Documentation/sound/alsa/ALSA-Configuration.txt2
-rw-r--r--Documentation/sysctl/vm.txt5
-rw-r--r--Documentation/timers/00-INDEX2
-rw-r--r--Documentation/timers/Makefile8
-rw-r--r--Documentation/timers/hpet.txt273
-rw-r--r--Documentation/timers/hpet_example.c269
-rw-r--r--Documentation/vm/00-INDEX16
-rw-r--r--Documentation/vm/Makefile2
-rw-r--r--Documentation/vm/hugepage-mmap.c91
-rw-r--r--Documentation/vm/hugepage-shm.c98
-rw-r--r--Documentation/vm/hugetlbpage.txt169
-rw-r--r--Documentation/vm/map_hugetlb.c6
-rw-r--r--Documentation/voyager.txt95
36 files changed, 1520 insertions, 1121 deletions
diff --git a/Documentation/DMA-API.txt b/Documentation/DMA-API.txt
index 5aceb88b3f8b..05e2ae236865 100644
--- a/Documentation/DMA-API.txt
+++ b/Documentation/DMA-API.txt
@@ -4,20 +4,18 @@
4 James E.J. Bottomley <James.Bottomley@HansenPartnership.com> 4 James E.J. Bottomley <James.Bottomley@HansenPartnership.com>
5 5
6This document describes the DMA API. For a more gentle introduction 6This document describes the DMA API. For a more gentle introduction
7phrased in terms of the pci_ equivalents (and actual examples) see 7of the API (and actual examples) see
8Documentation/PCI/PCI-DMA-mapping.txt. 8Documentation/DMA-API-HOWTO.txt.
9 9
10This API is split into two pieces. Part I describes the API and the 10This API is split into two pieces. Part I describes the API. Part II
11corresponding pci_ API. Part II describes the extensions to the API 11describes the extensions to the API for supporting non-consistent
12for supporting non-consistent memory machines. Unless you know that 12memory machines. Unless you know that your driver absolutely has to
13your driver absolutely has to support non-consistent platforms (this 13support non-consistent platforms (this is usually only legacy
14is usually only legacy platforms) you should only use the API 14platforms) you should only use the API described in part I.
15described in part I.
16 15
17Part I - pci_ and dma_ Equivalent API 16Part I - dma_ API
18------------------------------------- 17-------------------------------------
19 18
20To get the pci_ API, you must #include <linux/pci.h>
21To get the dma_ API, you must #include <linux/dma-mapping.h> 19To get the dma_ API, you must #include <linux/dma-mapping.h>
22 20
23 21
@@ -27,9 +25,6 @@ Part Ia - Using large dma-coherent buffers
27void * 25void *
28dma_alloc_coherent(struct device *dev, size_t size, 26dma_alloc_coherent(struct device *dev, size_t size,
29 dma_addr_t *dma_handle, gfp_t flag) 27 dma_addr_t *dma_handle, gfp_t flag)
30void *
31pci_alloc_consistent(struct pci_dev *dev, size_t size,
32 dma_addr_t *dma_handle)
33 28
34Consistent memory is memory for which a write by either the device or 29Consistent memory is memory for which a write by either the device or
35the processor can immediately be read by the processor or device 30the processor can immediately be read by the processor or device
@@ -53,15 +48,11 @@ The simplest way to do that is to use the dma_pool calls (see below).
53The flag parameter (dma_alloc_coherent only) allows the caller to 48The flag parameter (dma_alloc_coherent only) allows the caller to
54specify the GFP_ flags (see kmalloc) for the allocation (the 49specify the GFP_ flags (see kmalloc) for the allocation (the
55implementation may choose to ignore flags that affect the location of 50implementation may choose to ignore flags that affect the location of
56the returned memory, like GFP_DMA). For pci_alloc_consistent, you 51the returned memory, like GFP_DMA).
57must assume GFP_ATOMIC behaviour.
58 52
59void 53void
60dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, 54dma_free_coherent(struct device *dev, size_t size, void *cpu_addr,
61 dma_addr_t dma_handle) 55 dma_addr_t dma_handle)
62void
63pci_free_consistent(struct pci_dev *dev, size_t size, void *cpu_addr,
64 dma_addr_t dma_handle)
65 56
66Free the region of consistent memory you previously allocated. dev, 57Free the region of consistent memory you previously allocated. dev,
67size and dma_handle must all be the same as those passed into the 58size and dma_handle must all be the same as those passed into the
@@ -89,10 +80,6 @@ for alignment, like queue heads needing to be aligned on N-byte boundaries.
89 dma_pool_create(const char *name, struct device *dev, 80 dma_pool_create(const char *name, struct device *dev,
90 size_t size, size_t align, size_t alloc); 81 size_t size, size_t align, size_t alloc);
91 82
92 struct pci_pool *
93 pci_pool_create(const char *name, struct pci_device *dev,
94 size_t size, size_t align, size_t alloc);
95
96The pool create() routines initialize a pool of dma-coherent buffers 83The pool create() routines initialize a pool of dma-coherent buffers
97for use with a given device. It must be called in a context which 84for use with a given device. It must be called in a context which
98can sleep. 85can sleep.
@@ -108,9 +95,6 @@ from this pool must not cross 4KByte boundaries.
108 void *dma_pool_alloc(struct dma_pool *pool, gfp_t gfp_flags, 95 void *dma_pool_alloc(struct dma_pool *pool, gfp_t gfp_flags,
109 dma_addr_t *dma_handle); 96 dma_addr_t *dma_handle);
110 97
111 void *pci_pool_alloc(struct pci_pool *pool, gfp_t gfp_flags,
112 dma_addr_t *dma_handle);
113
114This allocates memory from the pool; the returned memory will meet the size 98This allocates memory from the pool; the returned memory will meet the size
115and alignment requirements specified at creation time. Pass GFP_ATOMIC to 99and alignment requirements specified at creation time. Pass GFP_ATOMIC to
116prevent blocking, or if it's permitted (not in_interrupt, not holding SMP locks), 100prevent blocking, or if it's permitted (not in_interrupt, not holding SMP locks),
@@ -122,9 +106,6 @@ pool's device.
122 void dma_pool_free(struct dma_pool *pool, void *vaddr, 106 void dma_pool_free(struct dma_pool *pool, void *vaddr,
123 dma_addr_t addr); 107 dma_addr_t addr);
124 108
125 void pci_pool_free(struct pci_pool *pool, void *vaddr,
126 dma_addr_t addr);
127
128This puts memory back into the pool. The pool is what was passed to 109This puts memory back into the pool. The pool is what was passed to
129the pool allocation routine; the cpu (vaddr) and dma addresses are what 110the pool allocation routine; the cpu (vaddr) and dma addresses are what
130were returned when that routine allocated the memory being freed. 111were returned when that routine allocated the memory being freed.
@@ -132,8 +113,6 @@ were returned when that routine allocated the memory being freed.
132 113
133 void dma_pool_destroy(struct dma_pool *pool); 114 void dma_pool_destroy(struct dma_pool *pool);
134 115
135 void pci_pool_destroy(struct pci_pool *pool);
136
137The pool destroy() routines free the resources of the pool. They must be 116The pool destroy() routines free the resources of the pool. They must be
138called in a context which can sleep. Make sure you've freed all allocated 117called in a context which can sleep. Make sure you've freed all allocated
139memory back to the pool before you destroy it. 118memory back to the pool before you destroy it.
@@ -144,8 +123,6 @@ Part Ic - DMA addressing limitations
144 123
145int 124int
146dma_supported(struct device *dev, u64 mask) 125dma_supported(struct device *dev, u64 mask)
147int
148pci_dma_supported(struct pci_dev *hwdev, u64 mask)
149 126
150Checks to see if the device can support DMA to the memory described by 127Checks to see if the device can support DMA to the memory described by
151mask. 128mask.
@@ -159,8 +136,14 @@ driver writers.
159 136
160int 137int
161dma_set_mask(struct device *dev, u64 mask) 138dma_set_mask(struct device *dev, u64 mask)
139
140Checks to see if the mask is possible and updates the device
141parameters if it is.
142
143Returns: 0 if successful and a negative error if not.
144
162int 145int
163pci_set_dma_mask(struct pci_device *dev, u64 mask) 146dma_set_coherent_mask(struct device *dev, u64 mask)
164 147
165Checks to see if the mask is possible and updates the device 148Checks to see if the mask is possible and updates the device
166parameters if it is. 149parameters if it is.
@@ -187,9 +170,6 @@ Part Id - Streaming DMA mappings
187dma_addr_t 170dma_addr_t
188dma_map_single(struct device *dev, void *cpu_addr, size_t size, 171dma_map_single(struct device *dev, void *cpu_addr, size_t size,
189 enum dma_data_direction direction) 172 enum dma_data_direction direction)
190dma_addr_t
191pci_map_single(struct pci_dev *hwdev, void *cpu_addr, size_t size,
192 int direction)
193 173
194Maps a piece of processor virtual memory so it can be accessed by the 174Maps a piece of processor virtual memory so it can be accessed by the
195device and returns the physical handle of the memory. 175device and returns the physical handle of the memory.
@@ -198,14 +178,10 @@ The direction for both api's may be converted freely by casting.
198However the dma_ API uses a strongly typed enumerator for its 178However the dma_ API uses a strongly typed enumerator for its
199direction: 179direction:
200 180
201DMA_NONE = PCI_DMA_NONE no direction (used for 181DMA_NONE no direction (used for debugging)
202 debugging) 182DMA_TO_DEVICE data is going from the memory to the device
203DMA_TO_DEVICE = PCI_DMA_TODEVICE data is going from the 183DMA_FROM_DEVICE data is coming from the device to the memory
204 memory to the device 184DMA_BIDIRECTIONAL direction isn't known
205DMA_FROM_DEVICE = PCI_DMA_FROMDEVICE data is coming from
206 the device to the
207 memory
208DMA_BIDIRECTIONAL = PCI_DMA_BIDIRECTIONAL direction isn't known
209 185
210Notes: Not all memory regions in a machine can be mapped by this 186Notes: Not all memory regions in a machine can be mapped by this
211API. Further, regions that appear to be physically contiguous in 187API. Further, regions that appear to be physically contiguous in
@@ -268,9 +244,6 @@ cache lines are updated with data that the device may have changed).
268void 244void
269dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size, 245dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
270 enum dma_data_direction direction) 246 enum dma_data_direction direction)
271void
272pci_unmap_single(struct pci_dev *hwdev, dma_addr_t dma_addr,
273 size_t size, int direction)
274 247
275Unmaps the region previously mapped. All the parameters passed in 248Unmaps the region previously mapped. All the parameters passed in
276must be identical to those passed in (and returned) by the mapping 249must be identical to those passed in (and returned) by the mapping
@@ -280,15 +253,9 @@ dma_addr_t
280dma_map_page(struct device *dev, struct page *page, 253dma_map_page(struct device *dev, struct page *page,
281 unsigned long offset, size_t size, 254 unsigned long offset, size_t size,
282 enum dma_data_direction direction) 255 enum dma_data_direction direction)
283dma_addr_t
284pci_map_page(struct pci_dev *hwdev, struct page *page,
285 unsigned long offset, size_t size, int direction)
286void 256void
287dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size, 257dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size,
288 enum dma_data_direction direction) 258 enum dma_data_direction direction)
289void
290pci_unmap_page(struct pci_dev *hwdev, dma_addr_t dma_address,
291 size_t size, int direction)
292 259
293API for mapping and unmapping for pages. All the notes and warnings 260API for mapping and unmapping for pages. All the notes and warnings
294for the other mapping APIs apply here. Also, although the <offset> 261for the other mapping APIs apply here. Also, although the <offset>
@@ -299,9 +266,6 @@ cache width is.
299int 266int
300dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 267dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
301 268
302int
303pci_dma_mapping_error(struct pci_dev *hwdev, dma_addr_t dma_addr)
304
305In some circumstances dma_map_single and dma_map_page will fail to create 269In some circumstances dma_map_single and dma_map_page will fail to create
306a mapping. A driver can check for these errors by testing the returned 270a mapping. A driver can check for these errors by testing the returned
307dma address with dma_mapping_error(). A non-zero return value means the mapping 271dma address with dma_mapping_error(). A non-zero return value means the mapping
@@ -311,9 +275,6 @@ reduce current DMA mapping usage or delay and try again later).
311 int 275 int
312 dma_map_sg(struct device *dev, struct scatterlist *sg, 276 dma_map_sg(struct device *dev, struct scatterlist *sg,
313 int nents, enum dma_data_direction direction) 277 int nents, enum dma_data_direction direction)
314 int
315 pci_map_sg(struct pci_dev *hwdev, struct scatterlist *sg,
316 int nents, int direction)
317 278
318Returns: the number of physical segments mapped (this may be shorter 279Returns: the number of physical segments mapped (this may be shorter
319than <nents> passed in if some elements of the scatter/gather list are 280than <nents> passed in if some elements of the scatter/gather list are
@@ -353,9 +314,6 @@ accessed sg->address and sg->length as shown above.
353 void 314 void
354 dma_unmap_sg(struct device *dev, struct scatterlist *sg, 315 dma_unmap_sg(struct device *dev, struct scatterlist *sg,
355 int nhwentries, enum dma_data_direction direction) 316 int nhwentries, enum dma_data_direction direction)
356 void
357 pci_unmap_sg(struct pci_dev *hwdev, struct scatterlist *sg,
358 int nents, int direction)
359 317
360Unmap the previously mapped scatter/gather list. All the parameters 318Unmap the previously mapped scatter/gather list. All the parameters
361must be the same as those and passed in to the scatter/gather mapping 319must be the same as those and passed in to the scatter/gather mapping
@@ -365,21 +323,23 @@ Note: <nents> must be the number you passed in, *not* the number of
365physical entries returned. 323physical entries returned.
366 324
367void 325void
368dma_sync_single(struct device *dev, dma_addr_t dma_handle, size_t size, 326dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, size_t size,
369 enum dma_data_direction direction) 327 enum dma_data_direction direction)
370void 328void
371pci_dma_sync_single(struct pci_dev *hwdev, dma_addr_t dma_handle, 329dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle, size_t size,
372 size_t size, int direction) 330 enum dma_data_direction direction)
373void 331void
374dma_sync_sg(struct device *dev, struct scatterlist *sg, int nelems, 332dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems,
375 enum dma_data_direction direction) 333 enum dma_data_direction direction)
376void 334void
377pci_dma_sync_sg(struct pci_dev *hwdev, struct scatterlist *sg, 335dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nelems,
378 int nelems, int direction) 336 enum dma_data_direction direction)
379 337
380Synchronise a single contiguous or scatter/gather mapping. All the 338Synchronise a single contiguous or scatter/gather mapping for the cpu
381parameters must be the same as those passed into the single mapping 339and device. With the sync_sg API, all the parameters must be the same
382API. 340as those passed into the single mapping API. With the sync_single API,
341you can use dma_handle and size parameters that aren't identical to
342those passed into the single mapping API to do a partial sync.
383 343
384Notes: You must do this: 344Notes: You must do this:
385 345
@@ -461,9 +421,9 @@ void whizco_dma_map_sg_attrs(struct device *dev, dma_addr_t dma_addr,
461Part II - Advanced dma_ usage 421Part II - Advanced dma_ usage
462----------------------------- 422-----------------------------
463 423
464Warning: These pieces of the DMA API have no PCI equivalent. They 424Warning: These pieces of the DMA API should not be used in the
465should also not be used in the majority of cases, since they cater for 425majority of cases, since they cater for unlikely corner cases that
466unlikely corner cases that don't belong in usual drivers. 426don't belong in usual drivers.
467 427
468If you don't understand how cache line coherency works between a 428If you don't understand how cache line coherency works between a
469processor and an I/O device, you should not be using this part of the 429processor and an I/O device, you should not be using this part of the
@@ -514,16 +474,6 @@ into the width returned by this call. It will also always be a power
514of two for easy alignment. 474of two for easy alignment.
515 475
516void 476void
517dma_sync_single_range(struct device *dev, dma_addr_t dma_handle,
518 unsigned long offset, size_t size,
519 enum dma_data_direction direction)
520
521Does a partial sync, starting at offset and continuing for size. You
522must be careful to observe the cache alignment and width when doing
523anything like this. You must also be extra careful about accessing
524memory you intend to sync partially.
525
526void
527dma_cache_sync(struct device *dev, void *vaddr, size_t size, 477dma_cache_sync(struct device *dev, void *vaddr, size_t size,
528 enum dma_data_direction direction) 478 enum dma_data_direction direction)
529 479
diff --git a/Documentation/HOWTO b/Documentation/HOWTO
index 8495fc970391..f5395af88a41 100644
--- a/Documentation/HOWTO
+++ b/Documentation/HOWTO
@@ -221,8 +221,8 @@ branches. These different branches are:
221 - main 2.6.x kernel tree 221 - main 2.6.x kernel tree
222 - 2.6.x.y -stable kernel tree 222 - 2.6.x.y -stable kernel tree
223 - 2.6.x -git kernel patches 223 - 2.6.x -git kernel patches
224 - 2.6.x -mm kernel patches
225 - subsystem specific kernel trees and patches 224 - subsystem specific kernel trees and patches
225 - the 2.6.x -next kernel tree for integration tests
226 226
2272.6.x kernel tree 2272.6.x kernel tree
228----------------- 228-----------------
@@ -232,7 +232,7 @@ process is as follows:
232 - As soon as a new kernel is released a two weeks window is open, 232 - As soon as a new kernel is released a two weeks window is open,
233 during this period of time maintainers can submit big diffs to 233 during this period of time maintainers can submit big diffs to
234 Linus, usually the patches that have already been included in the 234 Linus, usually the patches that have already been included in the
235 -mm kernel for a few weeks. The preferred way to submit big changes 235 -next kernel for a few weeks. The preferred way to submit big changes
236 is using git (the kernel's source management tool, more information 236 is using git (the kernel's source management tool, more information
237 can be found at http://git.or.cz/) but plain patches are also just 237 can be found at http://git.or.cz/) but plain patches are also just
238 fine. 238 fine.
@@ -293,84 +293,43 @@ daily and represent the current state of Linus' tree. They are more
293experimental than -rc kernels since they are generated automatically 293experimental than -rc kernels since they are generated automatically
294without even a cursory glance to see if they are sane. 294without even a cursory glance to see if they are sane.
295 295
2962.6.x -mm kernel patches
297------------------------
298These are experimental kernel patches released by Andrew Morton. Andrew
299takes all of the different subsystem kernel trees and patches and mushes
300them together, along with a lot of patches that have been plucked from
301the linux-kernel mailing list. This tree serves as a proving ground for
302new features and patches. Once a patch has proved its worth in -mm for
303a while Andrew or the subsystem maintainer pushes it on to Linus for
304inclusion in mainline.
305
306It is heavily encouraged that all new patches get tested in the -mm tree
307before they are sent to Linus for inclusion in the main kernel tree. Code
308which does not make an appearance in -mm before the opening of the merge
309window will prove hard to merge into the mainline.
310
311These kernels are not appropriate for use on systems that are supposed
312to be stable and they are more risky to run than any of the other
313branches.
314
315If you wish to help out with the kernel development process, please test
316and use these kernel releases and provide feedback to the linux-kernel
317mailing list if you have any problems, and if everything works properly.
318
319In addition to all the other experimental patches, these kernels usually
320also contain any changes in the mainline -git kernels available at the
321time of release.
322
323The -mm kernels are not released on a fixed schedule, but usually a few
324-mm kernels are released in between each -rc kernel (1 to 3 is common).
325
326Subsystem Specific kernel trees and patches 296Subsystem Specific kernel trees and patches
327------------------------------------------- 297-------------------------------------------
328A number of the different kernel subsystem developers expose their 298The maintainers of the various kernel subsystems --- and also many
329development trees so that others can see what is happening in the 299kernel subsystem developers --- expose their current state of
330different areas of the kernel. These trees are pulled into the -mm 300development in source repositories. That way, others can see what is
331kernel releases as described above. 301happening in the different areas of the kernel. In areas where
332 302development is rapid, a developer may be asked to base his submissions
333Here is a list of some of the different kernel trees available: 303onto such a subsystem kernel tree so that conflicts between the
334 git trees: 304submission and other already ongoing work are avoided.
335 - Kbuild development tree, Sam Ravnborg <sam@ravnborg.org> 305
336 git.kernel.org:/pub/scm/linux/kernel/git/sam/kbuild.git 306Most of these repositories are git trees, but there are also other SCMs
337 307in use, or patch queues being published as quilt series. Addresses of
338 - ACPI development tree, Len Brown <len.brown@intel.com> 308these subsystem repositories are listed in the MAINTAINERS file. Many
339 git.kernel.org:/pub/scm/linux/kernel/git/lenb/linux-acpi-2.6.git 309of them can be browsed at http://git.kernel.org/.
340 310
341 - Block development tree, Jens Axboe <jens.axboe@oracle.com> 311Before a proposed patch is committed to such a subsystem tree, it is
342 git.kernel.org:/pub/scm/linux/kernel/git/axboe/linux-2.6-block.git 312subject to review which primarily happens on mailing lists (see the
343 313respective section below). For several kernel subsystems, this review
344 - DRM development tree, Dave Airlie <airlied@linux.ie> 314process is tracked with the tool patchwork. Patchwork offers a web
345 git.kernel.org:/pub/scm/linux/kernel/git/airlied/drm-2.6.git 315interface which shows patch postings, any comments on a patch or
346 316revisions to it, and maintainers can mark patches as under review,
347 - ia64 development tree, Tony Luck <tony.luck@intel.com> 317accepted, or rejected. Most of these patchwork sites are listed at
348 git.kernel.org:/pub/scm/linux/kernel/git/aegl/linux-2.6.git 318http://patchwork.kernel.org/ or http://patchwork.ozlabs.org/.
349 319
350 - infiniband, Roland Dreier <rolandd@cisco.com> 3202.6.x -next kernel tree for integration tests
351 git.kernel.org:/pub/scm/linux/kernel/git/roland/infiniband.git 321---------------------------------------------
352 322Before updates from subsystem trees are merged into the mainline 2.6.x
353 - libata, Jeff Garzik <jgarzik@pobox.com> 323tree, they need to be integration-tested. For this purpose, a special
354 git.kernel.org:/pub/scm/linux/kernel/git/jgarzik/libata-dev.git 324testing repository exists into which virtually all subsystem trees are
355 325pulled on an almost daily basis:
356 - network drivers, Jeff Garzik <jgarzik@pobox.com> 326 http://git.kernel.org/?p=linux/kernel/git/sfr/linux-next.git
357 git.kernel.org:/pub/scm/linux/kernel/git/jgarzik/netdev-2.6.git 327 http://linux.f-seidel.de/linux-next/pmwiki/
358 328
359 - pcmcia, Dominik Brodowski <linux@dominikbrodowski.net> 329This way, the -next kernel gives a summary outlook onto what will be
360 git.kernel.org:/pub/scm/linux/kernel/git/brodo/pcmcia-2.6.git 330expected to go into the mainline kernel at the next merge period.
361 331Adventurous testers are very welcome to runtime-test the -next kernel.
362 - SCSI, James Bottomley <James.Bottomley@hansenpartnership.com>
363 git.kernel.org:/pub/scm/linux/kernel/git/jejb/scsi-misc-2.6.git
364
365 - x86, Ingo Molnar <mingo@elte.hu>
366 git://git.kernel.org/pub/scm/linux/kernel/git/x86/linux-2.6-x86.git
367
368 quilt trees:
369 - USB, Driver Core, and I2C, Greg Kroah-Hartman <gregkh@suse.de>
370 kernel.org/pub/linux/kernel/people/gregkh/gregkh-2.6/
371 332
372 Other kernel trees can be found listed at http://git.kernel.org/ and in
373 the MAINTAINERS file.
374 333
375Bug Reporting 334Bug Reporting
376------------- 335-------------
diff --git a/Documentation/IPMI.txt b/Documentation/IPMI.txt
index bc38283379f0..69dd29ed824e 100644
--- a/Documentation/IPMI.txt
+++ b/Documentation/IPMI.txt
@@ -365,6 +365,7 @@ You can change this at module load time (for a module) with:
365 regshifts=<shift1>,<shift2>,... 365 regshifts=<shift1>,<shift2>,...
366 slave_addrs=<addr1>,<addr2>,... 366 slave_addrs=<addr1>,<addr2>,...
367 force_kipmid=<enable1>,<enable2>,... 367 force_kipmid=<enable1>,<enable2>,...
368 kipmid_max_busy_us=<ustime1>,<ustime2>,...
368 unload_when_empty=[0|1] 369 unload_when_empty=[0|1]
369 370
370Each of these except si_trydefaults is a list, the first item for the 371Each of these except si_trydefaults is a list, the first item for the
@@ -433,6 +434,7 @@ kernel command line as:
433 ipmi_si.regshifts=<shift1>,<shift2>,... 434 ipmi_si.regshifts=<shift1>,<shift2>,...
434 ipmi_si.slave_addrs=<addr1>,<addr2>,... 435 ipmi_si.slave_addrs=<addr1>,<addr2>,...
435 ipmi_si.force_kipmid=<enable1>,<enable2>,... 436 ipmi_si.force_kipmid=<enable1>,<enable2>,...
437 ipmi_si.kipmid_max_busy_us=<ustime1>,<ustime2>,...
436 438
437It works the same as the module parameters of the same names. 439It works the same as the module parameters of the same names.
438 440
@@ -450,6 +452,16 @@ force this thread on or off. If you force it off and don't have
450interrupts, the driver will run VERY slowly. Don't blame me, 452interrupts, the driver will run VERY slowly. Don't blame me,
451these interfaces suck. 453these interfaces suck.
452 454
455Unfortunately, this thread can use a lot of CPU depending on the
456interface's performance. This can waste a lot of CPU and cause
457various issues with detecting idle CPU and using extra power. To
458avoid this, the kipmid_max_busy_us sets the maximum amount of time, in
459microseconds, that kipmid will spin before sleeping for a tick. This
460value sets a balance between performance and CPU waste and needs to be
461tuned to your needs. Maybe, someday, auto-tuning will be added, but
462that's not a simple thing and even the auto-tuning would need to be
463tuned to the user's desired performance.
464
453The driver supports a hot add and remove of interfaces. This way, 465The driver supports a hot add and remove of interfaces. This way,
454interfaces can be added or removed after the kernel is up and running. 466interfaces can be added or removed after the kernel is up and running.
455This is done using /sys/modules/ipmi_si/parameters/hotmod, which is a 467This is done using /sys/modules/ipmi_si/parameters/hotmod, which is a
diff --git a/Documentation/Makefile b/Documentation/Makefile
index 94b945733534..6fc7ea1d1f9d 100644
--- a/Documentation/Makefile
+++ b/Documentation/Makefile
@@ -1,3 +1,3 @@
1obj-m := DocBook/ accounting/ auxdisplay/ connector/ \ 1obj-m := DocBook/ accounting/ auxdisplay/ connector/ \
2 filesystems/configfs/ ia64/ networking/ \ 2 filesystems/ filesystems/configfs/ ia64/ laptops/ networking/ \
3 pcmcia/ spi/ video4linux/ vm/ watchdog/src/ 3 pcmcia/ spi/ timers/ video4linux/ vm/ watchdog/src/
diff --git a/Documentation/PCI/PCI-DMA-mapping.txt b/Documentation/PCI/PCI-DMA-mapping.txt
index ecad88d9fe59..52618ab069ad 100644
--- a/Documentation/PCI/PCI-DMA-mapping.txt
+++ b/Documentation/PCI/PCI-DMA-mapping.txt
@@ -1,12 +1,12 @@
1 Dynamic DMA mapping 1 Dynamic DMA mapping Guide
2 =================== 2 =========================
3 3
4 David S. Miller <davem@redhat.com> 4 David S. Miller <davem@redhat.com>
5 Richard Henderson <rth@cygnus.com> 5 Richard Henderson <rth@cygnus.com>
6 Jakub Jelinek <jakub@redhat.com> 6 Jakub Jelinek <jakub@redhat.com>
7 7
8This document describes the DMA mapping system in terms of the pci_ 8This is a guide to device driver writers on how to use the DMA API
9API. For a similar API that works for generic devices, see 9with example pseudo-code. For a concise description of the API, see
10DMA-API.txt. 10DMA-API.txt.
11 11
12Most of the 64bit platforms have special hardware that translates bus 12Most of the 64bit platforms have special hardware that translates bus
@@ -26,12 +26,15 @@ mapped only for the time they are actually used and unmapped after the DMA
26transfer. 26transfer.
27 27
28The following API will work of course even on platforms where no such 28The following API will work of course even on platforms where no such
29hardware exists, see e.g. arch/x86/include/asm/pci.h for how it is implemented on 29hardware exists.
30top of the virt_to_bus interface. 30
31Note that the DMA API works with any bus independent of the underlying
32microprocessor architecture. You should use the DMA API rather than
33the bus specific DMA API (e.g. pci_dma_*).
31 34
32First of all, you should make sure 35First of all, you should make sure
33 36
34#include <linux/pci.h> 37#include <linux/dma-mapping.h>
35 38
36is in your driver. This file will obtain for you the definition of the 39is in your driver. This file will obtain for you the definition of the
37dma_addr_t (which can hold any valid DMA address for the platform) 40dma_addr_t (which can hold any valid DMA address for the platform)
@@ -78,44 +81,43 @@ for you to DMA from/to.
78 DMA addressing limitations 81 DMA addressing limitations
79 82
80Does your device have any DMA addressing limitations? For example, is 83Does your device have any DMA addressing limitations? For example, is
81your device only capable of driving the low order 24-bits of address 84your device only capable of driving the low order 24-bits of address?
82on the PCI bus for SAC DMA transfers? If so, you need to inform the 85If so, you need to inform the kernel of this fact.
83PCI layer of this fact.
84 86
85By default, the kernel assumes that your device can address the full 87By default, the kernel assumes that your device can address the full
8632-bits in a SAC cycle. For a 64-bit DAC capable device, this needs 8832-bits. For a 64-bit capable device, this needs to be increased.
87to be increased. And for a device with limitations, as discussed in 89And for a device with limitations, as discussed in the previous
88the previous paragraph, it needs to be decreased. 90paragraph, it needs to be decreased.
89 91
90pci_alloc_consistent() by default will return 32-bit DMA addresses. 92Special note about PCI: PCI-X specification requires PCI-X devices to
91PCI-X specification requires PCI-X devices to support 64-bit 93support 64-bit addressing (DAC) for all transactions. And at least
92addressing (DAC) for all transactions. And at least one platform (SGI 94one platform (SGI SN2) requires 64-bit consistent allocations to
93SN2) requires 64-bit consistent allocations to operate correctly when 95operate correctly when the IO bus is in PCI-X mode.
94the IO bus is in PCI-X mode. Therefore, like with pci_set_dma_mask(), 96
95it's good practice to call pci_set_consistent_dma_mask() to set the 97For correct operation, you must interrogate the kernel in your device
96appropriate mask even if your device only supports 32-bit DMA 98probe routine to see if the DMA controller on the machine can properly
97(default) and especially if it's a PCI-X device. 99support the DMA addressing limitation your device has. It is good
98 100style to do this even if your device holds the default setting,
99For correct operation, you must interrogate the PCI layer in your
100device probe routine to see if the PCI controller on the machine can
101properly support the DMA addressing limitation your device has. It is
102good style to do this even if your device holds the default setting,
103because this shows that you did think about these issues wrt. your 101because this shows that you did think about these issues wrt. your
104device. 102device.
105 103
106The query is performed via a call to pci_set_dma_mask(): 104The query is performed via a call to dma_set_mask():
107 105
108 int pci_set_dma_mask(struct pci_dev *pdev, u64 device_mask); 106 int dma_set_mask(struct device *dev, u64 mask);
109 107
110The query for consistent allocations is performed via a call to 108The query for consistent allocations is performed via a call to
111pci_set_consistent_dma_mask(): 109dma_set_coherent_mask():
112 110
113 int pci_set_consistent_dma_mask(struct pci_dev *pdev, u64 device_mask); 111 int dma_set_coherent_mask(struct device *dev, u64 mask);
114 112
115Here, pdev is a pointer to the PCI device struct of your device, and 113Here, dev is a pointer to the device struct of your device, and mask
116device_mask is a bit mask describing which bits of a PCI address your 114is a bit mask describing which bits of an address your device
117device supports. It returns zero if your card can perform DMA 115supports. It returns zero if your card can perform DMA properly on
118properly on the machine given the address mask you provided. 116the machine given the address mask you provided. In general, the
117device struct of your device is embedded in the bus specific device
118struct of your device. For example, a pointer to the device struct of
119your PCI device is pdev->dev (pdev is a pointer to the PCI device
120struct of your device).
119 121
120If it returns non-zero, your device cannot perform DMA properly on 122If it returns non-zero, your device cannot perform DMA properly on
121this platform, and attempting to do so will result in undefined 123this platform, and attempting to do so will result in undefined
@@ -133,31 +135,30 @@ of your driver reports that performance is bad or that the device is not
133even detected, you can ask them for the kernel messages to find out 135even detected, you can ask them for the kernel messages to find out
134exactly why. 136exactly why.
135 137
136The standard 32-bit addressing PCI device would do something like 138The standard 32-bit addressing device would do something like this:
137this:
138 139
139 if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) { 140 if (dma_set_mask(dev, DMA_BIT_MASK(32))) {
140 printk(KERN_WARNING 141 printk(KERN_WARNING
141 "mydev: No suitable DMA available.\n"); 142 "mydev: No suitable DMA available.\n");
142 goto ignore_this_device; 143 goto ignore_this_device;
143 } 144 }
144 145
145Another common scenario is a 64-bit capable device. The approach 146Another common scenario is a 64-bit capable device. The approach here
146here is to try for 64-bit DAC addressing, but back down to a 147is to try for 64-bit addressing, but back down to a 32-bit mask that
14732-bit mask should that fail. The PCI platform code may fail the 148should not fail. The kernel may fail the 64-bit mask not because the
14864-bit mask not because the platform is not capable of 64-bit 149platform is not capable of 64-bit addressing. Rather, it may fail in
149addressing. Rather, it may fail in this case simply because 150this case simply because 32-bit addressing is done more efficiently
15032-bit SAC addressing is done more efficiently than DAC addressing. 151than 64-bit addressing. For example, Sparc64 PCI SAC addressing is
151Sparc64 is one platform which behaves in this way. 152more efficient than DAC addressing.
152 153
153Here is how you would handle a 64-bit capable device which can drive 154Here is how you would handle a 64-bit capable device which can drive
154all 64-bits when accessing streaming DMA: 155all 64-bits when accessing streaming DMA:
155 156
156 int using_dac; 157 int using_dac;
157 158
158 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 159 if (!dma_set_mask(dev, DMA_BIT_MASK(64))) {
159 using_dac = 1; 160 using_dac = 1;
160 } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) { 161 } else if (!dma_set_mask(dev, DMA_BIT_MASK(32))) {
161 using_dac = 0; 162 using_dac = 0;
162 } else { 163 } else {
163 printk(KERN_WARNING 164 printk(KERN_WARNING
@@ -170,36 +171,36 @@ the case would look like this:
170 171
171 int using_dac, consistent_using_dac; 172 int using_dac, consistent_using_dac;
172 173
173 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 174 if (!dma_set_mask(dev, DMA_BIT_MASK(64))) {
174 using_dac = 1; 175 using_dac = 1;
175 consistent_using_dac = 1; 176 consistent_using_dac = 1;
176 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 177 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
177 } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) { 178 } else if (!dma_set_mask(dev, DMA_BIT_MASK(32))) {
178 using_dac = 0; 179 using_dac = 0;
179 consistent_using_dac = 0; 180 consistent_using_dac = 0;
180 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); 181 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
181 } else { 182 } else {
182 printk(KERN_WARNING 183 printk(KERN_WARNING
183 "mydev: No suitable DMA available.\n"); 184 "mydev: No suitable DMA available.\n");
184 goto ignore_this_device; 185 goto ignore_this_device;
185 } 186 }
186 187
187pci_set_consistent_dma_mask() will always be able to set the same or a 188dma_set_coherent_mask() will always be able to set the same or a
188smaller mask as pci_set_dma_mask(). However for the rare case that a 189smaller mask as dma_set_mask(). However for the rare case that a
189device driver only uses consistent allocations, one would have to 190device driver only uses consistent allocations, one would have to
190check the return value from pci_set_consistent_dma_mask(). 191check the return value from dma_set_coherent_mask().
191 192
192Finally, if your device can only drive the low 24-bits of 193Finally, if your device can only drive the low 24-bits of
193address during PCI bus mastering you might do something like: 194address you might do something like:
194 195
195 if (pci_set_dma_mask(pdev, DMA_BIT_MASK(24))) { 196 if (dma_set_mask(dev, DMA_BIT_MASK(24))) {
196 printk(KERN_WARNING 197 printk(KERN_WARNING
197 "mydev: 24-bit DMA addressing not available.\n"); 198 "mydev: 24-bit DMA addressing not available.\n");
198 goto ignore_this_device; 199 goto ignore_this_device;
199 } 200 }
200 201
201When pci_set_dma_mask() is successful, and returns zero, the PCI layer 202When dma_set_mask() is successful, and returns zero, the kernel saves
202saves away this mask you have provided. The PCI layer will use this 203away this mask you have provided. The kernel will use this
203information later when you make DMA mappings. 204information later when you make DMA mappings.
204 205
205There is a case which we are aware of at this time, which is worth 206There is a case which we are aware of at this time, which is worth
@@ -208,7 +209,7 @@ functions (for example a sound card provides playback and record
208functions) and the various different functions have _different_ 209functions) and the various different functions have _different_
209DMA addressing limitations, you may wish to probe each mask and 210DMA addressing limitations, you may wish to probe each mask and
210only provide the functionality which the machine can handle. It 211only provide the functionality which the machine can handle. It
211is important that the last call to pci_set_dma_mask() be for the 212is important that the last call to dma_set_mask() be for the
212most specific mask. 213most specific mask.
213 214
214Here is pseudo-code showing how this might be done: 215Here is pseudo-code showing how this might be done:
@@ -217,17 +218,17 @@ Here is pseudo-code showing how this might be done:
217 #define RECORD_ADDRESS_BITS DMA_BIT_MASK(24) 218 #define RECORD_ADDRESS_BITS DMA_BIT_MASK(24)
218 219
219 struct my_sound_card *card; 220 struct my_sound_card *card;
220 struct pci_dev *pdev; 221 struct device *dev;
221 222
222 ... 223 ...
223 if (!pci_set_dma_mask(pdev, PLAYBACK_ADDRESS_BITS)) { 224 if (!dma_set_mask(dev, PLAYBACK_ADDRESS_BITS)) {
224 card->playback_enabled = 1; 225 card->playback_enabled = 1;
225 } else { 226 } else {
226 card->playback_enabled = 0; 227 card->playback_enabled = 0;
227 printk(KERN_WARNING "%s: Playback disabled due to DMA limitations.\n", 228 printk(KERN_WARNING "%s: Playback disabled due to DMA limitations.\n",
228 card->name); 229 card->name);
229 } 230 }
230 if (!pci_set_dma_mask(pdev, RECORD_ADDRESS_BITS)) { 231 if (!dma_set_mask(dev, RECORD_ADDRESS_BITS)) {
231 card->record_enabled = 1; 232 card->record_enabled = 1;
232 } else { 233 } else {
233 card->record_enabled = 0; 234 card->record_enabled = 0;
@@ -252,8 +253,8 @@ There are two types of DMA mappings:
252 Think of "consistent" as "synchronous" or "coherent". 253 Think of "consistent" as "synchronous" or "coherent".
253 254
254 The current default is to return consistent memory in the low 32 255 The current default is to return consistent memory in the low 32
255 bits of the PCI bus space. However, for future compatibility you 256 bits of the bus space. However, for future compatibility you should
256 should set the consistent mask even if this default is fine for your 257 set the consistent mask even if this default is fine for your
257 driver. 258 driver.
258 259
259 Good examples of what to use consistent mappings for are: 260 Good examples of what to use consistent mappings for are:
@@ -285,9 +286,9 @@ There are two types of DMA mappings:
285 found in PCI bridges (such as by reading a register's value 286 found in PCI bridges (such as by reading a register's value
286 after writing it). 287 after writing it).
287 288
288- Streaming DMA mappings which are usually mapped for one DMA transfer, 289- Streaming DMA mappings which are usually mapped for one DMA
289 unmapped right after it (unless you use pci_dma_sync_* below) and for which 290 transfer, unmapped right after it (unless you use dma_sync_* below)
290 hardware can optimize for sequential accesses. 291 and for which hardware can optimize for sequential accesses.
291 292
292 This of "streaming" as "asynchronous" or "outside the coherency 293 This of "streaming" as "asynchronous" or "outside the coherency
293 domain". 294 domain".
@@ -302,8 +303,8 @@ There are two types of DMA mappings:
302 optimizations the hardware allows. To this end, when using 303 optimizations the hardware allows. To this end, when using
303 such mappings you must be explicit about what you want to happen. 304 such mappings you must be explicit about what you want to happen.
304 305
305Neither type of DMA mapping has alignment restrictions that come 306Neither type of DMA mapping has alignment restrictions that come from
306from PCI, although some devices may have such restrictions. 307the underlying bus, although some devices may have such restrictions.
307Also, systems with caches that aren't DMA-coherent will work better 308Also, systems with caches that aren't DMA-coherent will work better
308when the underlying buffers don't share cache lines with other data. 309when the underlying buffers don't share cache lines with other data.
309 310
@@ -315,33 +316,27 @@ you should do:
315 316
316 dma_addr_t dma_handle; 317 dma_addr_t dma_handle;
317 318
318 cpu_addr = pci_alloc_consistent(pdev, size, &dma_handle); 319 cpu_addr = dma_alloc_coherent(dev, size, &dma_handle, gfp);
319
320where pdev is a struct pci_dev *. This may be called in interrupt context.
321You should use dma_alloc_coherent (see DMA-API.txt) for buses
322where devices don't have struct pci_dev (like ISA, EISA).
323 320
324This argument is needed because the DMA translations may be bus 321where device is a struct device *. This may be called in interrupt
325specific (and often is private to the bus which the device is attached 322context with the GFP_ATOMIC flag.
326to).
327 323
328Size is the length of the region you want to allocate, in bytes. 324Size is the length of the region you want to allocate, in bytes.
329 325
330This routine will allocate RAM for that region, so it acts similarly to 326This routine will allocate RAM for that region, so it acts similarly to
331__get_free_pages (but takes size instead of a page order). If your 327__get_free_pages (but takes size instead of a page order). If your
332driver needs regions sized smaller than a page, you may prefer using 328driver needs regions sized smaller than a page, you may prefer using
333the pci_pool interface, described below. 329the dma_pool interface, described below.
334 330
335The consistent DMA mapping interfaces, for non-NULL pdev, will by 331The consistent DMA mapping interfaces, for non-NULL dev, will by
336default return a DMA address which is SAC (Single Address Cycle) 332default return a DMA address which is 32-bit addressable. Even if the
337addressable. Even if the device indicates (via PCI dma mask) that it 333device indicates (via DMA mask) that it may address the upper 32-bits,
338may address the upper 32-bits and thus perform DAC cycles, consistent 334consistent allocation will only return > 32-bit addresses for DMA if
339allocation will only return > 32-bit PCI addresses for DMA if the 335the consistent DMA mask has been explicitly changed via
340consistent dma mask has been explicitly changed via 336dma_set_coherent_mask(). This is true of the dma_pool interface as
341pci_set_consistent_dma_mask(). This is true of the pci_pool interface 337well.
342as well. 338
343 339dma_alloc_coherent returns two values: the virtual address which you
344pci_alloc_consistent returns two values: the virtual address which you
345can use to access it from the CPU and dma_handle which you pass to the 340can use to access it from the CPU and dma_handle which you pass to the
346card. 341card.
347 342
@@ -354,54 +349,54 @@ buffer you receive will not cross a 64K boundary.
354 349
355To unmap and free such a DMA region, you call: 350To unmap and free such a DMA region, you call:
356 351
357 pci_free_consistent(pdev, size, cpu_addr, dma_handle); 352 dma_free_coherent(dev, size, cpu_addr, dma_handle);
358 353
359where pdev, size are the same as in the above call and cpu_addr and 354where dev, size are the same as in the above call and cpu_addr and
360dma_handle are the values pci_alloc_consistent returned to you. 355dma_handle are the values dma_alloc_coherent returned to you.
361This function may not be called in interrupt context. 356This function may not be called in interrupt context.
362 357
363If your driver needs lots of smaller memory regions, you can write 358If your driver needs lots of smaller memory regions, you can write
364custom code to subdivide pages returned by pci_alloc_consistent, 359custom code to subdivide pages returned by dma_alloc_coherent,
365or you can use the pci_pool API to do that. A pci_pool is like 360or you can use the dma_pool API to do that. A dma_pool is like
366a kmem_cache, but it uses pci_alloc_consistent not __get_free_pages. 361a kmem_cache, but it uses dma_alloc_coherent not __get_free_pages.
367Also, it understands common hardware constraints for alignment, 362Also, it understands common hardware constraints for alignment,
368like queue heads needing to be aligned on N byte boundaries. 363like queue heads needing to be aligned on N byte boundaries.
369 364
370Create a pci_pool like this: 365Create a dma_pool like this:
371 366
372 struct pci_pool *pool; 367 struct dma_pool *pool;
373 368
374 pool = pci_pool_create(name, pdev, size, align, alloc); 369 pool = dma_pool_create(name, dev, size, align, alloc);
375 370
376The "name" is for diagnostics (like a kmem_cache name); pdev and size 371The "name" is for diagnostics (like a kmem_cache name); dev and size
377are as above. The device's hardware alignment requirement for this 372are as above. The device's hardware alignment requirement for this
378type of data is "align" (which is expressed in bytes, and must be a 373type of data is "align" (which is expressed in bytes, and must be a
379power of two). If your device has no boundary crossing restrictions, 374power of two). If your device has no boundary crossing restrictions,
380pass 0 for alloc; passing 4096 says memory allocated from this pool 375pass 0 for alloc; passing 4096 says memory allocated from this pool
381must not cross 4KByte boundaries (but at that time it may be better to 376must not cross 4KByte boundaries (but at that time it may be better to
382go for pci_alloc_consistent directly instead). 377go for dma_alloc_coherent directly instead).
383 378
384Allocate memory from a pci pool like this: 379Allocate memory from a dma pool like this:
385 380
386 cpu_addr = pci_pool_alloc(pool, flags, &dma_handle); 381 cpu_addr = dma_pool_alloc(pool, flags, &dma_handle);
387 382
388flags are SLAB_KERNEL if blocking is permitted (not in_interrupt nor 383flags are SLAB_KERNEL if blocking is permitted (not in_interrupt nor
389holding SMP locks), SLAB_ATOMIC otherwise. Like pci_alloc_consistent, 384holding SMP locks), SLAB_ATOMIC otherwise. Like dma_alloc_coherent,
390this returns two values, cpu_addr and dma_handle. 385this returns two values, cpu_addr and dma_handle.
391 386
392Free memory that was allocated from a pci_pool like this: 387Free memory that was allocated from a dma_pool like this:
393 388
394 pci_pool_free(pool, cpu_addr, dma_handle); 389 dma_pool_free(pool, cpu_addr, dma_handle);
395 390
396where pool is what you passed to pci_pool_alloc, and cpu_addr and 391where pool is what you passed to dma_pool_alloc, and cpu_addr and
397dma_handle are the values pci_pool_alloc returned. This function 392dma_handle are the values dma_pool_alloc returned. This function
398may be called in interrupt context. 393may be called in interrupt context.
399 394
400Destroy a pci_pool by calling: 395Destroy a dma_pool by calling:
401 396
402 pci_pool_destroy(pool); 397 dma_pool_destroy(pool);
403 398
404Make sure you've called pci_pool_free for all memory allocated 399Make sure you've called dma_pool_free for all memory allocated
405from a pool before you destroy the pool. This function may not 400from a pool before you destroy the pool. This function may not
406be called in interrupt context. 401be called in interrupt context.
407 402
@@ -411,15 +406,15 @@ The interfaces described in subsequent portions of this document
411take a DMA direction argument, which is an integer and takes on 406take a DMA direction argument, which is an integer and takes on
412one of the following values: 407one of the following values:
413 408
414 PCI_DMA_BIDIRECTIONAL 409 DMA_BIDIRECTIONAL
415 PCI_DMA_TODEVICE 410 DMA_TO_DEVICE
416 PCI_DMA_FROMDEVICE 411 DMA_FROM_DEVICE
417 PCI_DMA_NONE 412 DMA_NONE
418 413
419One should provide the exact DMA direction if you know it. 414One should provide the exact DMA direction if you know it.
420 415
421PCI_DMA_TODEVICE means "from main memory to the PCI device" 416DMA_TO_DEVICE means "from main memory to the device"
422PCI_DMA_FROMDEVICE means "from the PCI device to main memory" 417DMA_FROM_DEVICE means "from the device to main memory"
423It is the direction in which the data moves during the DMA 418It is the direction in which the data moves during the DMA
424transfer. 419transfer.
425 420
@@ -427,12 +422,12 @@ You are _strongly_ encouraged to specify this as precisely
427as you possibly can. 422as you possibly can.
428 423
429If you absolutely cannot know the direction of the DMA transfer, 424If you absolutely cannot know the direction of the DMA transfer,
430specify PCI_DMA_BIDIRECTIONAL. It means that the DMA can go in 425specify DMA_BIDIRECTIONAL. It means that the DMA can go in
431either direction. The platform guarantees that you may legally 426either direction. The platform guarantees that you may legally
432specify this, and that it will work, but this may be at the 427specify this, and that it will work, but this may be at the
433cost of performance for example. 428cost of performance for example.
434 429
435The value PCI_DMA_NONE is to be used for debugging. One can 430The value DMA_NONE is to be used for debugging. One can
436hold this in a data structure before you come to know the 431hold this in a data structure before you come to know the
437precise direction, and this will help catch cases where your 432precise direction, and this will help catch cases where your
438direction tracking logic has failed to set things up properly. 433direction tracking logic has failed to set things up properly.
@@ -442,21 +437,21 @@ potential platform-specific optimizations of such) is for debugging.
442Some platforms actually have a write permission boolean which DMA 437Some platforms actually have a write permission boolean which DMA
443mappings can be marked with, much like page protections in the user 438mappings can be marked with, much like page protections in the user
444program address space. Such platforms can and do report errors in the 439program address space. Such platforms can and do report errors in the
445kernel logs when the PCI controller hardware detects violation of the 440kernel logs when the DMA controller hardware detects violation of the
446permission setting. 441permission setting.
447 442
448Only streaming mappings specify a direction, consistent mappings 443Only streaming mappings specify a direction, consistent mappings
449implicitly have a direction attribute setting of 444implicitly have a direction attribute setting of
450PCI_DMA_BIDIRECTIONAL. 445DMA_BIDIRECTIONAL.
451 446
452The SCSI subsystem tells you the direction to use in the 447The SCSI subsystem tells you the direction to use in the
453'sc_data_direction' member of the SCSI command your driver is 448'sc_data_direction' member of the SCSI command your driver is
454working on. 449working on.
455 450
456For Networking drivers, it's a rather simple affair. For transmit 451For Networking drivers, it's a rather simple affair. For transmit
457packets, map/unmap them with the PCI_DMA_TODEVICE direction 452packets, map/unmap them with the DMA_TO_DEVICE direction
458specifier. For receive packets, just the opposite, map/unmap them 453specifier. For receive packets, just the opposite, map/unmap them
459with the PCI_DMA_FROMDEVICE direction specifier. 454with the DMA_FROM_DEVICE direction specifier.
460 455
461 Using Streaming DMA mappings 456 Using Streaming DMA mappings
462 457
@@ -467,43 +462,43 @@ scatterlist.
467 462
468To map a single region, you do: 463To map a single region, you do:
469 464
470 struct pci_dev *pdev = mydev->pdev; 465 struct device *dev = &my_dev->dev;
471 dma_addr_t dma_handle; 466 dma_addr_t dma_handle;
472 void *addr = buffer->ptr; 467 void *addr = buffer->ptr;
473 size_t size = buffer->len; 468 size_t size = buffer->len;
474 469
475 dma_handle = pci_map_single(pdev, addr, size, direction); 470 dma_handle = dma_map_single(dev, addr, size, direction);
476 471
477and to unmap it: 472and to unmap it:
478 473
479 pci_unmap_single(pdev, dma_handle, size, direction); 474 dma_unmap_single(dev, dma_handle, size, direction);
480 475
481You should call pci_unmap_single when the DMA activity is finished, e.g. 476You should call dma_unmap_single when the DMA activity is finished, e.g.
482from the interrupt which told you that the DMA transfer is done. 477from the interrupt which told you that the DMA transfer is done.
483 478
484Using cpu pointers like this for single mappings has a disadvantage, 479Using cpu pointers like this for single mappings has a disadvantage,
485you cannot reference HIGHMEM memory in this way. Thus, there is a 480you cannot reference HIGHMEM memory in this way. Thus, there is a
486map/unmap interface pair akin to pci_{map,unmap}_single. These 481map/unmap interface pair akin to dma_{map,unmap}_single. These
487interfaces deal with page/offset pairs instead of cpu pointers. 482interfaces deal with page/offset pairs instead of cpu pointers.
488Specifically: 483Specifically:
489 484
490 struct pci_dev *pdev = mydev->pdev; 485 struct device *dev = &my_dev->dev;
491 dma_addr_t dma_handle; 486 dma_addr_t dma_handle;
492 struct page *page = buffer->page; 487 struct page *page = buffer->page;
493 unsigned long offset = buffer->offset; 488 unsigned long offset = buffer->offset;
494 size_t size = buffer->len; 489 size_t size = buffer->len;
495 490
496 dma_handle = pci_map_page(pdev, page, offset, size, direction); 491 dma_handle = dma_map_page(dev, page, offset, size, direction);
497 492
498 ... 493 ...
499 494
500 pci_unmap_page(pdev, dma_handle, size, direction); 495 dma_unmap_page(dev, dma_handle, size, direction);
501 496
502Here, "offset" means byte offset within the given page. 497Here, "offset" means byte offset within the given page.
503 498
504With scatterlists, you map a region gathered from several regions by: 499With scatterlists, you map a region gathered from several regions by:
505 500
506 int i, count = pci_map_sg(pdev, sglist, nents, direction); 501 int i, count = dma_map_sg(dev, sglist, nents, direction);
507 struct scatterlist *sg; 502 struct scatterlist *sg;
508 503
509 for_each_sg(sglist, sg, count, i) { 504 for_each_sg(sglist, sg, count, i) {
@@ -527,16 +522,16 @@ accessed sg->address and sg->length as shown above.
527 522
528To unmap a scatterlist, just call: 523To unmap a scatterlist, just call:
529 524
530 pci_unmap_sg(pdev, sglist, nents, direction); 525 dma_unmap_sg(dev, sglist, nents, direction);
531 526
532Again, make sure DMA activity has already finished. 527Again, make sure DMA activity has already finished.
533 528
534PLEASE NOTE: The 'nents' argument to the pci_unmap_sg call must be 529PLEASE NOTE: The 'nents' argument to the dma_unmap_sg call must be
535 the _same_ one you passed into the pci_map_sg call, 530 the _same_ one you passed into the dma_map_sg call,
536 it should _NOT_ be the 'count' value _returned_ from the 531 it should _NOT_ be the 'count' value _returned_ from the
537 pci_map_sg call. 532 dma_map_sg call.
538 533
539Every pci_map_{single,sg} call should have its pci_unmap_{single,sg} 534Every dma_map_{single,sg} call should have its dma_unmap_{single,sg}
540counterpart, because the bus address space is a shared resource (although 535counterpart, because the bus address space is a shared resource (although
541in some ports the mapping is per each BUS so less devices contend for the 536in some ports the mapping is per each BUS so less devices contend for the
542same bus address space) and you could render the machine unusable by eating 537same bus address space) and you could render the machine unusable by eating
@@ -547,14 +542,14 @@ the data in between the DMA transfers, the buffer needs to be synced
547properly in order for the cpu and device to see the most uptodate and 542properly in order for the cpu and device to see the most uptodate and
548correct copy of the DMA buffer. 543correct copy of the DMA buffer.
549 544
550So, firstly, just map it with pci_map_{single,sg}, and after each DMA 545So, firstly, just map it with dma_map_{single,sg}, and after each DMA
551transfer call either: 546transfer call either:
552 547
553 pci_dma_sync_single_for_cpu(pdev, dma_handle, size, direction); 548 dma_sync_single_for_cpu(dev, dma_handle, size, direction);
554 549
555or: 550or:
556 551
557 pci_dma_sync_sg_for_cpu(pdev, sglist, nents, direction); 552 dma_sync_sg_for_cpu(dev, sglist, nents, direction);
558 553
559as appropriate. 554as appropriate.
560 555
@@ -562,27 +557,27 @@ Then, if you wish to let the device get at the DMA area again,
562finish accessing the data with the cpu, and then before actually 557finish accessing the data with the cpu, and then before actually
563giving the buffer to the hardware call either: 558giving the buffer to the hardware call either:
564 559
565 pci_dma_sync_single_for_device(pdev, dma_handle, size, direction); 560 dma_sync_single_for_device(dev, dma_handle, size, direction);
566 561
567or: 562or:
568 563
569 pci_dma_sync_sg_for_device(dev, sglist, nents, direction); 564 dma_sync_sg_for_device(dev, sglist, nents, direction);
570 565
571as appropriate. 566as appropriate.
572 567
573After the last DMA transfer call one of the DMA unmap routines 568After the last DMA transfer call one of the DMA unmap routines
574pci_unmap_{single,sg}. If you don't touch the data from the first pci_map_* 569dma_unmap_{single,sg}. If you don't touch the data from the first dma_map_*
575call till pci_unmap_*, then you don't have to call the pci_dma_sync_* 570call till dma_unmap_*, then you don't have to call the dma_sync_*
576routines at all. 571routines at all.
577 572
578Here is pseudo code which shows a situation in which you would need 573Here is pseudo code which shows a situation in which you would need
579to use the pci_dma_sync_*() interfaces. 574to use the dma_sync_*() interfaces.
580 575
581 my_card_setup_receive_buffer(struct my_card *cp, char *buffer, int len) 576 my_card_setup_receive_buffer(struct my_card *cp, char *buffer, int len)
582 { 577 {
583 dma_addr_t mapping; 578 dma_addr_t mapping;
584 579
585 mapping = pci_map_single(cp->pdev, buffer, len, PCI_DMA_FROMDEVICE); 580 mapping = dma_map_single(cp->dev, buffer, len, DMA_FROM_DEVICE);
586 581
587 cp->rx_buf = buffer; 582 cp->rx_buf = buffer;
588 cp->rx_len = len; 583 cp->rx_len = len;
@@ -606,25 +601,25 @@ to use the pci_dma_sync_*() interfaces.
606 * the DMA transfer with the CPU first 601 * the DMA transfer with the CPU first
607 * so that we see updated contents. 602 * so that we see updated contents.
608 */ 603 */
609 pci_dma_sync_single_for_cpu(cp->pdev, cp->rx_dma, 604 dma_sync_single_for_cpu(&cp->dev, cp->rx_dma,
610 cp->rx_len, 605 cp->rx_len,
611 PCI_DMA_FROMDEVICE); 606 DMA_FROM_DEVICE);
612 607
613 /* Now it is safe to examine the buffer. */ 608 /* Now it is safe to examine the buffer. */
614 hp = (struct my_card_header *) cp->rx_buf; 609 hp = (struct my_card_header *) cp->rx_buf;
615 if (header_is_ok(hp)) { 610 if (header_is_ok(hp)) {
616 pci_unmap_single(cp->pdev, cp->rx_dma, cp->rx_len, 611 dma_unmap_single(&cp->dev, cp->rx_dma, cp->rx_len,
617 PCI_DMA_FROMDEVICE); 612 DMA_FROM_DEVICE);
618 pass_to_upper_layers(cp->rx_buf); 613 pass_to_upper_layers(cp->rx_buf);
619 make_and_setup_new_rx_buf(cp); 614 make_and_setup_new_rx_buf(cp);
620 } else { 615 } else {
621 /* Just sync the buffer and give it back 616 /* Just sync the buffer and give it back
622 * to the card. 617 * to the card.
623 */ 618 */
624 pci_dma_sync_single_for_device(cp->pdev, 619 dma_sync_single_for_device(&cp->dev,
625 cp->rx_dma, 620 cp->rx_dma,
626 cp->rx_len, 621 cp->rx_len,
627 PCI_DMA_FROMDEVICE); 622 DMA_FROM_DEVICE);
628 give_rx_buf_to_card(cp); 623 give_rx_buf_to_card(cp);
629 } 624 }
630 } 625 }
@@ -634,19 +629,19 @@ Drivers converted fully to this interface should not use virt_to_bus any
634longer, nor should they use bus_to_virt. Some drivers have to be changed a 629longer, nor should they use bus_to_virt. Some drivers have to be changed a
635little bit, because there is no longer an equivalent to bus_to_virt in the 630little bit, because there is no longer an equivalent to bus_to_virt in the
636dynamic DMA mapping scheme - you have to always store the DMA addresses 631dynamic DMA mapping scheme - you have to always store the DMA addresses
637returned by the pci_alloc_consistent, pci_pool_alloc, and pci_map_single 632returned by the dma_alloc_coherent, dma_pool_alloc, and dma_map_single
638calls (pci_map_sg stores them in the scatterlist itself if the platform 633calls (dma_map_sg stores them in the scatterlist itself if the platform
639supports dynamic DMA mapping in hardware) in your driver structures and/or 634supports dynamic DMA mapping in hardware) in your driver structures and/or
640in the card registers. 635in the card registers.
641 636
642All PCI drivers should be using these interfaces with no exceptions. 637All drivers should be using these interfaces with no exceptions. It
643It is planned to completely remove virt_to_bus() and bus_to_virt() as 638is planned to completely remove virt_to_bus() and bus_to_virt() as
644they are entirely deprecated. Some ports already do not provide these 639they are entirely deprecated. Some ports already do not provide these
645as it is impossible to correctly support them. 640as it is impossible to correctly support them.
646 641
647 Optimizing Unmap State Space Consumption 642 Optimizing Unmap State Space Consumption
648 643
649On many platforms, pci_unmap_{single,page}() is simply a nop. 644On many platforms, dma_unmap_{single,page}() is simply a nop.
650Therefore, keeping track of the mapping address and length is a waste 645Therefore, keeping track of the mapping address and length is a waste
651of space. Instead of filling your drivers up with ifdefs and the like 646of space. Instead of filling your drivers up with ifdefs and the like
652to "work around" this (which would defeat the whole purpose of a 647to "work around" this (which would defeat the whole purpose of a
@@ -655,7 +650,7 @@ portable API) the following facilities are provided.
655Actually, instead of describing the macros one by one, we'll 650Actually, instead of describing the macros one by one, we'll
656transform some example code. 651transform some example code.
657 652
6581) Use DECLARE_PCI_UNMAP_{ADDR,LEN} in state saving structures. 6531) Use DEFINE_DMA_UNMAP_{ADDR,LEN} in state saving structures.
659 Example, before: 654 Example, before:
660 655
661 struct ring_state { 656 struct ring_state {
@@ -668,14 +663,11 @@ transform some example code.
668 663
669 struct ring_state { 664 struct ring_state {
670 struct sk_buff *skb; 665 struct sk_buff *skb;
671 DECLARE_PCI_UNMAP_ADDR(mapping) 666 DEFINE_DMA_UNMAP_ADDR(mapping);
672 DECLARE_PCI_UNMAP_LEN(len) 667 DEFINE_DMA_UNMAP_LEN(len);
673 }; 668 };
674 669
675 NOTE: DO NOT put a semicolon at the end of the DECLARE_*() 6702) Use dma_unmap_{addr,len}_set to set these values.
676 macro.
677
6782) Use pci_unmap_{addr,len}_set to set these values.
679 Example, before: 671 Example, before:
680 672
681 ringp->mapping = FOO; 673 ringp->mapping = FOO;
@@ -683,21 +675,21 @@ transform some example code.
683 675
684 after: 676 after:
685 677
686 pci_unmap_addr_set(ringp, mapping, FOO); 678 dma_unmap_addr_set(ringp, mapping, FOO);
687 pci_unmap_len_set(ringp, len, BAR); 679 dma_unmap_len_set(ringp, len, BAR);
688 680
6893) Use pci_unmap_{addr,len} to access these values. 6813) Use dma_unmap_{addr,len} to access these values.
690 Example, before: 682 Example, before:
691 683
692 pci_unmap_single(pdev, ringp->mapping, ringp->len, 684 dma_unmap_single(dev, ringp->mapping, ringp->len,
693 PCI_DMA_FROMDEVICE); 685 DMA_FROM_DEVICE);
694 686
695 after: 687 after:
696 688
697 pci_unmap_single(pdev, 689 dma_unmap_single(dev,
698 pci_unmap_addr(ringp, mapping), 690 dma_unmap_addr(ringp, mapping),
699 pci_unmap_len(ringp, len), 691 dma_unmap_len(ringp, len),
700 PCI_DMA_FROMDEVICE); 692 DMA_FROM_DEVICE);
701 693
702It really should be self-explanatory. We treat the ADDR and LEN 694It really should be self-explanatory. We treat the ADDR and LEN
703separately, because it is possible for an implementation to only 695separately, because it is possible for an implementation to only
@@ -732,15 +724,15 @@ to "Closing".
732DMA address space is limited on some architectures and an allocation 724DMA address space is limited on some architectures and an allocation
733failure can be determined by: 725failure can be determined by:
734 726
735- checking if pci_alloc_consistent returns NULL or pci_map_sg returns 0 727- checking if dma_alloc_coherent returns NULL or dma_map_sg returns 0
736 728
737- checking the returned dma_addr_t of pci_map_single and pci_map_page 729- checking the returned dma_addr_t of dma_map_single and dma_map_page
738 by using pci_dma_mapping_error(): 730 by using dma_mapping_error():
739 731
740 dma_addr_t dma_handle; 732 dma_addr_t dma_handle;
741 733
742 dma_handle = pci_map_single(pdev, addr, size, direction); 734 dma_handle = dma_map_single(dev, addr, size, direction);
743 if (pci_dma_mapping_error(pdev, dma_handle)) { 735 if (dma_mapping_error(dev, dma_handle)) {
744 /* 736 /*
745 * reduce current DMA mapping usage, 737 * reduce current DMA mapping usage,
746 * delay and try again later or 738 * delay and try again later or
diff --git a/Documentation/SubmitChecklist b/Documentation/SubmitChecklist
index 1053a56be3b1..8916ca48bc95 100644
--- a/Documentation/SubmitChecklist
+++ b/Documentation/SubmitChecklist
@@ -9,10 +9,14 @@ Documentation/SubmittingPatches and elsewhere regarding submitting Linux
9kernel patches. 9kernel patches.
10 10
11 11
121: Builds cleanly with applicable or modified CONFIG options =y, =m, and 121: If you use a facility then #include the file that defines/declares
13 that facility. Don't depend on other header files pulling in ones
14 that you use.
15
162: Builds cleanly with applicable or modified CONFIG options =y, =m, and
13 =n. No gcc warnings/errors, no linker warnings/errors. 17 =n. No gcc warnings/errors, no linker warnings/errors.
14 18
152: Passes allnoconfig, allmodconfig 192b: Passes allnoconfig, allmodconfig
16 20
173: Builds on multiple CPU architectures by using local cross-compile tools 213: Builds on multiple CPU architectures by using local cross-compile tools
18 or some other build farm. 22 or some other build farm.
diff --git a/Documentation/arm/Samsung/Overview.txt b/Documentation/arm/Samsung/Overview.txt
new file mode 100644
index 000000000000..7cced1fea9c3
--- /dev/null
+++ b/Documentation/arm/Samsung/Overview.txt
@@ -0,0 +1,86 @@
1 Samsung ARM Linux Overview
2 ==========================
3
4Introduction
5------------
6
7 The Samsung range of ARM SoCs spans many similar devices, from the initial
8 ARM9 through to the newest ARM cores. This document shows an overview of
9 the current kernel support, how to use it and where to find the code
10 that supports this.
11
12 The currently supported SoCs are:
13
14 - S3C24XX: See Documentation/arm/Samsung-S3C24XX/Overview.txt for full list
15 - S3C64XX: S3C6400 and S3C6410
16 - S5PC6440
17
18 S5PC100 and S5PC110 support is currently being merged
19
20
21S3C24XX Systems
22---------------
23
24 There is still documentation in Documnetation/arm/Samsung-S3C24XX/ which
25 deals with the architecture and drivers specific to these devices.
26
27 See Documentation/arm/Samsung-S3C24XX/Overview.txt for more information
28 on the implementation details and specific support.
29
30
31Configuration
32-------------
33
34 A number of configurations are supplied, as there is no current way of
35 unifying all the SoCs into one kernel.
36
37 s5p6440_defconfig - S5P6440 specific default configuration
38 s5pc100_defconfig - S5PC100 specific default configuration
39
40
41Layout
42------
43
44 The directory layout is currently being restructured, and consists of
45 several platform directories and then the machine specific directories
46 of the CPUs being built for.
47
48 plat-samsung provides the base for all the implementations, and is the
49 last in the line of include directories that are processed for the build
50 specific information. It contains the base clock, GPIO and device definitions
51 to get the system running.
52
53 plat-s3c is the s3c24xx/s3c64xx platform directory, although it is currently
54 involved in other builds this will be phased out once the relevant code is
55 moved elsewhere.
56
57 plat-s3c24xx is for s3c24xx specific builds, see the S3C24XX docs.
58
59 plat-s3c64xx is for the s3c64xx specific bits, see the S3C24XX docs.
60
61 plat-s5p is for s5p specific builds, more to be added.
62
63
64 [ to finish ]
65
66
67Port Contributors
68-----------------
69
70 Ben Dooks (BJD)
71 Vincent Sanders
72 Herbert Potzl
73 Arnaud Patard (RTP)
74 Roc Wu
75 Klaus Fetscher
76 Dimitry Andric
77 Shannon Holland
78 Guillaume Gourat (NexVision)
79 Christer Weinigel (wingel) (Acer N30)
80 Lucas Correia Villa Real (S3C2400 port)
81
82
83Document Author
84---------------
85
86Copyright 2009-2010 Ben Dooks <ben-linux@fluff.org>
diff --git a/Documentation/arm/Samsung/clksrc-change-registers.awk b/Documentation/arm/Samsung/clksrc-change-registers.awk
new file mode 100755
index 000000000000..0c50220851fb
--- /dev/null
+++ b/Documentation/arm/Samsung/clksrc-change-registers.awk
@@ -0,0 +1,167 @@
1#!/usr/bin/awk -f
2#
3# Copyright 2010 Ben Dooks <ben-linux@fluff.org>
4#
5# Released under GPLv2
6
7# example usage
8# ./clksrc-change-registers.awk arch/arm/plat-s5pc1xx/include/plat/regs-clock.h < src > dst
9
10function extract_value(s)
11{
12 eqat = index(s, "=")
13 comat = index(s, ",")
14 return substr(s, eqat+2, (comat-eqat)-2)
15}
16
17function remove_brackets(b)
18{
19 return substr(b, 2, length(b)-2)
20}
21
22function splitdefine(l, p)
23{
24 r = split(l, tp)
25
26 p[0] = tp[2]
27 p[1] = remove_brackets(tp[3])
28}
29
30function find_length(f)
31{
32 if (0)
33 printf "find_length " f "\n" > "/dev/stderr"
34
35 if (f ~ /0x1/)
36 return 1
37 else if (f ~ /0x3/)
38 return 2
39 else if (f ~ /0x7/)
40 return 3
41 else if (f ~ /0xf/)
42 return 4
43
44 printf "unknown legnth " f "\n" > "/dev/stderr"
45 exit
46}
47
48function find_shift(s)
49{
50 id = index(s, "<")
51 if (id <= 0) {
52 printf "cannot find shift " s "\n" > "/dev/stderr"
53 exit
54 }
55
56 return substr(s, id+2)
57}
58
59
60BEGIN {
61 if (ARGC < 2) {
62 print "too few arguments" > "/dev/stderr"
63 exit
64 }
65
66# read the header file and find the mask values that we will need
67# to replace and create an associative array of values
68
69 while (getline line < ARGV[1] > 0) {
70 if (line ~ /\#define.*_MASK/ &&
71 !(line ~ /S5PC100_EPLL_MASK/) &&
72 !(line ~ /USB_SIG_MASK/)) {
73 splitdefine(line, fields)
74 name = fields[0]
75 if (0)
76 printf "MASK " line "\n" > "/dev/stderr"
77 dmask[name,0] = find_length(fields[1])
78 dmask[name,1] = find_shift(fields[1])
79 if (0)
80 printf "=> '" name "' LENGTH=" dmask[name,0] " SHIFT=" dmask[name,1] "\n" > "/dev/stderr"
81 } else {
82 }
83 }
84
85 delete ARGV[1]
86}
87
88/clksrc_clk.*=.*{/ {
89 shift=""
90 mask=""
91 divshift=""
92 reg_div=""
93 reg_src=""
94 indent=1
95
96 print $0
97
98 for(; indent >= 1;) {
99 if ((getline line) <= 0) {
100 printf "unexpected end of file" > "/dev/stderr"
101 exit 1;
102 }
103
104 if (line ~ /\.shift/) {
105 shift = extract_value(line)
106 } else if (line ~ /\.mask/) {
107 mask = extract_value(line)
108 } else if (line ~ /\.reg_divider/) {
109 reg_div = extract_value(line)
110 } else if (line ~ /\.reg_source/) {
111 reg_src = extract_value(line)
112 } else if (line ~ /\.divider_shift/) {
113 divshift = extract_value(line)
114 } else if (line ~ /{/) {
115 indent++
116 print line
117 } else if (line ~ /}/) {
118 indent--
119
120 if (indent == 0) {
121 if (0) {
122 printf "shift '" shift "' ='" dmask[shift,0] "'\n" > "/dev/stderr"
123 printf "mask '" mask "'\n" > "/dev/stderr"
124 printf "dshft '" divshift "'\n" > "/dev/stderr"
125 printf "rdiv '" reg_div "'\n" > "/dev/stderr"
126 printf "rsrc '" reg_src "'\n" > "/dev/stderr"
127 }
128
129 generated = mask
130 sub(reg_src, reg_div, generated)
131
132 if (0) {
133 printf "/* rsrc " reg_src " */\n"
134 printf "/* rdiv " reg_div " */\n"
135 printf "/* shift " shift " */\n"
136 printf "/* mask " mask " */\n"
137 printf "/* generated " generated " */\n"
138 }
139
140 if (reg_div != "") {
141 printf "\t.reg_div = { "
142 printf ".reg = " reg_div ", "
143 printf ".shift = " dmask[generated,1] ", "
144 printf ".size = " dmask[generated,0] ", "
145 printf "},\n"
146 }
147
148 printf "\t.reg_src = { "
149 printf ".reg = " reg_src ", "
150 printf ".shift = " dmask[mask,1] ", "
151 printf ".size = " dmask[mask,0] ", "
152
153 printf "},\n"
154
155 }
156
157 print line
158 } else {
159 print line
160 }
161
162 if (0)
163 printf indent ":" line "\n" > "/dev/stderr"
164 }
165}
166
167// && ! /clksrc_clk.*=.*{/ { print $0 }
diff --git a/Documentation/cgroups/cgroup_event_listener.c b/Documentation/cgroups/cgroup_event_listener.c
new file mode 100644
index 000000000000..8c2bfc4a6358
--- /dev/null
+++ b/Documentation/cgroups/cgroup_event_listener.c
@@ -0,0 +1,110 @@
1/*
2 * cgroup_event_listener.c - Simple listener of cgroup events
3 *
4 * Copyright (C) Kirill A. Shutemov <kirill@shutemov.name>
5 */
6
7#include <assert.h>
8#include <errno.h>
9#include <fcntl.h>
10#include <libgen.h>
11#include <limits.h>
12#include <stdio.h>
13#include <string.h>
14#include <unistd.h>
15
16#include <sys/eventfd.h>
17
18#define USAGE_STR "Usage: cgroup_event_listener <path-to-control-file> <args>\n"
19
20int main(int argc, char **argv)
21{
22 int efd = -1;
23 int cfd = -1;
24 int event_control = -1;
25 char event_control_path[PATH_MAX];
26 char line[LINE_MAX];
27 int ret;
28
29 if (argc != 3) {
30 fputs(USAGE_STR, stderr);
31 return 1;
32 }
33
34 cfd = open(argv[1], O_RDONLY);
35 if (cfd == -1) {
36 fprintf(stderr, "Cannot open %s: %s\n", argv[1],
37 strerror(errno));
38 goto out;
39 }
40
41 ret = snprintf(event_control_path, PATH_MAX, "%s/cgroup.event_control",
42 dirname(argv[1]));
43 if (ret >= PATH_MAX) {
44 fputs("Path to cgroup.event_control is too long\n", stderr);
45 goto out;
46 }
47
48 event_control = open(event_control_path, O_WRONLY);
49 if (event_control == -1) {
50 fprintf(stderr, "Cannot open %s: %s\n", event_control_path,
51 strerror(errno));
52 goto out;
53 }
54
55 efd = eventfd(0, 0);
56 if (efd == -1) {
57 perror("eventfd() failed");
58 goto out;
59 }
60
61 ret = snprintf(line, LINE_MAX, "%d %d %s", efd, cfd, argv[2]);
62 if (ret >= LINE_MAX) {
63 fputs("Arguments string is too long\n", stderr);
64 goto out;
65 }
66
67 ret = write(event_control, line, strlen(line) + 1);
68 if (ret == -1) {
69 perror("Cannot write to cgroup.event_control");
70 goto out;
71 }
72
73 while (1) {
74 uint64_t result;
75
76 ret = read(efd, &result, sizeof(result));
77 if (ret == -1) {
78 if (errno == EINTR)
79 continue;
80 perror("Cannot read from eventfd");
81 break;
82 }
83 assert(ret == sizeof(result));
84
85 ret = access(event_control_path, W_OK);
86 if ((ret == -1) && (errno == ENOENT)) {
87 puts("The cgroup seems to have removed.");
88 ret = 0;
89 break;
90 }
91
92 if (ret == -1) {
93 perror("cgroup.event_control "
94 "is not accessable any more");
95 break;
96 }
97
98 printf("%s %s: crossed\n", argv[1], argv[2]);
99 }
100
101out:
102 if (efd >= 0)
103 close(efd);
104 if (event_control >= 0)
105 close(event_control);
106 if (cfd >= 0)
107 close(cfd);
108
109 return (ret != 0);
110}
diff --git a/Documentation/cgroups/cgroups.txt b/Documentation/cgroups/cgroups.txt
index 0b33bfe7dde9..fd588ff0e296 100644
--- a/Documentation/cgroups/cgroups.txt
+++ b/Documentation/cgroups/cgroups.txt
@@ -22,6 +22,8 @@ CONTENTS:
222. Usage Examples and Syntax 222. Usage Examples and Syntax
23 2.1 Basic Usage 23 2.1 Basic Usage
24 2.2 Attaching processes 24 2.2 Attaching processes
25 2.3 Mounting hierarchies by name
26 2.4 Notification API
253. Kernel API 273. Kernel API
26 3.1 Overview 28 3.1 Overview
27 3.2 Synchronization 29 3.2 Synchronization
@@ -434,6 +436,25 @@ you give a subsystem a name.
434The name of the subsystem appears as part of the hierarchy description 436The name of the subsystem appears as part of the hierarchy description
435in /proc/mounts and /proc/<pid>/cgroups. 437in /proc/mounts and /proc/<pid>/cgroups.
436 438
4392.4 Notification API
440--------------------
441
442There is mechanism which allows to get notifications about changing
443status of a cgroup.
444
445To register new notification handler you need:
446 - create a file descriptor for event notification using eventfd(2);
447 - open a control file to be monitored (e.g. memory.usage_in_bytes);
448 - write "<event_fd> <control_fd> <args>" to cgroup.event_control.
449 Interpretation of args is defined by control file implementation;
450
451eventfd will be woken up by control file implementation or when the
452cgroup is removed.
453
454To unregister notification handler just close eventfd.
455
456NOTE: Support of notifications should be implemented for the control
457file. See documentation for the subsystem.
437 458
4383. Kernel API 4593. Kernel API
439============= 460=============
@@ -488,6 +509,11 @@ Each subsystem should:
488- add an entry in linux/cgroup_subsys.h 509- add an entry in linux/cgroup_subsys.h
489- define a cgroup_subsys object called <name>_subsys 510- define a cgroup_subsys object called <name>_subsys
490 511
512If a subsystem can be compiled as a module, it should also have in its
513module initcall a call to cgroup_load_subsys(), and in its exitcall a
514call to cgroup_unload_subsys(). It should also set its_subsys.module =
515THIS_MODULE in its .c file.
516
491Each subsystem may export the following methods. The only mandatory 517Each subsystem may export the following methods. The only mandatory
492methods are create/destroy. Any others that are null are presumed to 518methods are create/destroy. Any others that are null are presumed to
493be successful no-ops. 519be successful no-ops.
@@ -536,10 +562,21 @@ returns an error, this will abort the attach operation. If a NULL
536task is passed, then a successful result indicates that *any* 562task is passed, then a successful result indicates that *any*
537unspecified task can be moved into the cgroup. Note that this isn't 563unspecified task can be moved into the cgroup. Note that this isn't
538called on a fork. If this method returns 0 (success) then this should 564called on a fork. If this method returns 0 (success) then this should
539remain valid while the caller holds cgroup_mutex. If threadgroup is 565remain valid while the caller holds cgroup_mutex and it is ensured that either
566attach() or cancel_attach() will be called in future. If threadgroup is
540true, then a successful result indicates that all threads in the given 567true, then a successful result indicates that all threads in the given
541thread's threadgroup can be moved together. 568thread's threadgroup can be moved together.
542 569
570void cancel_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
571 struct task_struct *task, bool threadgroup)
572(cgroup_mutex held by caller)
573
574Called when a task attach operation has failed after can_attach() has succeeded.
575A subsystem whose can_attach() has some side-effects should provide this
576function, so that the subsytem can implement a rollback. If not, not necessary.
577This will be called only about subsystems whose can_attach() operation have
578succeeded.
579
543void attach(struct cgroup_subsys *ss, struct cgroup *cgrp, 580void attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
544 struct cgroup *old_cgrp, struct task_struct *task, 581 struct cgroup *old_cgrp, struct task_struct *task,
545 bool threadgroup) 582 bool threadgroup)
diff --git a/Documentation/cgroups/memcg_test.txt b/Documentation/cgroups/memcg_test.txt
index 72db89ed0609..f7f68b2ac199 100644
--- a/Documentation/cgroups/memcg_test.txt
+++ b/Documentation/cgroups/memcg_test.txt
@@ -1,6 +1,6 @@
1Memory Resource Controller(Memcg) Implementation Memo. 1Memory Resource Controller(Memcg) Implementation Memo.
2Last Updated: 2009/1/20 2Last Updated: 2010/2
3Base Kernel Version: based on 2.6.29-rc2. 3Base Kernel Version: based on 2.6.33-rc7-mm(candidate for 34).
4 4
5Because VM is getting complex (one of reasons is memcg...), memcg's behavior 5Because VM is getting complex (one of reasons is memcg...), memcg's behavior
6is complex. This is a document for memcg's internal behavior. 6is complex. This is a document for memcg's internal behavior.
@@ -337,7 +337,7 @@ Under below explanation, we assume CONFIG_MEM_RES_CTRL_SWAP=y.
337 race and lock dependency with other cgroup subsystems. 337 race and lock dependency with other cgroup subsystems.
338 338
339 example) 339 example)
340 # mount -t cgroup none /cgroup -t cpuset,memory,cpu,devices 340 # mount -t cgroup none /cgroup -o cpuset,memory,cpu,devices
341 341
342 and do task move, mkdir, rmdir etc...under this. 342 and do task move, mkdir, rmdir etc...under this.
343 343
@@ -348,7 +348,7 @@ Under below explanation, we assume CONFIG_MEM_RES_CTRL_SWAP=y.
348 348
349 For example, test like following is good. 349 For example, test like following is good.
350 (Shell-A) 350 (Shell-A)
351 # mount -t cgroup none /cgroup -t memory 351 # mount -t cgroup none /cgroup -o memory
352 # mkdir /cgroup/test 352 # mkdir /cgroup/test
353 # echo 40M > /cgroup/test/memory.limit_in_bytes 353 # echo 40M > /cgroup/test/memory.limit_in_bytes
354 # echo 0 > /cgroup/test/tasks 354 # echo 0 > /cgroup/test/tasks
@@ -378,3 +378,42 @@ Under below explanation, we assume CONFIG_MEM_RES_CTRL_SWAP=y.
378 #echo 50M > memory.limit_in_bytes 378 #echo 50M > memory.limit_in_bytes
379 #echo 50M > memory.memsw.limit_in_bytes 379 #echo 50M > memory.memsw.limit_in_bytes
380 run 51M of malloc 380 run 51M of malloc
381
382 9.9 Move charges at task migration
383 Charges associated with a task can be moved along with task migration.
384
385 (Shell-A)
386 #mkdir /cgroup/A
387 #echo $$ >/cgroup/A/tasks
388 run some programs which uses some amount of memory in /cgroup/A.
389
390 (Shell-B)
391 #mkdir /cgroup/B
392 #echo 1 >/cgroup/B/memory.move_charge_at_immigrate
393 #echo "pid of the program running in group A" >/cgroup/B/tasks
394
395 You can see charges have been moved by reading *.usage_in_bytes or
396 memory.stat of both A and B.
397 See 8.2 of Documentation/cgroups/memory.txt to see what value should be
398 written to move_charge_at_immigrate.
399
400 9.10 Memory thresholds
401 Memory controler implements memory thresholds using cgroups notification
402 API. You can use Documentation/cgroups/cgroup_event_listener.c to test
403 it.
404
405 (Shell-A) Create cgroup and run event listener
406 # mkdir /cgroup/A
407 # ./cgroup_event_listener /cgroup/A/memory.usage_in_bytes 5M
408
409 (Shell-B) Add task to cgroup and try to allocate and free memory
410 # echo $$ >/cgroup/A/tasks
411 # a="$(dd if=/dev/zero bs=1M count=10)"
412 # a=
413
414 You will see message from cgroup_event_listener every time you cross
415 the thresholds.
416
417 Use /cgroup/A/memory.memsw.usage_in_bytes to test memsw thresholds.
418
419 It's good idea to test root cgroup as well.
diff --git a/Documentation/cgroups/memory.txt b/Documentation/cgroups/memory.txt
index b871f2552b45..f8bc802d70b9 100644
--- a/Documentation/cgroups/memory.txt
+++ b/Documentation/cgroups/memory.txt
@@ -182,6 +182,8 @@ list.
182NOTE: Reclaim does not work for the root cgroup, since we cannot set any 182NOTE: Reclaim does not work for the root cgroup, since we cannot set any
183limits on the root cgroup. 183limits on the root cgroup.
184 184
185Note2: When panic_on_oom is set to "2", the whole system will panic.
186
1852. Locking 1872. Locking
186 188
187The memory controller uses the following hierarchy 189The memory controller uses the following hierarchy
@@ -262,10 +264,12 @@ some of the pages cached in the cgroup (page cache pages).
2624.2 Task migration 2644.2 Task migration
263 265
264When a task migrates from one cgroup to another, it's charge is not 266When a task migrates from one cgroup to another, it's charge is not
265carried forward. The pages allocated from the original cgroup still 267carried forward by default. The pages allocated from the original cgroup still
266remain charged to it, the charge is dropped when the page is freed or 268remain charged to it, the charge is dropped when the page is freed or
267reclaimed. 269reclaimed.
268 270
271Note: You can move charges of a task along with task migration. See 8.
272
2694.3 Removing a cgroup 2734.3 Removing a cgroup
270 274
271A cgroup can be removed by rmdir, but as discussed in sections 4.1 and 4.2, a 275A cgroup can be removed by rmdir, but as discussed in sections 4.1 and 4.2, a
@@ -377,7 +381,8 @@ The feature can be disabled by
377NOTE1: Enabling/disabling will fail if the cgroup already has other 381NOTE1: Enabling/disabling will fail if the cgroup already has other
378cgroups created below it. 382cgroups created below it.
379 383
380NOTE2: This feature can be enabled/disabled per subtree. 384NOTE2: When panic_on_oom is set to "2", the whole system will panic in
385case of an oom event in any cgroup.
381 386
3827. Soft limits 3877. Soft limits
383 388
@@ -414,7 +419,76 @@ NOTE1: Soft limits take effect over a long period of time, since they involve
414NOTE2: It is recommended to set the soft limit always below the hard limit, 419NOTE2: It is recommended to set the soft limit always below the hard limit,
415 otherwise the hard limit will take precedence. 420 otherwise the hard limit will take precedence.
416 421
4178. TODO 4228. Move charges at task migration
423
424Users can move charges associated with a task along with task migration, that
425is, uncharge task's pages from the old cgroup and charge them to the new cgroup.
426This feature is not supported in !CONFIG_MMU environments because of lack of
427page tables.
428
4298.1 Interface
430
431This feature is disabled by default. It can be enabled(and disabled again) by
432writing to memory.move_charge_at_immigrate of the destination cgroup.
433
434If you want to enable it:
435
436# echo (some positive value) > memory.move_charge_at_immigrate
437
438Note: Each bits of move_charge_at_immigrate has its own meaning about what type
439 of charges should be moved. See 8.2 for details.
440Note: Charges are moved only when you move mm->owner, IOW, a leader of a thread
441 group.
442Note: If we cannot find enough space for the task in the destination cgroup, we
443 try to make space by reclaiming memory. Task migration may fail if we
444 cannot make enough space.
445Note: It can take several seconds if you move charges in giga bytes order.
446
447And if you want disable it again:
448
449# echo 0 > memory.move_charge_at_immigrate
450
4518.2 Type of charges which can be move
452
453Each bits of move_charge_at_immigrate has its own meaning about what type of
454charges should be moved.
455
456 bit | what type of charges would be moved ?
457 -----+------------------------------------------------------------------------
458 0 | A charge of an anonymous page(or swap of it) used by the target task.
459 | Those pages and swaps must be used only by the target task. You must
460 | enable Swap Extension(see 2.4) to enable move of swap charges.
461
462Note: Those pages and swaps must be charged to the old cgroup.
463Note: More type of pages(e.g. file cache, shmem,) will be supported by other
464 bits in future.
465
4668.3 TODO
467
468- Add support for other types of pages(e.g. file cache, shmem, etc.).
469- Implement madvise(2) to let users decide the vma to be moved or not to be
470 moved.
471- All of moving charge operations are done under cgroup_mutex. It's not good
472 behavior to hold the mutex too long, so we may need some trick.
473
4749. Memory thresholds
475
476Memory controler implements memory thresholds using cgroups notification
477API (see cgroups.txt). It allows to register multiple memory and memsw
478thresholds and gets notifications when it crosses.
479
480To register a threshold application need:
481 - create an eventfd using eventfd(2);
482 - open memory.usage_in_bytes or memory.memsw.usage_in_bytes;
483 - write string like "<event_fd> <memory.usage_in_bytes> <threshold>" to
484 cgroup.event_control.
485
486Application will be notified through eventfd when memory usage crosses
487threshold in any direction.
488
489It's applicable for root and non-root cgroup.
490
49110. TODO
418 492
4191. Add support for accounting huge pages (as a separate controller) 4931. Add support for accounting huge pages (as a separate controller)
4202. Make per-cgroup scanner reclaim not-shared pages first 4942. Make per-cgroup scanner reclaim not-shared pages first
diff --git a/Documentation/email-clients.txt b/Documentation/email-clients.txt
index a618efab7b15..945ff3fda433 100644
--- a/Documentation/email-clients.txt
+++ b/Documentation/email-clients.txt
@@ -216,26 +216,14 @@ Works. Use "Insert file..." or external editor.
216~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 216~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
217Gmail (Web GUI) 217Gmail (Web GUI)
218 218
219If you just have to use Gmail to send patches, it CAN be made to work. It 219Does not work for sending patches.
220requires a bit of external help, though. 220
221 221Gmail web client converts tabs to spaces automatically.
222The first problem is that Gmail converts tabs to spaces. This will 222
223totally break your patches. To prevent this, you have to use a different 223At the same time it wraps lines every 78 chars with CRLF style line breaks
224editor. There is a firefox extension called "ViewSourceWith" 224although tab2space problem can be solved with external editor.
225(https://addons.mozilla.org/en-US/firefox/addon/394) which allows you to 225
226edit any text box in the editor of your choice. Configure it to launch 226Another problem is that Gmail will base64-encode any message that has a
227your favorite editor. When you want to send a patch, use this technique. 227non-ASCII character. That includes things like European names.
228Once you have crafted your messsage + patch, save and exit the editor,
229which should reload the Gmail edit box. GMAIL WILL PRESERVE THE TABS.
230Hoorah. Apparently you can cut-n-paste literal tabs, but Gmail will
231convert those to spaces upon sending!
232
233The second problem is that Gmail converts tabs to spaces on replies. If
234you reply to a patch, don't expect to be able to apply it as a patch.
235
236The last problem is that Gmail will base64-encode any message that has a
237non-ASCII character. That includes things like European names. Be aware.
238
239Gmail is not convenient for lkml patches, but CAN be made to work.
240 228
241 ### 229 ###
diff --git a/Documentation/filesystems/00-INDEX b/Documentation/filesystems/00-INDEX
index 5139b8c9d5af..3bae418c6ad3 100644
--- a/Documentation/filesystems/00-INDEX
+++ b/Documentation/filesystems/00-INDEX
@@ -32,6 +32,8 @@ dlmfs.txt
32 - info on the userspace interface to the OCFS2 DLM. 32 - info on the userspace interface to the OCFS2 DLM.
33dnotify.txt 33dnotify.txt
34 - info about directory notification in Linux. 34 - info about directory notification in Linux.
35dnotify_test.c
36 - example program for dnotify
35ecryptfs.txt 37ecryptfs.txt
36 - docs on eCryptfs: stacked cryptographic filesystem for Linux. 38 - docs on eCryptfs: stacked cryptographic filesystem for Linux.
37exofs.txt 39exofs.txt
diff --git a/Documentation/filesystems/Makefile b/Documentation/filesystems/Makefile
new file mode 100644
index 000000000000..a5dd114da14f
--- /dev/null
+++ b/Documentation/filesystems/Makefile
@@ -0,0 +1,8 @@
1# kbuild trick to avoid linker error. Can be omitted if a module is built.
2obj- := dummy.o
3
4# List of programs to build
5hostprogs-y := dnotify_test
6
7# Tell kbuild to always build the programs
8always := $(hostprogs-y)
diff --git a/Documentation/filesystems/dnotify.txt b/Documentation/filesystems/dnotify.txt
index 9f5d338ddbb8..6baf88f46859 100644
--- a/Documentation/filesystems/dnotify.txt
+++ b/Documentation/filesystems/dnotify.txt
@@ -62,38 +62,9 @@ disabled, fcntl(fd, F_NOTIFY, ...) will return -EINVAL.
62 62
63Example 63Example
64------- 64-------
65See Documentation/filesystems/dnotify_test.c for an example.
65 66
66 #define _GNU_SOURCE /* needed to get the defines */ 67NOTE
67 #include <fcntl.h> /* in glibc 2.2 this has the needed 68----
68 values defined */ 69Beginning with Linux 2.6.13, dnotify has been replaced by inotify.
69 #include <signal.h> 70See Documentation/filesystems/inotify.txt for more information on it.
70 #include <stdio.h>
71 #include <unistd.h>
72
73 static volatile int event_fd;
74
75 static void handler(int sig, siginfo_t *si, void *data)
76 {
77 event_fd = si->si_fd;
78 }
79
80 int main(void)
81 {
82 struct sigaction act;
83 int fd;
84
85 act.sa_sigaction = handler;
86 sigemptyset(&act.sa_mask);
87 act.sa_flags = SA_SIGINFO;
88 sigaction(SIGRTMIN + 1, &act, NULL);
89
90 fd = open(".", O_RDONLY);
91 fcntl(fd, F_SETSIG, SIGRTMIN + 1);
92 fcntl(fd, F_NOTIFY, DN_MODIFY|DN_CREATE|DN_MULTISHOT);
93 /* we will now be notified if any of the files
94 in "." is modified or new files are created */
95 while (1) {
96 pause();
97 printf("Got event on fd=%d\n", event_fd);
98 }
99 }
diff --git a/Documentation/filesystems/dnotify_test.c b/Documentation/filesystems/dnotify_test.c
new file mode 100644
index 000000000000..8b37b4a1e18d
--- /dev/null
+++ b/Documentation/filesystems/dnotify_test.c
@@ -0,0 +1,34 @@
1#define _GNU_SOURCE /* needed to get the defines */
2#include <fcntl.h> /* in glibc 2.2 this has the needed
3 values defined */
4#include <signal.h>
5#include <stdio.h>
6#include <unistd.h>
7
8static volatile int event_fd;
9
10static void handler(int sig, siginfo_t *si, void *data)
11{
12 event_fd = si->si_fd;
13}
14
15int main(void)
16{
17 struct sigaction act;
18 int fd;
19
20 act.sa_sigaction = handler;
21 sigemptyset(&act.sa_mask);
22 act.sa_flags = SA_SIGINFO;
23 sigaction(SIGRTMIN + 1, &act, NULL);
24
25 fd = open(".", O_RDONLY);
26 fcntl(fd, F_SETSIG, SIGRTMIN + 1);
27 fcntl(fd, F_NOTIFY, DN_MODIFY|DN_CREATE|DN_MULTISHOT);
28 /* we will now be notified if any of the files
29 in "." is modified or new files are created */
30 while (1) {
31 pause();
32 printf("Got event on fd=%d\n", event_fd);
33 }
34}
diff --git a/Documentation/kobject.txt b/Documentation/kobject.txt
index c79ab996dada..bdb13817e1e9 100644
--- a/Documentation/kobject.txt
+++ b/Documentation/kobject.txt
@@ -266,7 +266,7 @@ kobj_type:
266 266
267 struct kobj_type { 267 struct kobj_type {
268 void (*release)(struct kobject *); 268 void (*release)(struct kobject *);
269 struct sysfs_ops *sysfs_ops; 269 const struct sysfs_ops *sysfs_ops;
270 struct attribute **default_attrs; 270 struct attribute **default_attrs;
271 }; 271 };
272 272
diff --git a/Documentation/laptops/00-INDEX b/Documentation/laptops/00-INDEX
index df4fb52d4594..fa688538e757 100644
--- a/Documentation/laptops/00-INDEX
+++ b/Documentation/laptops/00-INDEX
@@ -6,6 +6,8 @@ asus-laptop.txt
6 - information on the Asus Laptop Extras driver. 6 - information on the Asus Laptop Extras driver.
7disk-shock-protection.txt 7disk-shock-protection.txt
8 - information on hard disk shock protection. 8 - information on hard disk shock protection.
9dslm.c
10 - Simple Disk Sleep Monitor program
9laptop-mode.txt 11laptop-mode.txt
10 - how to conserve battery power using laptop-mode. 12 - how to conserve battery power using laptop-mode.
11sony-laptop.txt 13sony-laptop.txt
diff --git a/Documentation/laptops/Makefile b/Documentation/laptops/Makefile
new file mode 100644
index 000000000000..5cb144af3c09
--- /dev/null
+++ b/Documentation/laptops/Makefile
@@ -0,0 +1,8 @@
1# kbuild trick to avoid linker error. Can be omitted if a module is built.
2obj- := dummy.o
3
4# List of programs to build
5hostprogs-y := dslm
6
7# Tell kbuild to always build the programs
8always := $(hostprogs-y)
diff --git a/Documentation/laptops/dslm.c b/Documentation/laptops/dslm.c
new file mode 100644
index 000000000000..72ff290c5fc6
--- /dev/null
+++ b/Documentation/laptops/dslm.c
@@ -0,0 +1,166 @@
1/*
2 * dslm.c
3 * Simple Disk Sleep Monitor
4 * by Bartek Kania
5 * Licenced under the GPL
6 */
7#include <unistd.h>
8#include <stdlib.h>
9#include <stdio.h>
10#include <fcntl.h>
11#include <errno.h>
12#include <time.h>
13#include <string.h>
14#include <signal.h>
15#include <sys/ioctl.h>
16#include <linux/hdreg.h>
17
18#ifdef DEBUG
19#define D(x) x
20#else
21#define D(x)
22#endif
23
24int endit = 0;
25
26/* Check if the disk is in powersave-mode
27 * Most of the code is stolen from hdparm.
28 * 1 = active, 0 = standby/sleep, -1 = unknown */
29static int check_powermode(int fd)
30{
31 unsigned char args[4] = {WIN_CHECKPOWERMODE1,0,0,0};
32 int state;
33
34 if (ioctl(fd, HDIO_DRIVE_CMD, &args)
35 && (args[0] = WIN_CHECKPOWERMODE2) /* try again with 0x98 */
36 && ioctl(fd, HDIO_DRIVE_CMD, &args)) {
37 if (errno != EIO || args[0] != 0 || args[1] != 0) {
38 state = -1; /* "unknown"; */
39 } else
40 state = 0; /* "sleeping"; */
41 } else {
42 state = (args[2] == 255) ? 1 : 0;
43 }
44 D(printf(" drive state is: %d\n", state));
45
46 return state;
47}
48
49static char *state_name(int i)
50{
51 if (i == -1) return "unknown";
52 if (i == 0) return "sleeping";
53 if (i == 1) return "active";
54
55 return "internal error";
56}
57
58static char *myctime(time_t time)
59{
60 char *ts = ctime(&time);
61 ts[strlen(ts) - 1] = 0;
62
63 return ts;
64}
65
66static void measure(int fd)
67{
68 time_t start_time;
69 int last_state;
70 time_t last_time;
71 int curr_state;
72 time_t curr_time = 0;
73 time_t time_diff;
74 time_t active_time = 0;
75 time_t sleep_time = 0;
76 time_t unknown_time = 0;
77 time_t total_time = 0;
78 int changes = 0;
79 float tmp;
80
81 printf("Starting measurements\n");
82
83 last_state = check_powermode(fd);
84 start_time = last_time = time(0);
85 printf(" System is in state %s\n\n", state_name(last_state));
86
87 while(!endit) {
88 sleep(1);
89 curr_state = check_powermode(fd);
90
91 if (curr_state != last_state || endit) {
92 changes++;
93 curr_time = time(0);
94 time_diff = curr_time - last_time;
95
96 if (last_state == 1) active_time += time_diff;
97 else if (last_state == 0) sleep_time += time_diff;
98 else unknown_time += time_diff;
99
100 last_state = curr_state;
101 last_time = curr_time;
102
103 printf("%s: State-change to %s\n", myctime(curr_time),
104 state_name(curr_state));
105 }
106 }
107 changes--; /* Compensate for SIGINT */
108
109 total_time = time(0) - start_time;
110 printf("\nTotal running time: %lus\n", curr_time - start_time);
111 printf(" State changed %d times\n", changes);
112
113 tmp = (float)sleep_time / (float)total_time * 100;
114 printf(" Time in sleep state: %lus (%.2f%%)\n", sleep_time, tmp);
115 tmp = (float)active_time / (float)total_time * 100;
116 printf(" Time in active state: %lus (%.2f%%)\n", active_time, tmp);
117 tmp = (float)unknown_time / (float)total_time * 100;
118 printf(" Time in unknown state: %lus (%.2f%%)\n", unknown_time, tmp);
119}
120
121static void ender(int s)
122{
123 endit = 1;
124}
125
126static void usage(void)
127{
128 puts("usage: dslm [-w <time>] <disk>");
129 exit(0);
130}
131
132int main(int argc, char **argv)
133{
134 int fd;
135 char *disk = 0;
136 int settle_time = 60;
137
138 /* Parse the simple command-line */
139 if (argc == 2)
140 disk = argv[1];
141 else if (argc == 4) {
142 settle_time = atoi(argv[2]);
143 disk = argv[3];
144 } else
145 usage();
146
147 if (!(fd = open(disk, O_RDONLY|O_NONBLOCK))) {
148 printf("Can't open %s, because: %s\n", disk, strerror(errno));
149 exit(-1);
150 }
151
152 if (settle_time) {
153 printf("Waiting %d seconds for the system to settle down to "
154 "'normal'\n", settle_time);
155 sleep(settle_time);
156 } else
157 puts("Not waiting for system to settle down");
158
159 signal(SIGINT, ender);
160
161 measure(fd);
162
163 close(fd);
164
165 return 0;
166}
diff --git a/Documentation/laptops/laptop-mode.txt b/Documentation/laptops/laptop-mode.txt
index eeedee11c8c2..2c3c35093023 100644
--- a/Documentation/laptops/laptop-mode.txt
+++ b/Documentation/laptops/laptop-mode.txt
@@ -779,172 +779,4 @@ Monitoring tool
779--------------- 779---------------
780 780
781Bartek Kania submitted this, it can be used to measure how much time your disk 781Bartek Kania submitted this, it can be used to measure how much time your disk
782spends spun up/down. 782spends spun up/down. See Documentation/laptops/dslm.c
783
784---------------------------dslm.c BEGIN-----------------------------------------
785/*
786 * Simple Disk Sleep Monitor
787 * by Bartek Kania
788 * Licenced under the GPL
789 */
790#include <unistd.h>
791#include <stdlib.h>
792#include <stdio.h>
793#include <fcntl.h>
794#include <errno.h>
795#include <time.h>
796#include <string.h>
797#include <signal.h>
798#include <sys/ioctl.h>
799#include <linux/hdreg.h>
800
801#ifdef DEBUG
802#define D(x) x
803#else
804#define D(x)
805#endif
806
807int endit = 0;
808
809/* Check if the disk is in powersave-mode
810 * Most of the code is stolen from hdparm.
811 * 1 = active, 0 = standby/sleep, -1 = unknown */
812int check_powermode(int fd)
813{
814 unsigned char args[4] = {WIN_CHECKPOWERMODE1,0,0,0};
815 int state;
816
817 if (ioctl(fd, HDIO_DRIVE_CMD, &args)
818 && (args[0] = WIN_CHECKPOWERMODE2) /* try again with 0x98 */
819 && ioctl(fd, HDIO_DRIVE_CMD, &args)) {
820 if (errno != EIO || args[0] != 0 || args[1] != 0) {
821 state = -1; /* "unknown"; */
822 } else
823 state = 0; /* "sleeping"; */
824 } else {
825 state = (args[2] == 255) ? 1 : 0;
826 }
827 D(printf(" drive state is: %d\n", state));
828
829 return state;
830}
831
832char *state_name(int i)
833{
834 if (i == -1) return "unknown";
835 if (i == 0) return "sleeping";
836 if (i == 1) return "active";
837
838 return "internal error";
839}
840
841char *myctime(time_t time)
842{
843 char *ts = ctime(&time);
844 ts[strlen(ts) - 1] = 0;
845
846 return ts;
847}
848
849void measure(int fd)
850{
851 time_t start_time;
852 int last_state;
853 time_t last_time;
854 int curr_state;
855 time_t curr_time = 0;
856 time_t time_diff;
857 time_t active_time = 0;
858 time_t sleep_time = 0;
859 time_t unknown_time = 0;
860 time_t total_time = 0;
861 int changes = 0;
862 float tmp;
863
864 printf("Starting measurements\n");
865
866 last_state = check_powermode(fd);
867 start_time = last_time = time(0);
868 printf(" System is in state %s\n\n", state_name(last_state));
869
870 while(!endit) {
871 sleep(1);
872 curr_state = check_powermode(fd);
873
874 if (curr_state != last_state || endit) {
875 changes++;
876 curr_time = time(0);
877 time_diff = curr_time - last_time;
878
879 if (last_state == 1) active_time += time_diff;
880 else if (last_state == 0) sleep_time += time_diff;
881 else unknown_time += time_diff;
882
883 last_state = curr_state;
884 last_time = curr_time;
885
886 printf("%s: State-change to %s\n", myctime(curr_time),
887 state_name(curr_state));
888 }
889 }
890 changes--; /* Compensate for SIGINT */
891
892 total_time = time(0) - start_time;
893 printf("\nTotal running time: %lus\n", curr_time - start_time);
894 printf(" State changed %d times\n", changes);
895
896 tmp = (float)sleep_time / (float)total_time * 100;
897 printf(" Time in sleep state: %lus (%.2f%%)\n", sleep_time, tmp);
898 tmp = (float)active_time / (float)total_time * 100;
899 printf(" Time in active state: %lus (%.2f%%)\n", active_time, tmp);
900 tmp = (float)unknown_time / (float)total_time * 100;
901 printf(" Time in unknown state: %lus (%.2f%%)\n", unknown_time, tmp);
902}
903
904void ender(int s)
905{
906 endit = 1;
907}
908
909void usage()
910{
911 puts("usage: dslm [-w <time>] <disk>");
912 exit(0);
913}
914
915int main(int argc, char **argv)
916{
917 int fd;
918 char *disk = 0;
919 int settle_time = 60;
920
921 /* Parse the simple command-line */
922 if (argc == 2)
923 disk = argv[1];
924 else if (argc == 4) {
925 settle_time = atoi(argv[2]);
926 disk = argv[3];
927 } else
928 usage();
929
930 if (!(fd = open(disk, O_RDONLY|O_NONBLOCK))) {
931 printf("Can't open %s, because: %s\n", disk, strerror(errno));
932 exit(-1);
933 }
934
935 if (settle_time) {
936 printf("Waiting %d seconds for the system to settle down to "
937 "'normal'\n", settle_time);
938 sleep(settle_time);
939 } else
940 puts("Not waiting for system to settle down");
941
942 signal(SIGINT, ender);
943
944 measure(fd);
945
946 close(fd);
947
948 return 0;
949}
950---------------------------dslm.c END-------------------------------------------
diff --git a/Documentation/serial/tty.txt b/Documentation/serial/tty.txt
index 5e5349a4fcd2..7c900507279f 100644
--- a/Documentation/serial/tty.txt
+++ b/Documentation/serial/tty.txt
@@ -105,6 +105,10 @@ write_wakeup() - May be called at any point between open and close.
105 is permitted to call the driver write method from 105 is permitted to call the driver write method from
106 this function. In such a situation defer it. 106 this function. In such a situation defer it.
107 107
108dcd_change() - Report to the tty line the current DCD pin status
109 changes and the relative timestamp. The timestamp
110 can be NULL.
111
108 112
109Driver Access 113Driver Access
110 114
diff --git a/Documentation/sound/alsa/ALSA-Configuration.txt b/Documentation/sound/alsa/ALSA-Configuration.txt
index 33df82e3a398..bfcbbf88c44d 100644
--- a/Documentation/sound/alsa/ALSA-Configuration.txt
+++ b/Documentation/sound/alsa/ALSA-Configuration.txt
@@ -1812,7 +1812,7 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
1812 Module snd-ua101 1812 Module snd-ua101
1813 ---------------- 1813 ----------------
1814 1814
1815 Module for the Edirol UA-101 audio/MIDI interface. 1815 Module for the Edirol UA-101/UA-1000 audio/MIDI interfaces.
1816 1816
1817 This module supports multiple devices, autoprobe and hotplugging. 1817 This module supports multiple devices, autoprobe and hotplugging.
1818 1818
diff --git a/Documentation/sysctl/vm.txt b/Documentation/sysctl/vm.txt
index fc5790d36cd9..6c7d18c53f84 100644
--- a/Documentation/sysctl/vm.txt
+++ b/Documentation/sysctl/vm.txt
@@ -573,11 +573,14 @@ Because other nodes' memory may be free. This means system total status
573may be not fatal yet. 573may be not fatal yet.
574 574
575If this is set to 2, the kernel panics compulsorily even on the 575If this is set to 2, the kernel panics compulsorily even on the
576above-mentioned. 576above-mentioned. Even oom happens under memory cgroup, the whole
577system panics.
577 578
578The default value is 0. 579The default value is 0.
5791 and 2 are for failover of clustering. Please select either 5801 and 2 are for failover of clustering. Please select either
580according to your policy of failover. 581according to your policy of failover.
582panic_on_oom=2+kdump gives you very strong tool to investigate
583why oom happens. You can get snapshot.
581 584
582============================================================= 585=============================================================
583 586
diff --git a/Documentation/timers/00-INDEX b/Documentation/timers/00-INDEX
index 397dc35e1323..a9248da5cdbc 100644
--- a/Documentation/timers/00-INDEX
+++ b/Documentation/timers/00-INDEX
@@ -4,6 +4,8 @@ highres.txt
4 - High resolution timers and dynamic ticks design notes 4 - High resolution timers and dynamic ticks design notes
5hpet.txt 5hpet.txt
6 - High Precision Event Timer Driver for Linux 6 - High Precision Event Timer Driver for Linux
7hpet_example.c
8 - sample hpet timer test program
7hrtimers.txt 9hrtimers.txt
8 - subsystem for high-resolution kernel timers 10 - subsystem for high-resolution kernel timers
9timer_stats.txt 11timer_stats.txt
diff --git a/Documentation/timers/Makefile b/Documentation/timers/Makefile
new file mode 100644
index 000000000000..c85625f4ab25
--- /dev/null
+++ b/Documentation/timers/Makefile
@@ -0,0 +1,8 @@
1# kbuild trick to avoid linker error. Can be omitted if a module is built.
2obj- := dummy.o
3
4# List of programs to build
5hostprogs-y := hpet_example
6
7# Tell kbuild to always build the programs
8always := $(hostprogs-y)
diff --git a/Documentation/timers/hpet.txt b/Documentation/timers/hpet.txt
index 16d25e6b5a00..767392ffd31e 100644
--- a/Documentation/timers/hpet.txt
+++ b/Documentation/timers/hpet.txt
@@ -26,274 +26,5 @@ initialization. An example of this initialization can be found in
26arch/x86/kernel/hpet.c. 26arch/x86/kernel/hpet.c.
27 27
28The driver provides a userspace API which resembles the API found in the 28The driver provides a userspace API which resembles the API found in the
29RTC driver framework. An example user space program is provided below. 29RTC driver framework. An example user space program is provided in
30 30file:Documentation/timers/hpet_example.c
31#include <stdio.h>
32#include <stdlib.h>
33#include <unistd.h>
34#include <fcntl.h>
35#include <string.h>
36#include <memory.h>
37#include <malloc.h>
38#include <time.h>
39#include <ctype.h>
40#include <sys/types.h>
41#include <sys/wait.h>
42#include <signal.h>
43#include <fcntl.h>
44#include <errno.h>
45#include <sys/time.h>
46#include <linux/hpet.h>
47
48
49extern void hpet_open_close(int, const char **);
50extern void hpet_info(int, const char **);
51extern void hpet_poll(int, const char **);
52extern void hpet_fasync(int, const char **);
53extern void hpet_read(int, const char **);
54
55#include <sys/poll.h>
56#include <sys/ioctl.h>
57#include <signal.h>
58
59struct hpet_command {
60 char *command;
61 void (*func)(int argc, const char ** argv);
62} hpet_command[] = {
63 {
64 "open-close",
65 hpet_open_close
66 },
67 {
68 "info",
69 hpet_info
70 },
71 {
72 "poll",
73 hpet_poll
74 },
75 {
76 "fasync",
77 hpet_fasync
78 },
79};
80
81int
82main(int argc, const char ** argv)
83{
84 int i;
85
86 argc--;
87 argv++;
88
89 if (!argc) {
90 fprintf(stderr, "-hpet: requires command\n");
91 return -1;
92 }
93
94
95 for (i = 0; i < (sizeof (hpet_command) / sizeof (hpet_command[0])); i++)
96 if (!strcmp(argv[0], hpet_command[i].command)) {
97 argc--;
98 argv++;
99 fprintf(stderr, "-hpet: executing %s\n",
100 hpet_command[i].command);
101 hpet_command[i].func(argc, argv);
102 return 0;
103 }
104
105 fprintf(stderr, "do_hpet: command %s not implemented\n", argv[0]);
106
107 return -1;
108}
109
110void
111hpet_open_close(int argc, const char **argv)
112{
113 int fd;
114
115 if (argc != 1) {
116 fprintf(stderr, "hpet_open_close: device-name\n");
117 return;
118 }
119
120 fd = open(argv[0], O_RDONLY);
121 if (fd < 0)
122 fprintf(stderr, "hpet_open_close: open failed\n");
123 else
124 close(fd);
125
126 return;
127}
128
129void
130hpet_info(int argc, const char **argv)
131{
132}
133
134void
135hpet_poll(int argc, const char **argv)
136{
137 unsigned long freq;
138 int iterations, i, fd;
139 struct pollfd pfd;
140 struct hpet_info info;
141 struct timeval stv, etv;
142 struct timezone tz;
143 long usec;
144
145 if (argc != 3) {
146 fprintf(stderr, "hpet_poll: device-name freq iterations\n");
147 return;
148 }
149
150 freq = atoi(argv[1]);
151 iterations = atoi(argv[2]);
152
153 fd = open(argv[0], O_RDONLY);
154
155 if (fd < 0) {
156 fprintf(stderr, "hpet_poll: open of %s failed\n", argv[0]);
157 return;
158 }
159
160 if (ioctl(fd, HPET_IRQFREQ, freq) < 0) {
161 fprintf(stderr, "hpet_poll: HPET_IRQFREQ failed\n");
162 goto out;
163 }
164
165 if (ioctl(fd, HPET_INFO, &info) < 0) {
166 fprintf(stderr, "hpet_poll: failed to get info\n");
167 goto out;
168 }
169
170 fprintf(stderr, "hpet_poll: info.hi_flags 0x%lx\n", info.hi_flags);
171
172 if (info.hi_flags && (ioctl(fd, HPET_EPI, 0) < 0)) {
173 fprintf(stderr, "hpet_poll: HPET_EPI failed\n");
174 goto out;
175 }
176
177 if (ioctl(fd, HPET_IE_ON, 0) < 0) {
178 fprintf(stderr, "hpet_poll, HPET_IE_ON failed\n");
179 goto out;
180 }
181
182 pfd.fd = fd;
183 pfd.events = POLLIN;
184
185 for (i = 0; i < iterations; i++) {
186 pfd.revents = 0;
187 gettimeofday(&stv, &tz);
188 if (poll(&pfd, 1, -1) < 0)
189 fprintf(stderr, "hpet_poll: poll failed\n");
190 else {
191 long data;
192
193 gettimeofday(&etv, &tz);
194 usec = stv.tv_sec * 1000000 + stv.tv_usec;
195 usec = (etv.tv_sec * 1000000 + etv.tv_usec) - usec;
196
197 fprintf(stderr,
198 "hpet_poll: expired time = 0x%lx\n", usec);
199
200 fprintf(stderr, "hpet_poll: revents = 0x%x\n",
201 pfd.revents);
202
203 if (read(fd, &data, sizeof(data)) != sizeof(data)) {
204 fprintf(stderr, "hpet_poll: read failed\n");
205 }
206 else
207 fprintf(stderr, "hpet_poll: data 0x%lx\n",
208 data);
209 }
210 }
211
212out:
213 close(fd);
214 return;
215}
216
217static int hpet_sigio_count;
218
219static void
220hpet_sigio(int val)
221{
222 fprintf(stderr, "hpet_sigio: called\n");
223 hpet_sigio_count++;
224}
225
226void
227hpet_fasync(int argc, const char **argv)
228{
229 unsigned long freq;
230 int iterations, i, fd, value;
231 sig_t oldsig;
232 struct hpet_info info;
233
234 hpet_sigio_count = 0;
235 fd = -1;
236
237 if ((oldsig = signal(SIGIO, hpet_sigio)) == SIG_ERR) {
238 fprintf(stderr, "hpet_fasync: failed to set signal handler\n");
239 return;
240 }
241
242 if (argc != 3) {
243 fprintf(stderr, "hpet_fasync: device-name freq iterations\n");
244 goto out;
245 }
246
247 fd = open(argv[0], O_RDONLY);
248
249 if (fd < 0) {
250 fprintf(stderr, "hpet_fasync: failed to open %s\n", argv[0]);
251 return;
252 }
253
254
255 if ((fcntl(fd, F_SETOWN, getpid()) == 1) ||
256 ((value = fcntl(fd, F_GETFL)) == 1) ||
257 (fcntl(fd, F_SETFL, value | O_ASYNC) == 1)) {
258 fprintf(stderr, "hpet_fasync: fcntl failed\n");
259 goto out;
260 }
261
262 freq = atoi(argv[1]);
263 iterations = atoi(argv[2]);
264
265 if (ioctl(fd, HPET_IRQFREQ, freq) < 0) {
266 fprintf(stderr, "hpet_fasync: HPET_IRQFREQ failed\n");
267 goto out;
268 }
269
270 if (ioctl(fd, HPET_INFO, &info) < 0) {
271 fprintf(stderr, "hpet_fasync: failed to get info\n");
272 goto out;
273 }
274
275 fprintf(stderr, "hpet_fasync: info.hi_flags 0x%lx\n", info.hi_flags);
276
277 if (info.hi_flags && (ioctl(fd, HPET_EPI, 0) < 0)) {
278 fprintf(stderr, "hpet_fasync: HPET_EPI failed\n");
279 goto out;
280 }
281
282 if (ioctl(fd, HPET_IE_ON, 0) < 0) {
283 fprintf(stderr, "hpet_fasync, HPET_IE_ON failed\n");
284 goto out;
285 }
286
287 for (i = 0; i < iterations; i++) {
288 (void) pause();
289 fprintf(stderr, "hpet_fasync: count = %d\n", hpet_sigio_count);
290 }
291
292out:
293 signal(SIGIO, oldsig);
294
295 if (fd >= 0)
296 close(fd);
297
298 return;
299}
diff --git a/Documentation/timers/hpet_example.c b/Documentation/timers/hpet_example.c
new file mode 100644
index 000000000000..f9ce2d9fdfd5
--- /dev/null
+++ b/Documentation/timers/hpet_example.c
@@ -0,0 +1,269 @@
1#include <stdio.h>
2#include <stdlib.h>
3#include <unistd.h>
4#include <fcntl.h>
5#include <string.h>
6#include <memory.h>
7#include <malloc.h>
8#include <time.h>
9#include <ctype.h>
10#include <sys/types.h>
11#include <sys/wait.h>
12#include <signal.h>
13#include <fcntl.h>
14#include <errno.h>
15#include <sys/time.h>
16#include <linux/hpet.h>
17
18
19extern void hpet_open_close(int, const char **);
20extern void hpet_info(int, const char **);
21extern void hpet_poll(int, const char **);
22extern void hpet_fasync(int, const char **);
23extern void hpet_read(int, const char **);
24
25#include <sys/poll.h>
26#include <sys/ioctl.h>
27#include <signal.h>
28
29struct hpet_command {
30 char *command;
31 void (*func)(int argc, const char ** argv);
32} hpet_command[] = {
33 {
34 "open-close",
35 hpet_open_close
36 },
37 {
38 "info",
39 hpet_info
40 },
41 {
42 "poll",
43 hpet_poll
44 },
45 {
46 "fasync",
47 hpet_fasync
48 },
49};
50
51int
52main(int argc, const char ** argv)
53{
54 int i;
55
56 argc--;
57 argv++;
58
59 if (!argc) {
60 fprintf(stderr, "-hpet: requires command\n");
61 return -1;
62 }
63
64
65 for (i = 0; i < (sizeof (hpet_command) / sizeof (hpet_command[0])); i++)
66 if (!strcmp(argv[0], hpet_command[i].command)) {
67 argc--;
68 argv++;
69 fprintf(stderr, "-hpet: executing %s\n",
70 hpet_command[i].command);
71 hpet_command[i].func(argc, argv);
72 return 0;
73 }
74
75 fprintf(stderr, "do_hpet: command %s not implemented\n", argv[0]);
76
77 return -1;
78}
79
80void
81hpet_open_close(int argc, const char **argv)
82{
83 int fd;
84
85 if (argc != 1) {
86 fprintf(stderr, "hpet_open_close: device-name\n");
87 return;
88 }
89
90 fd = open(argv[0], O_RDONLY);
91 if (fd < 0)
92 fprintf(stderr, "hpet_open_close: open failed\n");
93 else
94 close(fd);
95
96 return;
97}
98
99void
100hpet_info(int argc, const char **argv)
101{
102}
103
104void
105hpet_poll(int argc, const char **argv)
106{
107 unsigned long freq;
108 int iterations, i, fd;
109 struct pollfd pfd;
110 struct hpet_info info;
111 struct timeval stv, etv;
112 struct timezone tz;
113 long usec;
114
115 if (argc != 3) {
116 fprintf(stderr, "hpet_poll: device-name freq iterations\n");
117 return;
118 }
119
120 freq = atoi(argv[1]);
121 iterations = atoi(argv[2]);
122
123 fd = open(argv[0], O_RDONLY);
124
125 if (fd < 0) {
126 fprintf(stderr, "hpet_poll: open of %s failed\n", argv[0]);
127 return;
128 }
129
130 if (ioctl(fd, HPET_IRQFREQ, freq) < 0) {
131 fprintf(stderr, "hpet_poll: HPET_IRQFREQ failed\n");
132 goto out;
133 }
134
135 if (ioctl(fd, HPET_INFO, &info) < 0) {
136 fprintf(stderr, "hpet_poll: failed to get info\n");
137 goto out;
138 }
139
140 fprintf(stderr, "hpet_poll: info.hi_flags 0x%lx\n", info.hi_flags);
141
142 if (info.hi_flags && (ioctl(fd, HPET_EPI, 0) < 0)) {
143 fprintf(stderr, "hpet_poll: HPET_EPI failed\n");
144 goto out;
145 }
146
147 if (ioctl(fd, HPET_IE_ON, 0) < 0) {
148 fprintf(stderr, "hpet_poll, HPET_IE_ON failed\n");
149 goto out;
150 }
151
152 pfd.fd = fd;
153 pfd.events = POLLIN;
154
155 for (i = 0; i < iterations; i++) {
156 pfd.revents = 0;
157 gettimeofday(&stv, &tz);
158 if (poll(&pfd, 1, -1) < 0)
159 fprintf(stderr, "hpet_poll: poll failed\n");
160 else {
161 long data;
162
163 gettimeofday(&etv, &tz);
164 usec = stv.tv_sec * 1000000 + stv.tv_usec;
165 usec = (etv.tv_sec * 1000000 + etv.tv_usec) - usec;
166
167 fprintf(stderr,
168 "hpet_poll: expired time = 0x%lx\n", usec);
169
170 fprintf(stderr, "hpet_poll: revents = 0x%x\n",
171 pfd.revents);
172
173 if (read(fd, &data, sizeof(data)) != sizeof(data)) {
174 fprintf(stderr, "hpet_poll: read failed\n");
175 }
176 else
177 fprintf(stderr, "hpet_poll: data 0x%lx\n",
178 data);
179 }
180 }
181
182out:
183 close(fd);
184 return;
185}
186
187static int hpet_sigio_count;
188
189static void
190hpet_sigio(int val)
191{
192 fprintf(stderr, "hpet_sigio: called\n");
193 hpet_sigio_count++;
194}
195
196void
197hpet_fasync(int argc, const char **argv)
198{
199 unsigned long freq;
200 int iterations, i, fd, value;
201 sig_t oldsig;
202 struct hpet_info info;
203
204 hpet_sigio_count = 0;
205 fd = -1;
206
207 if ((oldsig = signal(SIGIO, hpet_sigio)) == SIG_ERR) {
208 fprintf(stderr, "hpet_fasync: failed to set signal handler\n");
209 return;
210 }
211
212 if (argc != 3) {
213 fprintf(stderr, "hpet_fasync: device-name freq iterations\n");
214 goto out;
215 }
216
217 fd = open(argv[0], O_RDONLY);
218
219 if (fd < 0) {
220 fprintf(stderr, "hpet_fasync: failed to open %s\n", argv[0]);
221 return;
222 }
223
224
225 if ((fcntl(fd, F_SETOWN, getpid()) == 1) ||
226 ((value = fcntl(fd, F_GETFL)) == 1) ||
227 (fcntl(fd, F_SETFL, value | O_ASYNC) == 1)) {
228 fprintf(stderr, "hpet_fasync: fcntl failed\n");
229 goto out;
230 }
231
232 freq = atoi(argv[1]);
233 iterations = atoi(argv[2]);
234
235 if (ioctl(fd, HPET_IRQFREQ, freq) < 0) {
236 fprintf(stderr, "hpet_fasync: HPET_IRQFREQ failed\n");
237 goto out;
238 }
239
240 if (ioctl(fd, HPET_INFO, &info) < 0) {
241 fprintf(stderr, "hpet_fasync: failed to get info\n");
242 goto out;
243 }
244
245 fprintf(stderr, "hpet_fasync: info.hi_flags 0x%lx\n", info.hi_flags);
246
247 if (info.hi_flags && (ioctl(fd, HPET_EPI, 0) < 0)) {
248 fprintf(stderr, "hpet_fasync: HPET_EPI failed\n");
249 goto out;
250 }
251
252 if (ioctl(fd, HPET_IE_ON, 0) < 0) {
253 fprintf(stderr, "hpet_fasync, HPET_IE_ON failed\n");
254 goto out;
255 }
256
257 for (i = 0; i < iterations; i++) {
258 (void) pause();
259 fprintf(stderr, "hpet_fasync: count = %d\n", hpet_sigio_count);
260 }
261
262out:
263 signal(SIGIO, oldsig);
264
265 if (fd >= 0)
266 close(fd);
267
268 return;
269}
diff --git a/Documentation/vm/00-INDEX b/Documentation/vm/00-INDEX
index e57d6a9dd32b..dca82d7c83d8 100644
--- a/Documentation/vm/00-INDEX
+++ b/Documentation/vm/00-INDEX
@@ -4,23 +4,35 @@ active_mm.txt
4 - An explanation from Linus about tsk->active_mm vs tsk->mm. 4 - An explanation from Linus about tsk->active_mm vs tsk->mm.
5balance 5balance
6 - various information on memory balancing. 6 - various information on memory balancing.
7hugepage-mmap.c
8 - Example app using huge page memory with the mmap system call.
9hugepage-shm.c
10 - Example app using huge page memory with Sys V shared memory system calls.
7hugetlbpage.txt 11hugetlbpage.txt
8 - a brief summary of hugetlbpage support in the Linux kernel. 12 - a brief summary of hugetlbpage support in the Linux kernel.
13hwpoison.txt
14 - explains what hwpoison is
9ksm.txt 15ksm.txt
10 - how to use the Kernel Samepage Merging feature. 16 - how to use the Kernel Samepage Merging feature.
11locking 17locking
12 - info on how locking and synchronization is done in the Linux vm code. 18 - info on how locking and synchronization is done in the Linux vm code.
19map_hugetlb.c
20 - an example program that uses the MAP_HUGETLB mmap flag.
13numa 21numa
14 - information about NUMA specific code in the Linux vm. 22 - information about NUMA specific code in the Linux vm.
15numa_memory_policy.txt 23numa_memory_policy.txt
16 - documentation of concepts and APIs of the 2.6 memory policy support. 24 - documentation of concepts and APIs of the 2.6 memory policy support.
17overcommit-accounting 25overcommit-accounting
18 - description of the Linux kernels overcommit handling modes. 26 - description of the Linux kernels overcommit handling modes.
27page-types.c
28 - Tool for querying page flags
19page_migration 29page_migration
20 - description of page migration in NUMA systems. 30 - description of page migration in NUMA systems.
31pagemap.txt
32 - pagemap, from the userspace perspective
21slabinfo.c 33slabinfo.c
22 - source code for a tool to get reports about slabs. 34 - source code for a tool to get reports about slabs.
23slub.txt 35slub.txt
24 - a short users guide for SLUB. 36 - a short users guide for SLUB.
25map_hugetlb.c 37unevictable-lru.txt
26 - an example program that uses the MAP_HUGETLB mmap flag. 38 - Unevictable LRU infrastructure
diff --git a/Documentation/vm/Makefile b/Documentation/vm/Makefile
index 5bd269b3731a..9dcff328b964 100644
--- a/Documentation/vm/Makefile
+++ b/Documentation/vm/Makefile
@@ -2,7 +2,7 @@
2obj- := dummy.o 2obj- := dummy.o
3 3
4# List of programs to build 4# List of programs to build
5hostprogs-y := slabinfo page-types 5hostprogs-y := slabinfo page-types hugepage-mmap hugepage-shm map_hugetlb
6 6
7# Tell kbuild to always build the programs 7# Tell kbuild to always build the programs
8always := $(hostprogs-y) 8always := $(hostprogs-y)
diff --git a/Documentation/vm/hugepage-mmap.c b/Documentation/vm/hugepage-mmap.c
new file mode 100644
index 000000000000..db0dd9a33d54
--- /dev/null
+++ b/Documentation/vm/hugepage-mmap.c
@@ -0,0 +1,91 @@
1/*
2 * hugepage-mmap:
3 *
4 * Example of using huge page memory in a user application using the mmap
5 * system call. Before running this application, make sure that the
6 * administrator has mounted the hugetlbfs filesystem (on some directory
7 * like /mnt) using the command mount -t hugetlbfs nodev /mnt. In this
8 * example, the app is requesting memory of size 256MB that is backed by
9 * huge pages.
10 *
11 * For the ia64 architecture, the Linux kernel reserves Region number 4 for
12 * huge pages. That means that if one requires a fixed address, a huge page
13 * aligned address starting with 0x800000... will be required. If a fixed
14 * address is not required, the kernel will select an address in the proper
15 * range.
16 * Other architectures, such as ppc64, i386 or x86_64 are not so constrained.
17 */
18
19#include <stdlib.h>
20#include <stdio.h>
21#include <unistd.h>
22#include <sys/mman.h>
23#include <fcntl.h>
24
25#define FILE_NAME "/mnt/hugepagefile"
26#define LENGTH (256UL*1024*1024)
27#define PROTECTION (PROT_READ | PROT_WRITE)
28
29/* Only ia64 requires this */
30#ifdef __ia64__
31#define ADDR (void *)(0x8000000000000000UL)
32#define FLAGS (MAP_SHARED | MAP_FIXED)
33#else
34#define ADDR (void *)(0x0UL)
35#define FLAGS (MAP_SHARED)
36#endif
37
38static void check_bytes(char *addr)
39{
40 printf("First hex is %x\n", *((unsigned int *)addr));
41}
42
43static void write_bytes(char *addr)
44{
45 unsigned long i;
46
47 for (i = 0; i < LENGTH; i++)
48 *(addr + i) = (char)i;
49}
50
51static void read_bytes(char *addr)
52{
53 unsigned long i;
54
55 check_bytes(addr);
56 for (i = 0; i < LENGTH; i++)
57 if (*(addr + i) != (char)i) {
58 printf("Mismatch at %lu\n", i);
59 break;
60 }
61}
62
63int main(void)
64{
65 void *addr;
66 int fd;
67
68 fd = open(FILE_NAME, O_CREAT | O_RDWR, 0755);
69 if (fd < 0) {
70 perror("Open failed");
71 exit(1);
72 }
73
74 addr = mmap(ADDR, LENGTH, PROTECTION, FLAGS, fd, 0);
75 if (addr == MAP_FAILED) {
76 perror("mmap");
77 unlink(FILE_NAME);
78 exit(1);
79 }
80
81 printf("Returned address is %p\n", addr);
82 check_bytes(addr);
83 write_bytes(addr);
84 read_bytes(addr);
85
86 munmap(addr, LENGTH);
87 close(fd);
88 unlink(FILE_NAME);
89
90 return 0;
91}
diff --git a/Documentation/vm/hugepage-shm.c b/Documentation/vm/hugepage-shm.c
new file mode 100644
index 000000000000..07956d8592c9
--- /dev/null
+++ b/Documentation/vm/hugepage-shm.c
@@ -0,0 +1,98 @@
1/*
2 * hugepage-shm:
3 *
4 * Example of using huge page memory in a user application using Sys V shared
5 * memory system calls. In this example the app is requesting 256MB of
6 * memory that is backed by huge pages. The application uses the flag
7 * SHM_HUGETLB in the shmget system call to inform the kernel that it is
8 * requesting huge pages.
9 *
10 * For the ia64 architecture, the Linux kernel reserves Region number 4 for
11 * huge pages. That means that if one requires a fixed address, a huge page
12 * aligned address starting with 0x800000... will be required. If a fixed
13 * address is not required, the kernel will select an address in the proper
14 * range.
15 * Other architectures, such as ppc64, i386 or x86_64 are not so constrained.
16 *
17 * Note: The default shared memory limit is quite low on many kernels,
18 * you may need to increase it via:
19 *
20 * echo 268435456 > /proc/sys/kernel/shmmax
21 *
22 * This will increase the maximum size per shared memory segment to 256MB.
23 * The other limit that you will hit eventually is shmall which is the
24 * total amount of shared memory in pages. To set it to 16GB on a system
25 * with a 4kB pagesize do:
26 *
27 * echo 4194304 > /proc/sys/kernel/shmall
28 */
29
30#include <stdlib.h>
31#include <stdio.h>
32#include <sys/types.h>
33#include <sys/ipc.h>
34#include <sys/shm.h>
35#include <sys/mman.h>
36
37#ifndef SHM_HUGETLB
38#define SHM_HUGETLB 04000
39#endif
40
41#define LENGTH (256UL*1024*1024)
42
43#define dprintf(x) printf(x)
44
45/* Only ia64 requires this */
46#ifdef __ia64__
47#define ADDR (void *)(0x8000000000000000UL)
48#define SHMAT_FLAGS (SHM_RND)
49#else
50#define ADDR (void *)(0x0UL)
51#define SHMAT_FLAGS (0)
52#endif
53
54int main(void)
55{
56 int shmid;
57 unsigned long i;
58 char *shmaddr;
59
60 if ((shmid = shmget(2, LENGTH,
61 SHM_HUGETLB | IPC_CREAT | SHM_R | SHM_W)) < 0) {
62 perror("shmget");
63 exit(1);
64 }
65 printf("shmid: 0x%x\n", shmid);
66
67 shmaddr = shmat(shmid, ADDR, SHMAT_FLAGS);
68 if (shmaddr == (char *)-1) {
69 perror("Shared memory attach failure");
70 shmctl(shmid, IPC_RMID, NULL);
71 exit(2);
72 }
73 printf("shmaddr: %p\n", shmaddr);
74
75 dprintf("Starting the writes:\n");
76 for (i = 0; i < LENGTH; i++) {
77 shmaddr[i] = (char)(i);
78 if (!(i % (1024 * 1024)))
79 dprintf(".");
80 }
81 dprintf("\n");
82
83 dprintf("Starting the Check...");
84 for (i = 0; i < LENGTH; i++)
85 if (shmaddr[i] != (char)i)
86 printf("\nIndex %lu mismatched\n", i);
87 dprintf("Done.\n");
88
89 if (shmdt((const void *)shmaddr) != 0) {
90 perror("Detach failure");
91 shmctl(shmid, IPC_RMID, NULL);
92 exit(3);
93 }
94
95 shmctl(shmid, IPC_RMID, NULL);
96
97 return 0;
98}
diff --git a/Documentation/vm/hugetlbpage.txt b/Documentation/vm/hugetlbpage.txt
index bc31636973e3..457634c1e03e 100644
--- a/Documentation/vm/hugetlbpage.txt
+++ b/Documentation/vm/hugetlbpage.txt
@@ -299,176 +299,11 @@ map_hugetlb.c.
299******************************************************************* 299*******************************************************************
300 300
301/* 301/*
302 * Example of using huge page memory in a user application using Sys V shared 302 * hugepage-shm: see Documentation/vm/hugepage-shm.c
303 * memory system calls. In this example the app is requesting 256MB of
304 * memory that is backed by huge pages. The application uses the flag
305 * SHM_HUGETLB in the shmget system call to inform the kernel that it is
306 * requesting huge pages.
307 *
308 * For the ia64 architecture, the Linux kernel reserves Region number 4 for
309 * huge pages. That means that if one requires a fixed address, a huge page
310 * aligned address starting with 0x800000... will be required. If a fixed
311 * address is not required, the kernel will select an address in the proper
312 * range.
313 * Other architectures, such as ppc64, i386 or x86_64 are not so constrained.
314 *
315 * Note: The default shared memory limit is quite low on many kernels,
316 * you may need to increase it via:
317 *
318 * echo 268435456 > /proc/sys/kernel/shmmax
319 *
320 * This will increase the maximum size per shared memory segment to 256MB.
321 * The other limit that you will hit eventually is shmall which is the
322 * total amount of shared memory in pages. To set it to 16GB on a system
323 * with a 4kB pagesize do:
324 *
325 * echo 4194304 > /proc/sys/kernel/shmall
326 */ 303 */
327#include <stdlib.h>
328#include <stdio.h>
329#include <sys/types.h>
330#include <sys/ipc.h>
331#include <sys/shm.h>
332#include <sys/mman.h>
333
334#ifndef SHM_HUGETLB
335#define SHM_HUGETLB 04000
336#endif
337
338#define LENGTH (256UL*1024*1024)
339
340#define dprintf(x) printf(x)
341
342#define ADDR (void *)(0x0UL) /* let kernel choose address */
343#define SHMAT_FLAGS (0)
344
345int main(void)
346{
347 int shmid;
348 unsigned long i;
349 char *shmaddr;
350
351 if ((shmid = shmget(2, LENGTH,
352 SHM_HUGETLB | IPC_CREAT | SHM_R | SHM_W)) < 0) {
353 perror("shmget");
354 exit(1);
355 }
356 printf("shmid: 0x%x\n", shmid);
357
358 shmaddr = shmat(shmid, ADDR, SHMAT_FLAGS);
359 if (shmaddr == (char *)-1) {
360 perror("Shared memory attach failure");
361 shmctl(shmid, IPC_RMID, NULL);
362 exit(2);
363 }
364 printf("shmaddr: %p\n", shmaddr);
365
366 dprintf("Starting the writes:\n");
367 for (i = 0; i < LENGTH; i++) {
368 shmaddr[i] = (char)(i);
369 if (!(i % (1024 * 1024)))
370 dprintf(".");
371 }
372 dprintf("\n");
373
374 dprintf("Starting the Check...");
375 for (i = 0; i < LENGTH; i++)
376 if (shmaddr[i] != (char)i)
377 printf("\nIndex %lu mismatched\n", i);
378 dprintf("Done.\n");
379
380 if (shmdt((const void *)shmaddr) != 0) {
381 perror("Detach failure");
382 shmctl(shmid, IPC_RMID, NULL);
383 exit(3);
384 }
385
386 shmctl(shmid, IPC_RMID, NULL);
387
388 return 0;
389}
390 304
391******************************************************************* 305*******************************************************************
392 306
393/* 307/*
394 * Example of using huge page memory in a user application using the mmap 308 * hugepage-mmap: see Documentation/vm/hugepage-mmap.c
395 * system call. Before running this application, make sure that the
396 * administrator has mounted the hugetlbfs filesystem (on some directory
397 * like /mnt) using the command mount -t hugetlbfs nodev /mnt. In this
398 * example, the app is requesting memory of size 256MB that is backed by
399 * huge pages.
400 *
401 * For the ia64 architecture, the Linux kernel reserves Region number 4 for
402 * huge pages. That means that if one requires a fixed address, a huge page
403 * aligned address starting with 0x800000... will be required. If a fixed
404 * address is not required, the kernel will select an address in the proper
405 * range.
406 * Other architectures, such as ppc64, i386 or x86_64 are not so constrained.
407 */ 309 */
408#include <stdlib.h>
409#include <stdio.h>
410#include <unistd.h>
411#include <sys/mman.h>
412#include <fcntl.h>
413
414#define FILE_NAME "/mnt/hugepagefile"
415#define LENGTH (256UL*1024*1024)
416#define PROTECTION (PROT_READ | PROT_WRITE)
417
418#define ADDR (void *)(0x0UL) /* let kernel choose address */
419#define FLAGS (MAP_SHARED)
420
421void check_bytes(char *addr)
422{
423 printf("First hex is %x\n", *((unsigned int *)addr));
424}
425
426void write_bytes(char *addr)
427{
428 unsigned long i;
429
430 for (i = 0; i < LENGTH; i++)
431 *(addr + i) = (char)i;
432}
433
434void read_bytes(char *addr)
435{
436 unsigned long i;
437
438 check_bytes(addr);
439 for (i = 0; i < LENGTH; i++)
440 if (*(addr + i) != (char)i) {
441 printf("Mismatch at %lu\n", i);
442 break;
443 }
444}
445
446int main(void)
447{
448 void *addr;
449 int fd;
450
451 fd = open(FILE_NAME, O_CREAT | O_RDWR, 0755);
452 if (fd < 0) {
453 perror("Open failed");
454 exit(1);
455 }
456
457 addr = mmap(ADDR, LENGTH, PROTECTION, FLAGS, fd, 0);
458 if (addr == MAP_FAILED) {
459 perror("mmap");
460 unlink(FILE_NAME);
461 exit(1);
462 }
463
464 printf("Returned address is %p\n", addr);
465 check_bytes(addr);
466 write_bytes(addr);
467 read_bytes(addr);
468
469 munmap(addr, LENGTH);
470 close(fd);
471 unlink(FILE_NAME);
472
473 return 0;
474}
diff --git a/Documentation/vm/map_hugetlb.c b/Documentation/vm/map_hugetlb.c
index e2bdae37f499..9969c7d9f985 100644
--- a/Documentation/vm/map_hugetlb.c
+++ b/Documentation/vm/map_hugetlb.c
@@ -31,12 +31,12 @@
31#define FLAGS (MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB) 31#define FLAGS (MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB)
32#endif 32#endif
33 33
34void check_bytes(char *addr) 34static void check_bytes(char *addr)
35{ 35{
36 printf("First hex is %x\n", *((unsigned int *)addr)); 36 printf("First hex is %x\n", *((unsigned int *)addr));
37} 37}
38 38
39void write_bytes(char *addr) 39static void write_bytes(char *addr)
40{ 40{
41 unsigned long i; 41 unsigned long i;
42 42
@@ -44,7 +44,7 @@ void write_bytes(char *addr)
44 *(addr + i) = (char)i; 44 *(addr + i) = (char)i;
45} 45}
46 46
47void read_bytes(char *addr) 47static void read_bytes(char *addr)
48{ 48{
49 unsigned long i; 49 unsigned long i;
50 50
diff --git a/Documentation/voyager.txt b/Documentation/voyager.txt
deleted file mode 100644
index 2749af552cdf..000000000000
--- a/Documentation/voyager.txt
+++ /dev/null
@@ -1,95 +0,0 @@
1Running Linux on the Voyager Architecture
2=========================================
3
4For full details and current project status, see
5
6http://www.hansenpartnership.com/voyager
7
8The voyager architecture was designed by NCR in the mid 80s to be a
9fully SMP capable RAS computing architecture built around intel's 486
10chip set. The voyager came in three levels of architectural
11sophistication: 3,4 and 5 --- 1 and 2 never made it out of prototype.
12The linux patches support only the Level 5 voyager architecture (any
13machine class 3435 and above).
14
15The Voyager Architecture
16------------------------
17
18Voyager machines consist of a Baseboard with a 386 diagnostic
19processor, a Power Supply Interface (PSI) a Primary and possibly
20Secondary Microchannel bus and between 2 and 20 voyager slots. The
21voyager slots can be populated with memory and cpu cards (up to 4GB
22memory and from 1 486 to 32 Pentium Pro processors). Internally, the
23voyager has a dual arbitrated system bus and a configuration and test
24bus (CAT). The voyager bus speed is 40MHz. Therefore (since all
25voyager cards are dual ported for each system bus) the maximum
26transfer rate is 320Mb/s but only if you have your slot configuration
27tuned (only memory cards can communicate with both busses at once, CPU
28cards utilise them one at a time).
29
30Voyager SMP
31-----------
32
33Since voyager was the first intel based SMP system, it is slightly
34more primitive than the Intel IO-APIC approach to SMP. Voyager allows
35arbitrary interrupt routing (including processor affinity routing) of
36all 16 PC type interrupts. However it does this by using a modified
375259 master/slave chip set instead of an APIC bus. Additionally,
38voyager supports Cross Processor Interrupts (CPI) equivalent to the
39APIC IPIs. There are two routed voyager interrupt lines provided to
40each slot.
41
42Processor Cards
43---------------
44
45These come in single, dyadic and quad configurations (the quads are
46problematic--see later). The maximum configuration is 8 quad cards
47for 32 way SMP.
48
49Quad Processors
50---------------
51
52Because voyager only supplies two interrupt lines to each Processor
53card, the Quad processors have to be configured (and Bootstrapped) in
54as a pair of Master/Slave processors.
55
56In fact, most Quad cards only accept one VIC interrupt line, so they
57have one interrupt handling processor (called the VIC extended
58processor) and three non-interrupt handling processors.
59
60Current Status
61--------------
62
63The System will boot on Mono, Dyad and Quad cards. There was
64originally a Quad boot problem which has been fixed by proper gdt
65alignment in the initial boot loader. If you still cannot get your
66voyager system to boot, email me at:
67
68<J.E.J.Bottomley@HansenPartnership.com>
69
70
71The Quad cards now support using the separate Quad CPI vectors instead
72of going through the VIC mailbox system.
73
74The Level 4 architecture (3430 and 3360 Machines) should also work
75fine.
76
77Dump Switch
78-----------
79
80The voyager dump switch sends out a broadcast NMI which the voyager
81code intercepts and does a task dump.
82
83Power Switch
84------------
85
86The front panel power switch is intercepted by the kernel and should
87cause a system shutdown and power off.
88
89A Note About Mixed CPU Systems
90------------------------------
91
92Linux isn't designed to handle mixed CPU systems very well. In order
93to get everything going you *must* make sure that your lowest
94capability CPU is used for booting. Also, mixing CPU classes
95(e.g. 486 and 586) is really not going to work very well at all.