diff options
Diffstat (limited to 'Documentation')
113 files changed, 7513 insertions, 1663 deletions
diff --git a/Documentation/ABI/README b/Documentation/ABI/README new file mode 100644 index 000000000000..9feaf16f1617 --- /dev/null +++ b/Documentation/ABI/README | |||
@@ -0,0 +1,77 @@ | |||
1 | This directory attempts to document the ABI between the Linux kernel and | ||
2 | userspace, and the relative stability of these interfaces. Due to the | ||
3 | everchanging nature of Linux, and the differing maturity levels, these | ||
4 | interfaces should be used by userspace programs in different ways. | ||
5 | |||
6 | We have four different levels of ABI stability, as shown by the four | ||
7 | different subdirectories in this location. Interfaces may change levels | ||
8 | of stability according to the rules described below. | ||
9 | |||
10 | The different levels of stability are: | ||
11 | |||
12 | stable/ | ||
13 | This directory documents the interfaces that the developer has | ||
14 | defined to be stable. Userspace programs are free to use these | ||
15 | interfaces with no restrictions, and backward compatibility for | ||
16 | them will be guaranteed for at least 2 years. Most interfaces | ||
17 | (like syscalls) are expected to never change and always be | ||
18 | available. | ||
19 | |||
20 | testing/ | ||
21 | This directory documents interfaces that are felt to be stable, | ||
22 | as the main development of this interface has been completed. | ||
23 | The interface can be changed to add new features, but the | ||
24 | current interface will not break by doing this, unless grave | ||
25 | errors or security problems are found in them. Userspace | ||
26 | programs can start to rely on these interfaces, but they must be | ||
27 | aware of changes that can occur before these interfaces move to | ||
28 | be marked stable. Programs that use these interfaces are | ||
29 | strongly encouraged to add their name to the description of | ||
30 | these interfaces, so that the kernel developers can easily | ||
31 | notify them if any changes occur (see the description of the | ||
32 | layout of the files below for details on how to do this.) | ||
33 | |||
34 | obsolete/ | ||
35 | This directory documents interfaces that are still remaining in | ||
36 | the kernel, but are marked to be removed at some later point in | ||
37 | time. The description of the interface will document the reason | ||
38 | why it is obsolete and when it can be expected to be removed. | ||
39 | The file Documentation/feature-removal-schedule.txt may describe | ||
40 | some of these interfaces, giving a schedule for when they will | ||
41 | be removed. | ||
42 | |||
43 | removed/ | ||
44 | This directory contains a list of the old interfaces that have | ||
45 | been removed from the kernel. | ||
46 | |||
47 | Every file in these directories will contain the following information: | ||
48 | |||
49 | What: Short description of the interface | ||
50 | Date: Date created | ||
51 | KernelVersion: Kernel version this feature first showed up in. | ||
52 | Contact: Primary contact for this interface (may be a mailing list) | ||
53 | Description: Long description of the interface and how to use it. | ||
54 | Users: All users of this interface who wish to be notified when | ||
55 | it changes. This is very important for interfaces in | ||
56 | the "testing" stage, so that kernel developers can work | ||
57 | with userspace developers to ensure that things do not | ||
58 | break in ways that are unacceptable. It is also | ||
59 | important to get feedback for these interfaces to make | ||
60 | sure they are working in a proper way and do not need to | ||
61 | be changed further. | ||
62 | |||
63 | |||
64 | How things move between levels: | ||
65 | |||
66 | Interfaces in stable may move to obsolete, as long as the proper | ||
67 | notification is given. | ||
68 | |||
69 | Interfaces may be removed from obsolete and the kernel as long as the | ||
70 | documented amount of time has gone by. | ||
71 | |||
72 | Interfaces in the testing state can move to the stable state when the | ||
73 | developers feel they are finished. They cannot be removed from the | ||
74 | kernel tree without going through the obsolete state first. | ||
75 | |||
76 | It's up to the developer to place their interfaces in the category they | ||
77 | wish for it to start out in. | ||
diff --git a/Documentation/ABI/obsolete/devfs b/Documentation/ABI/obsolete/devfs new file mode 100644 index 000000000000..b8b87399bc8f --- /dev/null +++ b/Documentation/ABI/obsolete/devfs | |||
@@ -0,0 +1,13 @@ | |||
1 | What: devfs | ||
2 | Date: July 2005 | ||
3 | Contact: Greg Kroah-Hartman <gregkh@suse.de> | ||
4 | Description: | ||
5 | devfs has been unmaintained for a number of years, has unfixable | ||
6 | races, contains a naming policy within the kernel that is | ||
7 | against the LSB, and can be replaced by using udev. | ||
8 | The files fs/devfs/*, include/linux/devfs_fs*.h will be removed, | ||
9 | along with the the assorted devfs function calls throughout the | ||
10 | kernel tree. | ||
11 | |||
12 | Users: | ||
13 | |||
diff --git a/Documentation/ABI/stable/syscalls b/Documentation/ABI/stable/syscalls new file mode 100644 index 000000000000..c3ae3e7d6a0c --- /dev/null +++ b/Documentation/ABI/stable/syscalls | |||
@@ -0,0 +1,10 @@ | |||
1 | What: The kernel syscall interface | ||
2 | Description: | ||
3 | This interface matches much of the POSIX interface and is based | ||
4 | on it and other Unix based interfaces. It will only be added to | ||
5 | over time, and not have things removed from it. | ||
6 | |||
7 | Note that this interface is different for every architecture | ||
8 | that Linux supports. Please see the architecture-specific | ||
9 | documentation for details on the syscall numbers that are to be | ||
10 | mapped to each syscall. | ||
diff --git a/Documentation/ABI/stable/sysfs-module b/Documentation/ABI/stable/sysfs-module new file mode 100644 index 000000000000..75be43118335 --- /dev/null +++ b/Documentation/ABI/stable/sysfs-module | |||
@@ -0,0 +1,30 @@ | |||
1 | What: /sys/module | ||
2 | Description: | ||
3 | The /sys/module tree consists of the following structure: | ||
4 | |||
5 | /sys/module/MODULENAME | ||
6 | The name of the module that is in the kernel. This | ||
7 | module name will show up either if the module is built | ||
8 | directly into the kernel, or if it is loaded as a | ||
9 | dyanmic module. | ||
10 | |||
11 | /sys/module/MODULENAME/parameters | ||
12 | This directory contains individual files that are each | ||
13 | individual parameters of the module that are able to be | ||
14 | changed at runtime. See the individual module | ||
15 | documentation as to the contents of these parameters and | ||
16 | what they accomplish. | ||
17 | |||
18 | Note: The individual parameter names and values are not | ||
19 | considered stable, only the fact that they will be | ||
20 | placed in this location within sysfs. See the | ||
21 | individual driver documentation for details as to the | ||
22 | stability of the different parameters. | ||
23 | |||
24 | /sys/module/MODULENAME/refcnt | ||
25 | If the module is able to be unloaded from the kernel, this file | ||
26 | will contain the current reference count of the module. | ||
27 | |||
28 | Note: If the module is built into the kernel, or if the | ||
29 | CONFIG_MODULE_UNLOAD kernel configuration value is not enabled, | ||
30 | this file will not be present. | ||
diff --git a/Documentation/ABI/testing/sysfs-class b/Documentation/ABI/testing/sysfs-class new file mode 100644 index 000000000000..4b0cb891e46e --- /dev/null +++ b/Documentation/ABI/testing/sysfs-class | |||
@@ -0,0 +1,16 @@ | |||
1 | What: /sys/class/ | ||
2 | Date: Febuary 2006 | ||
3 | Contact: Greg Kroah-Hartman <gregkh@suse.de> | ||
4 | Description: | ||
5 | The /sys/class directory will consist of a group of | ||
6 | subdirectories describing individual classes of devices | ||
7 | in the kernel. The individual directories will consist | ||
8 | of either subdirectories, or symlinks to other | ||
9 | directories. | ||
10 | |||
11 | All programs that use this directory tree must be able | ||
12 | to handle both subdirectories or symlinks in order to | ||
13 | work properly. | ||
14 | |||
15 | Users: | ||
16 | udev <linux-hotplug-devel@lists.sourceforge.net> | ||
diff --git a/Documentation/ABI/testing/sysfs-devices b/Documentation/ABI/testing/sysfs-devices new file mode 100644 index 000000000000..6a25671ee5f6 --- /dev/null +++ b/Documentation/ABI/testing/sysfs-devices | |||
@@ -0,0 +1,25 @@ | |||
1 | What: /sys/devices | ||
2 | Date: February 2006 | ||
3 | Contact: Greg Kroah-Hartman <gregkh@suse.de> | ||
4 | Description: | ||
5 | The /sys/devices tree contains a snapshot of the | ||
6 | internal state of the kernel device tree. Devices will | ||
7 | be added and removed dynamically as the machine runs, | ||
8 | and between different kernel versions, the layout of the | ||
9 | devices within this tree will change. | ||
10 | |||
11 | Please do not rely on the format of this tree because of | ||
12 | this. If a program wishes to find different things in | ||
13 | the tree, please use the /sys/class structure and rely | ||
14 | on the symlinks there to point to the proper location | ||
15 | within the /sys/devices tree of the individual devices. | ||
16 | Or rely on the uevent messages to notify programs of | ||
17 | devices being added and removed from this tree to find | ||
18 | the location of those devices. | ||
19 | |||
20 | Note that sometimes not all devices along the directory | ||
21 | chain will have emitted uevent messages, so userspace | ||
22 | programs must be able to handle such occurrences. | ||
23 | |||
24 | Users: | ||
25 | udev <linux-hotplug-devel@lists.sourceforge.net> | ||
diff --git a/Documentation/CodingStyle b/Documentation/CodingStyle index ce5d2c038cf5..6d2412ec91ed 100644 --- a/Documentation/CodingStyle +++ b/Documentation/CodingStyle | |||
@@ -155,7 +155,83 @@ problem, which is called the function-growth-hormone-imbalance syndrome. | |||
155 | See next chapter. | 155 | See next chapter. |
156 | 156 | ||
157 | 157 | ||
158 | Chapter 5: Functions | 158 | Chapter 5: Typedefs |
159 | |||
160 | Please don't use things like "vps_t". | ||
161 | |||
162 | It's a _mistake_ to use typedef for structures and pointers. When you see a | ||
163 | |||
164 | vps_t a; | ||
165 | |||
166 | in the source, what does it mean? | ||
167 | |||
168 | In contrast, if it says | ||
169 | |||
170 | struct virtual_container *a; | ||
171 | |||
172 | you can actually tell what "a" is. | ||
173 | |||
174 | Lots of people think that typedefs "help readability". Not so. They are | ||
175 | useful only for: | ||
176 | |||
177 | (a) totally opaque objects (where the typedef is actively used to _hide_ | ||
178 | what the object is). | ||
179 | |||
180 | Example: "pte_t" etc. opaque objects that you can only access using | ||
181 | the proper accessor functions. | ||
182 | |||
183 | NOTE! Opaqueness and "accessor functions" are not good in themselves. | ||
184 | The reason we have them for things like pte_t etc. is that there | ||
185 | really is absolutely _zero_ portably accessible information there. | ||
186 | |||
187 | (b) Clear integer types, where the abstraction _helps_ avoid confusion | ||
188 | whether it is "int" or "long". | ||
189 | |||
190 | u8/u16/u32 are perfectly fine typedefs, although they fit into | ||
191 | category (d) better than here. | ||
192 | |||
193 | NOTE! Again - there needs to be a _reason_ for this. If something is | ||
194 | "unsigned long", then there's no reason to do | ||
195 | |||
196 | typedef unsigned long myflags_t; | ||
197 | |||
198 | but if there is a clear reason for why it under certain circumstances | ||
199 | might be an "unsigned int" and under other configurations might be | ||
200 | "unsigned long", then by all means go ahead and use a typedef. | ||
201 | |||
202 | (c) when you use sparse to literally create a _new_ type for | ||
203 | type-checking. | ||
204 | |||
205 | (d) New types which are identical to standard C99 types, in certain | ||
206 | exceptional circumstances. | ||
207 | |||
208 | Although it would only take a short amount of time for the eyes and | ||
209 | brain to become accustomed to the standard types like 'uint32_t', | ||
210 | some people object to their use anyway. | ||
211 | |||
212 | Therefore, the Linux-specific 'u8/u16/u32/u64' types and their | ||
213 | signed equivalents which are identical to standard types are | ||
214 | permitted -- although they are not mandatory in new code of your | ||
215 | own. | ||
216 | |||
217 | When editing existing code which already uses one or the other set | ||
218 | of types, you should conform to the existing choices in that code. | ||
219 | |||
220 | (e) Types safe for use in userspace. | ||
221 | |||
222 | In certain structures which are visible to userspace, we cannot | ||
223 | require C99 types and cannot use the 'u32' form above. Thus, we | ||
224 | use __u32 and similar types in all structures which are shared | ||
225 | with userspace. | ||
226 | |||
227 | Maybe there are other cases too, but the rule should basically be to NEVER | ||
228 | EVER use a typedef unless you can clearly match one of those rules. | ||
229 | |||
230 | In general, a pointer, or a struct that has elements that can reasonably | ||
231 | be directly accessed should _never_ be a typedef. | ||
232 | |||
233 | |||
234 | Chapter 6: Functions | ||
159 | 235 | ||
160 | Functions should be short and sweet, and do just one thing. They should | 236 | Functions should be short and sweet, and do just one thing. They should |
161 | fit on one or two screenfuls of text (the ISO/ANSI screen size is 80x24, | 237 | fit on one or two screenfuls of text (the ISO/ANSI screen size is 80x24, |
@@ -183,7 +259,7 @@ and it gets confused. You know you're brilliant, but maybe you'd like | |||
183 | to understand what you did 2 weeks from now. | 259 | to understand what you did 2 weeks from now. |
184 | 260 | ||
185 | 261 | ||
186 | Chapter 6: Centralized exiting of functions | 262 | Chapter 7: Centralized exiting of functions |
187 | 263 | ||
188 | Albeit deprecated by some people, the equivalent of the goto statement is | 264 | Albeit deprecated by some people, the equivalent of the goto statement is |
189 | used frequently by compilers in form of the unconditional jump instruction. | 265 | used frequently by compilers in form of the unconditional jump instruction. |
@@ -220,7 +296,7 @@ out: | |||
220 | return result; | 296 | return result; |
221 | } | 297 | } |
222 | 298 | ||
223 | Chapter 7: Commenting | 299 | Chapter 8: Commenting |
224 | 300 | ||
225 | Comments are good, but there is also a danger of over-commenting. NEVER | 301 | Comments are good, but there is also a danger of over-commenting. NEVER |
226 | try to explain HOW your code works in a comment: it's much better to | 302 | try to explain HOW your code works in a comment: it's much better to |
@@ -240,7 +316,7 @@ When commenting the kernel API functions, please use the kerneldoc format. | |||
240 | See the files Documentation/kernel-doc-nano-HOWTO.txt and scripts/kernel-doc | 316 | See the files Documentation/kernel-doc-nano-HOWTO.txt and scripts/kernel-doc |
241 | for details. | 317 | for details. |
242 | 318 | ||
243 | Chapter 8: You've made a mess of it | 319 | Chapter 9: You've made a mess of it |
244 | 320 | ||
245 | That's OK, we all do. You've probably been told by your long-time Unix | 321 | That's OK, we all do. You've probably been told by your long-time Unix |
246 | user helper that "GNU emacs" automatically formats the C sources for | 322 | user helper that "GNU emacs" automatically formats the C sources for |
@@ -288,7 +364,7 @@ re-formatting you may want to take a look at the man page. But | |||
288 | remember: "indent" is not a fix for bad programming. | 364 | remember: "indent" is not a fix for bad programming. |
289 | 365 | ||
290 | 366 | ||
291 | Chapter 9: Configuration-files | 367 | Chapter 10: Configuration-files |
292 | 368 | ||
293 | For configuration options (arch/xxx/Kconfig, and all the Kconfig files), | 369 | For configuration options (arch/xxx/Kconfig, and all the Kconfig files), |
294 | somewhat different indentation is used. | 370 | somewhat different indentation is used. |
@@ -313,7 +389,7 @@ support for file-systems, for instance) should be denoted (DANGEROUS), other | |||
313 | experimental options should be denoted (EXPERIMENTAL). | 389 | experimental options should be denoted (EXPERIMENTAL). |
314 | 390 | ||
315 | 391 | ||
316 | Chapter 10: Data structures | 392 | Chapter 11: Data structures |
317 | 393 | ||
318 | Data structures that have visibility outside the single-threaded | 394 | Data structures that have visibility outside the single-threaded |
319 | environment they are created and destroyed in should always have | 395 | environment they are created and destroyed in should always have |
@@ -344,7 +420,7 @@ Remember: if another thread can find your data structure, and you don't | |||
344 | have a reference count on it, you almost certainly have a bug. | 420 | have a reference count on it, you almost certainly have a bug. |
345 | 421 | ||
346 | 422 | ||
347 | Chapter 11: Macros, Enums and RTL | 423 | Chapter 12: Macros, Enums and RTL |
348 | 424 | ||
349 | Names of macros defining constants and labels in enums are capitalized. | 425 | Names of macros defining constants and labels in enums are capitalized. |
350 | 426 | ||
@@ -399,7 +475,7 @@ The cpp manual deals with macros exhaustively. The gcc internals manual also | |||
399 | covers RTL which is used frequently with assembly language in the kernel. | 475 | covers RTL which is used frequently with assembly language in the kernel. |
400 | 476 | ||
401 | 477 | ||
402 | Chapter 12: Printing kernel messages | 478 | Chapter 13: Printing kernel messages |
403 | 479 | ||
404 | Kernel developers like to be seen as literate. Do mind the spelling | 480 | Kernel developers like to be seen as literate. Do mind the spelling |
405 | of kernel messages to make a good impression. Do not use crippled | 481 | of kernel messages to make a good impression. Do not use crippled |
@@ -410,7 +486,7 @@ Kernel messages do not have to be terminated with a period. | |||
410 | Printing numbers in parentheses (%d) adds no value and should be avoided. | 486 | Printing numbers in parentheses (%d) adds no value and should be avoided. |
411 | 487 | ||
412 | 488 | ||
413 | Chapter 13: Allocating memory | 489 | Chapter 14: Allocating memory |
414 | 490 | ||
415 | The kernel provides the following general purpose memory allocators: | 491 | The kernel provides the following general purpose memory allocators: |
416 | kmalloc(), kzalloc(), kcalloc(), and vmalloc(). Please refer to the API | 492 | kmalloc(), kzalloc(), kcalloc(), and vmalloc(). Please refer to the API |
@@ -429,7 +505,7 @@ from void pointer to any other pointer type is guaranteed by the C programming | |||
429 | language. | 505 | language. |
430 | 506 | ||
431 | 507 | ||
432 | Chapter 14: The inline disease | 508 | Chapter 15: The inline disease |
433 | 509 | ||
434 | There appears to be a common misperception that gcc has a magic "make me | 510 | There appears to be a common misperception that gcc has a magic "make me |
435 | faster" speedup option called "inline". While the use of inlines can be | 511 | faster" speedup option called "inline". While the use of inlines can be |
@@ -457,7 +533,7 @@ something it would have done anyway. | |||
457 | 533 | ||
458 | 534 | ||
459 | 535 | ||
460 | Chapter 15: References | 536 | Appendix I: References |
461 | 537 | ||
462 | The C Programming Language, Second Edition | 538 | The C Programming Language, Second Edition |
463 | by Brian W. Kernighan and Dennis M. Ritchie. | 539 | by Brian W. Kernighan and Dennis M. Ritchie. |
@@ -481,4 +557,4 @@ Kernel CodingStyle, by greg@kroah.com at OLS 2002: | |||
481 | http://www.kroah.com/linux/talks/ols_2002_kernel_codingstyle_talk/html/ | 557 | http://www.kroah.com/linux/talks/ols_2002_kernel_codingstyle_talk/html/ |
482 | 558 | ||
483 | -- | 559 | -- |
484 | Last updated on 30 December 2005 by a community effort on LKML. | 560 | Last updated on 30 April 2006. |
diff --git a/Documentation/DocBook/kernel-api.tmpl b/Documentation/DocBook/kernel-api.tmpl index ca02e04a906c..3630a0d7695f 100644 --- a/Documentation/DocBook/kernel-api.tmpl +++ b/Documentation/DocBook/kernel-api.tmpl | |||
@@ -62,6 +62,8 @@ | |||
62 | <sect1><title>Internal Functions</title> | 62 | <sect1><title>Internal Functions</title> |
63 | !Ikernel/exit.c | 63 | !Ikernel/exit.c |
64 | !Ikernel/signal.c | 64 | !Ikernel/signal.c |
65 | !Iinclude/linux/kthread.h | ||
66 | !Ekernel/kthread.c | ||
65 | </sect1> | 67 | </sect1> |
66 | 68 | ||
67 | <sect1><title>Kernel objects manipulation</title> | 69 | <sect1><title>Kernel objects manipulation</title> |
@@ -114,9 +116,33 @@ X!Ilib/string.c | |||
114 | </sect1> | 116 | </sect1> |
115 | </chapter> | 117 | </chapter> |
116 | 118 | ||
119 | <chapter id="kernel-lib"> | ||
120 | <title>Basic Kernel Library Functions</title> | ||
121 | |||
122 | <para> | ||
123 | The Linux kernel provides more basic utility functions. | ||
124 | </para> | ||
125 | |||
126 | <sect1><title>Bitmap Operations</title> | ||
127 | !Elib/bitmap.c | ||
128 | !Ilib/bitmap.c | ||
129 | </sect1> | ||
130 | |||
131 | <sect1><title>Command-line Parsing</title> | ||
132 | !Elib/cmdline.c | ||
133 | </sect1> | ||
134 | |||
135 | <sect1><title>CRC Functions</title> | ||
136 | !Elib/crc16.c | ||
137 | !Elib/crc32.c | ||
138 | !Elib/crc-ccitt.c | ||
139 | </sect1> | ||
140 | </chapter> | ||
141 | |||
117 | <chapter id="mm"> | 142 | <chapter id="mm"> |
118 | <title>Memory Management in Linux</title> | 143 | <title>Memory Management in Linux</title> |
119 | <sect1><title>The Slab Cache</title> | 144 | <sect1><title>The Slab Cache</title> |
145 | !Iinclude/linux/slab.h | ||
120 | !Emm/slab.c | 146 | !Emm/slab.c |
121 | </sect1> | 147 | </sect1> |
122 | <sect1><title>User Space Memory Access</title> | 148 | <sect1><title>User Space Memory Access</title> |
@@ -280,12 +306,13 @@ X!Ekernel/module.c | |||
280 | <sect1><title>MTRR Handling</title> | 306 | <sect1><title>MTRR Handling</title> |
281 | !Earch/i386/kernel/cpu/mtrr/main.c | 307 | !Earch/i386/kernel/cpu/mtrr/main.c |
282 | </sect1> | 308 | </sect1> |
309 | |||
283 | <sect1><title>PCI Support Library</title> | 310 | <sect1><title>PCI Support Library</title> |
284 | !Edrivers/pci/pci.c | 311 | !Edrivers/pci/pci.c |
285 | !Edrivers/pci/pci-driver.c | 312 | !Edrivers/pci/pci-driver.c |
286 | !Edrivers/pci/remove.c | 313 | !Edrivers/pci/remove.c |
287 | !Edrivers/pci/pci-acpi.c | 314 | !Edrivers/pci/pci-acpi.c |
288 | <!-- kerneldoc does not understand to __devinit | 315 | <!-- kerneldoc does not understand __devinit |
289 | X!Edrivers/pci/search.c | 316 | X!Edrivers/pci/search.c |
290 | --> | 317 | --> |
291 | !Edrivers/pci/msi.c | 318 | !Edrivers/pci/msi.c |
@@ -314,6 +341,13 @@ X!Earch/i386/kernel/mca.c | |||
314 | </sect1> | 341 | </sect1> |
315 | </chapter> | 342 | </chapter> |
316 | 343 | ||
344 | <chapter id="firmware"> | ||
345 | <title>Firmware Interfaces</title> | ||
346 | <sect1><title>DMI Interfaces</title> | ||
347 | !Edrivers/firmware/dmi_scan.c | ||
348 | </sect1> | ||
349 | </chapter> | ||
350 | |||
317 | <chapter id="devfs"> | 351 | <chapter id="devfs"> |
318 | <title>The Device File System</title> | 352 | <title>The Device File System</title> |
319 | !Efs/devfs/base.c | 353 | !Efs/devfs/base.c |
@@ -331,6 +365,18 @@ X!Earch/i386/kernel/mca.c | |||
331 | !Esecurity/security.c | 365 | !Esecurity/security.c |
332 | </chapter> | 366 | </chapter> |
333 | 367 | ||
368 | <chapter id="audit"> | ||
369 | <title>Audit Interfaces</title> | ||
370 | !Ekernel/audit.c | ||
371 | !Ikernel/auditsc.c | ||
372 | !Ikernel/auditfilter.c | ||
373 | </chapter> | ||
374 | |||
375 | <chapter id="accounting"> | ||
376 | <title>Accounting Framework</title> | ||
377 | !Ikernel/acct.c | ||
378 | </chapter> | ||
379 | |||
334 | <chapter id="pmfuncs"> | 380 | <chapter id="pmfuncs"> |
335 | <title>Power Management</title> | 381 | <title>Power Management</title> |
336 | !Ekernel/power/pm.c | 382 | !Ekernel/power/pm.c |
@@ -390,7 +436,6 @@ X!Edrivers/pnp/system.c | |||
390 | </sect1> | 436 | </sect1> |
391 | </chapter> | 437 | </chapter> |
392 | 438 | ||
393 | |||
394 | <chapter id="blkdev"> | 439 | <chapter id="blkdev"> |
395 | <title>Block Devices</title> | 440 | <title>Block Devices</title> |
396 | !Eblock/ll_rw_blk.c | 441 | !Eblock/ll_rw_blk.c |
@@ -401,6 +446,14 @@ X!Edrivers/pnp/system.c | |||
401 | !Edrivers/char/misc.c | 446 | !Edrivers/char/misc.c |
402 | </chapter> | 447 | </chapter> |
403 | 448 | ||
449 | <chapter id="parportdev"> | ||
450 | <title>Parallel Port Devices</title> | ||
451 | !Iinclude/linux/parport.h | ||
452 | !Edrivers/parport/ieee1284.c | ||
453 | !Edrivers/parport/share.c | ||
454 | !Idrivers/parport/daisy.c | ||
455 | </chapter> | ||
456 | |||
404 | <chapter id="viddev"> | 457 | <chapter id="viddev"> |
405 | <title>Video4Linux</title> | 458 | <title>Video4Linux</title> |
406 | !Edrivers/media/video/videodev.c | 459 | !Edrivers/media/video/videodev.c |
diff --git a/Documentation/DocBook/kernel-locking.tmpl b/Documentation/DocBook/kernel-locking.tmpl index 158ffe9bfade..644c3884fab9 100644 --- a/Documentation/DocBook/kernel-locking.tmpl +++ b/Documentation/DocBook/kernel-locking.tmpl | |||
@@ -1590,7 +1590,7 @@ the amount of locking which needs to be done. | |||
1590 | <para> | 1590 | <para> |
1591 | Our final dilemma is this: when can we actually destroy the | 1591 | Our final dilemma is this: when can we actually destroy the |
1592 | removed element? Remember, a reader might be stepping through | 1592 | removed element? Remember, a reader might be stepping through |
1593 | this element in the list right now: it we free this element and | 1593 | this element in the list right now: if we free this element and |
1594 | the <symbol>next</symbol> pointer changes, the reader will jump | 1594 | the <symbol>next</symbol> pointer changes, the reader will jump |
1595 | off into garbage and crash. We need to wait until we know that | 1595 | off into garbage and crash. We need to wait until we know that |
1596 | all the readers who were traversing the list when we deleted the | 1596 | all the readers who were traversing the list when we deleted the |
diff --git a/Documentation/DocBook/libata.tmpl b/Documentation/DocBook/libata.tmpl index f869b03929db..e97c32314541 100644 --- a/Documentation/DocBook/libata.tmpl +++ b/Documentation/DocBook/libata.tmpl | |||
@@ -169,6 +169,22 @@ void (*tf_read) (struct ata_port *ap, struct ata_taskfile *tf); | |||
169 | 169 | ||
170 | </sect2> | 170 | </sect2> |
171 | 171 | ||
172 | <sect2><title>PIO data read/write</title> | ||
173 | <programlisting> | ||
174 | void (*data_xfer) (struct ata_device *, unsigned char *, unsigned int, int); | ||
175 | </programlisting> | ||
176 | |||
177 | <para> | ||
178 | All bmdma-style drivers must implement this hook. This is the low-level | ||
179 | operation that actually copies the data bytes during a PIO data | ||
180 | transfer. | ||
181 | Typically the driver | ||
182 | will choose one of ata_pio_data_xfer_noirq(), ata_pio_data_xfer(), or | ||
183 | ata_mmio_data_xfer(). | ||
184 | </para> | ||
185 | |||
186 | </sect2> | ||
187 | |||
172 | <sect2><title>ATA command execute</title> | 188 | <sect2><title>ATA command execute</title> |
173 | <programlisting> | 189 | <programlisting> |
174 | void (*exec_command)(struct ata_port *ap, struct ata_taskfile *tf); | 190 | void (*exec_command)(struct ata_port *ap, struct ata_taskfile *tf); |
@@ -204,11 +220,10 @@ command. | |||
204 | <programlisting> | 220 | <programlisting> |
205 | u8 (*check_status)(struct ata_port *ap); | 221 | u8 (*check_status)(struct ata_port *ap); |
206 | u8 (*check_altstatus)(struct ata_port *ap); | 222 | u8 (*check_altstatus)(struct ata_port *ap); |
207 | u8 (*check_err)(struct ata_port *ap); | ||
208 | </programlisting> | 223 | </programlisting> |
209 | 224 | ||
210 | <para> | 225 | <para> |
211 | Reads the Status/AltStatus/Error ATA shadow register from | 226 | Reads the Status/AltStatus ATA shadow register from |
212 | hardware. On some hardware, reading the Status register has | 227 | hardware. On some hardware, reading the Status register has |
213 | the side effect of clearing the interrupt condition. | 228 | the side effect of clearing the interrupt condition. |
214 | Most drivers for taskfile-based hardware use | 229 | Most drivers for taskfile-based hardware use |
@@ -269,23 +284,6 @@ void (*set_mode) (struct ata_port *ap); | |||
269 | 284 | ||
270 | </sect2> | 285 | </sect2> |
271 | 286 | ||
272 | <sect2><title>Reset ATA bus</title> | ||
273 | <programlisting> | ||
274 | void (*phy_reset) (struct ata_port *ap); | ||
275 | </programlisting> | ||
276 | |||
277 | <para> | ||
278 | The very first step in the probe phase. Actions vary depending | ||
279 | on the bus type, typically. After waking up the device and probing | ||
280 | for device presence (PATA and SATA), typically a soft reset | ||
281 | (SRST) will be performed. Drivers typically use the helper | ||
282 | functions ata_bus_reset() or sata_phy_reset() for this hook. | ||
283 | Many SATA drivers use sata_phy_reset() or call it from within | ||
284 | their own phy_reset() functions. | ||
285 | </para> | ||
286 | |||
287 | </sect2> | ||
288 | |||
289 | <sect2><title>Control PCI IDE BMDMA engine</title> | 287 | <sect2><title>Control PCI IDE BMDMA engine</title> |
290 | <programlisting> | 288 | <programlisting> |
291 | void (*bmdma_setup) (struct ata_queued_cmd *qc); | 289 | void (*bmdma_setup) (struct ata_queued_cmd *qc); |
@@ -354,16 +352,74 @@ int (*qc_issue) (struct ata_queued_cmd *qc); | |||
354 | 352 | ||
355 | </sect2> | 353 | </sect2> |
356 | 354 | ||
357 | <sect2><title>Timeout (error) handling</title> | 355 | <sect2><title>Exception and probe handling (EH)</title> |
358 | <programlisting> | 356 | <programlisting> |
359 | void (*eng_timeout) (struct ata_port *ap); | 357 | void (*eng_timeout) (struct ata_port *ap); |
358 | void (*phy_reset) (struct ata_port *ap); | ||
359 | </programlisting> | ||
360 | |||
361 | <para> | ||
362 | Deprecated. Use ->error_handler() instead. | ||
363 | </para> | ||
364 | |||
365 | <programlisting> | ||
366 | void (*freeze) (struct ata_port *ap); | ||
367 | void (*thaw) (struct ata_port *ap); | ||
368 | </programlisting> | ||
369 | |||
370 | <para> | ||
371 | ata_port_freeze() is called when HSM violations or some other | ||
372 | condition disrupts normal operation of the port. A frozen port | ||
373 | is not allowed to perform any operation until the port is | ||
374 | thawed, which usually follows a successful reset. | ||
375 | </para> | ||
376 | |||
377 | <para> | ||
378 | The optional ->freeze() callback can be used for freezing the port | ||
379 | hardware-wise (e.g. mask interrupt and stop DMA engine). If a | ||
380 | port cannot be frozen hardware-wise, the interrupt handler | ||
381 | must ack and clear interrupts unconditionally while the port | ||
382 | is frozen. | ||
383 | </para> | ||
384 | <para> | ||
385 | The optional ->thaw() callback is called to perform the opposite of ->freeze(): | ||
386 | prepare the port for normal operation once again. Unmask interrupts, | ||
387 | start DMA engine, etc. | ||
388 | </para> | ||
389 | |||
390 | <programlisting> | ||
391 | void (*error_handler) (struct ata_port *ap); | ||
392 | </programlisting> | ||
393 | |||
394 | <para> | ||
395 | ->error_handler() is a driver's hook into probe, hotplug, and recovery | ||
396 | and other exceptional conditions. The primary responsibility of an | ||
397 | implementation is to call ata_do_eh() or ata_bmdma_drive_eh() with a set | ||
398 | of EH hooks as arguments: | ||
399 | </para> | ||
400 | |||
401 | <para> | ||
402 | 'prereset' hook (may be NULL) is called during an EH reset, before any other actions | ||
403 | are taken. | ||
404 | </para> | ||
405 | |||
406 | <para> | ||
407 | 'postreset' hook (may be NULL) is called after the EH reset is performed. Based on | ||
408 | existing conditions, severity of the problem, and hardware capabilities, | ||
409 | </para> | ||
410 | |||
411 | <para> | ||
412 | Either 'softreset' (may be NULL) or 'hardreset' (may be NULL) will be | ||
413 | called to perform the low-level EH reset. | ||
414 | </para> | ||
415 | |||
416 | <programlisting> | ||
417 | void (*post_internal_cmd) (struct ata_queued_cmd *qc); | ||
360 | </programlisting> | 418 | </programlisting> |
361 | 419 | ||
362 | <para> | 420 | <para> |
363 | This is a high level error handling function, called from the | 421 | Perform any hardware-specific actions necessary to finish processing |
364 | error handling thread, when a command times out. Most newer | 422 | after executing a probe-time or EH-time command via ata_exec_internal(). |
365 | hardware will implement its own error handling code here. IDE BMDMA | ||
366 | drivers may use the helper function ata_eng_timeout(). | ||
367 | </para> | 423 | </para> |
368 | 424 | ||
369 | </sect2> | 425 | </sect2> |
diff --git a/Documentation/RCU/checklist.txt b/Documentation/RCU/checklist.txt index 49e27cc19385..1d50cf0c905e 100644 --- a/Documentation/RCU/checklist.txt +++ b/Documentation/RCU/checklist.txt | |||
@@ -144,9 +144,47 @@ over a rather long period of time, but improvements are always welcome! | |||
144 | whether the increased speed is worth it. | 144 | whether the increased speed is worth it. |
145 | 145 | ||
146 | 8. Although synchronize_rcu() is a bit slower than is call_rcu(), | 146 | 8. Although synchronize_rcu() is a bit slower than is call_rcu(), |
147 | it usually results in simpler code. So, unless update performance | 147 | it usually results in simpler code. So, unless update |
148 | is important or the updaters cannot block, synchronize_rcu() | 148 | performance is critically important or the updaters cannot block, |
149 | should be used in preference to call_rcu(). | 149 | synchronize_rcu() should be used in preference to call_rcu(). |
150 | |||
151 | An especially important property of the synchronize_rcu() | ||
152 | primitive is that it automatically self-limits: if grace periods | ||
153 | are delayed for whatever reason, then the synchronize_rcu() | ||
154 | primitive will correspondingly delay updates. In contrast, | ||
155 | code using call_rcu() should explicitly limit update rate in | ||
156 | cases where grace periods are delayed, as failing to do so can | ||
157 | result in excessive realtime latencies or even OOM conditions. | ||
158 | |||
159 | Ways of gaining this self-limiting property when using call_rcu() | ||
160 | include: | ||
161 | |||
162 | a. Keeping a count of the number of data-structure elements | ||
163 | used by the RCU-protected data structure, including those | ||
164 | waiting for a grace period to elapse. Enforce a limit | ||
165 | on this number, stalling updates as needed to allow | ||
166 | previously deferred frees to complete. | ||
167 | |||
168 | Alternatively, limit only the number awaiting deferred | ||
169 | free rather than the total number of elements. | ||
170 | |||
171 | b. Limiting update rate. For example, if updates occur only | ||
172 | once per hour, then no explicit rate limiting is required, | ||
173 | unless your system is already badly broken. The dcache | ||
174 | subsystem takes this approach -- updates are guarded | ||
175 | by a global lock, limiting their rate. | ||
176 | |||
177 | c. Trusted update -- if updates can only be done manually by | ||
178 | superuser or some other trusted user, then it might not | ||
179 | be necessary to automatically limit them. The theory | ||
180 | here is that superuser already has lots of ways to crash | ||
181 | the machine. | ||
182 | |||
183 | d. Use call_rcu_bh() rather than call_rcu(), in order to take | ||
184 | advantage of call_rcu_bh()'s faster grace periods. | ||
185 | |||
186 | e. Periodically invoke synchronize_rcu(), permitting a limited | ||
187 | number of updates per grace period. | ||
150 | 188 | ||
151 | 9. All RCU list-traversal primitives, which include | 189 | 9. All RCU list-traversal primitives, which include |
152 | list_for_each_rcu(), list_for_each_entry_rcu(), | 190 | list_for_each_rcu(), list_for_each_entry_rcu(), |
diff --git a/Documentation/RCU/torture.txt b/Documentation/RCU/torture.txt index e4c38152f7f7..a4948591607d 100644 --- a/Documentation/RCU/torture.txt +++ b/Documentation/RCU/torture.txt | |||
@@ -7,7 +7,7 @@ The CONFIG_RCU_TORTURE_TEST config option is available for all RCU | |||
7 | implementations. It creates an rcutorture kernel module that can | 7 | implementations. It creates an rcutorture kernel module that can |
8 | be loaded to run a torture test. The test periodically outputs | 8 | be loaded to run a torture test. The test periodically outputs |
9 | status messages via printk(), which can be examined via the dmesg | 9 | status messages via printk(), which can be examined via the dmesg |
10 | command (perhaps grepping for "rcutorture"). The test is started | 10 | command (perhaps grepping for "torture"). The test is started |
11 | when the module is loaded, and stops when the module is unloaded. | 11 | when the module is loaded, and stops when the module is unloaded. |
12 | 12 | ||
13 | However, actually setting this config option to "y" results in the system | 13 | However, actually setting this config option to "y" results in the system |
@@ -35,6 +35,19 @@ stat_interval The number of seconds between output of torture | |||
35 | be printed -only- when the module is unloaded, and this | 35 | be printed -only- when the module is unloaded, and this |
36 | is the default. | 36 | is the default. |
37 | 37 | ||
38 | shuffle_interval | ||
39 | The number of seconds to keep the test threads affinitied | ||
40 | to a particular subset of the CPUs. Used in conjunction | ||
41 | with test_no_idle_hz. | ||
42 | |||
43 | test_no_idle_hz Whether or not to test the ability of RCU to operate in | ||
44 | a kernel that disables the scheduling-clock interrupt to | ||
45 | idle CPUs. Boolean parameter, "1" to test, "0" otherwise. | ||
46 | |||
47 | torture_type The type of RCU to test: "rcu" for the rcu_read_lock() | ||
48 | API, "rcu_bh" for the rcu_read_lock_bh() API, and "srcu" | ||
49 | for the "srcu_read_lock()" API. | ||
50 | |||
38 | verbose Enable debug printk()s. Default is disabled. | 51 | verbose Enable debug printk()s. Default is disabled. |
39 | 52 | ||
40 | 53 | ||
@@ -42,14 +55,14 @@ OUTPUT | |||
42 | 55 | ||
43 | The statistics output is as follows: | 56 | The statistics output is as follows: |
44 | 57 | ||
45 | rcutorture: --- Start of test: nreaders=16 stat_interval=0 verbose=0 | 58 | rcu-torture: --- Start of test: nreaders=16 stat_interval=0 verbose=0 |
46 | rcutorture: rtc: 0000000000000000 ver: 1916 tfle: 0 rta: 1916 rtaf: 0 rtf: 1915 | 59 | rcu-torture: rtc: 0000000000000000 ver: 1916 tfle: 0 rta: 1916 rtaf: 0 rtf: 1915 |
47 | rcutorture: Reader Pipe: 1466408 9747 0 0 0 0 0 0 0 0 0 | 60 | rcu-torture: Reader Pipe: 1466408 9747 0 0 0 0 0 0 0 0 0 |
48 | rcutorture: Reader Batch: 1464477 11678 0 0 0 0 0 0 0 0 | 61 | rcu-torture: Reader Batch: 1464477 11678 0 0 0 0 0 0 0 0 |
49 | rcutorture: Free-Block Circulation: 1915 1915 1915 1915 1915 1915 1915 1915 1915 1915 0 | 62 | rcu-torture: Free-Block Circulation: 1915 1915 1915 1915 1915 1915 1915 1915 1915 1915 0 |
50 | rcutorture: --- End of test | 63 | rcu-torture: --- End of test |
51 | 64 | ||
52 | The command "dmesg | grep rcutorture:" will extract this information on | 65 | The command "dmesg | grep torture:" will extract this information on |
53 | most systems. On more esoteric configurations, it may be necessary to | 66 | most systems. On more esoteric configurations, it may be necessary to |
54 | use other commands to access the output of the printk()s used by | 67 | use other commands to access the output of the printk()s used by |
55 | the RCU torture test. The printk()s use KERN_ALERT, so they should | 68 | the RCU torture test. The printk()s use KERN_ALERT, so they should |
@@ -115,8 +128,9 @@ The following script may be used to torture RCU: | |||
115 | modprobe rcutorture | 128 | modprobe rcutorture |
116 | sleep 100 | 129 | sleep 100 |
117 | rmmod rcutorture | 130 | rmmod rcutorture |
118 | dmesg | grep rcutorture: | 131 | dmesg | grep torture: |
119 | 132 | ||
120 | The output can be manually inspected for the error flag of "!!!". | 133 | The output can be manually inspected for the error flag of "!!!". |
121 | One could of course create a more elaborate script that automatically | 134 | One could of course create a more elaborate script that automatically |
122 | checked for such errors. | 135 | checked for such errors. The "rmmod" command forces a "SUCCESS" or |
136 | "FAILURE" indication to be printk()ed. | ||
diff --git a/Documentation/RCU/whatisRCU.txt b/Documentation/RCU/whatisRCU.txt index 07cb93b82ba9..4f41a60e5111 100644 --- a/Documentation/RCU/whatisRCU.txt +++ b/Documentation/RCU/whatisRCU.txt | |||
@@ -184,7 +184,17 @@ synchronize_rcu() | |||
184 | blocking, it registers a function and argument which are invoked | 184 | blocking, it registers a function and argument which are invoked |
185 | after all ongoing RCU read-side critical sections have completed. | 185 | after all ongoing RCU read-side critical sections have completed. |
186 | This callback variant is particularly useful in situations where | 186 | This callback variant is particularly useful in situations where |
187 | it is illegal to block. | 187 | it is illegal to block or where update-side performance is |
188 | critically important. | ||
189 | |||
190 | However, the call_rcu() API should not be used lightly, as use | ||
191 | of the synchronize_rcu() API generally results in simpler code. | ||
192 | In addition, the synchronize_rcu() API has the nice property | ||
193 | of automatically limiting update rate should grace periods | ||
194 | be delayed. This property results in system resilience in face | ||
195 | of denial-of-service attacks. Code using call_rcu() should limit | ||
196 | update rate in order to gain this same sort of resilience. See | ||
197 | checklist.txt for some approaches to limiting the update rate. | ||
188 | 198 | ||
189 | rcu_assign_pointer() | 199 | rcu_assign_pointer() |
190 | 200 | ||
@@ -790,7 +800,6 @@ RCU pointer update: | |||
790 | 800 | ||
791 | RCU grace period: | 801 | RCU grace period: |
792 | 802 | ||
793 | synchronize_kernel (deprecated) | ||
794 | synchronize_net | 803 | synchronize_net |
795 | synchronize_sched | 804 | synchronize_sched |
796 | synchronize_rcu | 805 | synchronize_rcu |
diff --git a/Documentation/SubmitChecklist b/Documentation/SubmitChecklist new file mode 100644 index 000000000000..8230098da529 --- /dev/null +++ b/Documentation/SubmitChecklist | |||
@@ -0,0 +1,57 @@ | |||
1 | Linux Kernel patch sumbittal checklist | ||
2 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
3 | |||
4 | Here are some basic things that developers should do if they | ||
5 | want to see their kernel patch submittals accepted quicker. | ||
6 | |||
7 | These are all above and beyond the documentation that is provided | ||
8 | in Documentation/SubmittingPatches and elsewhere about submitting | ||
9 | Linux kernel patches. | ||
10 | |||
11 | |||
12 | |||
13 | - Builds cleanly with applicable or modified CONFIG options =y, =m, and =n. | ||
14 | No gcc warnings/errors, no linker warnings/errors. | ||
15 | |||
16 | - Passes allnoconfig, allmodconfig | ||
17 | |||
18 | - Builds on multiple CPU arch-es by using local cross-compile tools | ||
19 | or something like PLM at OSDL. | ||
20 | |||
21 | - ppc64 is a good architecture for cross-compilation checking because it | ||
22 | tends to use `unsigned long' for 64-bit quantities. | ||
23 | |||
24 | - Matches kernel coding style(!) | ||
25 | |||
26 | - Any new or modified CONFIG options don't muck up the config menu. | ||
27 | |||
28 | - All new Kconfig options have help text. | ||
29 | |||
30 | - Has been carefully reviewed with respect to relevant Kconfig | ||
31 | combinations. This is very hard to get right with testing -- | ||
32 | brainpower pays off here. | ||
33 | |||
34 | - Check cleanly with sparse. | ||
35 | |||
36 | - Use 'make checkstack' and 'make namespacecheck' and fix any | ||
37 | problems that they find. Note: checkstack does not point out | ||
38 | problems explicitly, but any one function that uses more than | ||
39 | 512 bytes on the stack is a candidate for change. | ||
40 | |||
41 | - Include kernel-doc to document global kernel APIs. (Not required | ||
42 | for static functions, but OK there also.) Use 'make htmldocs' | ||
43 | or 'make mandocs' to check the kernel-doc and fix any issues. | ||
44 | |||
45 | - Has been tested with CONFIG_PREEMPT, CONFIG_DEBUG_PREEMPT, | ||
46 | CONFIG_DEBUG_SLAB, CONFIG_DEBUG_PAGEALLOC, CONFIG_DEBUG_MUTEXES, | ||
47 | CONFIG_DEBUG_SPINLOCK, CONFIG_DEBUG_SPINLOCK_SLEEP all simultaneously | ||
48 | enabled. | ||
49 | |||
50 | - Has been build- and runtime tested with and without CONFIG_SMP and | ||
51 | CONFIG_PREEMPT. | ||
52 | |||
53 | - If the patch affects IO/Disk, etc: has been tested with and without | ||
54 | CONFIG_LBD. | ||
55 | |||
56 | |||
57 | 2006-APR-27 | ||
diff --git a/Documentation/arm/Samsung-S3C24XX/Overview.txt b/Documentation/arm/Samsung-S3C24XX/Overview.txt index 8c6ee684174c..3e46d2a31158 100644 --- a/Documentation/arm/Samsung-S3C24XX/Overview.txt +++ b/Documentation/arm/Samsung-S3C24XX/Overview.txt | |||
@@ -7,11 +7,13 @@ Introduction | |||
7 | ------------ | 7 | ------------ |
8 | 8 | ||
9 | The Samsung S3C24XX range of ARM9 System-on-Chip CPUs are supported | 9 | The Samsung S3C24XX range of ARM9 System-on-Chip CPUs are supported |
10 | by the 's3c2410' architecture of ARM Linux. Currently the S3C2410 and | 10 | by the 's3c2410' architecture of ARM Linux. Currently the S3C2410, |
11 | the S3C2440 are supported CPUs. | 11 | S3C2440 and S3C2442 devices are supported. |
12 | 12 | ||
13 | Support for the S3C2400 series is in progress. | 13 | Support for the S3C2400 series is in progress. |
14 | 14 | ||
15 | Support for the S3C2412 and S3C2413 CPUs is being merged. | ||
16 | |||
15 | 17 | ||
16 | Configuration | 18 | Configuration |
17 | ------------- | 19 | ------------- |
@@ -43,9 +45,18 @@ Machines | |||
43 | 45 | ||
44 | Samsung's own development board, geared for PDA work. | 46 | Samsung's own development board, geared for PDA work. |
45 | 47 | ||
48 | Samsung/Aiji SMDK2412 | ||
49 | |||
50 | The S3C2412 version of the SMDK2440. | ||
51 | |||
52 | Samsung/Aiji SMDK2413 | ||
53 | |||
54 | The S3C2412 version of the SMDK2440. | ||
55 | |||
46 | Samsung/Meritech SMDK2440 | 56 | Samsung/Meritech SMDK2440 |
47 | 57 | ||
48 | The S3C2440 compatible version of the SMDK2440 | 58 | The S3C2440 compatible version of the SMDK2440, which has the |
59 | option of an S3C2440 or S3C2442 CPU module. | ||
49 | 60 | ||
50 | Thorcom VR1000 | 61 | Thorcom VR1000 |
51 | 62 | ||
@@ -211,24 +222,6 @@ Port Contributors | |||
211 | Lucas Correia Villa Real (S3C2400 port) | 222 | Lucas Correia Villa Real (S3C2400 port) |
212 | 223 | ||
213 | 224 | ||
214 | Document Changes | ||
215 | ---------------- | ||
216 | |||
217 | 05 Sep 2004 - BJD - Added Document Changes section | ||
218 | 05 Sep 2004 - BJD - Added Klaus Fetscher to list of contributors | ||
219 | 25 Oct 2004 - BJD - Added Dimitry Andric to list of contributors | ||
220 | 25 Oct 2004 - BJD - Updated the MTD from the 2.6.9 merge | ||
221 | 21 Jan 2005 - BJD - Added rx3715, added Shannon to contributors | ||
222 | 10 Feb 2005 - BJD - Added Guillaume Gourat to contributors | ||
223 | 02 Mar 2005 - BJD - Added SMDK2440 to list of machines | ||
224 | 06 Mar 2005 - BJD - Added Christer Weinigel | ||
225 | 08 Mar 2005 - BJD - Added LCVR to list of people, updated introduction | ||
226 | 08 Mar 2005 - BJD - Added section on adding machines | ||
227 | 09 Sep 2005 - BJD - Added section on platform data | ||
228 | 11 Feb 2006 - BJD - Added I2C, RTC and Watchdog sections | ||
229 | 11 Feb 2006 - BJD - Added Osiris machine, and S3C2400 information | ||
230 | |||
231 | |||
232 | Document Author | 225 | Document Author |
233 | --------------- | 226 | --------------- |
234 | 227 | ||
diff --git a/Documentation/arm/Samsung-S3C24XX/S3C2412.txt b/Documentation/arm/Samsung-S3C24XX/S3C2412.txt new file mode 100644 index 000000000000..cb82a7fc7901 --- /dev/null +++ b/Documentation/arm/Samsung-S3C24XX/S3C2412.txt | |||
@@ -0,0 +1,120 @@ | |||
1 | S3C2412 ARM Linux Overview | ||
2 | ========================== | ||
3 | |||
4 | Introduction | ||
5 | ------------ | ||
6 | |||
7 | The S3C2412 is part of the S3C24XX range of ARM9 System-on-Chip CPUs | ||
8 | from Samsung. This part has an ARM926-EJS core, capable of running up | ||
9 | to 266MHz (see data-sheet for more information) | ||
10 | |||
11 | |||
12 | Clock | ||
13 | ----- | ||
14 | |||
15 | The core clock code provides a set of clocks to the drivers, and allows | ||
16 | for source selection and a number of other features. | ||
17 | |||
18 | |||
19 | Power | ||
20 | ----- | ||
21 | |||
22 | No support for suspend/resume to RAM in the current system. | ||
23 | |||
24 | |||
25 | DMA | ||
26 | --- | ||
27 | |||
28 | No current support for DMA. | ||
29 | |||
30 | |||
31 | GPIO | ||
32 | ---- | ||
33 | |||
34 | There is support for setting the GPIO to input/output/special function | ||
35 | and reading or writing to them. | ||
36 | |||
37 | |||
38 | UART | ||
39 | ---- | ||
40 | |||
41 | The UART hardware is similar to the S3C2440, and is supported by the | ||
42 | s3c2410 driver in the drivers/serial directory. | ||
43 | |||
44 | |||
45 | NAND | ||
46 | ---- | ||
47 | |||
48 | The NAND hardware is similar to the S3C2440, and is supported by the | ||
49 | s3c2410 driver in the drivers/mtd/nand directory. | ||
50 | |||
51 | |||
52 | USB Host | ||
53 | -------- | ||
54 | |||
55 | The USB hardware is similar to the S3C2410, with extended clock source | ||
56 | control. The OHCI portion is supported by the ohci-s3c2410 driver, and | ||
57 | the clock control selection is supported by the core clock code. | ||
58 | |||
59 | |||
60 | USB Device | ||
61 | ---------- | ||
62 | |||
63 | No current support in the kernel | ||
64 | |||
65 | |||
66 | IRQs | ||
67 | ---- | ||
68 | |||
69 | All the standard, and external interrupt sources are supported. The | ||
70 | extra sub-sources are not yet supported. | ||
71 | |||
72 | |||
73 | RTC | ||
74 | --- | ||
75 | |||
76 | The RTC hardware is similar to the S3C2410, and is supported by the | ||
77 | s3c2410-rtc driver. | ||
78 | |||
79 | |||
80 | Watchdog | ||
81 | -------- | ||
82 | |||
83 | The watchdog harware is the same as the S3C2410, and is supported by | ||
84 | the s3c2410_wdt driver. | ||
85 | |||
86 | |||
87 | MMC/SD/SDIO | ||
88 | ----------- | ||
89 | |||
90 | No current support for the MMC/SD/SDIO block. | ||
91 | |||
92 | IIC | ||
93 | --- | ||
94 | |||
95 | The IIC hardware is the same as the S3C2410, and is supported by the | ||
96 | i2c-s3c24xx driver. | ||
97 | |||
98 | |||
99 | IIS | ||
100 | --- | ||
101 | |||
102 | No current support for the IIS interface. | ||
103 | |||
104 | |||
105 | SPI | ||
106 | --- | ||
107 | |||
108 | No current support for the SPI interfaces. | ||
109 | |||
110 | |||
111 | ATA | ||
112 | --- | ||
113 | |||
114 | No current support for the on-board ATA block. | ||
115 | |||
116 | |||
117 | Document Author | ||
118 | --------------- | ||
119 | |||
120 | Ben Dooks, (c) 2006 Simtec Electronics | ||
diff --git a/Documentation/arm/Samsung-S3C24XX/S3C2413.txt b/Documentation/arm/Samsung-S3C24XX/S3C2413.txt new file mode 100644 index 000000000000..ab2a88858f12 --- /dev/null +++ b/Documentation/arm/Samsung-S3C24XX/S3C2413.txt | |||
@@ -0,0 +1,21 @@ | |||
1 | S3C2413 ARM Linux Overview | ||
2 | ========================== | ||
3 | |||
4 | Introduction | ||
5 | ------------ | ||
6 | |||
7 | The S3C2413 is an extended version of the S3C2412, with an camera | ||
8 | interface and mobile DDR memory support. See the S3C2412 support | ||
9 | documentation for more information. | ||
10 | |||
11 | |||
12 | Camera Interface | ||
13 | --------------- | ||
14 | |||
15 | This block is currently not supported. | ||
16 | |||
17 | |||
18 | Document Author | ||
19 | --------------- | ||
20 | |||
21 | Ben Dooks, (c) 2006 Simtec Electronics | ||
diff --git a/Documentation/arm/Sharp-LH/ADC-LH7-Touchscreen b/Documentation/arm/Sharp-LH/ADC-LH7-Touchscreen new file mode 100644 index 000000000000..1e6a23fdf2fc --- /dev/null +++ b/Documentation/arm/Sharp-LH/ADC-LH7-Touchscreen | |||
@@ -0,0 +1,61 @@ | |||
1 | README on the ADC/Touchscreen Controller | ||
2 | ======================================== | ||
3 | |||
4 | The LH79524 and LH7A404 include a built-in Analog to Digital | ||
5 | controller (ADC) that is used to process input from a touchscreen. | ||
6 | The driver only implements a four-wire touch panel protocol. | ||
7 | |||
8 | The touchscreen driver is maintenance free except for the pen-down or | ||
9 | touch threshold. Some resistive displays and board combinations may | ||
10 | require tuning of this threshold. The driver exposes some of it's | ||
11 | internal state in the sys filesystem. If the kernel is configured | ||
12 | with it, CONFIG_SYSFS, and sysfs is mounted at /sys, there will be a | ||
13 | directory | ||
14 | |||
15 | /sys/devices/platform/adc-lh7.0 | ||
16 | |||
17 | containing these files. | ||
18 | |||
19 | -r--r--r-- 1 root root 4096 Jan 1 00:00 samples | ||
20 | -rw-r--r-- 1 root root 4096 Jan 1 00:00 threshold | ||
21 | -r--r--r-- 1 root root 4096 Jan 1 00:00 threshold_range | ||
22 | |||
23 | The threshold is the current touch threshold. It defaults to 750 on | ||
24 | most targets. | ||
25 | |||
26 | # cat threshold | ||
27 | 750 | ||
28 | |||
29 | The threshold_range contains the range of valid values for the | ||
30 | threshold. Values outside of this range will be silently ignored. | ||
31 | |||
32 | # cat threshold_range | ||
33 | 0 1023 | ||
34 | |||
35 | To change the threshold, write a value to the threshold file. | ||
36 | |||
37 | # echo 500 > threshold | ||
38 | # cat threshold | ||
39 | 500 | ||
40 | |||
41 | The samples file contains the most recently sampled values from the | ||
42 | ADC. There are 12. Below are typical of the last sampled values when | ||
43 | the pen has been released. The first two and last two samples are for | ||
44 | detecting whether or not the pen is down. The third through sixth are | ||
45 | X coordinate samples. The seventh through tenth are Y coordinate | ||
46 | samples. | ||
47 | |||
48 | # cat samples | ||
49 | 1023 1023 0 0 0 0 530 529 530 529 1023 1023 | ||
50 | |||
51 | To determine a reasonable threshold, press on the touch panel with an | ||
52 | appropriate stylus and read the values from samples. | ||
53 | |||
54 | # cat samples | ||
55 | 1023 676 92 103 101 102 855 919 922 922 1023 679 | ||
56 | |||
57 | The first and eleventh samples are discarded. Thus, the important | ||
58 | values are the second and twelfth which are used to determine if the | ||
59 | pen is down. When both are below the threshold, the driver registers | ||
60 | that the pen is down. When either is above the threshold, it | ||
61 | registers then pen is up. | ||
diff --git a/Documentation/arm/Sharp-LH/LCDPanels b/Documentation/arm/Sharp-LH/LCDPanels new file mode 100644 index 000000000000..fb1b21c2f2f4 --- /dev/null +++ b/Documentation/arm/Sharp-LH/LCDPanels | |||
@@ -0,0 +1,59 @@ | |||
1 | README on the LCD Panels | ||
2 | ======================== | ||
3 | |||
4 | Configuration options for several LCD panels, available from Logic PD, | ||
5 | are included in the kernel source. This README will help you | ||
6 | understand the configuration data and give you some guidance for | ||
7 | adding support for other panels if you wish. | ||
8 | |||
9 | |||
10 | lcd-panels.h | ||
11 | ------------ | ||
12 | |||
13 | There is no way, at present, to detect which panel is attached to the | ||
14 | system at runtime. Thus the kernel configuration is static. The file | ||
15 | arch/arm/mach-ld7a40x/lcd-panels.h (or similar) defines all of the | ||
16 | panel specific parameters. | ||
17 | |||
18 | It should be possible for this data to be shared among several device | ||
19 | families. The current layout may be insufficiently general, but it is | ||
20 | amenable to improvement. | ||
21 | |||
22 | |||
23 | PIXEL_CLOCK | ||
24 | ----------- | ||
25 | |||
26 | The panel data sheets will give a range of acceptable pixel clocks. | ||
27 | The fundamental LCDCLK input frequency is divided down by a PCD | ||
28 | constant in field '.tim2'. It may happen that it is impossible to set | ||
29 | the pixel clock within this range. A clock which is too slow will | ||
30 | tend to flicker. For the highest quality image, set the clock as high | ||
31 | as possible. | ||
32 | |||
33 | |||
34 | MARGINS | ||
35 | ------- | ||
36 | |||
37 | These values may be difficult to glean from the panel data sheet. In | ||
38 | the case of the Sharp panels, the upper margin is explicitly called | ||
39 | out as a specific number of lines from the top of the frame. The | ||
40 | other values may not matter as much as the panels tend to | ||
41 | automatically center the image. | ||
42 | |||
43 | |||
44 | Sync Sense | ||
45 | ---------- | ||
46 | |||
47 | The sense of the hsync and vsync pulses may be called out in the data | ||
48 | sheet. On one panel, the sense of these pulses determine the height | ||
49 | of the visible region on the panel. Most of the Sharp panels use | ||
50 | negative sense sync pulses set by the TIM2_IHS and TIM2_IVS bits in | ||
51 | '.tim2'. | ||
52 | |||
53 | |||
54 | Pel Layout | ||
55 | ---------- | ||
56 | |||
57 | The Sharp color TFT panels are all configured for 16 bit direct color | ||
58 | modes. The amba-lcd driver sets the pel mode to 565 for 5 bits of | ||
59 | each red and blue and 6 bits of green. | ||
diff --git a/Documentation/atomic_ops.txt b/Documentation/atomic_ops.txt index 23a1c2402bcc..2a63d5662a93 100644 --- a/Documentation/atomic_ops.txt +++ b/Documentation/atomic_ops.txt | |||
@@ -157,13 +157,13 @@ For example, smp_mb__before_atomic_dec() can be used like so: | |||
157 | smp_mb__before_atomic_dec(); | 157 | smp_mb__before_atomic_dec(); |
158 | atomic_dec(&obj->ref_count); | 158 | atomic_dec(&obj->ref_count); |
159 | 159 | ||
160 | It makes sure that all memory operations preceeding the atomic_dec() | 160 | It makes sure that all memory operations preceding the atomic_dec() |
161 | call are strongly ordered with respect to the atomic counter | 161 | call are strongly ordered with respect to the atomic counter |
162 | operation. In the above example, it guarentees that the assignment of | 162 | operation. In the above example, it guarantees that the assignment of |
163 | "1" to obj->dead will be globally visible to other cpus before the | 163 | "1" to obj->dead will be globally visible to other cpus before the |
164 | atomic counter decrement. | 164 | atomic counter decrement. |
165 | 165 | ||
166 | Without the explicitl smp_mb__before_atomic_dec() call, the | 166 | Without the explicit smp_mb__before_atomic_dec() call, the |
167 | implementation could legally allow the atomic counter update visible | 167 | implementation could legally allow the atomic counter update visible |
168 | to other cpus before the "obj->dead = 1;" assignment. | 168 | to other cpus before the "obj->dead = 1;" assignment. |
169 | 169 | ||
@@ -173,11 +173,11 @@ ordering with respect to memory operations after an atomic_dec() call | |||
173 | (smp_mb__{before,after}_atomic_inc()). | 173 | (smp_mb__{before,after}_atomic_inc()). |
174 | 174 | ||
175 | A missing memory barrier in the cases where they are required by the | 175 | A missing memory barrier in the cases where they are required by the |
176 | atomic_t implementation above can have disasterous results. Here is | 176 | atomic_t implementation above can have disastrous results. Here is |
177 | an example, which follows a pattern occuring frequently in the Linux | 177 | an example, which follows a pattern occurring frequently in the Linux |
178 | kernel. It is the use of atomic counters to implement reference | 178 | kernel. It is the use of atomic counters to implement reference |
179 | counting, and it works such that once the counter falls to zero it can | 179 | counting, and it works such that once the counter falls to zero it can |
180 | be guarenteed that no other entity can be accessing the object: | 180 | be guaranteed that no other entity can be accessing the object: |
181 | 181 | ||
182 | static void obj_list_add(struct obj *obj) | 182 | static void obj_list_add(struct obj *obj) |
183 | { | 183 | { |
@@ -291,9 +291,9 @@ to the size of an "unsigned long" C data type, and are least of that | |||
291 | size. The endianness of the bits within each "unsigned long" are the | 291 | size. The endianness of the bits within each "unsigned long" are the |
292 | native endianness of the cpu. | 292 | native endianness of the cpu. |
293 | 293 | ||
294 | void set_bit(unsigned long nr, volatils unsigned long *addr); | 294 | void set_bit(unsigned long nr, volatile unsigned long *addr); |
295 | void clear_bit(unsigned long nr, volatils unsigned long *addr); | 295 | void clear_bit(unsigned long nr, volatile unsigned long *addr); |
296 | void change_bit(unsigned long nr, volatils unsigned long *addr); | 296 | void change_bit(unsigned long nr, volatile unsigned long *addr); |
297 | 297 | ||
298 | These routines set, clear, and change, respectively, the bit number | 298 | These routines set, clear, and change, respectively, the bit number |
299 | indicated by "nr" on the bit mask pointed to by "ADDR". | 299 | indicated by "nr" on the bit mask pointed to by "ADDR". |
@@ -301,9 +301,9 @@ indicated by "nr" on the bit mask pointed to by "ADDR". | |||
301 | They must execute atomically, yet there are no implicit memory barrier | 301 | They must execute atomically, yet there are no implicit memory barrier |
302 | semantics required of these interfaces. | 302 | semantics required of these interfaces. |
303 | 303 | ||
304 | int test_and_set_bit(unsigned long nr, volatils unsigned long *addr); | 304 | int test_and_set_bit(unsigned long nr, volatile unsigned long *addr); |
305 | int test_and_clear_bit(unsigned long nr, volatils unsigned long *addr); | 305 | int test_and_clear_bit(unsigned long nr, volatile unsigned long *addr); |
306 | int test_and_change_bit(unsigned long nr, volatils unsigned long *addr); | 306 | int test_and_change_bit(unsigned long nr, volatile unsigned long *addr); |
307 | 307 | ||
308 | Like the above, except that these routines return a boolean which | 308 | Like the above, except that these routines return a boolean which |
309 | indicates whether the changed bit was set _BEFORE_ the atomic bit | 309 | indicates whether the changed bit was set _BEFORE_ the atomic bit |
@@ -335,7 +335,7 @@ subsequent memory operation is made visible. For example: | |||
335 | /* ... */; | 335 | /* ... */; |
336 | obj->killed = 1; | 336 | obj->killed = 1; |
337 | 337 | ||
338 | The implementation of test_and_set_bit() must guarentee that | 338 | The implementation of test_and_set_bit() must guarantee that |
339 | "obj->dead = 1;" is visible to cpus before the atomic memory operation | 339 | "obj->dead = 1;" is visible to cpus before the atomic memory operation |
340 | done by test_and_set_bit() becomes visible. Likewise, the atomic | 340 | done by test_and_set_bit() becomes visible. Likewise, the atomic |
341 | memory operation done by test_and_set_bit() must become visible before | 341 | memory operation done by test_and_set_bit() must become visible before |
@@ -474,7 +474,7 @@ Now, as far as memory barriers go, as long as spin_lock() | |||
474 | strictly orders all subsequent memory operations (including | 474 | strictly orders all subsequent memory operations (including |
475 | the cas()) with respect to itself, things will be fine. | 475 | the cas()) with respect to itself, things will be fine. |
476 | 476 | ||
477 | Said another way, _atomic_dec_and_lock() must guarentee that | 477 | Said another way, _atomic_dec_and_lock() must guarantee that |
478 | a counter dropping to zero is never made visible before the | 478 | a counter dropping to zero is never made visible before the |
479 | spinlock being acquired. | 479 | spinlock being acquired. |
480 | 480 | ||
diff --git a/Documentation/console/console.txt b/Documentation/console/console.txt new file mode 100644 index 000000000000..d3e17447321c --- /dev/null +++ b/Documentation/console/console.txt | |||
@@ -0,0 +1,144 @@ | |||
1 | Console Drivers | ||
2 | =============== | ||
3 | |||
4 | The linux kernel has 2 general types of console drivers. The first type is | ||
5 | assigned by the kernel to all the virtual consoles during the boot process. | ||
6 | This type will be called 'system driver', and only one system driver is allowed | ||
7 | to exist. The system driver is persistent and it can never be unloaded, though | ||
8 | it may become inactive. | ||
9 | |||
10 | The second type has to be explicitly loaded and unloaded. This will be called | ||
11 | 'modular driver' by this document. Multiple modular drivers can coexist at | ||
12 | any time with each driver sharing the console with other drivers including | ||
13 | the system driver. However, modular drivers cannot take over the console | ||
14 | that is currently occupied by another modular driver. (Exception: Drivers that | ||
15 | call take_over_console() will succeed in the takeover regardless of the type | ||
16 | of driver occupying the consoles.) They can only take over the console that is | ||
17 | occupied by the system driver. In the same token, if the modular driver is | ||
18 | released by the console, the system driver will take over. | ||
19 | |||
20 | Modular drivers, from the programmer's point of view, has to call: | ||
21 | |||
22 | take_over_console() - load and bind driver to console layer | ||
23 | give_up_console() - unbind and unload driver | ||
24 | |||
25 | In newer kernels, the following are also available: | ||
26 | |||
27 | register_con_driver() | ||
28 | unregister_con_driver() | ||
29 | |||
30 | If sysfs is enabled, the contents of /sys/class/vtconsole can be | ||
31 | examined. This shows the console backends currently registered by the | ||
32 | system which are named vtcon<n> where <n> is an integer fro 0 to 15. Thus: | ||
33 | |||
34 | ls /sys/class/vtconsole | ||
35 | . .. vtcon0 vtcon1 | ||
36 | |||
37 | Each directory in /sys/class/vtconsole has 3 files: | ||
38 | |||
39 | ls /sys/class/vtconsole/vtcon0 | ||
40 | . .. bind name uevent | ||
41 | |||
42 | What do these files signify? | ||
43 | |||
44 | 1. bind - this is a read/write file. It shows the status of the driver if | ||
45 | read, or acts to bind or unbind the driver to the virtual consoles | ||
46 | when written to. The possible values are: | ||
47 | |||
48 | 0 - means the driver is not bound and if echo'ed, commands the driver | ||
49 | to unbind | ||
50 | |||
51 | 1 - means the driver is bound and if echo'ed, commands the driver to | ||
52 | bind | ||
53 | |||
54 | 2. name - read-only file. Shows the name of the driver in this format: | ||
55 | |||
56 | cat /sys/class/vtconsole/vtcon0/name | ||
57 | (S) VGA+ | ||
58 | |||
59 | '(S)' stands for a (S)ystem driver, ie, it cannot be directly | ||
60 | commanded to bind or unbind | ||
61 | |||
62 | 'VGA+' is the name of the driver | ||
63 | |||
64 | cat /sys/class/vtconsole/vtcon1/name | ||
65 | (M) frame buffer device | ||
66 | |||
67 | In this case, '(M)' stands for a (M)odular driver, one that can be | ||
68 | directly commanded to bind or unbind. | ||
69 | |||
70 | 3. uevent - ignore this file | ||
71 | |||
72 | When unbinding, the modular driver is detached first, and then the system | ||
73 | driver takes over the consoles vacated by the driver. Binding, on the other | ||
74 | hand, will bind the driver to the consoles that are currently occupied by a | ||
75 | system driver. | ||
76 | |||
77 | NOTE1: Binding and binding must be selected in Kconfig. It's under: | ||
78 | |||
79 | Device Drivers -> Character devices -> Support for binding and unbinding | ||
80 | console drivers | ||
81 | |||
82 | NOTE2: If any of the virtual consoles are in KD_GRAPHICS mode, then binding or | ||
83 | unbinding will not succeed. An example of an application that sets the console | ||
84 | to KD_GRAPHICS is X. | ||
85 | |||
86 | How useful is this feature? This is very useful for console driver | ||
87 | developers. By unbinding the driver from the console layer, one can unload the | ||
88 | driver, make changes, recompile, reload and rebind the driver without any need | ||
89 | for rebooting the kernel. For regular users who may want to switch from | ||
90 | framebuffer console to VGA console and vice versa, this feature also makes | ||
91 | this possible. (NOTE NOTE NOTE: Please read fbcon.txt under Documentation/fb | ||
92 | for more details). | ||
93 | |||
94 | Notes for developers: | ||
95 | ===================== | ||
96 | |||
97 | take_over_console() is now broken up into: | ||
98 | |||
99 | register_con_driver() | ||
100 | bind_con_driver() - private function | ||
101 | |||
102 | give_up_console() is a wrapper to unregister_con_driver(), and a driver must | ||
103 | be fully unbound for this call to succeed. con_is_bound() will check if the | ||
104 | driver is bound or not. | ||
105 | |||
106 | Guidelines for console driver writers: | ||
107 | ===================================== | ||
108 | |||
109 | In order for binding to and unbinding from the console to properly work, | ||
110 | console drivers must follow these guidelines: | ||
111 | |||
112 | 1. All drivers, except system drivers, must call either register_con_driver() | ||
113 | or take_over_console(). register_con_driver() will just add the driver to | ||
114 | the console's internal list. It won't take over the | ||
115 | console. take_over_console(), as it name implies, will also take over (or | ||
116 | bind to) the console. | ||
117 | |||
118 | 2. All resources allocated during con->con_init() must be released in | ||
119 | con->con_deinit(). | ||
120 | |||
121 | 3. All resources allocated in con->con_startup() must be released when the | ||
122 | driver, which was previously bound, becomes unbound. The console layer | ||
123 | does not have a complementary call to con->con_startup() so it's up to the | ||
124 | driver to check when it's legal to release these resources. Calling | ||
125 | con_is_bound() in con->con_deinit() will help. If the call returned | ||
126 | false(), then it's safe to release the resources. This balance has to be | ||
127 | ensured because con->con_startup() can be called again when a request to | ||
128 | rebind the driver to the console arrives. | ||
129 | |||
130 | 4. Upon exit of the driver, ensure that the driver is totally unbound. If the | ||
131 | condition is satisfied, then the driver must call unregister_con_driver() | ||
132 | or give_up_console(). | ||
133 | |||
134 | 5. unregister_con_driver() can also be called on conditions which make it | ||
135 | impossible for the driver to service console requests. This can happen | ||
136 | with the framebuffer console that suddenly lost all of its drivers. | ||
137 | |||
138 | The current crop of console drivers should still work correctly, but binding | ||
139 | and unbinding them may cause problems. With minimal fixes, these drivers can | ||
140 | be made to work correctly. | ||
141 | |||
142 | ========================== | ||
143 | Antonino Daplas <adaplas@pol.net> | ||
144 | |||
diff --git a/Documentation/devices.txt b/Documentation/devices.txt index b369a8c46a73..4aaf68fafebe 100644 --- a/Documentation/devices.txt +++ b/Documentation/devices.txt | |||
@@ -3,7 +3,7 @@ | |||
3 | 3 | ||
4 | Maintained by Torben Mathiasen <device@lanana.org> | 4 | Maintained by Torben Mathiasen <device@lanana.org> |
5 | 5 | ||
6 | Last revised: 25 January 2005 | 6 | Last revised: 15 May 2006 |
7 | 7 | ||
8 | This list is the Linux Device List, the official registry of allocated | 8 | This list is the Linux Device List, the official registry of allocated |
9 | device numbers and /dev directory nodes for the Linux operating | 9 | device numbers and /dev directory nodes for the Linux operating |
@@ -94,7 +94,6 @@ Your cooperation is appreciated. | |||
94 | 9 = /dev/urandom Faster, less secure random number gen. | 94 | 9 = /dev/urandom Faster, less secure random number gen. |
95 | 10 = /dev/aio Asyncronous I/O notification interface | 95 | 10 = /dev/aio Asyncronous I/O notification interface |
96 | 11 = /dev/kmsg Writes to this come out as printk's | 96 | 11 = /dev/kmsg Writes to this come out as printk's |
97 | 12 = /dev/oldmem Access to crash dump from kexec kernel | ||
98 | 1 block RAM disk | 97 | 1 block RAM disk |
99 | 0 = /dev/ram0 First RAM disk | 98 | 0 = /dev/ram0 First RAM disk |
100 | 1 = /dev/ram1 Second RAM disk | 99 | 1 = /dev/ram1 Second RAM disk |
@@ -262,13 +261,13 @@ Your cooperation is appreciated. | |||
262 | NOTE: These devices permit both read and write access. | 261 | NOTE: These devices permit both read and write access. |
263 | 262 | ||
264 | 7 block Loopback devices | 263 | 7 block Loopback devices |
265 | 0 = /dev/loop0 First loopback device | 264 | 0 = /dev/loop0 First loop device |
266 | 1 = /dev/loop1 Second loopback device | 265 | 1 = /dev/loop1 Second loop device |
267 | ... | 266 | ... |
268 | 267 | ||
269 | The loopback devices are used to mount filesystems not | 268 | The loop devices are used to mount filesystems not |
270 | associated with block devices. The binding to the | 269 | associated with block devices. The binding to the |
271 | loopback devices is handled by mount(8) or losetup(8). | 270 | loop devices is handled by mount(8) or losetup(8). |
272 | 271 | ||
273 | 8 block SCSI disk devices (0-15) | 272 | 8 block SCSI disk devices (0-15) |
274 | 0 = /dev/sda First SCSI disk whole disk | 273 | 0 = /dev/sda First SCSI disk whole disk |
@@ -943,7 +942,7 @@ Your cooperation is appreciated. | |||
943 | 240 = /dev/ftlp FTL on 16th Memory Technology Device | 942 | 240 = /dev/ftlp FTL on 16th Memory Technology Device |
944 | 943 | ||
945 | Partitions are handled in the same way as for IDE | 944 | Partitions are handled in the same way as for IDE |
946 | disks (see major number 3) expect that the partition | 945 | disks (see major number 3) except that the partition |
947 | limit is 15 rather than 63 per disk (same as SCSI.) | 946 | limit is 15 rather than 63 per disk (same as SCSI.) |
948 | 947 | ||
949 | 45 char isdn4linux ISDN BRI driver | 948 | 45 char isdn4linux ISDN BRI driver |
@@ -1168,7 +1167,7 @@ Your cooperation is appreciated. | |||
1168 | The filename of the encrypted container and the passwords | 1167 | The filename of the encrypted container and the passwords |
1169 | are sent via ioctls (using the sdmount tool) to the master | 1168 | are sent via ioctls (using the sdmount tool) to the master |
1170 | node which then activates them via one of the | 1169 | node which then activates them via one of the |
1171 | /dev/scramdisk/x nodes for loopback mounting (all handled | 1170 | /dev/scramdisk/x nodes for loop mounting (all handled |
1172 | through the sdmount tool). | 1171 | through the sdmount tool). |
1173 | 1172 | ||
1174 | Requested by: andy@scramdisklinux.org | 1173 | Requested by: andy@scramdisklinux.org |
@@ -2538,18 +2537,32 @@ Your cooperation is appreciated. | |||
2538 | 0 = /dev/usb/lp0 First USB printer | 2537 | 0 = /dev/usb/lp0 First USB printer |
2539 | ... | 2538 | ... |
2540 | 15 = /dev/usb/lp15 16th USB printer | 2539 | 15 = /dev/usb/lp15 16th USB printer |
2541 | 16 = /dev/usb/mouse0 First USB mouse | ||
2542 | ... | ||
2543 | 31 = /dev/usb/mouse15 16th USB mouse | ||
2544 | 32 = /dev/usb/ez0 First USB firmware loader | ||
2545 | ... | ||
2546 | 47 = /dev/usb/ez15 16th USB firmware loader | ||
2547 | 48 = /dev/usb/scanner0 First USB scanner | 2540 | 48 = /dev/usb/scanner0 First USB scanner |
2548 | ... | 2541 | ... |
2549 | 63 = /dev/usb/scanner15 16th USB scanner | 2542 | 63 = /dev/usb/scanner15 16th USB scanner |
2550 | 64 = /dev/usb/rio500 Diamond Rio 500 | 2543 | 64 = /dev/usb/rio500 Diamond Rio 500 |
2551 | 65 = /dev/usb/usblcd USBLCD Interface (info@usblcd.de) | 2544 | 65 = /dev/usb/usblcd USBLCD Interface (info@usblcd.de) |
2552 | 66 = /dev/usb/cpad0 Synaptics cPad (mouse/LCD) | 2545 | 66 = /dev/usb/cpad0 Synaptics cPad (mouse/LCD) |
2546 | 96 = /dev/usb/hiddev0 1st USB HID device | ||
2547 | ... | ||
2548 | 111 = /dev/usb/hiddev15 16th USB HID device | ||
2549 | 112 = /dev/usb/auer0 1st auerswald ISDN device | ||
2550 | ... | ||
2551 | 127 = /dev/usb/auer15 16th auerswald ISDN device | ||
2552 | 128 = /dev/usb/brlvgr0 First Braille Voyager device | ||
2553 | ... | ||
2554 | 131 = /dev/usb/brlvgr3 Fourth Braille Voyager device | ||
2555 | 132 = /dev/usb/idmouse ID Mouse (fingerprint scanner) device | ||
2556 | 133 = /dev/usb/sisusbvga1 First SiSUSB VGA device | ||
2557 | ... | ||
2558 | 140 = /dev/usb/sisusbvga8 Eigth SISUSB VGA device | ||
2559 | 144 = /dev/usb/lcd USB LCD device | ||
2560 | 160 = /dev/usb/legousbtower0 1st USB Legotower device | ||
2561 | ... | ||
2562 | 175 = /dev/usb/legousbtower15 16th USB Legotower device | ||
2563 | 240 = /dev/usb/dabusb0 First daubusb device | ||
2564 | ... | ||
2565 | 243 = /dev/usb/dabusb3 Fourth dabusb device | ||
2553 | 2566 | ||
2554 | 180 block USB block devices | 2567 | 180 block USB block devices |
2555 | 0 = /dev/uba First USB block device | 2568 | 0 = /dev/uba First USB block device |
@@ -2710,6 +2723,17 @@ Your cooperation is appreciated. | |||
2710 | 1 = /dev/cpu/1/msr MSRs on CPU 1 | 2723 | 1 = /dev/cpu/1/msr MSRs on CPU 1 |
2711 | ... | 2724 | ... |
2712 | 2725 | ||
2726 | 202 block Xen Virtual Block Device | ||
2727 | 0 = /dev/xvda First Xen VBD whole disk | ||
2728 | 16 = /dev/xvdb Second Xen VBD whole disk | ||
2729 | 32 = /dev/xvdc Third Xen VBD whole disk | ||
2730 | ... | ||
2731 | 240 = /dev/xvdp Sixteenth Xen VBD whole disk | ||
2732 | |||
2733 | Partitions are handled in the same way as for IDE | ||
2734 | disks (see major number 3) except that the limit on | ||
2735 | partitions is 15. | ||
2736 | |||
2713 | 203 char CPU CPUID information | 2737 | 203 char CPU CPUID information |
2714 | 0 = /dev/cpu/0/cpuid CPUID on CPU 0 | 2738 | 0 = /dev/cpu/0/cpuid CPUID on CPU 0 |
2715 | 1 = /dev/cpu/1/cpuid CPUID on CPU 1 | 2739 | 1 = /dev/cpu/1/cpuid CPUID on CPU 1 |
@@ -2747,11 +2771,27 @@ Your cooperation is appreciated. | |||
2747 | 46 = /dev/ttyCPM0 PPC CPM (SCC or SMC) - port 0 | 2771 | 46 = /dev/ttyCPM0 PPC CPM (SCC or SMC) - port 0 |
2748 | ... | 2772 | ... |
2749 | 47 = /dev/ttyCPM5 PPC CPM (SCC or SMC) - port 5 | 2773 | 47 = /dev/ttyCPM5 PPC CPM (SCC or SMC) - port 5 |
2750 | 50 = /dev/ttyIOC40 Altix serial card | 2774 | 50 = /dev/ttyIOC0 Altix serial card |
2775 | ... | ||
2776 | 81 = /dev/ttyIOC31 Altix serial card | ||
2777 | 82 = /dev/ttyVR0 NEC VR4100 series SIU | ||
2778 | 83 = /dev/ttyVR1 NEC VR4100 series DSIU | ||
2779 | 84 = /dev/ttyIOC84 Altix ioc4 serial card | ||
2780 | ... | ||
2781 | 115 = /dev/ttyIOC115 Altix ioc4 serial card | ||
2782 | 116 = /dev/ttySIOC0 Altix ioc3 serial card | ||
2783 | ... | ||
2784 | 147 = /dev/ttySIOC31 Altix ioc3 serial card | ||
2785 | 148 = /dev/ttyPSC0 PPC PSC - port 0 | ||
2786 | ... | ||
2787 | 153 = /dev/ttyPSC5 PPC PSC - port 5 | ||
2788 | 154 = /dev/ttyAT0 ATMEL serial port 0 | ||
2789 | ... | ||
2790 | 169 = /dev/ttyAT15 ATMEL serial port 15 | ||
2791 | 170 = /dev/ttyNX0 Hilscher netX serial port 0 | ||
2751 | ... | 2792 | ... |
2752 | 81 = /dev/ttyIOC431 Altix serial card | 2793 | 185 = /dev/ttyNX15 Hilscher netX serial port 15 |
2753 | 82 = /dev/ttyVR0 NEC VR4100 series SIU | 2794 | 186 = /dev/ttyJ0 JTAG1 DCC protocol based serial port emulation |
2754 | 83 = /dev/ttyVR1 NEC VR4100 series DSIU | ||
2755 | 2795 | ||
2756 | 205 char Low-density serial ports (alternate device) | 2796 | 205 char Low-density serial ports (alternate device) |
2757 | 0 = /dev/culu0 Callout device for ttyLU0 | 2797 | 0 = /dev/culu0 Callout device for ttyLU0 |
@@ -2786,8 +2826,8 @@ Your cooperation is appreciated. | |||
2786 | 50 = /dev/cuioc40 Callout device for ttyIOC40 | 2826 | 50 = /dev/cuioc40 Callout device for ttyIOC40 |
2787 | ... | 2827 | ... |
2788 | 81 = /dev/cuioc431 Callout device for ttyIOC431 | 2828 | 81 = /dev/cuioc431 Callout device for ttyIOC431 |
2789 | 82 = /dev/cuvr0 Callout device for ttyVR0 | 2829 | 82 = /dev/cuvr0 Callout device for ttyVR0 |
2790 | 83 = /dev/cuvr1 Callout device for ttyVR1 | 2830 | 83 = /dev/cuvr1 Callout device for ttyVR1 |
2791 | 2831 | ||
2792 | 2832 | ||
2793 | 206 char OnStream SC-x0 tape devices | 2833 | 206 char OnStream SC-x0 tape devices |
@@ -2897,7 +2937,6 @@ Your cooperation is appreciated. | |||
2897 | ... | 2937 | ... |
2898 | 196 = /dev/dvb/adapter3/video0 first video decoder of fourth card | 2938 | 196 = /dev/dvb/adapter3/video0 first video decoder of fourth card |
2899 | 2939 | ||
2900 | |||
2901 | 216 char Bluetooth RFCOMM TTY devices | 2940 | 216 char Bluetooth RFCOMM TTY devices |
2902 | 0 = /dev/rfcomm0 First Bluetooth RFCOMM TTY device | 2941 | 0 = /dev/rfcomm0 First Bluetooth RFCOMM TTY device |
2903 | 1 = /dev/rfcomm1 Second Bluetooth RFCOMM TTY device | 2942 | 1 = /dev/rfcomm1 Second Bluetooth RFCOMM TTY device |
@@ -3002,12 +3041,43 @@ Your cooperation is appreciated. | |||
3002 | ioctl()'s can be used to rewind the tape regardless of | 3041 | ioctl()'s can be used to rewind the tape regardless of |
3003 | the device used to access it. | 3042 | the device used to access it. |
3004 | 3043 | ||
3005 | 231 char InfiniBand MAD | 3044 | 231 char InfiniBand |
3006 | 0 = /dev/infiniband/umad0 | 3045 | 0 = /dev/infiniband/umad0 |
3007 | 1 = /dev/infiniband/umad1 | 3046 | 1 = /dev/infiniband/umad1 |
3008 | ... | 3047 | ... |
3048 | 63 = /dev/infiniband/umad63 63rd InfiniBandMad device | ||
3049 | 64 = /dev/infiniband/issm0 First InfiniBand IsSM device | ||
3050 | 65 = /dev/infiniband/issm1 Second InfiniBand IsSM device | ||
3051 | ... | ||
3052 | 127 = /dev/infiniband/issm63 63rd InfiniBand IsSM device | ||
3053 | 128 = /dev/infiniband/uverbs0 First InfiniBand verbs device | ||
3054 | 129 = /dev/infiniband/uverbs1 Second InfiniBand verbs device | ||
3055 | ... | ||
3056 | 159 = /dev/infiniband/uverbs31 31st InfiniBand verbs device | ||
3057 | |||
3058 | 232 char Biometric Devices | ||
3059 | 0 = /dev/biometric/sensor0/fingerprint first fingerprint sensor on first device | ||
3060 | 1 = /dev/biometric/sensor0/iris first iris sensor on first device | ||
3061 | 2 = /dev/biometric/sensor0/retina first retina sensor on first device | ||
3062 | 3 = /dev/biometric/sensor0/voiceprint first voiceprint sensor on first device | ||
3063 | 4 = /dev/biometric/sensor0/facial first facial sensor on first device | ||
3064 | 5 = /dev/biometric/sensor0/hand first hand sensor on first device | ||
3065 | ... | ||
3066 | 10 = /dev/biometric/sensor1/fingerprint first fingerprint sensor on second device | ||
3067 | ... | ||
3068 | 20 = /dev/biometric/sensor2/fingerprint first fingerprint sensor on third device | ||
3069 | ... | ||
3070 | |||
3071 | 233 char PathScale InfiniPath interconnect | ||
3072 | 0 = /dev/ipath Primary device for programs (any unit) | ||
3073 | 1 = /dev/ipath0 Access specifically to unit 0 | ||
3074 | 2 = /dev/ipath1 Access specifically to unit 1 | ||
3075 | ... | ||
3076 | 4 = /dev/ipath3 Access specifically to unit 3 | ||
3077 | 129 = /dev/ipath_sma Device used by Subnet Management Agent | ||
3078 | 130 = /dev/ipath_diag Device used by diagnostics programs | ||
3009 | 3079 | ||
3010 | 232-239 UNASSIGNED | 3080 | 234-239 UNASSIGNED |
3011 | 3081 | ||
3012 | 240-254 char LOCAL/EXPERIMENTAL USE | 3082 | 240-254 char LOCAL/EXPERIMENTAL USE |
3013 | 240-254 block LOCAL/EXPERIMENTAL USE | 3083 | 240-254 block LOCAL/EXPERIMENTAL USE |
@@ -3021,6 +3091,28 @@ Your cooperation is appreciated. | |||
3021 | This major is reserved to assist the expansion to a | 3091 | This major is reserved to assist the expansion to a |
3022 | larger number space. No device nodes with this major | 3092 | larger number space. No device nodes with this major |
3023 | should ever be created on the filesystem. | 3093 | should ever be created on the filesystem. |
3094 | (This is probaly not true anymore, but I'll leave it | ||
3095 | for now /Torben) | ||
3096 | |||
3097 | ---LARGE MAJORS!!!!!--- | ||
3098 | |||
3099 | 256 char Equinox SST multi-port serial boards | ||
3100 | 0 = /dev/ttyEQ0 First serial port on first Equinox SST board | ||
3101 | 127 = /dev/ttyEQ127 Last serial port on first Equinox SST board | ||
3102 | 128 = /dev/ttyEQ128 First serial port on second Equinox SST board | ||
3103 | ... | ||
3104 | 1027 = /dev/ttyEQ1027 Last serial port on eighth Equinox SST board | ||
3105 | |||
3106 | 256 block Resident Flash Disk Flash Translation Layer | ||
3107 | 0 = /dev/rfda First RFD FTL layer | ||
3108 | 16 = /dev/rfdb Second RFD FTL layer | ||
3109 | ... | ||
3110 | 240 = /dev/rfdp 16th RFD FTL layer | ||
3111 | |||
3112 | 257 char Phoenix Technologies Cryptographic Services Driver | ||
3113 | 0 = /dev/ptlsec Crypto Services Driver | ||
3114 | |||
3115 | |||
3024 | 3116 | ||
3025 | **** ADDITIONAL /dev DIRECTORY ENTRIES | 3117 | **** ADDITIONAL /dev DIRECTORY ENTRIES |
3026 | 3118 | ||
diff --git a/Documentation/driver-model/overview.txt b/Documentation/driver-model/overview.txt index ac4a7a737e43..2050c9ffc629 100644 --- a/Documentation/driver-model/overview.txt +++ b/Documentation/driver-model/overview.txt | |||
@@ -18,7 +18,7 @@ Traditional driver models implemented some sort of tree-like structure | |||
18 | (sometimes just a list) for the devices they control. There wasn't any | 18 | (sometimes just a list) for the devices they control. There wasn't any |
19 | uniformity across the different bus types. | 19 | uniformity across the different bus types. |
20 | 20 | ||
21 | The current driver model provides a comon, uniform data model for describing | 21 | The current driver model provides a common, uniform data model for describing |
22 | a bus and the devices that can appear under the bus. The unified bus | 22 | a bus and the devices that can appear under the bus. The unified bus |
23 | model includes a set of common attributes which all busses carry, and a set | 23 | model includes a set of common attributes which all busses carry, and a set |
24 | of common callbacks, such as device discovery during bus probing, bus | 24 | of common callbacks, such as device discovery during bus probing, bus |
diff --git a/Documentation/fb/fbcon.txt b/Documentation/fb/fbcon.txt index 08dce0f631bf..f373df12ed4c 100644 --- a/Documentation/fb/fbcon.txt +++ b/Documentation/fb/fbcon.txt | |||
@@ -135,10 +135,10 @@ C. Boot options | |||
135 | 135 | ||
136 | The angle can be changed anytime afterwards by 'echoing' the same | 136 | The angle can be changed anytime afterwards by 'echoing' the same |
137 | numbers to any one of the 2 attributes found in | 137 | numbers to any one of the 2 attributes found in |
138 | /sys/class/graphics/fb{x} | 138 | /sys/class/graphics/fbcon |
139 | 139 | ||
140 | con_rotate - rotate the display of the active console | 140 | rotate - rotate the display of the active console |
141 | con_rotate_all - rotate the display of all consoles | 141 | rotate_all - rotate the display of all consoles |
142 | 142 | ||
143 | Console rotation will only become available if Console Rotation | 143 | Console rotation will only become available if Console Rotation |
144 | Support is compiled in your kernel. | 144 | Support is compiled in your kernel. |
@@ -148,5 +148,177 @@ C. Boot options | |||
148 | Actually, the underlying fb driver is totally ignorant of console | 148 | Actually, the underlying fb driver is totally ignorant of console |
149 | rotation. | 149 | rotation. |
150 | 150 | ||
151 | --- | 151 | C. Attaching, Detaching and Unloading |
152 | |||
153 | Before going on on how to attach, detach and unload the framebuffer console, an | ||
154 | illustration of the dependencies may help. | ||
155 | |||
156 | The console layer, as with most subsystems, needs a driver that interfaces with | ||
157 | the hardware. Thus, in a VGA console: | ||
158 | |||
159 | console ---> VGA driver ---> hardware. | ||
160 | |||
161 | Assuming the VGA driver can be unloaded, one must first unbind the VGA driver | ||
162 | from the console layer before unloading the driver. The VGA driver cannot be | ||
163 | unloaded if it is still bound to the console layer. (See | ||
164 | Documentation/console/console.txt for more information). | ||
165 | |||
166 | This is more complicated in the case of the the framebuffer console (fbcon), | ||
167 | because fbcon is an intermediate layer between the console and the drivers: | ||
168 | |||
169 | console ---> fbcon ---> fbdev drivers ---> hardware | ||
170 | |||
171 | The fbdev drivers cannot be unloaded if it's bound to fbcon, and fbcon cannot | ||
172 | be unloaded if it's bound to the console layer. | ||
173 | |||
174 | So to unload the fbdev drivers, one must first unbind fbcon from the console, | ||
175 | then unbind the fbdev drivers from fbcon. Fortunately, unbinding fbcon from | ||
176 | the console layer will automatically unbind framebuffer drivers from | ||
177 | fbcon. Thus, there is no need to explicitly unbind the fbdev drivers from | ||
178 | fbcon. | ||
179 | |||
180 | So, how do we unbind fbcon from the console? Part of the answer is in | ||
181 | Documentation/console/console.txt. To summarize: | ||
182 | |||
183 | Echo a value to the bind file that represents the framebuffer console | ||
184 | driver. So assuming vtcon1 represents fbcon, then: | ||
185 | |||
186 | echo 1 > sys/class/vtconsole/vtcon1/bind - attach framebuffer console to | ||
187 | console layer | ||
188 | echo 0 > sys/class/vtconsole/vtcon1/bind - detach framebuffer console from | ||
189 | console layer | ||
190 | |||
191 | If fbcon is detached from the console layer, your boot console driver (which is | ||
192 | usually VGA text mode) will take over. A few drivers (rivafb and i810fb) will | ||
193 | restore VGA text mode for you. With the rest, before detaching fbcon, you | ||
194 | must take a few additional steps to make sure that your VGA text mode is | ||
195 | restored properly. The following is one of the several methods that you can do: | ||
196 | |||
197 | 1. Download or install vbetool. This utility is included with most | ||
198 | distributions nowadays, and is usually part of the suspend/resume tool. | ||
199 | |||
200 | 2. In your kernel configuration, ensure that CONFIG_FRAMEBUFFER_CONSOLE is set | ||
201 | to 'y' or 'm'. Enable one or more of your favorite framebuffer drivers. | ||
202 | |||
203 | 3. Boot into text mode and as root run: | ||
204 | |||
205 | vbetool vbestate save > <vga state file> | ||
206 | |||
207 | The above command saves the register contents of your graphics | ||
208 | hardware to <vga state file>. You need to do this step only once as | ||
209 | the state file can be reused. | ||
210 | |||
211 | 4. If fbcon is compiled as a module, load fbcon by doing: | ||
212 | |||
213 | modprobe fbcon | ||
214 | |||
215 | 5. Now to detach fbcon: | ||
216 | |||
217 | vbetool vbestate restore < <vga state file> && \ | ||
218 | echo 0 > /sys/class/vtconsole/vtcon1/bind | ||
219 | |||
220 | 6. That's it, you're back to VGA mode. And if you compiled fbcon as a module, | ||
221 | you can unload it by 'rmmod fbcon' | ||
222 | |||
223 | 7. To reattach fbcon: | ||
224 | |||
225 | echo 1 > /sys/class/vtconsole/vtcon1/bind | ||
226 | |||
227 | 8. Once fbcon is unbound, all drivers registered to the system will also | ||
228 | become unbound. This means that fbcon and individual framebuffer drivers | ||
229 | can be unloaded or reloaded at will. Reloading the drivers or fbcon will | ||
230 | automatically bind the console, fbcon and the drivers together. Unloading | ||
231 | all the drivers without unloading fbcon will make it impossible for the | ||
232 | console to bind fbcon. | ||
233 | |||
234 | Notes for vesafb users: | ||
235 | ======================= | ||
236 | |||
237 | Unfortunately, if your bootline includes a vga=xxx parameter that sets the | ||
238 | hardware in graphics mode, such as when loading vesafb, vgacon will not load. | ||
239 | Instead, vgacon will replace the default boot console with dummycon, and you | ||
240 | won't get any display after detaching fbcon. Your machine is still alive, so | ||
241 | you can reattach vesafb. However, to reattach vesafb, you need to do one of | ||
242 | the following: | ||
243 | |||
244 | Variation 1: | ||
245 | |||
246 | a. Before detaching fbcon, do | ||
247 | |||
248 | vbetool vbemode save > <vesa state file> # do once for each vesafb mode, | ||
249 | # the file can be reused | ||
250 | |||
251 | b. Detach fbcon as in step 5. | ||
252 | |||
253 | c. Attach fbcon | ||
254 | |||
255 | vbetool vbestate restore < <vesa state file> && \ | ||
256 | echo 1 > /sys/class/vtconsole/vtcon1/bind | ||
257 | |||
258 | Variation 2: | ||
259 | |||
260 | a. Before detaching fbcon, do: | ||
261 | echo <ID> > /sys/class/tty/console/bind | ||
262 | |||
263 | |||
264 | vbetool vbemode get | ||
265 | |||
266 | b. Take note of the mode number | ||
267 | |||
268 | b. Detach fbcon as in step 5. | ||
269 | |||
270 | c. Attach fbcon: | ||
271 | |||
272 | vbetool vbemode set <mode number> && \ | ||
273 | echo 1 > /sys/class/vtconsole/vtcon1/bind | ||
274 | |||
275 | Samples: | ||
276 | ======== | ||
277 | |||
278 | Here are 2 sample bash scripts that you can use to bind or unbind the | ||
279 | framebuffer console driver if you are in an X86 box: | ||
280 | |||
281 | --------------------------------------------------------------------------- | ||
282 | #!/bin/bash | ||
283 | # Unbind fbcon | ||
284 | |||
285 | # Change this to where your actual vgastate file is located | ||
286 | # Or Use VGASTATE=$1 to indicate the state file at runtime | ||
287 | VGASTATE=/tmp/vgastate | ||
288 | |||
289 | # path to vbetool | ||
290 | VBETOOL=/usr/local/bin | ||
291 | |||
292 | |||
293 | for (( i = 0; i < 16; i++)) | ||
294 | do | ||
295 | if test -x /sys/class/vtconsole/vtcon$i; then | ||
296 | if [ `cat /sys/class/vtconsole/vtcon$i/name | grep -c "frame buffer"` \ | ||
297 | = 1 ]; then | ||
298 | if test -x $VBETOOL/vbetool; then | ||
299 | echo Unbinding vtcon$i | ||
300 | $VBETOOL/vbetool vbestate restore < $VGASTATE | ||
301 | echo 0 > /sys/class/vtconsole/vtcon$i/bind | ||
302 | fi | ||
303 | fi | ||
304 | fi | ||
305 | done | ||
306 | |||
307 | --------------------------------------------------------------------------- | ||
308 | #!/bin/bash | ||
309 | # Bind fbcon | ||
310 | |||
311 | for (( i = 0; i < 16; i++)) | ||
312 | do | ||
313 | if test -x /sys/class/vtconsole/vtcon$i; then | ||
314 | if [ `cat /sys/class/vtconsole/vtcon$i/name | grep -c "frame buffer"` \ | ||
315 | = 1 ]; then | ||
316 | echo Unbinding vtcon$i | ||
317 | echo 1 > /sys/class/vtconsole/vtcon$i/bind | ||
318 | fi | ||
319 | fi | ||
320 | done | ||
321 | --------------------------------------------------------------------------- | ||
322 | |||
323 | -- | ||
152 | Antonino Daplas <adaplas@pol.net> | 324 | Antonino Daplas <adaplas@pol.net> |
diff --git a/Documentation/feature-removal-schedule.txt b/Documentation/feature-removal-schedule.txt index 43ab119963d5..033ac91da07a 100644 --- a/Documentation/feature-removal-schedule.txt +++ b/Documentation/feature-removal-schedule.txt | |||
@@ -33,27 +33,12 @@ Who: Adrian Bunk <bunk@stusta.de> | |||
33 | 33 | ||
34 | --------------------------- | 34 | --------------------------- |
35 | 35 | ||
36 | What: RCU API moves to EXPORT_SYMBOL_GPL | ||
37 | When: April 2006 | ||
38 | Files: include/linux/rcupdate.h, kernel/rcupdate.c | ||
39 | Why: Outside of Linux, the only implementations of anything even | ||
40 | vaguely resembling RCU that I am aware of are in DYNIX/ptx, | ||
41 | VM/XA, Tornado, and K42. I do not expect anyone to port binary | ||
42 | drivers or kernel modules from any of these, since the first two | ||
43 | are owned by IBM and the last two are open-source research OSes. | ||
44 | So these will move to GPL after a grace period to allow | ||
45 | people, who might be using implementations that I am not aware | ||
46 | of, to adjust to this upcoming change. | ||
47 | Who: Paul E. McKenney <paulmck@us.ibm.com> | ||
48 | |||
49 | --------------------------- | ||
50 | |||
51 | What: raw1394: requests of type RAW1394_REQ_ISO_SEND, RAW1394_REQ_ISO_LISTEN | 36 | What: raw1394: requests of type RAW1394_REQ_ISO_SEND, RAW1394_REQ_ISO_LISTEN |
52 | When: November 2005 | 37 | When: November 2006 |
53 | Why: Deprecated in favour of the new ioctl-based rawiso interface, which is | 38 | Why: Deprecated in favour of the new ioctl-based rawiso interface, which is |
54 | more efficient. You should really be using libraw1394 for raw1394 | 39 | more efficient. You should really be using libraw1394 for raw1394 |
55 | access anyway. | 40 | access anyway. |
56 | Who: Jody McIntyre <scjody@steamballoon.com> | 41 | Who: Jody McIntyre <scjody@modernduck.com> |
57 | 42 | ||
58 | --------------------------- | 43 | --------------------------- |
59 | 44 | ||
@@ -192,6 +177,16 @@ Who: Jean Delvare <khali@linux-fr.org> | |||
192 | 177 | ||
193 | --------------------------- | 178 | --------------------------- |
194 | 179 | ||
180 | What: Unused EXPORT_SYMBOL/EXPORT_SYMBOL_GPL exports | ||
181 | (temporary transition config option provided until then) | ||
182 | The transition config option will also be removed at the same time. | ||
183 | When: before 2.6.19 | ||
184 | Why: Unused symbols are both increasing the size of the kernel binary | ||
185 | and are often a sign of "wrong API" | ||
186 | Who: Arjan van de Ven <arjan@linux.intel.com> | ||
187 | |||
188 | --------------------------- | ||
189 | |||
195 | What: remove EXPORT_SYMBOL(tasklist_lock) | 190 | What: remove EXPORT_SYMBOL(tasklist_lock) |
196 | When: August 2006 | 191 | When: August 2006 |
197 | Files: kernel/fork.c | 192 | Files: kernel/fork.c |
@@ -212,15 +207,6 @@ Who: Greg Kroah-Hartman <gregkh@suse.de> | |||
212 | 207 | ||
213 | --------------------------- | 208 | --------------------------- |
214 | 209 | ||
215 | What: Support for NEC DDB5074 and DDB5476 evaluation boards. | ||
216 | When: June 2006 | ||
217 | Why: Board specific code doesn't build anymore since ~2.6.0 and no | ||
218 | users have complained indicating there is no more need for these | ||
219 | boards. This should really be considered a last call. | ||
220 | Who: Ralf Baechle <ralf@linux-mips.org> | ||
221 | |||
222 | --------------------------- | ||
223 | |||
224 | What: USB driver API moves to EXPORT_SYMBOL_GPL | 210 | What: USB driver API moves to EXPORT_SYMBOL_GPL |
225 | When: Febuary 2008 | 211 | When: Febuary 2008 |
226 | Files: include/linux/usb.h, drivers/usb/core/driver.c | 212 | Files: include/linux/usb.h, drivers/usb/core/driver.c |
diff --git a/Documentation/filesystems/Locking b/Documentation/filesystems/Locking index 1045da582b9b..d31efbbdfe50 100644 --- a/Documentation/filesystems/Locking +++ b/Documentation/filesystems/Locking | |||
@@ -99,7 +99,7 @@ prototypes: | |||
99 | int (*sync_fs)(struct super_block *sb, int wait); | 99 | int (*sync_fs)(struct super_block *sb, int wait); |
100 | void (*write_super_lockfs) (struct super_block *); | 100 | void (*write_super_lockfs) (struct super_block *); |
101 | void (*unlockfs) (struct super_block *); | 101 | void (*unlockfs) (struct super_block *); |
102 | int (*statfs) (struct super_block *, struct kstatfs *); | 102 | int (*statfs) (struct dentry *, struct kstatfs *); |
103 | int (*remount_fs) (struct super_block *, int *, char *); | 103 | int (*remount_fs) (struct super_block *, int *, char *); |
104 | void (*clear_inode) (struct inode *); | 104 | void (*clear_inode) (struct inode *); |
105 | void (*umount_begin) (struct super_block *); | 105 | void (*umount_begin) (struct super_block *); |
@@ -142,15 +142,16 @@ see also dquot_operations section. | |||
142 | 142 | ||
143 | --------------------------- file_system_type --------------------------- | 143 | --------------------------- file_system_type --------------------------- |
144 | prototypes: | 144 | prototypes: |
145 | struct super_block *(*get_sb) (struct file_system_type *, int, | 145 | struct int (*get_sb) (struct file_system_type *, int, |
146 | const char *, void *); | 146 | const char *, void *, struct vfsmount *); |
147 | void (*kill_sb) (struct super_block *); | 147 | void (*kill_sb) (struct super_block *); |
148 | locking rules: | 148 | locking rules: |
149 | may block BKL | 149 | may block BKL |
150 | get_sb yes yes | 150 | get_sb yes yes |
151 | kill_sb yes yes | 151 | kill_sb yes yes |
152 | 152 | ||
153 | ->get_sb() returns error or a locked superblock (exclusive on ->s_umount). | 153 | ->get_sb() returns error or 0 with locked superblock attached to the vfsmount |
154 | (exclusive on ->s_umount). | ||
154 | ->kill_sb() takes a write-locked superblock, does all shutdown work on it, | 155 | ->kill_sb() takes a write-locked superblock, does all shutdown work on it, |
155 | unlocks and drops the reference. | 156 | unlocks and drops the reference. |
156 | 157 | ||
diff --git a/Documentation/filesystems/automount-support.txt b/Documentation/filesystems/automount-support.txt index 58c65a1713e5..7cac200e2a85 100644 --- a/Documentation/filesystems/automount-support.txt +++ b/Documentation/filesystems/automount-support.txt | |||
@@ -19,7 +19,7 @@ following procedure: | |||
19 | 19 | ||
20 | (2) Have the follow_link() op do the following steps: | 20 | (2) Have the follow_link() op do the following steps: |
21 | 21 | ||
22 | (a) Call do_kern_mount() to call the appropriate filesystem to set up a | 22 | (a) Call vfs_kern_mount() to call the appropriate filesystem to set up a |
23 | superblock and gain a vfsmount structure representing it. | 23 | superblock and gain a vfsmount structure representing it. |
24 | 24 | ||
25 | (b) Copy the nameidata provided as an argument and substitute the dentry | 25 | (b) Copy the nameidata provided as an argument and substitute the dentry |
diff --git a/Documentation/filesystems/ext3.txt b/Documentation/filesystems/ext3.txt index afb1335c05d6..4aecc9bdb273 100644 --- a/Documentation/filesystems/ext3.txt +++ b/Documentation/filesystems/ext3.txt | |||
@@ -113,6 +113,14 @@ noquota | |||
113 | grpquota | 113 | grpquota |
114 | usrquota | 114 | usrquota |
115 | 115 | ||
116 | bh (*) ext3 associates buffer heads to data pages to | ||
117 | nobh (a) cache disk block mapping information | ||
118 | (b) link pages into transaction to provide | ||
119 | ordering guarantees. | ||
120 | "bh" option forces use of buffer heads. | ||
121 | "nobh" option tries to avoid associating buffer | ||
122 | heads (supported only for "writeback" mode). | ||
123 | |||
116 | 124 | ||
117 | Specification | 125 | Specification |
118 | ============= | 126 | ============= |
diff --git a/Documentation/filesystems/fuse.txt b/Documentation/filesystems/fuse.txt index 33f74310d161..a584f05403a4 100644 --- a/Documentation/filesystems/fuse.txt +++ b/Documentation/filesystems/fuse.txt | |||
@@ -18,6 +18,14 @@ Non-privileged mount (or user mount): | |||
18 | user. NOTE: this is not the same as mounts allowed with the "user" | 18 | user. NOTE: this is not the same as mounts allowed with the "user" |
19 | option in /etc/fstab, which is not discussed here. | 19 | option in /etc/fstab, which is not discussed here. |
20 | 20 | ||
21 | Filesystem connection: | ||
22 | |||
23 | A connection between the filesystem daemon and the kernel. The | ||
24 | connection exists until either the daemon dies, or the filesystem is | ||
25 | umounted. Note that detaching (or lazy umounting) the filesystem | ||
26 | does _not_ break the connection, in this case it will exist until | ||
27 | the last reference to the filesystem is released. | ||
28 | |||
21 | Mount owner: | 29 | Mount owner: |
22 | 30 | ||
23 | The user who does the mounting. | 31 | The user who does the mounting. |
@@ -86,16 +94,20 @@ Mount options | |||
86 | The default is infinite. Note that the size of read requests is | 94 | The default is infinite. Note that the size of read requests is |
87 | limited anyway to 32 pages (which is 128kbyte on i386). | 95 | limited anyway to 32 pages (which is 128kbyte on i386). |
88 | 96 | ||
89 | Sysfs | 97 | Control filesystem |
90 | ~~~~~ | 98 | ~~~~~~~~~~~~~~~~~~ |
99 | |||
100 | There's a control filesystem for FUSE, which can be mounted by: | ||
91 | 101 | ||
92 | FUSE sets up the following hierarchy in sysfs: | 102 | mount -t fusectl none /sys/fs/fuse/connections |
93 | 103 | ||
94 | /sys/fs/fuse/connections/N/ | 104 | Mounting it under the '/sys/fs/fuse/connections' directory makes it |
105 | backwards compatible with earlier versions. | ||
95 | 106 | ||
96 | where N is an increasing number allocated to each new connection. | 107 | Under the fuse control filesystem each connection has a directory |
108 | named by a unique number. | ||
97 | 109 | ||
98 | For each connection the following attributes are defined: | 110 | For each connection the following files exist within this directory: |
99 | 111 | ||
100 | 'waiting' | 112 | 'waiting' |
101 | 113 | ||
@@ -110,7 +122,47 @@ For each connection the following attributes are defined: | |||
110 | connection. This means that all waiting requests will be aborted an | 122 | connection. This means that all waiting requests will be aborted an |
111 | error returned for all aborted and new requests. | 123 | error returned for all aborted and new requests. |
112 | 124 | ||
113 | Only a privileged user may read or write these attributes. | 125 | Only the owner of the mount may read or write these files. |
126 | |||
127 | Interrupting filesystem operations | ||
128 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
129 | |||
130 | If a process issuing a FUSE filesystem request is interrupted, the | ||
131 | following will happen: | ||
132 | |||
133 | 1) If the request is not yet sent to userspace AND the signal is | ||
134 | fatal (SIGKILL or unhandled fatal signal), then the request is | ||
135 | dequeued and returns immediately. | ||
136 | |||
137 | 2) If the request is not yet sent to userspace AND the signal is not | ||
138 | fatal, then an 'interrupted' flag is set for the request. When | ||
139 | the request has been successfully transfered to userspace and | ||
140 | this flag is set, an INTERRUPT request is queued. | ||
141 | |||
142 | 3) If the request is already sent to userspace, then an INTERRUPT | ||
143 | request is queued. | ||
144 | |||
145 | INTERRUPT requests take precedence over other requests, so the | ||
146 | userspace filesystem will receive queued INTERRUPTs before any others. | ||
147 | |||
148 | The userspace filesystem may ignore the INTERRUPT requests entirely, | ||
149 | or may honor them by sending a reply to the _original_ request, with | ||
150 | the error set to EINTR. | ||
151 | |||
152 | It is also possible that there's a race between processing the | ||
153 | original request and it's INTERRUPT request. There are two possibilities: | ||
154 | |||
155 | 1) The INTERRUPT request is processed before the original request is | ||
156 | processed | ||
157 | |||
158 | 2) The INTERRUPT request is processed after the original request has | ||
159 | been answered | ||
160 | |||
161 | If the filesystem cannot find the original request, it should wait for | ||
162 | some timeout and/or a number of new requests to arrive, after which it | ||
163 | should reply to the INTERRUPT request with an EAGAIN error. In case | ||
164 | 1) the INTERRUPT request will be requeued. In case 2) the INTERRUPT | ||
165 | reply will be ignored. | ||
114 | 166 | ||
115 | Aborting a filesystem connection | 167 | Aborting a filesystem connection |
116 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 168 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
@@ -139,8 +191,8 @@ the filesystem. There are several ways to do this: | |||
139 | - Use forced umount (umount -f). Works in all cases but only if | 191 | - Use forced umount (umount -f). Works in all cases but only if |
140 | filesystem is still attached (it hasn't been lazy unmounted) | 192 | filesystem is still attached (it hasn't been lazy unmounted) |
141 | 193 | ||
142 | - Abort filesystem through the sysfs interface. Most powerful | 194 | - Abort filesystem through the FUSE control filesystem. Most |
143 | method, always works. | 195 | powerful method, always works. |
144 | 196 | ||
145 | How do non-privileged mounts work? | 197 | How do non-privileged mounts work? |
146 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 198 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
@@ -304,25 +356,7 @@ Scenario 1 - Simple deadlock | |||
304 | | | for "file"] | 356 | | | for "file"] |
305 | | | *DEADLOCK* | 357 | | | *DEADLOCK* |
306 | 358 | ||
307 | The solution for this is to allow requests to be interrupted while | 359 | The solution for this is to allow the filesystem to be aborted. |
308 | they are in userspace: | ||
309 | |||
310 | | [interrupted by signal] | | ||
311 | | <fuse_unlink() | | ||
312 | | [release semaphore] | [semaphore acquired] | ||
313 | | <sys_unlink() | | ||
314 | | | >fuse_unlink() | ||
315 | | | [queue req on fc->pending] | ||
316 | | | [wake up fc->waitq] | ||
317 | | | [sleep on req->waitq] | ||
318 | |||
319 | If the filesystem daemon was single threaded, this will stop here, | ||
320 | since there's no other thread to dequeue and execute the request. | ||
321 | In this case the solution is to kill the FUSE daemon as well. If | ||
322 | there are multiple serving threads, you just have to kill them as | ||
323 | long as any remain. | ||
324 | |||
325 | Moral: a filesystem which deadlocks, can soon find itself dead. | ||
326 | 360 | ||
327 | Scenario 2 - Tricky deadlock | 361 | Scenario 2 - Tricky deadlock |
328 | ---------------------------- | 362 | ---------------------------- |
@@ -355,24 +389,14 @@ but is caused by a pagefault. | |||
355 | | | [lock page] | 389 | | | [lock page] |
356 | | | * DEADLOCK * | 390 | | | * DEADLOCK * |
357 | 391 | ||
358 | Solution is again to let the the request be interrupted (not | 392 | Solution is basically the same as above. |
359 | elaborated further). | ||
360 | |||
361 | An additional problem is that while the write buffer is being | ||
362 | copied to the request, the request must not be interrupted. This | ||
363 | is because the destination address of the copy may not be valid | ||
364 | after the request is interrupted. | ||
365 | |||
366 | This is solved with doing the copy atomically, and allowing | ||
367 | interruption while the page(s) belonging to the write buffer are | ||
368 | faulted with get_user_pages(). The 'req->locked' flag indicates | ||
369 | when the copy is taking place, and interruption is delayed until | ||
370 | this flag is unset. | ||
371 | 393 | ||
372 | Scenario 3 - Tricky deadlock with asynchronous read | 394 | An additional problem is that while the write buffer is being copied |
373 | --------------------------------------------------- | 395 | to the request, the request must not be interrupted/aborted. This is |
396 | because the destination address of the copy may not be valid after the | ||
397 | request has returned. | ||
374 | 398 | ||
375 | The same situation as above, except thread-1 will wait on page lock | 399 | This is solved with doing the copy atomically, and allowing abort |
376 | and hence it will be uninterruptible as well. The solution is to | 400 | while the page(s) belonging to the write buffer are faulted with |
377 | abort the connection with forced umount (if mount is attached) or | 401 | get_user_pages(). The 'req->locked' flag indicates when the copy is |
378 | through the abort attribute in sysfs. | 402 | taking place, and abort is delayed until this flag is unset. |
diff --git a/Documentation/filesystems/inotify.txt b/Documentation/filesystems/inotify.txt index 6d501903f68e..59a919f16144 100644 --- a/Documentation/filesystems/inotify.txt +++ b/Documentation/filesystems/inotify.txt | |||
@@ -69,17 +69,135 @@ Prototypes: | |||
69 | int inotify_rm_watch (int fd, __u32 mask); | 69 | int inotify_rm_watch (int fd, __u32 mask); |
70 | 70 | ||
71 | 71 | ||
72 | (iii) Internal Kernel Implementation | 72 | (iii) Kernel Interface |
73 | 73 | ||
74 | Each inotify instance is associated with an inotify_device structure. | 74 | Inotify's kernel API consists a set of functions for managing watches and an |
75 | event callback. | ||
76 | |||
77 | To use the kernel API, you must first initialize an inotify instance with a set | ||
78 | of inotify_operations. You are given an opaque inotify_handle, which you use | ||
79 | for any further calls to inotify. | ||
80 | |||
81 | struct inotify_handle *ih = inotify_init(my_event_handler); | ||
82 | |||
83 | You must provide a function for processing events and a function for destroying | ||
84 | the inotify watch. | ||
85 | |||
86 | void handle_event(struct inotify_watch *watch, u32 wd, u32 mask, | ||
87 | u32 cookie, const char *name, struct inode *inode) | ||
88 | |||
89 | watch - the pointer to the inotify_watch that triggered this call | ||
90 | wd - the watch descriptor | ||
91 | mask - describes the event that occurred | ||
92 | cookie - an identifier for synchronizing events | ||
93 | name - the dentry name for affected files in a directory-based event | ||
94 | inode - the affected inode in a directory-based event | ||
95 | |||
96 | void destroy_watch(struct inotify_watch *watch) | ||
97 | |||
98 | You may add watches by providing a pre-allocated and initialized inotify_watch | ||
99 | structure and specifying the inode to watch along with an inotify event mask. | ||
100 | You must pin the inode during the call. You will likely wish to embed the | ||
101 | inotify_watch structure in a structure of your own which contains other | ||
102 | information about the watch. Once you add an inotify watch, it is immediately | ||
103 | subject to removal depending on filesystem events. You must grab a reference if | ||
104 | you depend on the watch hanging around after the call. | ||
105 | |||
106 | inotify_init_watch(&my_watch->iwatch); | ||
107 | inotify_get_watch(&my_watch->iwatch); // optional | ||
108 | s32 wd = inotify_add_watch(ih, &my_watch->iwatch, inode, mask); | ||
109 | inotify_put_watch(&my_watch->iwatch); // optional | ||
110 | |||
111 | You may use the watch descriptor (wd) or the address of the inotify_watch for | ||
112 | other inotify operations. You must not directly read or manipulate data in the | ||
113 | inotify_watch. Additionally, you must not call inotify_add_watch() more than | ||
114 | once for a given inotify_watch structure, unless you have first called either | ||
115 | inotify_rm_watch() or inotify_rm_wd(). | ||
116 | |||
117 | To determine if you have already registered a watch for a given inode, you may | ||
118 | call inotify_find_watch(), which gives you both the wd and the watch pointer for | ||
119 | the inotify_watch, or an error if the watch does not exist. | ||
120 | |||
121 | wd = inotify_find_watch(ih, inode, &watchp); | ||
122 | |||
123 | You may use container_of() on the watch pointer to access your own data | ||
124 | associated with a given watch. When an existing watch is found, | ||
125 | inotify_find_watch() bumps the refcount before releasing its locks. You must | ||
126 | put that reference with: | ||
127 | |||
128 | put_inotify_watch(watchp); | ||
129 | |||
130 | Call inotify_find_update_watch() to update the event mask for an existing watch. | ||
131 | inotify_find_update_watch() returns the wd of the updated watch, or an error if | ||
132 | the watch does not exist. | ||
133 | |||
134 | wd = inotify_find_update_watch(ih, inode, mask); | ||
135 | |||
136 | An existing watch may be removed by calling either inotify_rm_watch() or | ||
137 | inotify_rm_wd(). | ||
138 | |||
139 | int ret = inotify_rm_watch(ih, &my_watch->iwatch); | ||
140 | int ret = inotify_rm_wd(ih, wd); | ||
141 | |||
142 | A watch may be removed while executing your event handler with the following: | ||
143 | |||
144 | inotify_remove_watch_locked(ih, iwatch); | ||
145 | |||
146 | Call inotify_destroy() to remove all watches from your inotify instance and | ||
147 | release it. If there are no outstanding references, inotify_destroy() will call | ||
148 | your destroy_watch op for each watch. | ||
149 | |||
150 | inotify_destroy(ih); | ||
151 | |||
152 | When inotify removes a watch, it sends an IN_IGNORED event to your callback. | ||
153 | You may use this event as an indication to free the watch memory. Note that | ||
154 | inotify may remove a watch due to filesystem events, as well as by your request. | ||
155 | If you use IN_ONESHOT, inotify will remove the watch after the first event, at | ||
156 | which point you may call the final inotify_put_watch. | ||
157 | |||
158 | (iv) Kernel Interface Prototypes | ||
159 | |||
160 | struct inotify_handle *inotify_init(struct inotify_operations *ops); | ||
161 | |||
162 | inotify_init_watch(struct inotify_watch *watch); | ||
163 | |||
164 | s32 inotify_add_watch(struct inotify_handle *ih, | ||
165 | struct inotify_watch *watch, | ||
166 | struct inode *inode, u32 mask); | ||
167 | |||
168 | s32 inotify_find_watch(struct inotify_handle *ih, struct inode *inode, | ||
169 | struct inotify_watch **watchp); | ||
170 | |||
171 | s32 inotify_find_update_watch(struct inotify_handle *ih, | ||
172 | struct inode *inode, u32 mask); | ||
173 | |||
174 | int inotify_rm_wd(struct inotify_handle *ih, u32 wd); | ||
175 | |||
176 | int inotify_rm_watch(struct inotify_handle *ih, | ||
177 | struct inotify_watch *watch); | ||
178 | |||
179 | void inotify_remove_watch_locked(struct inotify_handle *ih, | ||
180 | struct inotify_watch *watch); | ||
181 | |||
182 | void inotify_destroy(struct inotify_handle *ih); | ||
183 | |||
184 | void get_inotify_watch(struct inotify_watch *watch); | ||
185 | void put_inotify_watch(struct inotify_watch *watch); | ||
186 | |||
187 | |||
188 | (v) Internal Kernel Implementation | ||
189 | |||
190 | Each inotify instance is represented by an inotify_handle structure. | ||
191 | Inotify's userspace consumers also have an inotify_device which is | ||
192 | associated with the inotify_handle, and on which events are queued. | ||
75 | 193 | ||
76 | Each watch is associated with an inotify_watch structure. Watches are chained | 194 | Each watch is associated with an inotify_watch structure. Watches are chained |
77 | off of each associated device and each associated inode. | 195 | off of each associated inotify_handle and each associated inode. |
78 | 196 | ||
79 | See fs/inotify.c for the locking and lifetime rules. | 197 | See fs/inotify.c and fs/inotify_user.c for the locking and lifetime rules. |
80 | 198 | ||
81 | 199 | ||
82 | (iv) Rationale | 200 | (vi) Rationale |
83 | 201 | ||
84 | Q: What is the design decision behind not tying the watch to the open fd of | 202 | Q: What is the design decision behind not tying the watch to the open fd of |
85 | the watched object? | 203 | the watched object? |
@@ -145,7 +263,7 @@ A: The poor user-space interface is the second biggest problem with dnotify. | |||
145 | file descriptor-based one that allows basic file I/O and poll/select. | 263 | file descriptor-based one that allows basic file I/O and poll/select. |
146 | Obtaining the fd and managing the watches could have been done either via a | 264 | Obtaining the fd and managing the watches could have been done either via a |
147 | device file or a family of new system calls. We decided to implement a | 265 | device file or a family of new system calls. We decided to implement a |
148 | family of system calls because that is the preffered approach for new kernel | 266 | family of system calls because that is the preferred approach for new kernel |
149 | interfaces. The only real difference was whether we wanted to use open(2) | 267 | interfaces. The only real difference was whether we wanted to use open(2) |
150 | and ioctl(2) or a couple of new system calls. System calls beat ioctls. | 268 | and ioctl(2) or a couple of new system calls. System calls beat ioctls. |
151 | 269 | ||
diff --git a/Documentation/filesystems/porting b/Documentation/filesystems/porting index 2f388460cbe7..5531694059ab 100644 --- a/Documentation/filesystems/porting +++ b/Documentation/filesystems/porting | |||
@@ -50,10 +50,11 @@ Turn your foo_read_super() into a function that would return 0 in case of | |||
50 | success and negative number in case of error (-EINVAL unless you have more | 50 | success and negative number in case of error (-EINVAL unless you have more |
51 | informative error value to report). Call it foo_fill_super(). Now declare | 51 | informative error value to report). Call it foo_fill_super(). Now declare |
52 | 52 | ||
53 | struct super_block foo_get_sb(struct file_system_type *fs_type, | 53 | int foo_get_sb(struct file_system_type *fs_type, |
54 | int flags, const char *dev_name, void *data) | 54 | int flags, const char *dev_name, void *data, struct vfsmount *mnt) |
55 | { | 55 | { |
56 | return get_sb_bdev(fs_type, flags, dev_name, data, ext2_fill_super); | 56 | return get_sb_bdev(fs_type, flags, dev_name, data, foo_fill_super, |
57 | mnt); | ||
57 | } | 58 | } |
58 | 59 | ||
59 | (or similar with s/bdev/nodev/ or s/bdev/single/, depending on the kind of | 60 | (or similar with s/bdev/nodev/ or s/bdev/single/, depending on the kind of |
diff --git a/Documentation/filesystems/ramfs-rootfs-initramfs.txt b/Documentation/filesystems/ramfs-rootfs-initramfs.txt index 60ab61e54e8a..25981e2e51be 100644 --- a/Documentation/filesystems/ramfs-rootfs-initramfs.txt +++ b/Documentation/filesystems/ramfs-rootfs-initramfs.txt | |||
@@ -70,11 +70,13 @@ tmpfs mounts. See Documentation/filesystems/tmpfs.txt for more information. | |||
70 | What is rootfs? | 70 | What is rootfs? |
71 | --------------- | 71 | --------------- |
72 | 72 | ||
73 | Rootfs is a special instance of ramfs, which is always present in 2.6 systems. | 73 | Rootfs is a special instance of ramfs (or tmpfs, if that's enabled), which is |
74 | (It's used internally as the starting and stopping point for searches of the | 74 | always present in 2.6 systems. You can't unmount rootfs for approximately the |
75 | kernel's doubly-linked list of mount points.) | 75 | same reason you can't kill the init process; rather than having special code |
76 | to check for and handle an empty list, it's smaller and simpler for the kernel | ||
77 | to just make sure certain lists can't become empty. | ||
76 | 78 | ||
77 | Most systems just mount another filesystem over it and ignore it. The | 79 | Most systems just mount another filesystem over rootfs and ignore it. The |
78 | amount of space an empty instance of ramfs takes up is tiny. | 80 | amount of space an empty instance of ramfs takes up is tiny. |
79 | 81 | ||
80 | What is initramfs? | 82 | What is initramfs? |
@@ -92,14 +94,16 @@ out of that. | |||
92 | 94 | ||
93 | All this differs from the old initrd in several ways: | 95 | All this differs from the old initrd in several ways: |
94 | 96 | ||
95 | - The old initrd was a separate file, while the initramfs archive is linked | 97 | - The old initrd was always a separate file, while the initramfs archive is |
96 | into the linux kernel image. (The directory linux-*/usr is devoted to | 98 | linked into the linux kernel image. (The directory linux-*/usr is devoted |
97 | generating this archive during the build.) | 99 | to generating this archive during the build.) |
98 | 100 | ||
99 | - The old initrd file was a gzipped filesystem image (in some file format, | 101 | - The old initrd file was a gzipped filesystem image (in some file format, |
100 | such as ext2, that had to be built into the kernel), while the new | 102 | such as ext2, that needed a driver built into the kernel), while the new |
101 | initramfs archive is a gzipped cpio archive (like tar only simpler, | 103 | initramfs archive is a gzipped cpio archive (like tar only simpler, |
102 | see cpio(1) and Documentation/early-userspace/buffer-format.txt). | 104 | see cpio(1) and Documentation/early-userspace/buffer-format.txt). The |
105 | kernel's cpio extraction code is not only extremely small, it's also | ||
106 | __init data that can be discarded during the boot process. | ||
103 | 107 | ||
104 | - The program run by the old initrd (which was called /initrd, not /init) did | 108 | - The program run by the old initrd (which was called /initrd, not /init) did |
105 | some setup and then returned to the kernel, while the init program from | 109 | some setup and then returned to the kernel, while the init program from |
@@ -124,13 +128,14 @@ Populating initramfs: | |||
124 | 128 | ||
125 | The 2.6 kernel build process always creates a gzipped cpio format initramfs | 129 | The 2.6 kernel build process always creates a gzipped cpio format initramfs |
126 | archive and links it into the resulting kernel binary. By default, this | 130 | archive and links it into the resulting kernel binary. By default, this |
127 | archive is empty (consuming 134 bytes on x86). The config option | 131 | archive is empty (consuming 134 bytes on x86). |
128 | CONFIG_INITRAMFS_SOURCE (for some reason buried under devices->block devices | 132 | |
129 | in menuconfig, and living in usr/Kconfig) can be used to specify a source for | 133 | The config option CONFIG_INITRAMFS_SOURCE (for some reason buried under |
130 | the initramfs archive, which will automatically be incorporated into the | 134 | devices->block devices in menuconfig, and living in usr/Kconfig) can be used |
131 | resulting binary. This option can point to an existing gzipped cpio archive, a | 135 | to specify a source for the initramfs archive, which will automatically be |
132 | directory containing files to be archived, or a text file specification such | 136 | incorporated into the resulting binary. This option can point to an existing |
133 | as the following example: | 137 | gzipped cpio archive, a directory containing files to be archived, or a text |
138 | file specification such as the following example: | ||
134 | 139 | ||
135 | dir /dev 755 0 0 | 140 | dir /dev 755 0 0 |
136 | nod /dev/console 644 0 0 c 5 1 | 141 | nod /dev/console 644 0 0 c 5 1 |
@@ -146,23 +151,84 @@ as the following example: | |||
146 | Run "usr/gen_init_cpio" (after the kernel build) to get a usage message | 151 | Run "usr/gen_init_cpio" (after the kernel build) to get a usage message |
147 | documenting the above file format. | 152 | documenting the above file format. |
148 | 153 | ||
149 | One advantage of the text file is that root access is not required to | 154 | One advantage of the configuration file is that root access is not required to |
150 | set permissions or create device nodes in the new archive. (Note that those | 155 | set permissions or create device nodes in the new archive. (Note that those |
151 | two example "file" entries expect to find files named "init.sh" and "busybox" in | 156 | two example "file" entries expect to find files named "init.sh" and "busybox" in |
152 | a directory called "initramfs", under the linux-2.6.* directory. See | 157 | a directory called "initramfs", under the linux-2.6.* directory. See |
153 | Documentation/early-userspace/README for more details.) | 158 | Documentation/early-userspace/README for more details.) |
154 | 159 | ||
155 | The kernel does not depend on external cpio tools, gen_init_cpio is created | 160 | The kernel does not depend on external cpio tools. If you specify a |
156 | from usr/gen_init_cpio.c which is entirely self-contained, and the kernel's | 161 | directory instead of a configuration file, the kernel's build infrastructure |
157 | boot-time extractor is also (obviously) self-contained. However, if you _do_ | 162 | creates a configuration file from that directory (usr/Makefile calls |
158 | happen to have cpio installed, the following command line can extract the | 163 | scripts/gen_initramfs_list.sh), and proceeds to package up that directory |
159 | generated cpio image back into its component files: | 164 | using the config file (by feeding it to usr/gen_init_cpio, which is created |
165 | from usr/gen_init_cpio.c). The kernel's build-time cpio creation code is | ||
166 | entirely self-contained, and the kernel's boot-time extractor is also | ||
167 | (obviously) self-contained. | ||
168 | |||
169 | The one thing you might need external cpio utilities installed for is creating | ||
170 | or extracting your own preprepared cpio files to feed to the kernel build | ||
171 | (instead of a config file or directory). | ||
172 | |||
173 | The following command line can extract a cpio image (either by the above script | ||
174 | or by the kernel build) back into its component files: | ||
160 | 175 | ||
161 | cpio -i -d -H newc -F initramfs_data.cpio --no-absolute-filenames | 176 | cpio -i -d -H newc -F initramfs_data.cpio --no-absolute-filenames |
162 | 177 | ||
178 | The following shell script can create a prebuilt cpio archive you can | ||
179 | use in place of the above config file: | ||
180 | |||
181 | #!/bin/sh | ||
182 | |||
183 | # Copyright 2006 Rob Landley <rob@landley.net> and TimeSys Corporation. | ||
184 | # Licensed under GPL version 2 | ||
185 | |||
186 | if [ $# -ne 2 ] | ||
187 | then | ||
188 | echo "usage: mkinitramfs directory imagename.cpio.gz" | ||
189 | exit 1 | ||
190 | fi | ||
191 | |||
192 | if [ -d "$1" ] | ||
193 | then | ||
194 | echo "creating $2 from $1" | ||
195 | (cd "$1"; find . | cpio -o -H newc | gzip) > "$2" | ||
196 | else | ||
197 | echo "First argument must be a directory" | ||
198 | exit 1 | ||
199 | fi | ||
200 | |||
201 | Note: The cpio man page contains some bad advice that will break your initramfs | ||
202 | archive if you follow it. It says "A typical way to generate the list | ||
203 | of filenames is with the find command; you should give find the -depth option | ||
204 | to minimize problems with permissions on directories that are unwritable or not | ||
205 | searchable." Don't do this when creating initramfs.cpio.gz images, it won't | ||
206 | work. The Linux kernel cpio extractor won't create files in a directory that | ||
207 | doesn't exist, so the directory entries must go before the files that go in | ||
208 | those directories. The above script gets them in the right order. | ||
209 | |||
210 | External initramfs images: | ||
211 | -------------------------- | ||
212 | |||
213 | If the kernel has initrd support enabled, an external cpio.gz archive can also | ||
214 | be passed into a 2.6 kernel in place of an initrd. In this case, the kernel | ||
215 | will autodetect the type (initramfs, not initrd) and extract the external cpio | ||
216 | archive into rootfs before trying to run /init. | ||
217 | |||
218 | This has the memory efficiency advantages of initramfs (no ramdisk block | ||
219 | device) but the separate packaging of initrd (which is nice if you have | ||
220 | non-GPL code you'd like to run from initramfs, without conflating it with | ||
221 | the GPL licensed Linux kernel binary). | ||
222 | |||
223 | It can also be used to supplement the kernel's built-in initamfs image. The | ||
224 | files in the external archive will overwrite any conflicting files in | ||
225 | the built-in initramfs archive. Some distributors also prefer to customize | ||
226 | a single kernel image with task-specific initramfs images, without recompiling. | ||
227 | |||
163 | Contents of initramfs: | 228 | Contents of initramfs: |
164 | ---------------------- | 229 | ---------------------- |
165 | 230 | ||
231 | An initramfs archive is a complete self-contained root filesystem for Linux. | ||
166 | If you don't already understand what shared libraries, devices, and paths | 232 | If you don't already understand what shared libraries, devices, and paths |
167 | you need to get a minimal root filesystem up and running, here are some | 233 | you need to get a minimal root filesystem up and running, here are some |
168 | references: | 234 | references: |
@@ -176,13 +242,36 @@ code against, along with some related utilities. It is BSD licensed. | |||
176 | 242 | ||
177 | I use uClibc (http://www.uclibc.org) and busybox (http://www.busybox.net) | 243 | I use uClibc (http://www.uclibc.org) and busybox (http://www.busybox.net) |
178 | myself. These are LGPL and GPL, respectively. (A self-contained initramfs | 244 | myself. These are LGPL and GPL, respectively. (A self-contained initramfs |
179 | package is planned for the busybox 1.2 release.) | 245 | package is planned for the busybox 1.3 release.) |
180 | 246 | ||
181 | In theory you could use glibc, but that's not well suited for small embedded | 247 | In theory you could use glibc, but that's not well suited for small embedded |
182 | uses like this. (A "hello world" program statically linked against glibc is | 248 | uses like this. (A "hello world" program statically linked against glibc is |
183 | over 400k. With uClibc it's 7k. Also note that glibc dlopens libnss to do | 249 | over 400k. With uClibc it's 7k. Also note that glibc dlopens libnss to do |
184 | name lookups, even when otherwise statically linked.) | 250 | name lookups, even when otherwise statically linked.) |
185 | 251 | ||
252 | A good first step is to get initramfs to run a statically linked "hello world" | ||
253 | program as init, and test it under an emulator like qemu (www.qemu.org) or | ||
254 | User Mode Linux, like so: | ||
255 | |||
256 | cat > hello.c << EOF | ||
257 | #include <stdio.h> | ||
258 | #include <unistd.h> | ||
259 | |||
260 | int main(int argc, char *argv[]) | ||
261 | { | ||
262 | printf("Hello world!\n"); | ||
263 | sleep(999999999); | ||
264 | } | ||
265 | EOF | ||
266 | gcc -static hello2.c -o init | ||
267 | echo init | cpio -o -H newc | gzip > test.cpio.gz | ||
268 | # Testing external initramfs using the initrd loading mechanism. | ||
269 | qemu -kernel /boot/vmlinuz -initrd test.cpio.gz /dev/zero | ||
270 | |||
271 | When debugging a normal root filesystem, it's nice to be able to boot with | ||
272 | "init=/bin/sh". The initramfs equivalent is "rdinit=/bin/sh", and it's | ||
273 | just as useful. | ||
274 | |||
186 | Why cpio rather than tar? | 275 | Why cpio rather than tar? |
187 | ------------------------- | 276 | ------------------------- |
188 | 277 | ||
@@ -241,7 +330,7 @@ the above threads) is: | |||
241 | Future directions: | 330 | Future directions: |
242 | ------------------ | 331 | ------------------ |
243 | 332 | ||
244 | Today (2.6.14), initramfs is always compiled in, but not always used. The | 333 | Today (2.6.16), initramfs is always compiled in, but not always used. The |
245 | kernel falls back to legacy boot code that is reached only if initramfs does | 334 | kernel falls back to legacy boot code that is reached only if initramfs does |
246 | not contain an /init program. The fallback is legacy code, there to ensure a | 335 | not contain an /init program. The fallback is legacy code, there to ensure a |
247 | smooth transition and allowing early boot functionality to gradually move to | 336 | smooth transition and allowing early boot functionality to gradually move to |
@@ -258,8 +347,9 @@ and so on. | |||
258 | 347 | ||
259 | This kind of complexity (which inevitably includes policy) is rightly handled | 348 | This kind of complexity (which inevitably includes policy) is rightly handled |
260 | in userspace. Both klibc and busybox/uClibc are working on simple initramfs | 349 | in userspace. Both klibc and busybox/uClibc are working on simple initramfs |
261 | packages to drop into a kernel build, and when standard solutions are ready | 350 | packages to drop into a kernel build. |
262 | and widely deployed, the kernel's legacy early boot code will become obsolete | ||
263 | and a candidate for the feature removal schedule. | ||
264 | 351 | ||
265 | But that's a while off yet. | 352 | The klibc package has now been accepted into Andrew Morton's 2.6.17-mm tree. |
353 | The kernel's current early boot code (partition detection, etc) will probably | ||
354 | be migrated into a default initramfs, automatically created and used by the | ||
355 | kernel build. | ||
diff --git a/Documentation/filesystems/vfs.txt b/Documentation/filesystems/vfs.txt index 3a2e5520c1e3..9d3aed628bc1 100644 --- a/Documentation/filesystems/vfs.txt +++ b/Documentation/filesystems/vfs.txt | |||
@@ -113,8 +113,8 @@ members are defined: | |||
113 | struct file_system_type { | 113 | struct file_system_type { |
114 | const char *name; | 114 | const char *name; |
115 | int fs_flags; | 115 | int fs_flags; |
116 | struct super_block *(*get_sb) (struct file_system_type *, int, | 116 | struct int (*get_sb) (struct file_system_type *, int, |
117 | const char *, void *); | 117 | const char *, void *, struct vfsmount *); |
118 | void (*kill_sb) (struct super_block *); | 118 | void (*kill_sb) (struct super_block *); |
119 | struct module *owner; | 119 | struct module *owner; |
120 | struct file_system_type * next; | 120 | struct file_system_type * next; |
@@ -211,7 +211,7 @@ struct super_operations { | |||
211 | int (*sync_fs)(struct super_block *sb, int wait); | 211 | int (*sync_fs)(struct super_block *sb, int wait); |
212 | void (*write_super_lockfs) (struct super_block *); | 212 | void (*write_super_lockfs) (struct super_block *); |
213 | void (*unlockfs) (struct super_block *); | 213 | void (*unlockfs) (struct super_block *); |
214 | int (*statfs) (struct super_block *, struct kstatfs *); | 214 | int (*statfs) (struct dentry *, struct kstatfs *); |
215 | int (*remount_fs) (struct super_block *, int *, char *); | 215 | int (*remount_fs) (struct super_block *, int *, char *); |
216 | void (*clear_inode) (struct inode *); | 216 | void (*clear_inode) (struct inode *); |
217 | void (*umount_begin) (struct super_block *); | 217 | void (*umount_begin) (struct super_block *); |
diff --git a/Documentation/hwmon/abituguru b/Documentation/hwmon/abituguru new file mode 100644 index 000000000000..69cdb527d58f --- /dev/null +++ b/Documentation/hwmon/abituguru | |||
@@ -0,0 +1,59 @@ | |||
1 | Kernel driver abituguru | ||
2 | ======================= | ||
3 | |||
4 | Supported chips: | ||
5 | * Abit uGuru (Hardware Monitor part only) | ||
6 | Prefix: 'abituguru' | ||
7 | Addresses scanned: ISA 0x0E0 | ||
8 | Datasheet: Not available, this driver is based on reverse engineering. | ||
9 | A "Datasheet" has been written based on the reverse engineering it | ||
10 | should be available in the same dir as this file under the name | ||
11 | abituguru-datasheet. | ||
12 | |||
13 | Authors: | ||
14 | Hans de Goede <j.w.r.degoede@hhs.nl>, | ||
15 | (Initial reverse engineering done by Olle Sandberg | ||
16 | <ollebull@gmail.com>) | ||
17 | |||
18 | |||
19 | Module Parameters | ||
20 | ----------------- | ||
21 | |||
22 | * force: bool Force detection. Note this parameter only causes the | ||
23 | detection to be skipped, if the uGuru can't be read | ||
24 | the module initialization (insmod) will still fail. | ||
25 | * fan_sensors: int Tell the driver how many fan speed sensors there are | ||
26 | on your motherboard. Default: 0 (autodetect). | ||
27 | * pwms: int Tell the driver how many fan speed controls (fan | ||
28 | pwms) your motherboard has. Default: 0 (autodetect). | ||
29 | * verbose: int How verbose should the driver be? (0-3): | ||
30 | 0 normal output | ||
31 | 1 + verbose error reporting | ||
32 | 2 + sensors type probing info\n" | ||
33 | 3 + retryable error reporting | ||
34 | Default: 2 (the driver is still in the testing phase) | ||
35 | |||
36 | Notice if you need any of the first three options above please insmod the | ||
37 | driver with verbose set to 3 and mail me <j.w.r.degoede@hhs.nl> the output of: | ||
38 | dmesg | grep abituguru | ||
39 | |||
40 | |||
41 | Description | ||
42 | ----------- | ||
43 | |||
44 | This driver supports the hardware monitoring features of the Abit uGuru chip | ||
45 | found on Abit uGuru featuring motherboards (most modern Abit motherboards). | ||
46 | |||
47 | The uGuru chip in reality is a Winbond W83L950D in disguise (despite Abit | ||
48 | claiming it is "a new microprocessor designed by the ABIT Engineers"). | ||
49 | Unfortunatly this doesn't help since the W83L950D is a generic | ||
50 | microcontroller with a custom Abit application running on it. | ||
51 | |||
52 | Despite Abit not releasing any information regarding the uGuru, Olle | ||
53 | Sandberg <ollebull@gmail.com> has managed to reverse engineer the sensor part | ||
54 | of the uGuru. Without his work this driver would not have been possible. | ||
55 | |||
56 | Known Issues | ||
57 | ------------ | ||
58 | |||
59 | The voltage and frequency control parts of the Abit uGuru are not supported. | ||
diff --git a/Documentation/hwmon/abituguru-datasheet b/Documentation/hwmon/abituguru-datasheet new file mode 100644 index 000000000000..aef5a9b36846 --- /dev/null +++ b/Documentation/hwmon/abituguru-datasheet | |||
@@ -0,0 +1,312 @@ | |||
1 | uGuru datasheet | ||
2 | =============== | ||
3 | |||
4 | First of all, what I know about uGuru is no fact based on any help, hints or | ||
5 | datasheet from Abit. The data I have got on uGuru have I assembled through | ||
6 | my weak knowledge in "backwards engineering". | ||
7 | And just for the record, you may have noticed uGuru isn't a chip developed by | ||
8 | Abit, as they claim it to be. It's realy just an microprocessor (uC) created by | ||
9 | Winbond (W83L950D). And no, reading the manual for this specific uC or | ||
10 | mailing Windbond for help won't give any usefull data about uGuru, as it is | ||
11 | the program inside the uC that is responding to calls. | ||
12 | |||
13 | Olle Sandberg <ollebull@gmail.com>, 2005-05-25 | ||
14 | |||
15 | |||
16 | Original version by Olle Sandberg who did the heavy lifting of the initial | ||
17 | reverse engineering. This version has been almost fully rewritten for clarity | ||
18 | and extended with write support and info on more databanks, the write support | ||
19 | is once again reverse engineered by Olle the additional databanks have been | ||
20 | reverse engineered by me. I would like to express my thanks to Olle, this | ||
21 | document and the Linux driver could not have been written without his efforts. | ||
22 | |||
23 | Note: because of the lack of specs only the sensors part of the uGuru is | ||
24 | described here and not the CPU / RAM / etc voltage & frequency control. | ||
25 | |||
26 | Hans de Goede <j.w.r.degoede@hhs.nl>, 28-01-2006 | ||
27 | |||
28 | |||
29 | Detection | ||
30 | ========= | ||
31 | |||
32 | As far as known the uGuru is always placed at and using the (ISA) I/O-ports | ||
33 | 0xE0 and 0xE4, so we don't have to scan any port-range, just check what the two | ||
34 | ports are holding for detection. We will refer to 0xE0 as CMD (command-port) | ||
35 | and 0xE4 as DATA because Abit refers to them with these names. | ||
36 | |||
37 | If DATA holds 0x00 or 0x08 and CMD holds 0x00 or 0xAC an uGuru could be | ||
38 | present. We have to check for two different values at data-port, because | ||
39 | after a reboot uGuru will hold 0x00 here, but if the driver is removed and | ||
40 | later on attached again data-port will hold 0x08, more about this later. | ||
41 | |||
42 | After wider testing of the Linux kernel driver some variants of the uGuru have | ||
43 | turned up which will hold 0x00 instead of 0xAC at the CMD port, thus we also | ||
44 | have to test CMD for two different values. On these uGuru's DATA will initally | ||
45 | hold 0x09 and will only hold 0x08 after reading CMD first, so CMD must be read | ||
46 | first! | ||
47 | |||
48 | To be really sure an uGuru is present a test read of one or more register | ||
49 | sets should be done. | ||
50 | |||
51 | |||
52 | Reading / Writing | ||
53 | ================= | ||
54 | |||
55 | Addressing | ||
56 | ---------- | ||
57 | |||
58 | The uGuru has a number of different addressing levels. The first addressing | ||
59 | level we will call banks. A bank holds data for one or more sensors. The data | ||
60 | in a bank for a sensor is one or more bytes large. | ||
61 | |||
62 | The number of bytes is fixed for a given bank, you should always read or write | ||
63 | that many bytes, reading / writing more will fail, the results when writing | ||
64 | less then the number of bytes for a given bank are undetermined. | ||
65 | |||
66 | See below for all known bank addresses, numbers of sensors in that bank, | ||
67 | number of bytes data per sensor and contents/meaning of those bytes. | ||
68 | |||
69 | Although both this document and the kernel driver have kept the sensor | ||
70 | terminoligy for the addressing within a bank this is not 100% correct, in | ||
71 | bank 0x24 for example the addressing within the bank selects a PWM output not | ||
72 | a sensor. | ||
73 | |||
74 | Notice that some banks have both a read and a write address this is how the | ||
75 | uGuru determines if a read from or a write to the bank is taking place, thus | ||
76 | when reading you should always use the read address and when writing the | ||
77 | write address. The write address is always one (1) more then the read address. | ||
78 | |||
79 | |||
80 | uGuru ready | ||
81 | ----------- | ||
82 | |||
83 | Before you can read from or write to the uGuru you must first put the uGuru | ||
84 | in "ready" mode. | ||
85 | |||
86 | To put the uGuru in ready mode first write 0x00 to DATA and then wait for DATA | ||
87 | to hold 0x09, DATA should read 0x09 within 250 read cycles. | ||
88 | |||
89 | Next CMD _must_ be read and should hold 0xAC, usually CMD will hold 0xAC the | ||
90 | first read but sometimes it takes a while before CMD holds 0xAC and thus it | ||
91 | has to be read a number of times (max 50). | ||
92 | |||
93 | After reading CMD, DATA should hold 0x08 which means that the uGuru is ready | ||
94 | for input. As above DATA will usually hold 0x08 the first read but not always. | ||
95 | This step can be skipped, but it is undetermined what happens if the uGuru has | ||
96 | not yet reported 0x08 at DATA and you proceed with writing a bank address. | ||
97 | |||
98 | |||
99 | Sending bank and sensor addresses to the uGuru | ||
100 | ---------------------------------------------- | ||
101 | |||
102 | First the uGuru must be in "ready" mode as described above, DATA should hold | ||
103 | 0x08 indicating that the uGuru wants input, in this case the bank address. | ||
104 | |||
105 | Next write the bank address to DATA. After the bank address has been written | ||
106 | wait for to DATA to hold 0x08 again indicating that it wants / is ready for | ||
107 | more input (max 250 reads). | ||
108 | |||
109 | Once DATA holds 0x08 again write the sensor address to CMD. | ||
110 | |||
111 | |||
112 | Reading | ||
113 | ------- | ||
114 | |||
115 | First send the bank and sensor addresses as described above. | ||
116 | Then for each byte of data you want to read wait for DATA to hold 0x01 | ||
117 | which indicates that the uGuru is ready to be read (max 250 reads) and once | ||
118 | DATA holds 0x01 read the byte from CMD. | ||
119 | |||
120 | Once all bytes have been read data will hold 0x09, but there is no reason to | ||
121 | test for this. Notice that the number of bytes is bank address dependent see | ||
122 | above and below. | ||
123 | |||
124 | After completing a successfull read it is advised to put the uGuru back in | ||
125 | ready mode, so that it is ready for the next read / write cycle. This way | ||
126 | if your program / driver is unloaded and later loaded again the detection | ||
127 | algorithm described above will still work. | ||
128 | |||
129 | |||
130 | |||
131 | Writing | ||
132 | ------- | ||
133 | |||
134 | First send the bank and sensor addresses as described above. | ||
135 | Then for each byte of data you want to write wait for DATA to hold 0x00 | ||
136 | which indicates that the uGuru is ready to be written (max 250 reads) and | ||
137 | once DATA holds 0x00 write the byte to CMD. | ||
138 | |||
139 | Once all bytes have been written wait for DATA to hold 0x01 (max 250 reads) | ||
140 | don't ask why this is the way it is. | ||
141 | |||
142 | Once DATA holds 0x01 read CMD it should hold 0xAC now. | ||
143 | |||
144 | After completing a successfull write it is advised to put the uGuru back in | ||
145 | ready mode, so that it is ready for the next read / write cycle. This way | ||
146 | if your program / driver is unloaded and later loaded again the detection | ||
147 | algorithm described above will still work. | ||
148 | |||
149 | |||
150 | Gotchas | ||
151 | ------- | ||
152 | |||
153 | After wider testing of the Linux kernel driver some variants of the uGuru have | ||
154 | turned up which do not hold 0x08 at DATA within 250 reads after writing the | ||
155 | bank address. With these versions this happens quite frequent, using larger | ||
156 | timeouts doesn't help, they just go offline for a second or 2, doing some | ||
157 | internal callibration or whatever. Your code should be prepared to handle | ||
158 | this and in case of no response in this specific case just goto sleep for a | ||
159 | while and then retry. | ||
160 | |||
161 | |||
162 | Address Map | ||
163 | =========== | ||
164 | |||
165 | Bank 0x20 Alarms (R) | ||
166 | -------------------- | ||
167 | This bank contains 0 sensors, iow the sensor address is ignored (but must be | ||
168 | written) just use 0. Bank 0x20 contains 3 bytes: | ||
169 | |||
170 | Byte 0: | ||
171 | This byte holds the alarm flags for sensor 0-7 of Sensor Bank1, with bit 0 | ||
172 | corresponding to sensor 0, 1 to 1, etc. | ||
173 | |||
174 | Byte 1: | ||
175 | This byte holds the alarm flags for sensor 8-15 of Sensor Bank1, with bit 0 | ||
176 | corresponding to sensor 8, 1 to 9, etc. | ||
177 | |||
178 | Byte 2: | ||
179 | This byte holds the alarm flags for sensor 0-5 of Sensor Bank2, with bit 0 | ||
180 | corresponding to sensor 0, 1 to 1, etc. | ||
181 | |||
182 | |||
183 | Bank 0x21 Sensor Bank1 Values / Readings (R) | ||
184 | -------------------------------------------- | ||
185 | This bank contains 16 sensors, for each sensor it contains 1 byte. | ||
186 | So far the following sensors are known to be available on all motherboards: | ||
187 | Sensor 0 CPU temp | ||
188 | Sensor 1 SYS temp | ||
189 | Sensor 3 CPU core volt | ||
190 | Sensor 4 DDR volt | ||
191 | Sensor 10 DDR Vtt volt | ||
192 | Sensor 15 PWM temp | ||
193 | |||
194 | Byte 0: | ||
195 | This byte holds the reading from the sensor. Sensors in Bank1 can be both | ||
196 | volt and temp sensors, this is motherboard specific. The uGuru however does | ||
197 | seem to know (be programmed with) what kindoff sensor is attached see Sensor | ||
198 | Bank1 Settings description. | ||
199 | |||
200 | Volt sensors use a linear scale, a reading 0 corresponds with 0 volt and a | ||
201 | reading of 255 with 3494 mV. The sensors for higher voltages however are | ||
202 | connected through a division circuit. The currently known division circuits | ||
203 | in use result in ranges of: 0-4361mV, 0-6248mV or 0-14510mV. 3.3 volt sources | ||
204 | use the 0-4361mV range, 5 volt the 0-6248mV and 12 volt the 0-14510mV . | ||
205 | |||
206 | Temp sensors also use a linear scale, a reading of 0 corresponds with 0 degree | ||
207 | Celsius and a reading of 255 with a reading of 255 degrees Celsius. | ||
208 | |||
209 | |||
210 | Bank 0x22 Sensor Bank1 Settings (R) | ||
211 | Bank 0x23 Sensor Bank1 Settings (W) | ||
212 | ----------------------------------- | ||
213 | |||
214 | This bank contains 16 sensors, for each sensor it contains 3 bytes. Each | ||
215 | set of 3 bytes contains the settings for the sensor with the same sensor | ||
216 | address in Bank 0x21 . | ||
217 | |||
218 | Byte 0: | ||
219 | Alarm behaviour for the selected sensor. A 1 enables the described behaviour. | ||
220 | Bit 0: Give an alarm if measured temp is over the warning threshold (RW) * | ||
221 | Bit 1: Give an alarm if measured volt is over the max threshold (RW) ** | ||
222 | Bit 2: Give an alarm if measured volt is under the min threshold (RW) ** | ||
223 | Bit 3: Beep if alarm (RW) | ||
224 | Bit 4: 1 if alarm cause measured temp is over the warning threshold (R) | ||
225 | Bit 5: 1 if alarm cause measured volt is over the max threshold (R) | ||
226 | Bit 6: 1 if alarm cause measured volt is under the min threshold (R) | ||
227 | Bit 7: Volt sensor: Shutdown if alarm persist for more then 4 seconds (RW) | ||
228 | Temp sensor: Shutdown if temp is over the shutdown threshold (RW) | ||
229 | |||
230 | * This bit is only honored/used by the uGuru if a temp sensor is connected | ||
231 | ** This bit is only honored/used by the uGuru if a volt sensor is connected | ||
232 | Note with some trickery this can be used to find out what kinda sensor is | ||
233 | detected see the Linux kernel driver for an example with many comments on | ||
234 | how todo this. | ||
235 | |||
236 | Byte 1: | ||
237 | Temp sensor: warning threshold (scale as bank 0x21) | ||
238 | Volt sensor: min threshold (scale as bank 0x21) | ||
239 | |||
240 | Byte 2: | ||
241 | Temp sensor: shutdown threshold (scale as bank 0x21) | ||
242 | Volt sensor: max threshold (scale as bank 0x21) | ||
243 | |||
244 | |||
245 | Bank 0x24 PWM outputs for FAN's (R) | ||
246 | Bank 0x25 PWM outputs for FAN's (W) | ||
247 | ----------------------------------- | ||
248 | |||
249 | This bank contains 3 "sensors", for each sensor it contains 5 bytes. | ||
250 | Sensor 0 usually controls the CPU fan | ||
251 | Sensor 1 usually controls the NB (or chipset for single chip) fan | ||
252 | Sensor 2 usually controls the System fan | ||
253 | |||
254 | Byte 0: | ||
255 | Flag 0x80 to enable control, Fan runs at 100% when disabled. | ||
256 | low nibble (temp)sensor address at bank 0x21 used for control. | ||
257 | |||
258 | Byte 1: | ||
259 | 0-255 = 0-12v (linear), specify voltage at which fan will rotate when under | ||
260 | low threshold temp (specified in byte 3) | ||
261 | |||
262 | Byte 2: | ||
263 | 0-255 = 0-12v (linear), specify voltage at which fan will rotate when above | ||
264 | high threshold temp (specified in byte 4) | ||
265 | |||
266 | Byte 3: | ||
267 | Low threshold temp (scale as bank 0x21) | ||
268 | |||
269 | byte 4: | ||
270 | High threshold temp (scale as bank 0x21) | ||
271 | |||
272 | |||
273 | Bank 0x26 Sensors Bank2 Values / Readings (R) | ||
274 | --------------------------------------------- | ||
275 | |||
276 | This bank contains 6 sensors (AFAIK), for each sensor it contains 1 byte. | ||
277 | So far the following sensors are known to be available on all motherboards: | ||
278 | Sensor 0: CPU fan speed | ||
279 | Sensor 1: NB (or chipset for single chip) fan speed | ||
280 | Sensor 2: SYS fan speed | ||
281 | |||
282 | Byte 0: | ||
283 | This byte holds the reading from the sensor. 0-255 = 0-15300 (linear) | ||
284 | |||
285 | |||
286 | Bank 0x27 Sensors Bank2 Settings (R) | ||
287 | Bank 0x28 Sensors Bank2 Settings (W) | ||
288 | ------------------------------------ | ||
289 | |||
290 | This bank contains 6 sensors (AFAIK), for each sensor it contains 2 bytes. | ||
291 | |||
292 | Byte 0: | ||
293 | Alarm behaviour for the selected sensor. A 1 enables the described behaviour. | ||
294 | Bit 0: Give an alarm if measured rpm is under the min threshold (RW) | ||
295 | Bit 3: Beep if alarm (RW) | ||
296 | Bit 7: Shutdown if alarm persist for more then 4 seconds (RW) | ||
297 | |||
298 | Byte 1: | ||
299 | min threshold (scale as bank 0x26) | ||
300 | |||
301 | |||
302 | Warning for the adventerous | ||
303 | =========================== | ||
304 | |||
305 | A word of caution to those who want to experiment and see if they can figure | ||
306 | the voltage / clock programming out, I tried reading and only reading banks | ||
307 | 0-0x30 with the reading code used for the sensor banks (0x20-0x28) and this | ||
308 | resulted in a _permanent_ reprogramming of the voltages, luckily I had the | ||
309 | sensors part configured so that it would shutdown my system on any out of spec | ||
310 | voltages which proprably safed my computer (after a reboot I managed to | ||
311 | immediatly enter the bios and reload the defaults). This probably means that | ||
312 | the read/write cycle for the non sensor part is different from the sensor part. | ||
diff --git a/Documentation/hwmon/lm70 b/Documentation/hwmon/lm70 new file mode 100644 index 000000000000..2bdd3feebf53 --- /dev/null +++ b/Documentation/hwmon/lm70 | |||
@@ -0,0 +1,31 @@ | |||
1 | Kernel driver lm70 | ||
2 | ================== | ||
3 | |||
4 | Supported chip: | ||
5 | * National Semiconductor LM70 | ||
6 | Datasheet: http://www.national.com/pf/LM/LM70.html | ||
7 | |||
8 | Author: | ||
9 | Kaiwan N Billimoria <kaiwan@designergraphix.com> | ||
10 | |||
11 | Description | ||
12 | ----------- | ||
13 | |||
14 | This driver implements support for the National Semiconductor LM70 | ||
15 | temperature sensor. | ||
16 | |||
17 | The LM70 temperature sensor chip supports a single temperature sensor. | ||
18 | It communicates with a host processor (or microcontroller) via an | ||
19 | SPI/Microwire Bus interface. | ||
20 | |||
21 | Communication with the LM70 is simple: when the temperature is to be sensed, | ||
22 | the driver accesses the LM70 using SPI communication: 16 SCLK cycles | ||
23 | comprise the MOSI/MISO loop. At the end of the transfer, the 11-bit 2's | ||
24 | complement digital temperature (sent via the SIO line), is available in the | ||
25 | driver for interpretation. This driver makes use of the kernel's in-core | ||
26 | SPI support. | ||
27 | |||
28 | Thanks to | ||
29 | --------- | ||
30 | Jean Delvare <khali@linux-fr.org> for mentoring the hwmon-side driver | ||
31 | development. | ||
diff --git a/Documentation/hwmon/lm83 b/Documentation/hwmon/lm83 index 061d9ed8ff43..f7aad1489cb0 100644 --- a/Documentation/hwmon/lm83 +++ b/Documentation/hwmon/lm83 | |||
@@ -7,6 +7,10 @@ Supported chips: | |||
7 | Addresses scanned: I2C 0x18 - 0x1a, 0x29 - 0x2b, 0x4c - 0x4e | 7 | Addresses scanned: I2C 0x18 - 0x1a, 0x29 - 0x2b, 0x4c - 0x4e |
8 | Datasheet: Publicly available at the National Semiconductor website | 8 | Datasheet: Publicly available at the National Semiconductor website |
9 | http://www.national.com/pf/LM/LM83.html | 9 | http://www.national.com/pf/LM/LM83.html |
10 | * National Semiconductor LM82 | ||
11 | Addresses scanned: I2C 0x18 - 0x1a, 0x29 - 0x2b, 0x4c - 0x4e | ||
12 | Datasheet: Publicly available at the National Semiconductor website | ||
13 | http://www.national.com/pf/LM/LM82.html | ||
10 | 14 | ||
11 | 15 | ||
12 | Author: Jean Delvare <khali@linux-fr.org> | 16 | Author: Jean Delvare <khali@linux-fr.org> |
@@ -15,10 +19,11 @@ Description | |||
15 | ----------- | 19 | ----------- |
16 | 20 | ||
17 | The LM83 is a digital temperature sensor. It senses its own temperature as | 21 | The LM83 is a digital temperature sensor. It senses its own temperature as |
18 | well as the temperature of up to three external diodes. It is compatible | 22 | well as the temperature of up to three external diodes. The LM82 is |
19 | with many other devices such as the LM84 and all other ADM1021 clones. | 23 | a stripped down version of the LM83 that only supports one external diode. |
20 | The main difference between the LM83 and the LM84 in that the later can | 24 | Both are compatible with many other devices such as the LM84 and all |
21 | only sense the temperature of one external diode. | 25 | other ADM1021 clones. The main difference between the LM83 and the LM84 |
26 | in that the later can only sense the temperature of one external diode. | ||
22 | 27 | ||
23 | Using the adm1021 driver for a LM83 should work, but only two temperatures | 28 | Using the adm1021 driver for a LM83 should work, but only two temperatures |
24 | will be reported instead of four. | 29 | will be reported instead of four. |
@@ -30,12 +35,16 @@ contact us. Note that the LM90 can easily be misdetected as a LM83. | |||
30 | 35 | ||
31 | Confirmed motherboards: | 36 | Confirmed motherboards: |
32 | SBS P014 | 37 | SBS P014 |
38 | SBS PSL09 | ||
33 | 39 | ||
34 | Unconfirmed motherboards: | 40 | Unconfirmed motherboards: |
35 | Gigabyte GA-8IK1100 | 41 | Gigabyte GA-8IK1100 |
36 | Iwill MPX2 | 42 | Iwill MPX2 |
37 | Soltek SL-75DRV5 | 43 | Soltek SL-75DRV5 |
38 | 44 | ||
45 | The LM82 is confirmed to have been found on most AMD Geode reference | ||
46 | designs and test platforms. | ||
47 | |||
39 | The driver has been successfully tested by Magnus Forsström, who I'd | 48 | The driver has been successfully tested by Magnus Forsström, who I'd |
40 | like to thank here. More testers will be of course welcome. | 49 | like to thank here. More testers will be of course welcome. |
41 | 50 | ||
diff --git a/Documentation/hwmon/smsc47m192 b/Documentation/hwmon/smsc47m192 new file mode 100644 index 000000000000..45d6453cd435 --- /dev/null +++ b/Documentation/hwmon/smsc47m192 | |||
@@ -0,0 +1,102 @@ | |||
1 | Kernel driver smsc47m192 | ||
2 | ======================== | ||
3 | |||
4 | Supported chips: | ||
5 | * SMSC LPC47M192 and LPC47M997 | ||
6 | Prefix: 'smsc47m192' | ||
7 | Addresses scanned: I2C 0x2c - 0x2d | ||
8 | Datasheet: The datasheet for LPC47M192 is publicly available from | ||
9 | http://www.smsc.com/ | ||
10 | The LPC47M997 is compatible for hardware monitoring. | ||
11 | |||
12 | Author: Hartmut Rick <linux@rick.claranet.de> | ||
13 | Special thanks to Jean Delvare for careful checking | ||
14 | of the code and many helpful comments and suggestions. | ||
15 | |||
16 | |||
17 | Description | ||
18 | ----------- | ||
19 | |||
20 | This driver implements support for the hardware sensor capabilities | ||
21 | of the SMSC LPC47M192 and LPC47M997 Super-I/O chips. | ||
22 | |||
23 | These chips support 3 temperature channels and 8 voltage inputs | ||
24 | as well as CPU voltage VID input. | ||
25 | |||
26 | They do also have fan monitoring and control capabilities, but the | ||
27 | these features are accessed via ISA bus and are not supported by this | ||
28 | driver. Use the 'smsc47m1' driver for fan monitoring and control. | ||
29 | |||
30 | Voltages and temperatures are measured by an 8-bit ADC, the resolution | ||
31 | of the temperatures is 1 bit per degree C. | ||
32 | Voltages are scaled such that the nominal voltage corresponds to | ||
33 | 192 counts, i.e. 3/4 of the full range. Thus the available range for | ||
34 | each voltage channel is 0V ... 255/192*(nominal voltage), the resolution | ||
35 | is 1 bit per (nominal voltage)/192. | ||
36 | Both voltage and temperature values are scaled by 1000, the sys files | ||
37 | show voltages in mV and temperatures in units of 0.001 degC. | ||
38 | |||
39 | The +12V analog voltage input channel (in4_input) is multiplexed with | ||
40 | bit 4 of the encoded CPU voltage. This means that you either get | ||
41 | a +12V voltage measurement or a 5 bit CPU VID, but not both. | ||
42 | The default setting is to use the pin as 12V input, and use only 4 bit VID. | ||
43 | This driver assumes that the information in the configuration register | ||
44 | is correct, i.e. that the BIOS has updated the configuration if | ||
45 | the motherboard has this input wired to VID4. | ||
46 | |||
47 | The temperature and voltage readings are updated once every 1.5 seconds. | ||
48 | Reading them more often repeats the same values. | ||
49 | |||
50 | |||
51 | sysfs interface | ||
52 | --------------- | ||
53 | |||
54 | in0_input - +2.5V voltage input | ||
55 | in1_input - CPU voltage input (nominal 2.25V) | ||
56 | in2_input - +3.3V voltage input | ||
57 | in3_input - +5V voltage input | ||
58 | in4_input - +12V voltage input (may be missing if used as VID4) | ||
59 | in5_input - Vcc voltage input (nominal 3.3V) | ||
60 | This is the supply voltage of the sensor chip itself. | ||
61 | in6_input - +1.5V voltage input | ||
62 | in7_input - +1.8V voltage input | ||
63 | |||
64 | in[0-7]_min, | ||
65 | in[0-7]_max - lower and upper alarm thresholds for in[0-7]_input reading | ||
66 | |||
67 | All voltages are read and written in mV. | ||
68 | |||
69 | in[0-7]_alarm - alarm flags for voltage inputs | ||
70 | These files read '1' in case of alarm, '0' otherwise. | ||
71 | |||
72 | temp1_input - chip temperature measured by on-chip diode | ||
73 | temp[2-3]_input - temperature measured by external diodes (one of these would | ||
74 | typically be wired to the diode inside the CPU) | ||
75 | |||
76 | temp[1-3]_min, | ||
77 | temp[1-3]_max - lower and upper alarm thresholds for temperatures | ||
78 | |||
79 | temp[1-3]_offset - temperature offset registers | ||
80 | The chip adds the offsets stored in these registers to | ||
81 | the corresponding temperature readings. | ||
82 | Note that temp1 and temp2 offsets share the same register, | ||
83 | they cannot both be different from zero at the same time. | ||
84 | Writing a non-zero number to one of them will reset the other | ||
85 | offset to zero. | ||
86 | |||
87 | All temperatures and offsets are read and written in | ||
88 | units of 0.001 degC. | ||
89 | |||
90 | temp[1-3]_alarm - alarm flags for temperature inputs, '1' in case of alarm, | ||
91 | '0' otherwise. | ||
92 | temp[2-3]_input_fault - diode fault flags for temperature inputs 2 and 3. | ||
93 | A fault is detected if the two pins for the corresponding | ||
94 | sensor are open or shorted, or any of the two is shorted | ||
95 | to ground or Vcc. '1' indicates a diode fault. | ||
96 | |||
97 | cpu0_vid - CPU voltage as received from the CPU | ||
98 | |||
99 | vrm - CPU VID standard used for decoding CPU voltage | ||
100 | |||
101 | The *_min, *_max, *_offset and vrm files can be read and | ||
102 | written, all others are read-only. | ||
diff --git a/Documentation/hwmon/sysfs-interface b/Documentation/hwmon/sysfs-interface index a0d0ab24288e..d1d390aaf620 100644 --- a/Documentation/hwmon/sysfs-interface +++ b/Documentation/hwmon/sysfs-interface | |||
@@ -3,15 +3,15 @@ Naming and data format standards for sysfs files | |||
3 | 3 | ||
4 | The libsensors library offers an interface to the raw sensors data | 4 | The libsensors library offers an interface to the raw sensors data |
5 | through the sysfs interface. See libsensors documentation and source for | 5 | through the sysfs interface. See libsensors documentation and source for |
6 | more further information. As of writing this document, libsensors | 6 | further information. As of writing this document, libsensors |
7 | (from lm_sensors 2.8.3) is heavily chip-dependant. Adding or updating | 7 | (from lm_sensors 2.8.3) is heavily chip-dependent. Adding or updating |
8 | support for any given chip requires modifying the library's code. | 8 | support for any given chip requires modifying the library's code. |
9 | This is because libsensors was written for the procfs interface | 9 | This is because libsensors was written for the procfs interface |
10 | older kernel modules were using, which wasn't standardized enough. | 10 | older kernel modules were using, which wasn't standardized enough. |
11 | Recent versions of libsensors (from lm_sensors 2.8.2 and later) have | 11 | Recent versions of libsensors (from lm_sensors 2.8.2 and later) have |
12 | support for the sysfs interface, though. | 12 | support for the sysfs interface, though. |
13 | 13 | ||
14 | The new sysfs interface was designed to be as chip-independant as | 14 | The new sysfs interface was designed to be as chip-independent as |
15 | possible. | 15 | possible. |
16 | 16 | ||
17 | Note that motherboards vary widely in the connections to sensor chips. | 17 | Note that motherboards vary widely in the connections to sensor chips. |
@@ -24,7 +24,7 @@ range using external resistors. Since the values of these resistors | |||
24 | can change from motherboard to motherboard, the conversions cannot be | 24 | can change from motherboard to motherboard, the conversions cannot be |
25 | hard coded into the driver and have to be done in user space. | 25 | hard coded into the driver and have to be done in user space. |
26 | 26 | ||
27 | For this reason, even if we aim at a chip-independant libsensors, it will | 27 | For this reason, even if we aim at a chip-independent libsensors, it will |
28 | still require a configuration file (e.g. /etc/sensors.conf) for proper | 28 | still require a configuration file (e.g. /etc/sensors.conf) for proper |
29 | values conversion, labeling of inputs and hiding of unused inputs. | 29 | values conversion, labeling of inputs and hiding of unused inputs. |
30 | 30 | ||
@@ -39,15 +39,16 @@ If you are developing a userspace application please send us feedback on | |||
39 | this standard. | 39 | this standard. |
40 | 40 | ||
41 | Note that this standard isn't completely established yet, so it is subject | 41 | Note that this standard isn't completely established yet, so it is subject |
42 | to changes, even important ones. One more reason to use the library instead | 42 | to changes. If you are writing a new hardware monitoring driver those |
43 | of accessing sysfs files directly. | 43 | features can't seem to fit in this interface, please contact us with your |
44 | extension proposal. Keep in mind that backward compatibility must be | ||
45 | preserved. | ||
44 | 46 | ||
45 | Each chip gets its own directory in the sysfs /sys/devices tree. To | 47 | Each chip gets its own directory in the sysfs /sys/devices tree. To |
46 | find all sensor chips, it is easier to follow the symlinks from | 48 | find all sensor chips, it is easier to follow the device symlinks from |
47 | /sys/i2c/devices/ | 49 | /sys/class/hwmon/hwmon*. |
48 | 50 | ||
49 | All sysfs values are fixed point numbers. To get the true value of some | 51 | All sysfs values are fixed point numbers. |
50 | of the values, you should divide by the specified value. | ||
51 | 52 | ||
52 | There is only one value per file, unlike the older /proc specification. | 53 | There is only one value per file, unlike the older /proc specification. |
53 | The common scheme for files naming is: <type><number>_<item>. Usual | 54 | The common scheme for files naming is: <type><number>_<item>. Usual |
@@ -69,28 +70,40 @@ to cause an alarm) is chip-dependent. | |||
69 | 70 | ||
70 | ------------------------------------------------------------------------- | 71 | ------------------------------------------------------------------------- |
71 | 72 | ||
73 | [0-*] denotes any positive number starting from 0 | ||
74 | [1-*] denotes any positive number starting from 1 | ||
75 | RO read only value | ||
76 | RW read/write value | ||
77 | |||
78 | Read/write values may be read-only for some chips, depending on the | ||
79 | hardware implementation. | ||
80 | |||
81 | All entries are optional, and should only be created in a given driver | ||
82 | if the chip has the feature. | ||
83 | |||
72 | ************ | 84 | ************ |
73 | * Voltages * | 85 | * Voltages * |
74 | ************ | 86 | ************ |
75 | 87 | ||
76 | in[0-8]_min Voltage min value. | 88 | in[0-*]_min Voltage min value. |
77 | Unit: millivolt | 89 | Unit: millivolt |
78 | Read/Write | 90 | RW |
79 | 91 | ||
80 | in[0-8]_max Voltage max value. | 92 | in[0-*]_max Voltage max value. |
81 | Unit: millivolt | 93 | Unit: millivolt |
82 | Read/Write | 94 | RW |
83 | 95 | ||
84 | in[0-8]_input Voltage input value. | 96 | in[0-*]_input Voltage input value. |
85 | Unit: millivolt | 97 | Unit: millivolt |
86 | Read only | 98 | RO |
99 | Voltage measured on the chip pin. | ||
87 | Actual voltage depends on the scaling resistors on the | 100 | Actual voltage depends on the scaling resistors on the |
88 | motherboard, as recommended in the chip datasheet. | 101 | motherboard, as recommended in the chip datasheet. |
89 | This varies by chip and by motherboard. | 102 | This varies by chip and by motherboard. |
90 | Because of this variation, values are generally NOT scaled | 103 | Because of this variation, values are generally NOT scaled |
91 | by the chip driver, and must be done by the application. | 104 | by the chip driver, and must be done by the application. |
92 | However, some drivers (notably lm87 and via686a) | 105 | However, some drivers (notably lm87 and via686a) |
93 | do scale, with various degrees of success. | 106 | do scale, because of internal resistors built into a chip. |
94 | These drivers will output the actual voltage. | 107 | These drivers will output the actual voltage. |
95 | 108 | ||
96 | Typical usage: | 109 | Typical usage: |
@@ -104,58 +117,72 @@ in[0-8]_input Voltage input value. | |||
104 | in7_* varies | 117 | in7_* varies |
105 | in8_* varies | 118 | in8_* varies |
106 | 119 | ||
107 | cpu[0-1]_vid CPU core reference voltage. | 120 | cpu[0-*]_vid CPU core reference voltage. |
108 | Unit: millivolt | 121 | Unit: millivolt |
109 | Read only. | 122 | RO |
110 | Not always correct. | 123 | Not always correct. |
111 | 124 | ||
112 | vrm Voltage Regulator Module version number. | 125 | vrm Voltage Regulator Module version number. |
113 | Read only. | 126 | RW (but changing it should no more be necessary) |
114 | Two digit number, first is major version, second is | 127 | Originally the VRM standard version multiplied by 10, but now |
115 | minor version. | 128 | an arbitrary number, as not all standards have a version |
129 | number. | ||
116 | Affects the way the driver calculates the CPU core reference | 130 | Affects the way the driver calculates the CPU core reference |
117 | voltage from the vid pins. | 131 | voltage from the vid pins. |
118 | 132 | ||
133 | Also see the Alarms section for status flags associated with voltages. | ||
134 | |||
119 | 135 | ||
120 | ******** | 136 | ******** |
121 | * Fans * | 137 | * Fans * |
122 | ******** | 138 | ******** |
123 | 139 | ||
124 | fan[1-3]_min Fan minimum value | 140 | fan[1-*]_min Fan minimum value |
125 | Unit: revolution/min (RPM) | 141 | Unit: revolution/min (RPM) |
126 | Read/Write. | 142 | RW |
127 | 143 | ||
128 | fan[1-3]_input Fan input value. | 144 | fan[1-*]_input Fan input value. |
129 | Unit: revolution/min (RPM) | 145 | Unit: revolution/min (RPM) |
130 | Read only. | 146 | RO |
131 | 147 | ||
132 | fan[1-3]_div Fan divisor. | 148 | fan[1-*]_div Fan divisor. |
133 | Integer value in powers of two (1, 2, 4, 8, 16, 32, 64, 128). | 149 | Integer value in powers of two (1, 2, 4, 8, 16, 32, 64, 128). |
150 | RW | ||
134 | Some chips only support values 1, 2, 4 and 8. | 151 | Some chips only support values 1, 2, 4 and 8. |
135 | Note that this is actually an internal clock divisor, which | 152 | Note that this is actually an internal clock divisor, which |
136 | affects the measurable speed range, not the read value. | 153 | affects the measurable speed range, not the read value. |
137 | 154 | ||
155 | Also see the Alarms section for status flags associated with fans. | ||
156 | |||
157 | |||
138 | ******* | 158 | ******* |
139 | * PWM * | 159 | * PWM * |
140 | ******* | 160 | ******* |
141 | 161 | ||
142 | pwm[1-3] Pulse width modulation fan control. | 162 | pwm[1-*] Pulse width modulation fan control. |
143 | Integer value in the range 0 to 255 | 163 | Integer value in the range 0 to 255 |
144 | Read/Write | 164 | RW |
145 | 255 is max or 100%. | 165 | 255 is max or 100%. |
146 | 166 | ||
147 | pwm[1-3]_enable | 167 | pwm[1-*]_enable |
148 | Switch PWM on and off. | 168 | Switch PWM on and off. |
149 | Not always present even if fan*_pwm is. | 169 | Not always present even if fan*_pwm is. |
150 | 0 to turn off | 170 | 0: turn off |
151 | 1 to turn on in manual mode | 171 | 1: turn on in manual mode |
152 | 2 to turn on in automatic mode | 172 | 2+: turn on in automatic mode |
153 | Read/Write | 173 | Check individual chip documentation files for automatic mode details. |
174 | RW | ||
175 | |||
176 | pwm[1-*]_mode | ||
177 | 0: DC mode | ||
178 | 1: PWM mode | ||
179 | RW | ||
154 | 180 | ||
155 | pwm[1-*]_auto_channels_temp | 181 | pwm[1-*]_auto_channels_temp |
156 | Select which temperature channels affect this PWM output in | 182 | Select which temperature channels affect this PWM output in |
157 | auto mode. Bitfield, 1 is temp1, 2 is temp2, 4 is temp3 etc... | 183 | auto mode. Bitfield, 1 is temp1, 2 is temp2, 4 is temp3 etc... |
158 | Which values are possible depend on the chip used. | 184 | Which values are possible depend on the chip used. |
185 | RW | ||
159 | 186 | ||
160 | pwm[1-*]_auto_point[1-*]_pwm | 187 | pwm[1-*]_auto_point[1-*]_pwm |
161 | pwm[1-*]_auto_point[1-*]_temp | 188 | pwm[1-*]_auto_point[1-*]_temp |
@@ -163,6 +190,7 @@ pwm[1-*]_auto_point[1-*]_temp_hyst | |||
163 | Define the PWM vs temperature curve. Number of trip points is | 190 | Define the PWM vs temperature curve. Number of trip points is |
164 | chip-dependent. Use this for chips which associate trip points | 191 | chip-dependent. Use this for chips which associate trip points |
165 | to PWM output channels. | 192 | to PWM output channels. |
193 | RW | ||
166 | 194 | ||
167 | OR | 195 | OR |
168 | 196 | ||
@@ -172,50 +200,57 @@ temp[1-*]_auto_point[1-*]_temp_hyst | |||
172 | Define the PWM vs temperature curve. Number of trip points is | 200 | Define the PWM vs temperature curve. Number of trip points is |
173 | chip-dependent. Use this for chips which associate trip points | 201 | chip-dependent. Use this for chips which associate trip points |
174 | to temperature channels. | 202 | to temperature channels. |
203 | RW | ||
175 | 204 | ||
176 | 205 | ||
177 | **************** | 206 | **************** |
178 | * Temperatures * | 207 | * Temperatures * |
179 | **************** | 208 | **************** |
180 | 209 | ||
181 | temp[1-3]_type Sensor type selection. | 210 | temp[1-*]_type Sensor type selection. |
182 | Integers 1 to 4 or thermistor Beta value (typically 3435) | 211 | Integers 1 to 4 or thermistor Beta value (typically 3435) |
183 | Read/Write. | 212 | RW |
184 | 1: PII/Celeron Diode | 213 | 1: PII/Celeron Diode |
185 | 2: 3904 transistor | 214 | 2: 3904 transistor |
186 | 3: thermal diode | 215 | 3: thermal diode |
187 | 4: thermistor (default/unknown Beta) | 216 | 4: thermistor (default/unknown Beta) |
188 | Not all types are supported by all chips | 217 | Not all types are supported by all chips |
189 | 218 | ||
190 | temp[1-4]_max Temperature max value. | 219 | temp[1-*]_max Temperature max value. |
191 | Unit: millidegree Celcius | 220 | Unit: millidegree Celsius (or millivolt, see below) |
192 | Read/Write value. | 221 | RW |
193 | 222 | ||
194 | temp[1-3]_min Temperature min value. | 223 | temp[1-*]_min Temperature min value. |
195 | Unit: millidegree Celcius | 224 | Unit: millidegree Celsius |
196 | Read/Write value. | 225 | RW |
197 | 226 | ||
198 | temp[1-3]_max_hyst | 227 | temp[1-*]_max_hyst |
199 | Temperature hysteresis value for max limit. | 228 | Temperature hysteresis value for max limit. |
200 | Unit: millidegree Celcius | 229 | Unit: millidegree Celsius |
201 | Must be reported as an absolute temperature, NOT a delta | 230 | Must be reported as an absolute temperature, NOT a delta |
202 | from the max value. | 231 | from the max value. |
203 | Read/Write value. | 232 | RW |
204 | 233 | ||
205 | temp[1-4]_input Temperature input value. | 234 | temp[1-*]_input Temperature input value. |
206 | Unit: millidegree Celcius | 235 | Unit: millidegree Celsius |
207 | Read only value. | 236 | RO |
208 | 237 | ||
209 | temp[1-4]_crit Temperature critical value, typically greater than | 238 | temp[1-*]_crit Temperature critical value, typically greater than |
210 | corresponding temp_max values. | 239 | corresponding temp_max values. |
211 | Unit: millidegree Celcius | 240 | Unit: millidegree Celsius |
212 | Read/Write value. | 241 | RW |
213 | 242 | ||
214 | temp[1-2]_crit_hyst | 243 | temp[1-*]_crit_hyst |
215 | Temperature hysteresis value for critical limit. | 244 | Temperature hysteresis value for critical limit. |
216 | Unit: millidegree Celcius | 245 | Unit: millidegree Celsius |
217 | Must be reported as an absolute temperature, NOT a delta | 246 | Must be reported as an absolute temperature, NOT a delta |
218 | from the critical value. | 247 | from the critical value. |
248 | RW | ||
249 | |||
250 | temp[1-4]_offset | ||
251 | Temperature offset which is added to the temperature reading | ||
252 | by the chip. | ||
253 | Unit: millidegree Celsius | ||
219 | Read/Write value. | 254 | Read/Write value. |
220 | 255 | ||
221 | If there are multiple temperature sensors, temp1_* is | 256 | If there are multiple temperature sensors, temp1_* is |
@@ -225,6 +260,17 @@ temp[1-2]_crit_hyst | |||
225 | itself, for example the thermal diode inside the CPU or | 260 | itself, for example the thermal diode inside the CPU or |
226 | a thermistor nearby. | 261 | a thermistor nearby. |
227 | 262 | ||
263 | Some chips measure temperature using external thermistors and an ADC, and | ||
264 | report the temperature measurement as a voltage. Converting this voltage | ||
265 | back to a temperature (or the other way around for limits) requires | ||
266 | mathematical functions not available in the kernel, so the conversion | ||
267 | must occur in user space. For these chips, all temp* files described | ||
268 | above should contain values expressed in millivolt instead of millidegree | ||
269 | Celsius. In other words, such temperature channels are handled as voltage | ||
270 | channels by the driver. | ||
271 | |||
272 | Also see the Alarms section for status flags associated with temperatures. | ||
273 | |||
228 | 274 | ||
229 | ************ | 275 | ************ |
230 | * Currents * | 276 | * Currents * |
@@ -233,25 +279,88 @@ temp[1-2]_crit_hyst | |||
233 | Note that no known chip provides current measurements as of writing, | 279 | Note that no known chip provides current measurements as of writing, |
234 | so this part is theoretical, so to say. | 280 | so this part is theoretical, so to say. |
235 | 281 | ||
236 | curr[1-n]_max Current max value | 282 | curr[1-*]_max Current max value |
237 | Unit: milliampere | 283 | Unit: milliampere |
238 | Read/Write. | 284 | RW |
239 | 285 | ||
240 | curr[1-n]_min Current min value. | 286 | curr[1-*]_min Current min value. |
241 | Unit: milliampere | 287 | Unit: milliampere |
242 | Read/Write. | 288 | RW |
243 | 289 | ||
244 | curr[1-n]_input Current input value | 290 | curr[1-*]_input Current input value |
245 | Unit: milliampere | 291 | Unit: milliampere |
246 | Read only. | 292 | RO |
247 | 293 | ||
248 | 294 | ||
249 | ********* | 295 | ********** |
250 | * Other * | 296 | * Alarms * |
251 | ********* | 297 | ********** |
298 | |||
299 | Each channel or limit may have an associated alarm file, containing a | ||
300 | boolean value. 1 means than an alarm condition exists, 0 means no alarm. | ||
301 | |||
302 | Usually a given chip will either use channel-related alarms, or | ||
303 | limit-related alarms, not both. The driver should just reflect the hardware | ||
304 | implementation. | ||
305 | |||
306 | in[0-*]_alarm | ||
307 | fan[1-*]_alarm | ||
308 | temp[1-*]_alarm | ||
309 | Channel alarm | ||
310 | 0: no alarm | ||
311 | 1: alarm | ||
312 | RO | ||
313 | |||
314 | OR | ||
315 | |||
316 | in[0-*]_min_alarm | ||
317 | in[0-*]_max_alarm | ||
318 | fan[1-*]_min_alarm | ||
319 | temp[1-*]_min_alarm | ||
320 | temp[1-*]_max_alarm | ||
321 | temp[1-*]_crit_alarm | ||
322 | Limit alarm | ||
323 | 0: no alarm | ||
324 | 1: alarm | ||
325 | RO | ||
326 | |||
327 | Each input channel may have an associated fault file. This can be used | ||
328 | to notify open diodes, unconnected fans etc. where the hardware | ||
329 | supports it. When this boolean has value 1, the measurement for that | ||
330 | channel should not be trusted. | ||
331 | |||
332 | in[0-*]_input_fault | ||
333 | fan[1-*]_input_fault | ||
334 | temp[1-*]_input_fault | ||
335 | Input fault condition | ||
336 | 0: no fault occured | ||
337 | 1: fault condition | ||
338 | RO | ||
339 | |||
340 | Some chips also offer the possibility to get beeped when an alarm occurs: | ||
341 | |||
342 | beep_enable Master beep enable | ||
343 | 0: no beeps | ||
344 | 1: beeps | ||
345 | RW | ||
346 | |||
347 | in[0-*]_beep | ||
348 | fan[1-*]_beep | ||
349 | temp[1-*]_beep | ||
350 | Channel beep | ||
351 | 0: disable | ||
352 | 1: enable | ||
353 | RW | ||
354 | |||
355 | In theory, a chip could provide per-limit beep masking, but no such chip | ||
356 | was seen so far. | ||
357 | |||
358 | Old drivers provided a different, non-standard interface to alarms and | ||
359 | beeps. These interface files are deprecated, but will be kept around | ||
360 | for compatibility reasons: | ||
252 | 361 | ||
253 | alarms Alarm bitmask. | 362 | alarms Alarm bitmask. |
254 | Read only. | 363 | RO |
255 | Integer representation of one to four bytes. | 364 | Integer representation of one to four bytes. |
256 | A '1' bit means an alarm. | 365 | A '1' bit means an alarm. |
257 | Chips should be programmed for 'comparator' mode so that | 366 | Chips should be programmed for 'comparator' mode so that |
@@ -259,35 +368,26 @@ alarms Alarm bitmask. | |||
259 | if it is still valid. | 368 | if it is still valid. |
260 | Generally a direct representation of a chip's internal | 369 | Generally a direct representation of a chip's internal |
261 | alarm registers; there is no standard for the position | 370 | alarm registers; there is no standard for the position |
262 | of individual bits. | 371 | of individual bits. For this reason, the use of this |
372 | interface file for new drivers is discouraged. Use | ||
373 | individual *_alarm and *_fault files instead. | ||
263 | Bits are defined in kernel/include/sensors.h. | 374 | Bits are defined in kernel/include/sensors.h. |
264 | 375 | ||
265 | alarms_in Alarm bitmask relative to in (voltage) channels | 376 | beep_mask Bitmask for beep. |
266 | Read only | 377 | Same format as 'alarms' with the same bit locations, |
267 | A '1' bit means an alarm, LSB corresponds to in0 and so on | 378 | use discouraged for the same reason. Use individual |
268 | Prefered to 'alarms' for newer chips | 379 | *_beep files instead. |
269 | 380 | RW | |
270 | alarms_fan Alarm bitmask relative to fan channels | ||
271 | Read only | ||
272 | A '1' bit means an alarm, LSB corresponds to fan1 and so on | ||
273 | Prefered to 'alarms' for newer chips | ||
274 | |||
275 | alarms_temp Alarm bitmask relative to temp (temperature) channels | ||
276 | Read only | ||
277 | A '1' bit means an alarm, LSB corresponds to temp1 and so on | ||
278 | Prefered to 'alarms' for newer chips | ||
279 | 381 | ||
280 | beep_enable Beep/interrupt enable | ||
281 | 0 to disable. | ||
282 | 1 to enable. | ||
283 | Read/Write | ||
284 | 382 | ||
285 | beep_mask Bitmask for beep. | 383 | ********* |
286 | Same format as 'alarms' with the same bit locations. | 384 | * Other * |
287 | Read/Write | 385 | ********* |
288 | 386 | ||
289 | eeprom Raw EEPROM data in binary form. | 387 | eeprom Raw EEPROM data in binary form. |
290 | Read only. | 388 | RO |
291 | 389 | ||
292 | pec Enable or disable PEC (SMBus only) | 390 | pec Enable or disable PEC (SMBus only) |
293 | Read/Write | 391 | 0: disable |
392 | 1: enable | ||
393 | RW | ||
diff --git a/Documentation/hwmon/userspace-tools b/Documentation/hwmon/userspace-tools index 2622aac65422..19900a8fe679 100644 --- a/Documentation/hwmon/userspace-tools +++ b/Documentation/hwmon/userspace-tools | |||
@@ -6,31 +6,32 @@ voltages, fans speed). They are often connected through an I2C bus, but some | |||
6 | are also connected directly through the ISA bus. | 6 | are also connected directly through the ISA bus. |
7 | 7 | ||
8 | The kernel drivers make the data from the sensor chips available in the /sys | 8 | The kernel drivers make the data from the sensor chips available in the /sys |
9 | virtual filesystem. Userspace tools are then used to display or set or the | 9 | virtual filesystem. Userspace tools are then used to display the measured |
10 | data in a more friendly manner. | 10 | values or configure the chips in a more friendly manner. |
11 | 11 | ||
12 | Lm-sensors | 12 | Lm-sensors |
13 | ---------- | 13 | ---------- |
14 | 14 | ||
15 | Core set of utilites that will allow you to obtain health information, | 15 | Core set of utilities that will allow you to obtain health information, |
16 | setup monitoring limits etc. You can get them on their homepage | 16 | setup monitoring limits etc. You can get them on their homepage |
17 | http://www.lm-sensors.nu/ or as a package from your Linux distribution. | 17 | http://www.lm-sensors.nu/ or as a package from your Linux distribution. |
18 | 18 | ||
19 | If from website: | 19 | If from website: |
20 | Get lmsensors from project web site. Please note, you need only userspace | 20 | Get lm-sensors from project web site. Please note, you need only userspace |
21 | part, so compile with "make user_install" target. | 21 | part, so compile with "make user" and install with "make user_install". |
22 | 22 | ||
23 | General hints to get things working: | 23 | General hints to get things working: |
24 | 24 | ||
25 | 0) get lm-sensors userspace utils | 25 | 0) get lm-sensors userspace utils |
26 | 1) compile all drivers in I2C section as modules in your kernel | 26 | 1) compile all drivers in I2C and Hardware Monitoring sections as modules |
27 | in your kernel | ||
27 | 2) run sensors-detect script, it will tell you what modules you need to load. | 28 | 2) run sensors-detect script, it will tell you what modules you need to load. |
28 | 3) load them and run "sensors" command, you should see some results. | 29 | 3) load them and run "sensors" command, you should see some results. |
29 | 4) fix sensors.conf, labels, limits, fan divisors | 30 | 4) fix sensors.conf, labels, limits, fan divisors |
30 | 5) if any more problems consult FAQ, or documentation | 31 | 5) if any more problems consult FAQ, or documentation |
31 | 32 | ||
32 | Other utilites | 33 | Other utilities |
33 | -------------- | 34 | --------------- |
34 | 35 | ||
35 | If you want some graphical indicators of system health look for applications | 36 | If you want some graphical indicators of system health look for applications |
36 | like: gkrellm, ksensors, xsensors, wmtemp, wmsensors, wmgtemp, ksysguardd, | 37 | like: gkrellm, ksensors, xsensors, wmtemp, wmsensors, wmgtemp, ksysguardd, |
diff --git a/Documentation/hwmon/w83791d b/Documentation/hwmon/w83791d new file mode 100644 index 000000000000..83a3836289c2 --- /dev/null +++ b/Documentation/hwmon/w83791d | |||
@@ -0,0 +1,113 @@ | |||
1 | Kernel driver w83791d | ||
2 | ===================== | ||
3 | |||
4 | Supported chips: | ||
5 | * Winbond W83791D | ||
6 | Prefix: 'w83791d' | ||
7 | Addresses scanned: I2C 0x2c - 0x2f | ||
8 | Datasheet: http://www.winbond-usa.com/products/winbond_products/pdfs/PCIC/W83791Da.pdf | ||
9 | |||
10 | Author: Charles Spirakis <bezaur@gmail.com> | ||
11 | |||
12 | This driver was derived from the w83781d.c and w83792d.c source files. | ||
13 | |||
14 | Credits: | ||
15 | w83781d.c: | ||
16 | Frodo Looijaard <frodol@dds.nl>, | ||
17 | Philip Edelbrock <phil@netroedge.com>, | ||
18 | and Mark Studebaker <mdsxyz123@yahoo.com> | ||
19 | w83792d.c: | ||
20 | Chunhao Huang <DZShen@Winbond.com.tw>, | ||
21 | Rudolf Marek <r.marek@sh.cvut.cz> | ||
22 | |||
23 | Module Parameters | ||
24 | ----------------- | ||
25 | |||
26 | * init boolean | ||
27 | (default 0) | ||
28 | Use 'init=1' to have the driver do extra software initializations. | ||
29 | The default behavior is to do the minimum initialization possible | ||
30 | and depend on the BIOS to properly setup the chip. If you know you | ||
31 | have a w83791d and you're having problems, try init=1 before trying | ||
32 | reset=1. | ||
33 | |||
34 | * reset boolean | ||
35 | (default 0) | ||
36 | Use 'reset=1' to reset the chip (via index 0x40, bit 7). The default | ||
37 | behavior is no chip reset to preserve BIOS settings. | ||
38 | |||
39 | * force_subclients=bus,caddr,saddr,saddr | ||
40 | This is used to force the i2c addresses for subclients of | ||
41 | a certain chip. Example usage is `force_subclients=0,0x2f,0x4a,0x4b' | ||
42 | to force the subclients of chip 0x2f on bus 0 to i2c addresses | ||
43 | 0x4a and 0x4b. | ||
44 | |||
45 | |||
46 | Description | ||
47 | ----------- | ||
48 | |||
49 | This driver implements support for the Winbond W83791D chip. | ||
50 | |||
51 | Detection of the chip can sometimes be foiled because it can be in an | ||
52 | internal state that allows no clean access (Bank with ID register is not | ||
53 | currently selected). If you know the address of the chip, use a 'force' | ||
54 | parameter; this will put it into a more well-behaved state first. | ||
55 | |||
56 | The driver implements three temperature sensors, five fan rotation speed | ||
57 | sensors, and ten voltage sensors. | ||
58 | |||
59 | Temperatures are measured in degrees Celsius and measurement resolution is 1 | ||
60 | degC for temp1 and 0.5 degC for temp2 and temp3. An alarm is triggered when | ||
61 | the temperature gets higher than the Overtemperature Shutdown value; it stays | ||
62 | on until the temperature falls below the Hysteresis value. | ||
63 | |||
64 | Fan rotation speeds are reported in RPM (rotations per minute). An alarm is | ||
65 | triggered if the rotation speed has dropped below a programmable limit. Fan | ||
66 | readings can be divided by a programmable divider (1, 2, 4, 8 for fan 1/2/3 | ||
67 | and 1, 2, 4, 8, 16, 32, 64 or 128 for fan 4/5) to give the readings more | ||
68 | range or accuracy. | ||
69 | |||
70 | Voltage sensors (also known as IN sensors) report their values in millivolts. | ||
71 | An alarm is triggered if the voltage has crossed a programmable minimum | ||
72 | or maximum limit. | ||
73 | |||
74 | Alarms are provided as output from a "realtime status register". The | ||
75 | following bits are defined: | ||
76 | |||
77 | bit - alarm on: | ||
78 | 0 - Vcore | ||
79 | 1 - VINR0 | ||
80 | 2 - +3.3VIN | ||
81 | 3 - 5VDD | ||
82 | 4 - temp1 | ||
83 | 5 - temp2 | ||
84 | 6 - fan1 | ||
85 | 7 - fan2 | ||
86 | 8 - +12VIN | ||
87 | 9 - -12VIN | ||
88 | 10 - -5VIN | ||
89 | 11 - fan3 | ||
90 | 12 - chassis | ||
91 | 13 - temp3 | ||
92 | 14 - VINR1 | ||
93 | 15 - reserved | ||
94 | 16 - tart1 | ||
95 | 17 - tart2 | ||
96 | 18 - tart3 | ||
97 | 19 - VSB | ||
98 | 20 - VBAT | ||
99 | 21 - fan4 | ||
100 | 22 - fan5 | ||
101 | 23 - reserved | ||
102 | |||
103 | When an alarm goes off, you can be warned by a beeping signal through your | ||
104 | computer speaker. It is possible to enable all beeping globally, or only | ||
105 | the beeping for some alarms. | ||
106 | |||
107 | The driver only reads the chip values each 3 seconds; reading them more | ||
108 | often will do no harm, but will return 'old' values. | ||
109 | |||
110 | W83791D TODO: | ||
111 | --------------- | ||
112 | Provide a patch for per-file alarms as discussed on the mailing list | ||
113 | Provide a patch for smart-fan control (still need appropriate motherboard/fans) | ||
diff --git a/Documentation/i2c/busses/i2c-i801 b/Documentation/i2c/busses/i2c-i801 index fd4b2712d570..e46c23458242 100644 --- a/Documentation/i2c/busses/i2c-i801 +++ b/Documentation/i2c/busses/i2c-i801 | |||
@@ -21,8 +21,7 @@ Authors: | |||
21 | Module Parameters | 21 | Module Parameters |
22 | ----------------- | 22 | ----------------- |
23 | 23 | ||
24 | * force_addr: int | 24 | None. |
25 | Forcibly enable the ICH at the given address. EXTREMELY DANGEROUS! | ||
26 | 25 | ||
27 | 26 | ||
28 | Description | 27 | Description |
diff --git a/Documentation/i2c/busses/i2c-nforce2 b/Documentation/i2c/busses/i2c-nforce2 index d751282d9b2a..cd49c428a3ab 100644 --- a/Documentation/i2c/busses/i2c-nforce2 +++ b/Documentation/i2c/busses/i2c-nforce2 | |||
@@ -7,6 +7,8 @@ Supported adapters: | |||
7 | * nForce3 250Gb MCP 10de:00E4 | 7 | * nForce3 250Gb MCP 10de:00E4 |
8 | * nForce4 MCP 10de:0052 | 8 | * nForce4 MCP 10de:0052 |
9 | * nForce4 MCP-04 10de:0034 | 9 | * nForce4 MCP-04 10de:0034 |
10 | * nForce4 MCP51 10de:0264 | ||
11 | * nForce4 MCP55 10de:0368 | ||
10 | 12 | ||
11 | Datasheet: not publically available, but seems to be similar to the | 13 | Datasheet: not publically available, but seems to be similar to the |
12 | AMD-8111 SMBus 2.0 adapter. | 14 | AMD-8111 SMBus 2.0 adapter. |
diff --git a/Documentation/i2c/busses/i2c-ocores b/Documentation/i2c/busses/i2c-ocores new file mode 100644 index 000000000000..cfcebb10d14e --- /dev/null +++ b/Documentation/i2c/busses/i2c-ocores | |||
@@ -0,0 +1,51 @@ | |||
1 | Kernel driver i2c-ocores | ||
2 | |||
3 | Supported adapters: | ||
4 | * OpenCores.org I2C controller by Richard Herveille (see datasheet link) | ||
5 | Datasheet: http://www.opencores.org/projects.cgi/web/i2c/overview | ||
6 | |||
7 | Author: Peter Korsgaard <jacmet@sunsite.dk> | ||
8 | |||
9 | Description | ||
10 | ----------- | ||
11 | |||
12 | i2c-ocores is an i2c bus driver for the OpenCores.org I2C controller | ||
13 | IP core by Richard Herveille. | ||
14 | |||
15 | Usage | ||
16 | ----- | ||
17 | |||
18 | i2c-ocores uses the platform bus, so you need to provide a struct | ||
19 | platform_device with the base address and interrupt number. The | ||
20 | dev.platform_data of the device should also point to a struct | ||
21 | ocores_i2c_platform_data (see linux/i2c-ocores.h) describing the | ||
22 | distance between registers and the input clock speed. | ||
23 | |||
24 | E.G. something like: | ||
25 | |||
26 | static struct resource ocores_resources[] = { | ||
27 | [0] = { | ||
28 | .start = MYI2C_BASEADDR, | ||
29 | .end = MYI2C_BASEADDR + 8, | ||
30 | .flags = IORESOURCE_MEM, | ||
31 | }, | ||
32 | [1] = { | ||
33 | .start = MYI2C_IRQ, | ||
34 | .end = MYI2C_IRQ, | ||
35 | .flags = IORESOURCE_IRQ, | ||
36 | }, | ||
37 | }; | ||
38 | |||
39 | static struct ocores_i2c_platform_data myi2c_data = { | ||
40 | .regstep = 2, /* two bytes between registers */ | ||
41 | .clock_khz = 50000, /* input clock of 50MHz */ | ||
42 | }; | ||
43 | |||
44 | static struct platform_device myi2c = { | ||
45 | .name = "ocores-i2c", | ||
46 | .dev = { | ||
47 | .platform_data = &myi2c_data, | ||
48 | }, | ||
49 | .num_resources = ARRAY_SIZE(ocores_resources), | ||
50 | .resource = ocores_resources, | ||
51 | }; | ||
diff --git a/Documentation/i2c/busses/i2c-piix4 b/Documentation/i2c/busses/i2c-piix4 index a1c8f581afed..921476333235 100644 --- a/Documentation/i2c/busses/i2c-piix4 +++ b/Documentation/i2c/busses/i2c-piix4 | |||
@@ -6,6 +6,8 @@ Supported adapters: | |||
6 | Datasheet: Publicly available at the Intel website | 6 | Datasheet: Publicly available at the Intel website |
7 | * ServerWorks OSB4, CSB5, CSB6 and HT-1000 southbridges | 7 | * ServerWorks OSB4, CSB5, CSB6 and HT-1000 southbridges |
8 | Datasheet: Only available via NDA from ServerWorks | 8 | Datasheet: Only available via NDA from ServerWorks |
9 | * ATI IXP southbridges IXP200, IXP300, IXP400 | ||
10 | Datasheet: Not publicly available | ||
9 | * Standard Microsystems (SMSC) SLC90E66 (Victory66) southbridge | 11 | * Standard Microsystems (SMSC) SLC90E66 (Victory66) southbridge |
10 | Datasheet: Publicly available at the SMSC website http://www.smsc.com | 12 | Datasheet: Publicly available at the SMSC website http://www.smsc.com |
11 | 13 | ||
@@ -21,8 +23,6 @@ Module Parameters | |||
21 | Forcibly enable the PIIX4. DANGEROUS! | 23 | Forcibly enable the PIIX4. DANGEROUS! |
22 | * force_addr: int | 24 | * force_addr: int |
23 | Forcibly enable the PIIX4 at the given address. EXTREMELY DANGEROUS! | 25 | Forcibly enable the PIIX4 at the given address. EXTREMELY DANGEROUS! |
24 | * fix_hstcfg: int | ||
25 | Fix config register. Needed on some boards (Force CPCI735). | ||
26 | 26 | ||
27 | 27 | ||
28 | Description | 28 | Description |
@@ -63,10 +63,36 @@ The PIIX4E is just an new version of the PIIX4; it is supported as well. | |||
63 | The PIIX/PIIX3 does not implement an SMBus or I2C bus, so you can't use | 63 | The PIIX/PIIX3 does not implement an SMBus or I2C bus, so you can't use |
64 | this driver on those mainboards. | 64 | this driver on those mainboards. |
65 | 65 | ||
66 | The ServerWorks Southbridges, the Intel 440MX, and the Victory766 are | 66 | The ServerWorks Southbridges, the Intel 440MX, and the Victory66 are |
67 | identical to the PIIX4 in I2C/SMBus support. | 67 | identical to the PIIX4 in I2C/SMBus support. |
68 | 68 | ||
69 | A few OSB4 southbridges are known to be misconfigured by the BIOS. In this | 69 | If you own Force CPCI735 motherboard or other OSB4 based systems you may need |
70 | case, you have you use the fix_hstcfg module parameter. Do not use it | 70 | to change the SMBus Interrupt Select register so the SMBus controller uses |
71 | unless you know you have to, because in some cases it also breaks | 71 | the SMI mode. |
72 | configuration on southbridges that don't need it. | 72 | |
73 | 1) Use lspci command and locate the PCI device with the SMBus controller: | ||
74 | 00:0f.0 ISA bridge: ServerWorks OSB4 South Bridge (rev 4f) | ||
75 | The line may vary for different chipsets. Please consult the driver source | ||
76 | for all possible PCI ids (and lspci -n to match them). Lets assume the | ||
77 | device is located at 00:0f.0. | ||
78 | 2) Now you just need to change the value in 0xD2 register. Get it first with | ||
79 | command: lspci -xxx -s 00:0f.0 | ||
80 | If the value is 0x3 then you need to change it to 0x1 | ||
81 | setpci -s 00:0f.0 d2.b=1 | ||
82 | |||
83 | Please note that you don't need to do that in all cases, just when the SMBus is | ||
84 | not working properly. | ||
85 | |||
86 | |||
87 | Hardware-specific issues | ||
88 | ------------------------ | ||
89 | |||
90 | This driver will refuse to load on IBM systems with an Intel PIIX4 SMBus. | ||
91 | Some of these machines have an RFID EEPROM (24RF08) connected to the SMBus, | ||
92 | which can easily get corrupted due to a state machine bug. These are mostly | ||
93 | Thinkpad laptops, but desktop systems may also be affected. We have no list | ||
94 | of all affected systems, so the only safe solution was to prevent access to | ||
95 | the SMBus on all IBM systems (detected using DMI data.) | ||
96 | |||
97 | For additional information, read: | ||
98 | http://www2.lm-sensors.nu/~lm78/cvs/lm_sensors2/README.thinkpad | ||
diff --git a/Documentation/i2c/busses/scx200_acb b/Documentation/i2c/busses/scx200_acb index f50e69981ec6..7c07883d4dfc 100644 --- a/Documentation/i2c/busses/scx200_acb +++ b/Documentation/i2c/busses/scx200_acb | |||
@@ -2,14 +2,31 @@ Kernel driver scx200_acb | |||
2 | 2 | ||
3 | Author: Christer Weinigel <wingel@nano-system.com> | 3 | Author: Christer Weinigel <wingel@nano-system.com> |
4 | 4 | ||
5 | The driver supersedes the older, never merged driver named i2c-nscacb. | ||
6 | |||
5 | Module Parameters | 7 | Module Parameters |
6 | ----------------- | 8 | ----------------- |
7 | 9 | ||
8 | * base: int | 10 | * base: up to 4 ints |
9 | Base addresses for the ACCESS.bus controllers on SCx200 and SC1100 devices | 11 | Base addresses for the ACCESS.bus controllers on SCx200 and SC1100 devices |
10 | 12 | ||
13 | By default the driver uses two base addresses 0x820 and 0x840. | ||
14 | If you want only one base address, specify the second as 0 so as to | ||
15 | override this default. | ||
16 | |||
11 | Description | 17 | Description |
12 | ----------- | 18 | ----------- |
13 | 19 | ||
14 | Enable the use of the ACCESS.bus controller on the Geode SCx200 and | 20 | Enable the use of the ACCESS.bus controller on the Geode SCx200 and |
15 | SC1100 processors and the CS5535 and CS5536 Geode companion devices. | 21 | SC1100 processors and the CS5535 and CS5536 Geode companion devices. |
22 | |||
23 | Device-specific notes | ||
24 | --------------------- | ||
25 | |||
26 | The SC1100 WRAP boards are known to use base addresses 0x810 and 0x820. | ||
27 | If the scx200_acb driver is built into the kernel, add the following | ||
28 | parameter to your boot command line: | ||
29 | scx200_acb.base=0x810,0x820 | ||
30 | If the scx200_acb driver is built as a module, add the following line to | ||
31 | the file /etc/modprobe.conf instead: | ||
32 | options scx200_acb base=0x810,0x820 | ||
diff --git a/Documentation/ia64/aliasing.txt b/Documentation/ia64/aliasing.txt new file mode 100644 index 000000000000..38f9a52d1820 --- /dev/null +++ b/Documentation/ia64/aliasing.txt | |||
@@ -0,0 +1,208 @@ | |||
1 | MEMORY ATTRIBUTE ALIASING ON IA-64 | ||
2 | |||
3 | Bjorn Helgaas | ||
4 | <bjorn.helgaas@hp.com> | ||
5 | May 4, 2006 | ||
6 | |||
7 | |||
8 | MEMORY ATTRIBUTES | ||
9 | |||
10 | Itanium supports several attributes for virtual memory references. | ||
11 | The attribute is part of the virtual translation, i.e., it is | ||
12 | contained in the TLB entry. The ones of most interest to the Linux | ||
13 | kernel are: | ||
14 | |||
15 | WB Write-back (cacheable) | ||
16 | UC Uncacheable | ||
17 | WC Write-coalescing | ||
18 | |||
19 | System memory typically uses the WB attribute. The UC attribute is | ||
20 | used for memory-mapped I/O devices. The WC attribute is uncacheable | ||
21 | like UC is, but writes may be delayed and combined to increase | ||
22 | performance for things like frame buffers. | ||
23 | |||
24 | The Itanium architecture requires that we avoid accessing the same | ||
25 | page with both a cacheable mapping and an uncacheable mapping[1]. | ||
26 | |||
27 | The design of the chipset determines which attributes are supported | ||
28 | on which regions of the address space. For example, some chipsets | ||
29 | support either WB or UC access to main memory, while others support | ||
30 | only WB access. | ||
31 | |||
32 | MEMORY MAP | ||
33 | |||
34 | Platform firmware describes the physical memory map and the | ||
35 | supported attributes for each region. At boot-time, the kernel uses | ||
36 | the EFI GetMemoryMap() interface. ACPI can also describe memory | ||
37 | devices and the attributes they support, but Linux/ia64 currently | ||
38 | doesn't use this information. | ||
39 | |||
40 | The kernel uses the efi_memmap table returned from GetMemoryMap() to | ||
41 | learn the attributes supported by each region of physical address | ||
42 | space. Unfortunately, this table does not completely describe the | ||
43 | address space because some machines omit some or all of the MMIO | ||
44 | regions from the map. | ||
45 | |||
46 | The kernel maintains another table, kern_memmap, which describes the | ||
47 | memory Linux is actually using and the attribute for each region. | ||
48 | This contains only system memory; it does not contain MMIO space. | ||
49 | |||
50 | The kern_memmap table typically contains only a subset of the system | ||
51 | memory described by the efi_memmap. Linux/ia64 can't use all memory | ||
52 | in the system because of constraints imposed by the identity mapping | ||
53 | scheme. | ||
54 | |||
55 | The efi_memmap table is preserved unmodified because the original | ||
56 | boot-time information is required for kexec. | ||
57 | |||
58 | KERNEL IDENTITY MAPPINGS | ||
59 | |||
60 | Linux/ia64 identity mappings are done with large pages, currently | ||
61 | either 16MB or 64MB, referred to as "granules." Cacheable mappings | ||
62 | are speculative[2], so the processor can read any location in the | ||
63 | page at any time, independent of the programmer's intentions. This | ||
64 | means that to avoid attribute aliasing, Linux can create a cacheable | ||
65 | identity mapping only when the entire granule supports cacheable | ||
66 | access. | ||
67 | |||
68 | Therefore, kern_memmap contains only full granule-sized regions that | ||
69 | can referenced safely by an identity mapping. | ||
70 | |||
71 | Uncacheable mappings are not speculative, so the processor will | ||
72 | generate UC accesses only to locations explicitly referenced by | ||
73 | software. This allows UC identity mappings to cover granules that | ||
74 | are only partially populated, or populated with a combination of UC | ||
75 | and WB regions. | ||
76 | |||
77 | USER MAPPINGS | ||
78 | |||
79 | User mappings are typically done with 16K or 64K pages. The smaller | ||
80 | page size allows more flexibility because only 16K or 64K has to be | ||
81 | homogeneous with respect to memory attributes. | ||
82 | |||
83 | POTENTIAL ATTRIBUTE ALIASING CASES | ||
84 | |||
85 | There are several ways the kernel creates new mappings: | ||
86 | |||
87 | mmap of /dev/mem | ||
88 | |||
89 | This uses remap_pfn_range(), which creates user mappings. These | ||
90 | mappings may be either WB or UC. If the region being mapped | ||
91 | happens to be in kern_memmap, meaning that it may also be mapped | ||
92 | by a kernel identity mapping, the user mapping must use the same | ||
93 | attribute as the kernel mapping. | ||
94 | |||
95 | If the region is not in kern_memmap, the user mapping should use | ||
96 | an attribute reported as being supported in the EFI memory map. | ||
97 | |||
98 | Since the EFI memory map does not describe MMIO on some | ||
99 | machines, this should use an uncacheable mapping as a fallback. | ||
100 | |||
101 | mmap of /sys/class/pci_bus/.../legacy_mem | ||
102 | |||
103 | This is very similar to mmap of /dev/mem, except that legacy_mem | ||
104 | only allows mmap of the one megabyte "legacy MMIO" area for a | ||
105 | specific PCI bus. Typically this is the first megabyte of | ||
106 | physical address space, but it may be different on machines with | ||
107 | several VGA devices. | ||
108 | |||
109 | "X" uses this to access VGA frame buffers. Using legacy_mem | ||
110 | rather than /dev/mem allows multiple instances of X to talk to | ||
111 | different VGA cards. | ||
112 | |||
113 | The /dev/mem mmap constraints apply. | ||
114 | |||
115 | However, since this is for mapping legacy MMIO space, WB access | ||
116 | does not make sense. This matters on machines without legacy | ||
117 | VGA support: these machines may have WB memory for the entire | ||
118 | first megabyte (or even the entire first granule). | ||
119 | |||
120 | On these machines, we could mmap legacy_mem as WB, which would | ||
121 | be safe in terms of attribute aliasing, but X has no way of | ||
122 | knowing that it is accessing regular memory, not a frame buffer, | ||
123 | so the kernel should fail the mmap rather than doing it with WB. | ||
124 | |||
125 | read/write of /dev/mem | ||
126 | |||
127 | This uses copy_from_user(), which implicitly uses a kernel | ||
128 | identity mapping. This is obviously safe for things in | ||
129 | kern_memmap. | ||
130 | |||
131 | There may be corner cases of things that are not in kern_memmap, | ||
132 | but could be accessed this way. For example, registers in MMIO | ||
133 | space are not in kern_memmap, but could be accessed with a UC | ||
134 | mapping. This would not cause attribute aliasing. But | ||
135 | registers typically can be accessed only with four-byte or | ||
136 | eight-byte accesses, and the copy_from_user() path doesn't allow | ||
137 | any control over the access size, so this would be dangerous. | ||
138 | |||
139 | ioremap() | ||
140 | |||
141 | This returns a kernel identity mapping for use inside the | ||
142 | kernel. | ||
143 | |||
144 | If the region is in kern_memmap, we should use the attribute | ||
145 | specified there. Otherwise, if the EFI memory map reports that | ||
146 | the entire granule supports WB, we should use that (granules | ||
147 | that are partially reserved or occupied by firmware do not appear | ||
148 | in kern_memmap). Otherwise, we should use a UC mapping. | ||
149 | |||
150 | PAST PROBLEM CASES | ||
151 | |||
152 | mmap of various MMIO regions from /dev/mem by "X" on Intel platforms | ||
153 | |||
154 | The EFI memory map may not report these MMIO regions. | ||
155 | |||
156 | These must be allowed so that X will work. This means that | ||
157 | when the EFI memory map is incomplete, every /dev/mem mmap must | ||
158 | succeed. It may create either WB or UC user mappings, depending | ||
159 | on whether the region is in kern_memmap or the EFI memory map. | ||
160 | |||
161 | mmap of 0x0-0xA0000 /dev/mem by "hwinfo" on HP sx1000 with VGA enabled | ||
162 | |||
163 | See https://bugzilla.novell.com/show_bug.cgi?id=140858. | ||
164 | |||
165 | The EFI memory map reports the following attributes: | ||
166 | 0x00000-0x9FFFF WB only | ||
167 | 0xA0000-0xBFFFF UC only (VGA frame buffer) | ||
168 | 0xC0000-0xFFFFF WB only | ||
169 | |||
170 | This mmap is done with user pages, not kernel identity mappings, | ||
171 | so it is safe to use WB mappings. | ||
172 | |||
173 | The kernel VGA driver may ioremap the VGA frame buffer at 0xA0000, | ||
174 | which will use a granule-sized UC mapping covering 0-0xFFFFF. This | ||
175 | granule covers some WB-only memory, but since UC is non-speculative, | ||
176 | the processor will never generate an uncacheable reference to the | ||
177 | WB-only areas unless the driver explicitly touches them. | ||
178 | |||
179 | mmap of 0x0-0xFFFFF legacy_mem by "X" | ||
180 | |||
181 | If the EFI memory map reports this entire range as WB, there | ||
182 | is no VGA MMIO hole, and the mmap should fail or be done with | ||
183 | a WB mapping. | ||
184 | |||
185 | There's no easy way for X to determine whether the 0xA0000-0xBFFFF | ||
186 | region is a frame buffer or just memory, so I think it's best to | ||
187 | just fail this mmap request rather than using a WB mapping. As | ||
188 | far as I know, there's no need to map legacy_mem with WB | ||
189 | mappings. | ||
190 | |||
191 | Otherwise, a UC mapping of the entire region is probably safe. | ||
192 | The VGA hole means the region will not be in kern_memmap. The | ||
193 | HP sx1000 chipset doesn't support UC access to the memory surrounding | ||
194 | the VGA hole, but X doesn't need that area anyway and should not | ||
195 | reference it. | ||
196 | |||
197 | mmap of 0xA0000-0xBFFFF legacy_mem by "X" on HP sx1000 with VGA disabled | ||
198 | |||
199 | The EFI memory map reports the following attributes: | ||
200 | 0x00000-0xFFFFF WB only (no VGA MMIO hole) | ||
201 | |||
202 | This is a special case of the previous case, and the mmap should | ||
203 | fail for the same reason as above. | ||
204 | |||
205 | NOTES | ||
206 | |||
207 | [1] SDM rev 2.2, vol 2, sec 4.4.1. | ||
208 | [2] SDM rev 2.2, vol 2, sec 4.4.6. | ||
diff --git a/Documentation/infiniband/ipoib.txt b/Documentation/infiniband/ipoib.txt index 5c5a4ccce76a..187035560d7f 100644 --- a/Documentation/infiniband/ipoib.txt +++ b/Documentation/infiniband/ipoib.txt | |||
@@ -1,10 +1,10 @@ | |||
1 | IP OVER INFINIBAND | 1 | IP OVER INFINIBAND |
2 | 2 | ||
3 | The ib_ipoib driver is an implementation of the IP over InfiniBand | 3 | The ib_ipoib driver is an implementation of the IP over InfiniBand |
4 | protocol as specified by the latest Internet-Drafts issued by the | 4 | protocol as specified by RFC 4391 and 4392, issued by the IETF ipoib |
5 | IETF ipoib working group. It is a "native" implementation in the | 5 | working group. It is a "native" implementation in the sense of |
6 | sense of setting the interface type to ARPHRD_INFINIBAND and the | 6 | setting the interface type to ARPHRD_INFINIBAND and the hardware |
7 | hardware address length to 20 (earlier proprietary implementations | 7 | address length to 20 (earlier proprietary implementations |
8 | masqueraded to the kernel as ethernet interfaces). | 8 | masqueraded to the kernel as ethernet interfaces). |
9 | 9 | ||
10 | Partitions and P_Keys | 10 | Partitions and P_Keys |
@@ -53,3 +53,7 @@ References | |||
53 | 53 | ||
54 | IETF IP over InfiniBand (ipoib) Working Group | 54 | IETF IP over InfiniBand (ipoib) Working Group |
55 | http://ietf.org/html.charters/ipoib-charter.html | 55 | http://ietf.org/html.charters/ipoib-charter.html |
56 | Transmission of IP over InfiniBand (IPoIB) (RFC 4391) | ||
57 | http://ietf.org/rfc/rfc4391.txt | ||
58 | IP over InfiniBand (IPoIB) Architecture (RFC 4392) | ||
59 | http://ietf.org/rfc/rfc4392.txt | ||
diff --git a/Documentation/ioctl-number.txt b/Documentation/ioctl-number.txt index 171a44ebd939..1543802ef53e 100644 --- a/Documentation/ioctl-number.txt +++ b/Documentation/ioctl-number.txt | |||
@@ -85,7 +85,9 @@ Code Seq# Include File Comments | |||
85 | <mailto:maassen@uni-freiburg.de> | 85 | <mailto:maassen@uni-freiburg.de> |
86 | 'C' all linux/soundcard.h | 86 | 'C' all linux/soundcard.h |
87 | 'D' all asm-s390/dasd.h | 87 | 'D' all asm-s390/dasd.h |
88 | 'E' all linux/input.h | ||
88 | 'F' all linux/fb.h | 89 | 'F' all linux/fb.h |
90 | 'H' all linux/hiddev.h | ||
89 | 'I' all linux/isdn.h | 91 | 'I' all linux/isdn.h |
90 | 'J' 00-1F drivers/scsi/gdth_ioctl.h | 92 | 'J' 00-1F drivers/scsi/gdth_ioctl.h |
91 | 'K' all linux/kd.h | 93 | 'K' all linux/kd.h |
diff --git a/Documentation/isdn/README.gigaset b/Documentation/isdn/README.gigaset index 85a64defd385..fa0d4cca964a 100644 --- a/Documentation/isdn/README.gigaset +++ b/Documentation/isdn/README.gigaset | |||
@@ -124,7 +124,8 @@ GigaSet 307x Device Driver | |||
124 | 124 | ||
125 | You can use some configuration tool of your distribution to configure this | 125 | You can use some configuration tool of your distribution to configure this |
126 | "modem" or configure pppd/wvdial manually. There are some example ppp | 126 | "modem" or configure pppd/wvdial manually. There are some example ppp |
127 | configuration files and chat scripts in the gigaset-VERSION/ppp directory. | 127 | configuration files and chat scripts in the gigaset-VERSION/ppp directory |
128 | in the driver packages from http://sourceforge.net/projects/gigaset307x/. | ||
128 | Please note that the USB drivers are not able to change the state of the | 129 | Please note that the USB drivers are not able to change the state of the |
129 | control lines (the M105 driver can be configured to use some undocumented | 130 | control lines (the M105 driver can be configured to use some undocumented |
130 | control requests, if you really need the control lines, though). This means | 131 | control requests, if you really need the control lines, though). This means |
@@ -164,8 +165,8 @@ GigaSet 307x Device Driver | |||
164 | 165 | ||
165 | If you want both of these at once, you are out of luck. | 166 | If you want both of these at once, you are out of luck. |
166 | 167 | ||
167 | You can also use /sys/module/<name>/parameters/cidmode for changing | 168 | You can also use /sys/class/tty/ttyGxy/cidmode for changing the CID mode |
168 | the CID mode setting (<name> is usb_gigaset or bas_gigaset). | 169 | setting (ttyGxy is ttyGU0 or ttyGB0). |
169 | 170 | ||
170 | 171 | ||
171 | 3. Troubleshooting | 172 | 3. Troubleshooting |
diff --git a/Documentation/kbuild/makefiles.txt b/Documentation/kbuild/makefiles.txt index a9c00facdf40..14ef3868a328 100644 --- a/Documentation/kbuild/makefiles.txt +++ b/Documentation/kbuild/makefiles.txt | |||
@@ -1123,6 +1123,14 @@ The top Makefile exports the following variables: | |||
1123 | $(INSTALL_MOD_PATH)/lib/modules/$(KERNELRELEASE). The user may | 1123 | $(INSTALL_MOD_PATH)/lib/modules/$(KERNELRELEASE). The user may |
1124 | override this value on the command line if desired. | 1124 | override this value on the command line if desired. |
1125 | 1125 | ||
1126 | INSTALL_MOD_STRIP | ||
1127 | |||
1128 | If this variable is specified, will cause modules to be stripped | ||
1129 | after they are installed. If INSTALL_MOD_STRIP is '1', then the | ||
1130 | default option --strip-debug will be used. Otherwise, | ||
1131 | INSTALL_MOD_STRIP will used as the option(s) to the strip command. | ||
1132 | |||
1133 | |||
1126 | === 8 Makefile language | 1134 | === 8 Makefile language |
1127 | 1135 | ||
1128 | The kernel Makefiles are designed to run with GNU Make. The Makefiles | 1136 | The kernel Makefiles are designed to run with GNU Make. The Makefiles |
diff --git a/Documentation/kdump/gdbmacros.txt b/Documentation/kdump/gdbmacros.txt index dcf5580380ab..9b9b454b048a 100644 --- a/Documentation/kdump/gdbmacros.txt +++ b/Documentation/kdump/gdbmacros.txt | |||
@@ -175,7 +175,7 @@ end | |||
175 | document trapinfo | 175 | document trapinfo |
176 | Run info threads and lookup pid of thread #1 | 176 | Run info threads and lookup pid of thread #1 |
177 | 'trapinfo <pid>' will tell you by which trap & possibly | 177 | 'trapinfo <pid>' will tell you by which trap & possibly |
178 | addresthe kernel paniced. | 178 | address the kernel panicked. |
179 | end | 179 | end |
180 | 180 | ||
181 | 181 | ||
diff --git a/Documentation/kdump/kdump.txt b/Documentation/kdump/kdump.txt index 212cf3c21abf..08bafa8c1caa 100644 --- a/Documentation/kdump/kdump.txt +++ b/Documentation/kdump/kdump.txt | |||
@@ -1,155 +1,325 @@ | |||
1 | Documentation for kdump - the kexec-based crash dumping solution | 1 | ================================================================ |
2 | Documentation for Kdump - The kexec-based Crash Dumping Solution | ||
2 | ================================================================ | 3 | ================================================================ |
3 | 4 | ||
4 | DESIGN | 5 | This document includes overview, setup and installation, and analysis |
5 | ====== | 6 | information. |
6 | 7 | ||
7 | Kdump uses kexec to reboot to a second kernel whenever a dump needs to be | 8 | Overview |
8 | taken. This second kernel is booted with very little memory. The first kernel | 9 | ======== |
9 | reserves the section of memory that the second kernel uses. This ensures that | ||
10 | on-going DMA from the first kernel does not corrupt the second kernel. | ||
11 | 10 | ||
12 | All the necessary information about Core image is encoded in ELF format and | 11 | Kdump uses kexec to quickly boot to a dump-capture kernel whenever a |
13 | stored in reserved area of memory before crash. Physical address of start of | 12 | dump of the system kernel's memory needs to be taken (for example, when |
14 | ELF header is passed to new kernel through command line parameter elfcorehdr=. | 13 | the system panics). The system kernel's memory image is preserved across |
14 | the reboot and is accessible to the dump-capture kernel. | ||
15 | 15 | ||
16 | On i386, the first 640 KB of physical memory is needed to boot, irrespective | 16 | You can use common Linux commands, such as cp and scp, to copy the |
17 | of where the kernel loads. Hence, this region is backed up by kexec just before | 17 | memory image to a dump file on the local disk, or across the network to |
18 | rebooting into the new kernel. | 18 | a remote system. |
19 | 19 | ||
20 | In the second kernel, "old memory" can be accessed in two ways. | 20 | Kdump and kexec are currently supported on the x86, x86_64, and ppc64 |
21 | architectures. | ||
21 | 22 | ||
22 | - The first one is through a /dev/oldmem device interface. A capture utility | 23 | When the system kernel boots, it reserves a small section of memory for |
23 | can read the device file and write out the memory in raw format. This is raw | 24 | the dump-capture kernel. This ensures that ongoing Direct Memory Access |
24 | dump of memory and analysis/capture tool should be intelligent enough to | 25 | (DMA) from the system kernel does not corrupt the dump-capture kernel. |
25 | determine where to look for the right information. ELF headers (elfcorehdr=) | 26 | The kexec -p command loads the dump-capture kernel into this reserved |
26 | can become handy here. | 27 | memory. |
27 | 28 | ||
28 | - The second interface is through /proc/vmcore. This exports the dump as an ELF | 29 | On x86 machines, the first 640 KB of physical memory is needed to boot, |
29 | format file which can be written out using any file copy command | 30 | regardless of where the kernel loads. Therefore, kexec backs up this |
30 | (cp, scp, etc). Further, gdb can be used to perform limited debugging on | 31 | region just before rebooting into the dump-capture kernel. |
31 | the dump file. This method ensures methods ensure that there is correct | ||
32 | ordering of the dump pages (corresponding to the first 640 KB that has been | ||
33 | relocated). | ||
34 | 32 | ||
35 | SETUP | 33 | All of the necessary information about the system kernel's core image is |
36 | ===== | 34 | encoded in the ELF format, and stored in a reserved area of memory |
35 | before a crash. The physical address of the start of the ELF header is | ||
36 | passed to the dump-capture kernel through the elfcorehdr= boot | ||
37 | parameter. | ||
38 | |||
39 | With the dump-capture kernel, you can access the memory image, or "old | ||
40 | memory," in two ways: | ||
41 | |||
42 | - Through a /dev/oldmem device interface. A capture utility can read the | ||
43 | device file and write out the memory in raw format. This is a raw dump | ||
44 | of memory. Analysis and capture tools must be intelligent enough to | ||
45 | determine where to look for the right information. | ||
46 | |||
47 | - Through /proc/vmcore. This exports the dump as an ELF-format file that | ||
48 | you can write out using file copy commands such as cp or scp. Further, | ||
49 | you can use analysis tools such as the GNU Debugger (GDB) and the Crash | ||
50 | tool to debug the dump file. This method ensures that the dump pages are | ||
51 | correctly ordered. | ||
52 | |||
53 | |||
54 | Setup and Installation | ||
55 | ====================== | ||
56 | |||
57 | Install kexec-tools and the Kdump patch | ||
58 | --------------------------------------- | ||
59 | |||
60 | 1) Login as the root user. | ||
61 | |||
62 | 2) Download the kexec-tools user-space package from the following URL: | ||
63 | |||
64 | http://www.xmission.com/~ebiederm/files/kexec/kexec-tools-1.101.tar.gz | ||
65 | |||
66 | 3) Unpack the tarball with the tar command, as follows: | ||
67 | |||
68 | tar xvpzf kexec-tools-1.101.tar.gz | ||
69 | |||
70 | 4) Download the latest consolidated Kdump patch from the following URL: | ||
71 | |||
72 | http://lse.sourceforge.net/kdump/ | ||
73 | |||
74 | (This location is being used until all the user-space Kdump patches | ||
75 | are integrated with the kexec-tools package.) | ||
76 | |||
77 | 5) Change to the kexec-tools-1.101 directory, as follows: | ||
78 | |||
79 | cd kexec-tools-1.101 | ||
80 | |||
81 | 6) Apply the consolidated patch to the kexec-tools-1.101 source tree | ||
82 | with the patch command, as follows. (Modify the path to the downloaded | ||
83 | patch as necessary.) | ||
84 | |||
85 | patch -p1 < /path-to-kdump-patch/kexec-tools-1.101-kdump.patch | ||
86 | |||
87 | 7) Configure the package, as follows: | ||
88 | |||
89 | ./configure | ||
90 | |||
91 | 8) Compile the package, as follows: | ||
92 | |||
93 | make | ||
94 | |||
95 | 9) Install the package, as follows: | ||
96 | |||
97 | make install | ||
98 | |||
99 | |||
100 | Download and build the system and dump-capture kernels | ||
101 | ------------------------------------------------------ | ||
102 | |||
103 | Download the mainline (vanilla) kernel source code (2.6.13-rc1 or newer) | ||
104 | from http://www.kernel.org. Two kernels must be built: a system kernel | ||
105 | and a dump-capture kernel. Use the following steps to configure these | ||
106 | kernels with the necessary kexec and Kdump features: | ||
107 | |||
108 | System kernel | ||
109 | ------------- | ||
110 | |||
111 | 1) Enable "kexec system call" in "Processor type and features." | ||
112 | |||
113 | CONFIG_KEXEC=y | ||
114 | |||
115 | 2) Enable "sysfs file system support" in "Filesystem" -> "Pseudo | ||
116 | filesystems." This is usually enabled by default. | ||
117 | |||
118 | CONFIG_SYSFS=y | ||
119 | |||
120 | Note that "sysfs file system support" might not appear in the "Pseudo | ||
121 | filesystems" menu if "Configure standard kernel features (for small | ||
122 | systems)" is not enabled in "General Setup." In this case, check the | ||
123 | .config file itself to ensure that sysfs is turned on, as follows: | ||
124 | |||
125 | grep 'CONFIG_SYSFS' .config | ||
126 | |||
127 | 3) Enable "Compile the kernel with debug info" in "Kernel hacking." | ||
128 | |||
129 | CONFIG_DEBUG_INFO=Y | ||
130 | |||
131 | This causes the kernel to be built with debug symbols. The dump | ||
132 | analysis tools require a vmlinux with debug symbols in order to read | ||
133 | and analyze a dump file. | ||
134 | |||
135 | 4) Make and install the kernel and its modules. Update the boot loader | ||
136 | (such as grub, yaboot, or lilo) configuration files as necessary. | ||
137 | |||
138 | 5) Boot the system kernel with the boot parameter "crashkernel=Y@X", | ||
139 | where Y specifies how much memory to reserve for the dump-capture kernel | ||
140 | and X specifies the beginning of this reserved memory. For example, | ||
141 | "crashkernel=64M@16M" tells the system kernel to reserve 64 MB of memory | ||
142 | starting at physical address 0x01000000 for the dump-capture kernel. | ||
143 | |||
144 | On x86 and x86_64, use "crashkernel=64M@16M". | ||
145 | |||
146 | On ppc64, use "crashkernel=128M@32M". | ||
147 | |||
148 | |||
149 | The dump-capture kernel | ||
150 | ----------------------- | ||
37 | 151 | ||
38 | 1) Download the upstream kexec-tools userspace package from | 152 | 1) Under "General setup," append "-kdump" to the current string in |
39 | http://www.xmission.com/~ebiederm/files/kexec/kexec-tools-1.101.tar.gz. | 153 | "Local version." |
40 | 154 | ||
41 | Apply the latest consolidated kdump patch on top of kexec-tools-1.101 | 155 | 2) On x86, enable high memory support under "Processor type and |
42 | from http://lse.sourceforge.net/kdump/. This arrangment has been made | 156 | features": |
43 | till all the userspace patches supporting kdump are integrated with | 157 | |
44 | upstream kexec-tools userspace. | 158 | CONFIG_HIGHMEM64G=y |
45 | 159 | or | |
46 | 2) Download and build the appropriate (2.6.13-rc1 onwards) vanilla kernels. | 160 | CONFIG_HIGHMEM4G |
47 | Two kernels need to be built in order to get this feature working. | 161 | |
48 | Following are the steps to properly configure the two kernels specific | 162 | 3) On x86 and x86_64, disable symmetric multi-processing support |
49 | to kexec and kdump features: | 163 | under "Processor type and features": |
50 | 164 | ||
51 | A) First kernel or regular kernel: | 165 | CONFIG_SMP=n |
52 | ---------------------------------- | 166 | (If CONFIG_SMP=y, then specify maxcpus=1 on the kernel command line |
53 | a) Enable "kexec system call" feature (in Processor type and features). | 167 | when loading the dump-capture kernel, see section "Load the Dump-capture |
54 | CONFIG_KEXEC=y | 168 | Kernel".) |
55 | b) Enable "sysfs file system support" (in Pseudo filesystems). | 169 | |
56 | CONFIG_SYSFS=y | 170 | 4) On ppc64, disable NUMA support and enable EMBEDDED support: |
57 | c) make | 171 | |
58 | d) Boot into first kernel with the command line parameter "crashkernel=Y@X". | 172 | CONFIG_NUMA=n |
59 | Use appropriate values for X and Y. Y denotes how much memory to reserve | 173 | CONFIG_EMBEDDED=y |
60 | for the second kernel, and X denotes at what physical address the | 174 | CONFIG_EEH=N for the dump-capture kernel |
61 | reserved memory section starts. For example: "crashkernel=64M@16M". | 175 | |
62 | 176 | 5) Enable "kernel crash dumps" support under "Processor type and | |
63 | 177 | features": | |
64 | B) Second kernel or dump capture kernel: | 178 | |
65 | --------------------------------------- | 179 | CONFIG_CRASH_DUMP=y |
66 | a) For i386 architecture enable Highmem support | 180 | |
67 | CONFIG_HIGHMEM=y | 181 | 6) Use a suitable value for "Physical address where the kernel is |
68 | b) Enable "kernel crash dumps" feature (under "Processor type and features") | 182 | loaded" (under "Processor type and features"). This only appears when |
69 | CONFIG_CRASH_DUMP=y | 183 | "kernel crash dumps" is enabled. By default this value is 0x1000000 |
70 | c) Make sure a suitable value for "Physical address where the kernel is | 184 | (16MB). It should be the same as X in the "crashkernel=Y@X" boot |
71 | loaded" (under "Processor type and features"). By default this value | 185 | parameter discussed above. |
72 | is 0x1000000 (16MB) and it should be same as X (See option d above), | 186 | |
73 | e.g., 16 MB or 0x1000000. | 187 | On x86 and x86_64, use "CONFIG_PHYSICAL_START=0x1000000". |
74 | CONFIG_PHYSICAL_START=0x1000000 | 188 | |
75 | d) Enable "/proc/vmcore support" (Optional, under "Pseudo filesystems"). | 189 | On ppc64 the value is automatically set at 32MB when |
76 | CONFIG_PROC_VMCORE=y | 190 | CONFIG_CRASH_DUMP is set. |
77 | 191 | ||
78 | 3) After booting to regular kernel or first kernel, load the second kernel | 192 | 6) Optionally enable "/proc/vmcore support" under "Filesystems" -> |
79 | using the following command: | 193 | "Pseudo filesystems". |
80 | 194 | ||
81 | kexec -p <second-kernel> --args-linux --elf32-core-headers | 195 | CONFIG_PROC_VMCORE=y |
82 | --append="root=<root-dev> init 1 irqpoll maxcpus=1" | 196 | (CONFIG_PROC_VMCORE is set by default when CONFIG_CRASH_DUMP is selected.) |
83 | 197 | ||
84 | Notes: | 198 | 7) Make and install the kernel and its modules. DO NOT add this kernel |
85 | ====== | 199 | to the boot loader configuration files. |
86 | i) <second-kernel> has to be a vmlinux image ie uncompressed elf image. | 200 | |
87 | bzImage will not work, as of now. | 201 | |
88 | ii) --args-linux has to be speicfied as if kexec it loading an elf image, | 202 | Load the Dump-capture Kernel |
89 | it needs to know that the arguments supplied are of linux type. | 203 | ============================ |
90 | iii) By default ELF headers are stored in ELF64 format to support systems | 204 | |
91 | with more than 4GB memory. Option --elf32-core-headers forces generation | 205 | After booting to the system kernel, load the dump-capture kernel using |
92 | of ELF32 headers. The reason for this option being, as of now gdb can | 206 | the following command: |
93 | not open vmcore file with ELF64 headers on a 32 bit systems. So ELF32 | 207 | |
94 | headers can be used if one has non-PAE systems and hence memory less | 208 | kexec -p <dump-capture-kernel> \ |
95 | than 4GB. | 209 | --initrd=<initrd-for-dump-capture-kernel> --args-linux \ |
96 | iv) Specify "irqpoll" as command line parameter. This reduces driver | 210 | --append="root=<root-dev> init 1 irqpoll" |
97 | initialization failures in second kernel due to shared interrupts. | 211 | |
98 | v) <root-dev> needs to be specified in a format corresponding to the root | 212 | |
99 | device name in the output of mount command. | 213 | Notes on loading the dump-capture kernel: |
100 | vi) If you have built the drivers required to mount root file system as | 214 | |
101 | modules in <second-kernel>, then, specify | 215 | * <dump-capture-kernel> must be a vmlinux image (that is, an |
102 | --initrd=<initrd-for-second-kernel>. | 216 | uncompressed ELF image). bzImage does not work at this time. |
103 | vii) Specify maxcpus=1 as, if during first kernel run, if panic happens on | 217 | |
104 | non-boot cpus, second kernel doesn't seem to be boot up all the cpus. | 218 | * By default, the ELF headers are stored in ELF64 format to support |
105 | The other option is to always built the second kernel without SMP | 219 | systems with more than 4GB memory. The --elf32-core-headers option can |
106 | support ie CONFIG_SMP=n | 220 | be used to force the generation of ELF32 headers. This is necessary |
107 | 221 | because GDB currently cannot open vmcore files with ELF64 headers on | |
108 | 4) After successfully loading the second kernel as above, if a panic occurs | 222 | 32-bit systems. ELF32 headers can be used on non-PAE systems (that is, |
109 | system reboots into the second kernel. A module can be written to force | 223 | less than 4GB of memory). |
110 | the panic or "ALT-SysRq-c" can be used initiate a crash dump for testing | 224 | |
111 | purposes. | 225 | * The "irqpoll" boot parameter reduces driver initialization failures |
112 | 226 | due to shared interrupts in the dump-capture kernel. | |
113 | 5) Once the second kernel has booted, write out the dump file using | 227 | |
228 | * You must specify <root-dev> in the format corresponding to the root | ||
229 | device name in the output of mount command. | ||
230 | |||
231 | * "init 1" boots the dump-capture kernel into single-user mode without | ||
232 | networking. If you want networking, use "init 3." | ||
233 | |||
234 | |||
235 | Kernel Panic | ||
236 | ============ | ||
237 | |||
238 | After successfully loading the dump-capture kernel as previously | ||
239 | described, the system will reboot into the dump-capture kernel if a | ||
240 | system crash is triggered. Trigger points are located in panic(), | ||
241 | die(), die_nmi() and in the sysrq handler (ALT-SysRq-c). | ||
242 | |||
243 | The following conditions will execute a crash trigger point: | ||
244 | |||
245 | If a hard lockup is detected and "NMI watchdog" is configured, the system | ||
246 | will boot into the dump-capture kernel ( die_nmi() ). | ||
247 | |||
248 | If die() is called, and it happens to be a thread with pid 0 or 1, or die() | ||
249 | is called inside interrupt context or die() is called and panic_on_oops is set, | ||
250 | the system will boot into the dump-capture kernel. | ||
251 | |||
252 | On powererpc systems when a soft-reset is generated, die() is called by all cpus and the system system will boot into the dump-capture kernel. | ||
253 | |||
254 | For testing purposes, you can trigger a crash by using "ALT-SysRq-c", | ||
255 | "echo c > /proc/sysrq-trigger or write a module to force the panic. | ||
256 | |||
257 | Write Out the Dump File | ||
258 | ======================= | ||
259 | |||
260 | After the dump-capture kernel is booted, write out the dump file with | ||
261 | the following command: | ||
114 | 262 | ||
115 | cp /proc/vmcore <dump-file> | 263 | cp /proc/vmcore <dump-file> |
116 | 264 | ||
117 | Dump memory can also be accessed as a /dev/oldmem device for a linear/raw | 265 | You can also access dumped memory as a /dev/oldmem device for a linear |
118 | view. To create the device, type: | 266 | and raw view. To create the device, use the following command: |
119 | 267 | ||
120 | mknod /dev/oldmem c 1 12 | 268 | mknod /dev/oldmem c 1 12 |
121 | 269 | ||
122 | Use "dd" with suitable options for count, bs and skip to access specific | 270 | Use the dd command with suitable options for count, bs, and skip to |
123 | portions of the dump. | 271 | access specific portions of the dump. |
124 | 272 | ||
125 | Entire memory: dd if=/dev/oldmem of=oldmem.001 | 273 | To see the entire memory, use the following command: |
126 | 274 | ||
275 | dd if=/dev/oldmem of=oldmem.001 | ||
127 | 276 | ||
128 | ANALYSIS | 277 | |
278 | Analysis | ||
129 | ======== | 279 | ======== |
130 | Limited analysis can be done using gdb on the dump file copied out of | ||
131 | /proc/vmcore. Use vmlinux built with -g and run | ||
132 | 280 | ||
133 | gdb vmlinux <dump-file> | 281 | Before analyzing the dump image, you should reboot into a stable kernel. |
282 | |||
283 | You can do limited analysis using GDB on the dump file copied out of | ||
284 | /proc/vmcore. Use the debug vmlinux built with -g and run the following | ||
285 | command: | ||
286 | |||
287 | gdb vmlinux <dump-file> | ||
134 | 288 | ||
135 | Stack trace for the task on processor 0, register display, memory display | 289 | Stack trace for the task on processor 0, register display, and memory |
136 | work fine. | 290 | display work fine. |
137 | 291 | ||
138 | Note: gdb cannot analyse core files generated in ELF64 format for i386. | 292 | Note: GDB cannot analyze core files generated in ELF64 format for x86. |
293 | On systems with a maximum of 4GB of memory, you can generate | ||
294 | ELF32-format headers using the --elf32-core-headers kernel option on the | ||
295 | dump kernel. | ||
139 | 296 | ||
140 | Latest "crash" (crash-4.0-2.18) as available on Dave Anderson's site | 297 | You can also use the Crash utility to analyze dump files in Kdump |
141 | http://people.redhat.com/~anderson/ works well with kdump format. | 298 | format. Crash is available on Dave Anderson's site at the following URL: |
142 | 299 | ||
300 | http://people.redhat.com/~anderson/ | ||
301 | |||
302 | |||
303 | To Do | ||
304 | ===== | ||
143 | 305 | ||
144 | TODO | 306 | 1) Provide a kernel pages filtering mechanism, so core file size is not |
145 | ==== | 307 | extreme on systems with huge memory banks. |
146 | 1) Provide a kernel pages filtering mechanism so that core file size is not | ||
147 | insane on systems having huge memory banks. | ||
148 | 2) Relocatable kernel can help in maintaining multiple kernels for crashdump | ||
149 | and same kernel as the first kernel can be used to capture the dump. | ||
150 | 308 | ||
309 | 2) Relocatable kernel can help in maintaining multiple kernels for | ||
310 | crash_dump, and the same kernel as the system kernel can be used to | ||
311 | capture the dump. | ||
151 | 312 | ||
152 | CONTACT | 313 | |
314 | Contact | ||
153 | ======= | 315 | ======= |
316 | |||
154 | Vivek Goyal (vgoyal@in.ibm.com) | 317 | Vivek Goyal (vgoyal@in.ibm.com) |
155 | Maneesh Soni (maneesh@in.ibm.com) | 318 | Maneesh Soni (maneesh@in.ibm.com) |
319 | |||
320 | |||
321 | Trademark | ||
322 | ========= | ||
323 | |||
324 | Linux is a trademark of Linus Torvalds in the United States, other | ||
325 | countries, or both. | ||
diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt index b3a6187e5305..0d189c93eeaf 100644 --- a/Documentation/kernel-parameters.txt +++ b/Documentation/kernel-parameters.txt | |||
@@ -61,6 +61,7 @@ parameter is applicable: | |||
61 | MTD MTD support is enabled. | 61 | MTD MTD support is enabled. |
62 | NET Appropriate network support is enabled. | 62 | NET Appropriate network support is enabled. |
63 | NUMA NUMA support is enabled. | 63 | NUMA NUMA support is enabled. |
64 | GENERIC_TIME The generic timeofday code is enabled. | ||
64 | NFS Appropriate NFS support is enabled. | 65 | NFS Appropriate NFS support is enabled. |
65 | OSS OSS sound support is enabled. | 66 | OSS OSS sound support is enabled. |
66 | PARIDE The ParIDE subsystem is enabled. | 67 | PARIDE The ParIDE subsystem is enabled. |
@@ -147,6 +148,9 @@ running once the system is up. | |||
147 | acpi_irq_isa= [HW,ACPI] If irq_balance, mark listed IRQs used by ISA | 148 | acpi_irq_isa= [HW,ACPI] If irq_balance, mark listed IRQs used by ISA |
148 | Format: <irq>,<irq>... | 149 | Format: <irq>,<irq>... |
149 | 150 | ||
151 | acpi_os_name= [HW,ACPI] Tell ACPI BIOS the name of the OS | ||
152 | Format: To spoof as Windows 98: ="Microsoft Windows" | ||
153 | |||
150 | acpi_osi= [HW,ACPI] empty param disables _OSI | 154 | acpi_osi= [HW,ACPI] empty param disables _OSI |
151 | 155 | ||
152 | acpi_serialize [HW,ACPI] force serialization of AML methods | 156 | acpi_serialize [HW,ACPI] force serialization of AML methods |
@@ -176,6 +180,11 @@ running once the system is up. | |||
176 | override platform specific driver. | 180 | override platform specific driver. |
177 | See also Documentation/acpi-hotkey.txt. | 181 | See also Documentation/acpi-hotkey.txt. |
178 | 182 | ||
183 | acpi_pm_good [IA-32,X86-64] | ||
184 | Override the pmtimer bug detection: force the kernel | ||
185 | to assume that this machine's pmtimer latches its value | ||
186 | and always returns good values. | ||
187 | |||
179 | enable_timer_pin_1 [i386,x86-64] | 188 | enable_timer_pin_1 [i386,x86-64] |
180 | Enable PIN 1 of APIC timer | 189 | Enable PIN 1 of APIC timer |
181 | Can be useful to work around chipset bugs | 190 | Can be useful to work around chipset bugs |
@@ -338,10 +347,11 @@ running once the system is up. | |||
338 | Value can be changed at runtime via | 347 | Value can be changed at runtime via |
339 | /selinux/checkreqprot. | 348 | /selinux/checkreqprot. |
340 | 349 | ||
341 | clock= [BUGS=IA-32,HW] gettimeofday timesource override. | 350 | clock= [BUGS=IA-32, HW] gettimeofday clocksource override. |
342 | Forces specified timesource (if avaliable) to be used | 351 | [Deprecated] |
343 | when calculating gettimeofday(). If specicified | 352 | Forces specified clocksource (if avaliable) to be used |
344 | timesource is not avalible, it defaults to PIT. | 353 | when calculating gettimeofday(). If specified |
354 | clocksource is not avalible, it defaults to PIT. | ||
345 | Format: { pit | tsc | cyclone | pmtmr } | 355 | Format: { pit | tsc | cyclone | pmtmr } |
346 | 356 | ||
347 | disable_8254_timer | 357 | disable_8254_timer |
@@ -1402,6 +1412,15 @@ running once the system is up. | |||
1402 | If enabled at boot time, /selinux/disable can be used | 1412 | If enabled at boot time, /selinux/disable can be used |
1403 | later to disable prior to initial policy load. | 1413 | later to disable prior to initial policy load. |
1404 | 1414 | ||
1415 | selinux_compat_net = | ||
1416 | [SELINUX] Set initial selinux_compat_net flag value. | ||
1417 | Format: { "0" | "1" } | ||
1418 | 0 -- use new secmark-based packet controls | ||
1419 | 1 -- use legacy packet controls | ||
1420 | Default value is 0 (preferred). | ||
1421 | Value can be changed at runtime via | ||
1422 | /selinux/compat_net. | ||
1423 | |||
1405 | serialnumber [BUGS=IA-32] | 1424 | serialnumber [BUGS=IA-32] |
1406 | 1425 | ||
1407 | sg_def_reserved_size= [SCSI] | 1426 | sg_def_reserved_size= [SCSI] |
@@ -1605,6 +1624,10 @@ running once the system is up. | |||
1605 | 1624 | ||
1606 | time Show timing data prefixed to each printk message line | 1625 | time Show timing data prefixed to each printk message line |
1607 | 1626 | ||
1627 | clocksource= [GENERIC_TIME] Override the default clocksource | ||
1628 | Override the default clocksource and use the clocksource | ||
1629 | with the name specified. | ||
1630 | |||
1608 | tipar.timeout= [HW,PPT] | 1631 | tipar.timeout= [HW,PPT] |
1609 | Set communications timeout in tenths of a second | 1632 | Set communications timeout in tenths of a second |
1610 | (default 15). | 1633 | (default 15). |
@@ -1646,6 +1669,10 @@ running once the system is up. | |||
1646 | usbhid.mousepoll= | 1669 | usbhid.mousepoll= |
1647 | [USBHID] The interval which mice are to be polled at. | 1670 | [USBHID] The interval which mice are to be polled at. |
1648 | 1671 | ||
1672 | vdso= [IA-32] | ||
1673 | vdso=1: enable VDSO (default) | ||
1674 | vdso=0: disable VDSO mapping | ||
1675 | |||
1649 | video= [FB] Frame buffer configuration | 1676 | video= [FB] Frame buffer configuration |
1650 | See Documentation/fb/modedb.txt. | 1677 | See Documentation/fb/modedb.txt. |
1651 | 1678 | ||
diff --git a/Documentation/keys.txt b/Documentation/keys.txt index aaa01b0e3ee9..61c0fad2fe2f 100644 --- a/Documentation/keys.txt +++ b/Documentation/keys.txt | |||
@@ -19,6 +19,7 @@ This document has the following sections: | |||
19 | - Key overview | 19 | - Key overview |
20 | - Key service overview | 20 | - Key service overview |
21 | - Key access permissions | 21 | - Key access permissions |
22 | - SELinux support | ||
22 | - New procfs files | 23 | - New procfs files |
23 | - Userspace system call interface | 24 | - Userspace system call interface |
24 | - Kernel services | 25 | - Kernel services |
@@ -232,6 +233,39 @@ For changing the ownership, group ID or permissions mask, being the owner of | |||
232 | the key or having the sysadmin capability is sufficient. | 233 | the key or having the sysadmin capability is sufficient. |
233 | 234 | ||
234 | 235 | ||
236 | =============== | ||
237 | SELINUX SUPPORT | ||
238 | =============== | ||
239 | |||
240 | The security class "key" has been added to SELinux so that mandatory access | ||
241 | controls can be applied to keys created within various contexts. This support | ||
242 | is preliminary, and is likely to change quite significantly in the near future. | ||
243 | Currently, all of the basic permissions explained above are provided in SELinux | ||
244 | as well; SELinux is simply invoked after all basic permission checks have been | ||
245 | performed. | ||
246 | |||
247 | The value of the file /proc/self/attr/keycreate influences the labeling of | ||
248 | newly-created keys. If the contents of that file correspond to an SELinux | ||
249 | security context, then the key will be assigned that context. Otherwise, the | ||
250 | key will be assigned the current context of the task that invoked the key | ||
251 | creation request. Tasks must be granted explicit permission to assign a | ||
252 | particular context to newly-created keys, using the "create" permission in the | ||
253 | key security class. | ||
254 | |||
255 | The default keyrings associated with users will be labeled with the default | ||
256 | context of the user if and only if the login programs have been instrumented to | ||
257 | properly initialize keycreate during the login process. Otherwise, they will | ||
258 | be labeled with the context of the login program itself. | ||
259 | |||
260 | Note, however, that the default keyrings associated with the root user are | ||
261 | labeled with the default kernel context, since they are created early in the | ||
262 | boot process, before root has a chance to log in. | ||
263 | |||
264 | The keyrings associated with new threads are each labeled with the context of | ||
265 | their associated thread, and both session and process keyrings are handled | ||
266 | similarly. | ||
267 | |||
268 | |||
235 | ================ | 269 | ================ |
236 | NEW PROCFS FILES | 270 | NEW PROCFS FILES |
237 | ================ | 271 | ================ |
@@ -241,9 +275,17 @@ about the status of the key service: | |||
241 | 275 | ||
242 | (*) /proc/keys | 276 | (*) /proc/keys |
243 | 277 | ||
244 | This lists all the keys on the system, giving information about their | 278 | This lists the keys that are currently viewable by the task reading the |
245 | type, description and permissions. The payload of the key is not available | 279 | file, giving information about their type, description and permissions. |
246 | this way: | 280 | It is not possible to view the payload of the key this way, though some |
281 | information about it may be given. | ||
282 | |||
283 | The only keys included in the list are those that grant View permission to | ||
284 | the reading process whether or not it possesses them. Note that LSM | ||
285 | security checks are still performed, and may further filter out keys that | ||
286 | the current process is not authorised to view. | ||
287 | |||
288 | The contents of the file look like this: | ||
247 | 289 | ||
248 | SERIAL FLAGS USAGE EXPY PERM UID GID TYPE DESCRIPTION: SUMMARY | 290 | SERIAL FLAGS USAGE EXPY PERM UID GID TYPE DESCRIPTION: SUMMARY |
249 | 00000001 I----- 39 perm 1f3f0000 0 0 keyring _uid_ses.0: 1/4 | 291 | 00000001 I----- 39 perm 1f3f0000 0 0 keyring _uid_ses.0: 1/4 |
@@ -271,7 +313,7 @@ about the status of the key service: | |||
271 | (*) /proc/key-users | 313 | (*) /proc/key-users |
272 | 314 | ||
273 | This file lists the tracking data for each user that has at least one key | 315 | This file lists the tracking data for each user that has at least one key |
274 | on the system. Such data includes quota information and statistics: | 316 | on the system. Such data includes quota information and statistics: |
275 | 317 | ||
276 | [root@andromeda root]# cat /proc/key-users | 318 | [root@andromeda root]# cat /proc/key-users |
277 | 0: 46 45/45 1/100 13/10000 | 319 | 0: 46 45/45 1/100 13/10000 |
@@ -935,6 +977,16 @@ The structure has a number of fields, some of which are mandatory: | |||
935 | It is not safe to sleep in this method; the caller may hold spinlocks. | 977 | It is not safe to sleep in this method; the caller may hold spinlocks. |
936 | 978 | ||
937 | 979 | ||
980 | (*) void (*revoke)(struct key *key); | ||
981 | |||
982 | This method is optional. It is called to discard part of the payload | ||
983 | data upon a key being revoked. The caller will have the key semaphore | ||
984 | write-locked. | ||
985 | |||
986 | It is safe to sleep in this method, though care should be taken to avoid | ||
987 | a deadlock against the key semaphore. | ||
988 | |||
989 | |||
938 | (*) void (*destroy)(struct key *key); | 990 | (*) void (*destroy)(struct key *key); |
939 | 991 | ||
940 | This method is optional. It is called to discard the payload data on a key | 992 | This method is optional. It is called to discard the payload data on a key |
diff --git a/Documentation/md.txt b/Documentation/md.txt index 03a13c462cf2..0668f9dc9d29 100644 --- a/Documentation/md.txt +++ b/Documentation/md.txt | |||
@@ -200,6 +200,17 @@ All md devices contain: | |||
200 | This can be written only while the array is being assembled, not | 200 | This can be written only while the array is being assembled, not |
201 | after it is started. | 201 | after it is started. |
202 | 202 | ||
203 | layout | ||
204 | The "layout" for the array for the particular level. This is | ||
205 | simply a number that is interpretted differently by different | ||
206 | levels. It can be written while assembling an array. | ||
207 | |||
208 | resync_start | ||
209 | The point at which resync should start. If no resync is needed, | ||
210 | this will be a very large number. At array creation it will | ||
211 | default to 0, though starting the array as 'clean' will | ||
212 | set it much larger. | ||
213 | |||
203 | new_dev | 214 | new_dev |
204 | This file can be written but not read. The value written should | 215 | This file can be written but not read. The value written should |
205 | be a block device number as major:minor. e.g. 8:0 | 216 | be a block device number as major:minor. e.g. 8:0 |
@@ -207,6 +218,54 @@ All md devices contain: | |||
207 | available. It will then appear at md/dev-XXX (depending on the | 218 | available. It will then appear at md/dev-XXX (depending on the |
208 | name of the device) and further configuration is then possible. | 219 | name of the device) and further configuration is then possible. |
209 | 220 | ||
221 | safe_mode_delay | ||
222 | When an md array has seen no write requests for a certain period | ||
223 | of time, it will be marked as 'clean'. When another write | ||
224 | request arrive, the array is marked as 'dirty' before the write | ||
225 | commenses. This is known as 'safe_mode'. | ||
226 | The 'certain period' is controlled by this file which stores the | ||
227 | period as a number of seconds. The default is 200msec (0.200). | ||
228 | Writing a value of 0 disables safemode. | ||
229 | |||
230 | array_state | ||
231 | This file contains a single word which describes the current | ||
232 | state of the array. In many cases, the state can be set by | ||
233 | writing the word for the desired state, however some states | ||
234 | cannot be explicitly set, and some transitions are not allowed. | ||
235 | |||
236 | clear | ||
237 | No devices, no size, no level | ||
238 | Writing is equivalent to STOP_ARRAY ioctl | ||
239 | inactive | ||
240 | May have some settings, but array is not active | ||
241 | all IO results in error | ||
242 | When written, doesn't tear down array, but just stops it | ||
243 | suspended (not supported yet) | ||
244 | All IO requests will block. The array can be reconfigured. | ||
245 | Writing this, if accepted, will block until array is quiessent | ||
246 | readonly | ||
247 | no resync can happen. no superblocks get written. | ||
248 | write requests fail | ||
249 | read-auto | ||
250 | like readonly, but behaves like 'clean' on a write request. | ||
251 | |||
252 | clean - no pending writes, but otherwise active. | ||
253 | When written to inactive array, starts without resync | ||
254 | If a write request arrives then | ||
255 | if metadata is known, mark 'dirty' and switch to 'active'. | ||
256 | if not known, block and switch to write-pending | ||
257 | If written to an active array that has pending writes, then fails. | ||
258 | active | ||
259 | fully active: IO and resync can be happening. | ||
260 | When written to inactive array, starts with resync | ||
261 | |||
262 | write-pending | ||
263 | clean, but writes are blocked waiting for 'active' to be written. | ||
264 | |||
265 | active-idle | ||
266 | like active, but no writes have been seen for a while (safe_mode_delay). | ||
267 | |||
268 | |||
210 | sync_speed_min | 269 | sync_speed_min |
211 | sync_speed_max | 270 | sync_speed_max |
212 | This are similar to /proc/sys/dev/raid/speed_limit_{min,max} | 271 | This are similar to /proc/sys/dev/raid/speed_limit_{min,max} |
@@ -250,10 +309,18 @@ Each directory contains: | |||
250 | faulty - device has been kicked from active use due to | 309 | faulty - device has been kicked from active use due to |
251 | a detected fault | 310 | a detected fault |
252 | in_sync - device is a fully in-sync member of the array | 311 | in_sync - device is a fully in-sync member of the array |
312 | writemostly - device will only be subject to read | ||
313 | requests if there are no other options. | ||
314 | This applies only to raid1 arrays. | ||
253 | spare - device is working, but not a full member. | 315 | spare - device is working, but not a full member. |
254 | This includes spares that are in the process | 316 | This includes spares that are in the process |
255 | of being recoverred to | 317 | of being recoverred to |
256 | This list make grow in future. | 318 | This list make grow in future. |
319 | This can be written to. | ||
320 | Writing "faulty" simulates a failure on the device. | ||
321 | Writing "remove" removes the device from the array. | ||
322 | Writing "writemostly" sets the writemostly flag. | ||
323 | Writing "-writemostly" clears the writemostly flag. | ||
257 | 324 | ||
258 | errors | 325 | errors |
259 | An approximate count of read errors that have been detected on | 326 | An approximate count of read errors that have been detected on |
diff --git a/Documentation/memory-barriers.txt b/Documentation/memory-barriers.txt index 4710845dbac4..cf0d5416a4c3 100644 --- a/Documentation/memory-barriers.txt +++ b/Documentation/memory-barriers.txt | |||
@@ -262,9 +262,14 @@ What is required is some way of intervening to instruct the compiler and the | |||
262 | CPU to restrict the order. | 262 | CPU to restrict the order. |
263 | 263 | ||
264 | Memory barriers are such interventions. They impose a perceived partial | 264 | Memory barriers are such interventions. They impose a perceived partial |
265 | ordering between the memory operations specified on either side of the barrier. | 265 | ordering over the memory operations on either side of the barrier. |
266 | They request that the sequence of memory events generated appears to other | 266 | |
267 | parts of the system as if the barrier is effective on that CPU. | 267 | Such enforcement is important because the CPUs and other devices in a system |
268 | can use a variety of tricks to improve performance - including reordering, | ||
269 | deferral and combination of memory operations; speculative loads; speculative | ||
270 | branch prediction and various types of caching. Memory barriers are used to | ||
271 | override or suppress these tricks, allowing the code to sanely control the | ||
272 | interaction of multiple CPUs and/or devices. | ||
268 | 273 | ||
269 | 274 | ||
270 | VARIETIES OF MEMORY BARRIER | 275 | VARIETIES OF MEMORY BARRIER |
@@ -282,7 +287,7 @@ Memory barriers come in four basic varieties: | |||
282 | A write barrier is a partial ordering on stores only; it is not required | 287 | A write barrier is a partial ordering on stores only; it is not required |
283 | to have any effect on loads. | 288 | to have any effect on loads. |
284 | 289 | ||
285 | A CPU can be viewed as as commiting a sequence of store operations to the | 290 | A CPU can be viewed as committing a sequence of store operations to the |
286 | memory system as time progresses. All stores before a write barrier will | 291 | memory system as time progresses. All stores before a write barrier will |
287 | occur in the sequence _before_ all the stores after the write barrier. | 292 | occur in the sequence _before_ all the stores after the write barrier. |
288 | 293 | ||
@@ -413,7 +418,7 @@ There are certain things that the Linux kernel memory barriers do not guarantee: | |||
413 | indirect effect will be the order in which the second CPU sees the effects | 418 | indirect effect will be the order in which the second CPU sees the effects |
414 | of the first CPU's accesses occur, but see the next point: | 419 | of the first CPU's accesses occur, but see the next point: |
415 | 420 | ||
416 | (*) There is no guarantee that the a CPU will see the correct order of effects | 421 | (*) There is no guarantee that a CPU will see the correct order of effects |
417 | from a second CPU's accesses, even _if_ the second CPU uses a memory | 422 | from a second CPU's accesses, even _if_ the second CPU uses a memory |
418 | barrier, unless the first CPU _also_ uses a matching memory barrier (see | 423 | barrier, unless the first CPU _also_ uses a matching memory barrier (see |
419 | the subsection on "SMP Barrier Pairing"). | 424 | the subsection on "SMP Barrier Pairing"). |
@@ -461,8 +466,8 @@ Whilst this may seem like a failure of coherency or causality maintenance, it | |||
461 | isn't, and this behaviour can be observed on certain real CPUs (such as the DEC | 466 | isn't, and this behaviour can be observed on certain real CPUs (such as the DEC |
462 | Alpha). | 467 | Alpha). |
463 | 468 | ||
464 | To deal with this, a data dependency barrier must be inserted between the | 469 | To deal with this, a data dependency barrier or better must be inserted |
465 | address load and the data load: | 470 | between the address load and the data load: |
466 | 471 | ||
467 | CPU 1 CPU 2 | 472 | CPU 1 CPU 2 |
468 | =============== =============== | 473 | =============== =============== |
@@ -484,7 +489,7 @@ lines. The pointer P might be stored in an odd-numbered cache line, and the | |||
484 | variable B might be stored in an even-numbered cache line. Then, if the | 489 | variable B might be stored in an even-numbered cache line. Then, if the |
485 | even-numbered bank of the reading CPU's cache is extremely busy while the | 490 | even-numbered bank of the reading CPU's cache is extremely busy while the |
486 | odd-numbered bank is idle, one can see the new value of the pointer P (&B), | 491 | odd-numbered bank is idle, one can see the new value of the pointer P (&B), |
487 | but the old value of the variable B (1). | 492 | but the old value of the variable B (2). |
488 | 493 | ||
489 | 494 | ||
490 | Another example of where data dependency barriers might by required is where a | 495 | Another example of where data dependency barriers might by required is where a |
@@ -744,7 +749,7 @@ some effectively random order, despite the write barrier issued by CPU 1: | |||
744 | : : | 749 | : : |
745 | 750 | ||
746 | 751 | ||
747 | If, however, a read barrier were to be placed between the load of E and the | 752 | If, however, a read barrier were to be placed between the load of B and the |
748 | load of A on CPU 2: | 753 | load of A on CPU 2: |
749 | 754 | ||
750 | CPU 1 CPU 2 | 755 | CPU 1 CPU 2 |
@@ -1461,9 +1466,8 @@ instruction itself is complete. | |||
1461 | 1466 | ||
1462 | On a UP system - where this wouldn't be a problem - the smp_mb() is just a | 1467 | On a UP system - where this wouldn't be a problem - the smp_mb() is just a |
1463 | compiler barrier, thus making sure the compiler emits the instructions in the | 1468 | compiler barrier, thus making sure the compiler emits the instructions in the |
1464 | right order without actually intervening in the CPU. Since there there's only | 1469 | right order without actually intervening in the CPU. Since there's only one |
1465 | one CPU, that CPU's dependency ordering logic will take care of everything | 1470 | CPU, that CPU's dependency ordering logic will take care of everything else. |
1466 | else. | ||
1467 | 1471 | ||
1468 | 1472 | ||
1469 | ATOMIC OPERATIONS | 1473 | ATOMIC OPERATIONS |
@@ -1640,9 +1644,9 @@ functions: | |||
1640 | 1644 | ||
1641 | The PCI bus, amongst others, defines an I/O space concept - which on such | 1645 | The PCI bus, amongst others, defines an I/O space concept - which on such |
1642 | CPUs as i386 and x86_64 cpus readily maps to the CPU's concept of I/O | 1646 | CPUs as i386 and x86_64 cpus readily maps to the CPU's concept of I/O |
1643 | space. However, it may also mapped as a virtual I/O space in the CPU's | 1647 | space. However, it may also be mapped as a virtual I/O space in the CPU's |
1644 | memory map, particularly on those CPUs that don't support alternate | 1648 | memory map, particularly on those CPUs that don't support alternate I/O |
1645 | I/O spaces. | 1649 | spaces. |
1646 | 1650 | ||
1647 | Accesses to this space may be fully synchronous (as on i386), but | 1651 | Accesses to this space may be fully synchronous (as on i386), but |
1648 | intermediary bridges (such as the PCI host bridge) may not fully honour | 1652 | intermediary bridges (such as the PCI host bridge) may not fully honour |
diff --git a/Documentation/networking/README.ipw2200 b/Documentation/networking/README.ipw2200 index acb30c5dcff3..4f2a40f1dbc6 100644 --- a/Documentation/networking/README.ipw2200 +++ b/Documentation/networking/README.ipw2200 | |||
@@ -14,8 +14,8 @@ Copyright (C) 2004-2006, Intel Corporation | |||
14 | 14 | ||
15 | README.ipw2200 | 15 | README.ipw2200 |
16 | 16 | ||
17 | Version: 1.0.8 | 17 | Version: 1.1.2 |
18 | Date : October 20, 2005 | 18 | Date : March 30, 2006 |
19 | 19 | ||
20 | 20 | ||
21 | Index | 21 | Index |
@@ -103,7 +103,7 @@ file. | |||
103 | 103 | ||
104 | 1.1. Overview of Features | 104 | 1.1. Overview of Features |
105 | ----------------------------------------------- | 105 | ----------------------------------------------- |
106 | The current release (1.0.8) supports the following features: | 106 | The current release (1.1.2) supports the following features: |
107 | 107 | ||
108 | + BSS mode (Infrastructure, Managed) | 108 | + BSS mode (Infrastructure, Managed) |
109 | + IBSS mode (Ad-Hoc) | 109 | + IBSS mode (Ad-Hoc) |
@@ -247,8 +247,8 @@ and can set the contents via echo. For example: | |||
247 | % cat /sys/bus/pci/drivers/ipw2200/debug_level | 247 | % cat /sys/bus/pci/drivers/ipw2200/debug_level |
248 | 248 | ||
249 | Will report the current debug level of the driver's logging subsystem | 249 | Will report the current debug level of the driver's logging subsystem |
250 | (only available if CONFIG_IPW_DEBUG was configured when the driver was | 250 | (only available if CONFIG_IPW2200_DEBUG was configured when the driver |
251 | built). | 251 | was built). |
252 | 252 | ||
253 | You can set the debug level via: | 253 | You can set the debug level via: |
254 | 254 | ||
diff --git a/Documentation/networking/bonding.txt b/Documentation/networking/bonding.txt index 8d8b4e5ea184..afac780445cd 100644 --- a/Documentation/networking/bonding.txt +++ b/Documentation/networking/bonding.txt | |||
@@ -1,7 +1,7 @@ | |||
1 | 1 | ||
2 | Linux Ethernet Bonding Driver HOWTO | 2 | Linux Ethernet Bonding Driver HOWTO |
3 | 3 | ||
4 | Latest update: 21 June 2005 | 4 | Latest update: 24 April 2006 |
5 | 5 | ||
6 | Initial release : Thomas Davis <tadavis at lbl.gov> | 6 | Initial release : Thomas Davis <tadavis at lbl.gov> |
7 | Corrections, HA extensions : 2000/10/03-15 : | 7 | Corrections, HA extensions : 2000/10/03-15 : |
@@ -12,6 +12,8 @@ Corrections, HA extensions : 2000/10/03-15 : | |||
12 | - Jay Vosburgh <fubar at us dot ibm dot com> | 12 | - Jay Vosburgh <fubar at us dot ibm dot com> |
13 | 13 | ||
14 | Reorganized and updated Feb 2005 by Jay Vosburgh | 14 | Reorganized and updated Feb 2005 by Jay Vosburgh |
15 | Added Sysfs information: 2006/04/24 | ||
16 | - Mitch Williams <mitch.a.williams at intel.com> | ||
15 | 17 | ||
16 | Introduction | 18 | Introduction |
17 | ============ | 19 | ============ |
@@ -38,61 +40,62 @@ Table of Contents | |||
38 | 2. Bonding Driver Options | 40 | 2. Bonding Driver Options |
39 | 41 | ||
40 | 3. Configuring Bonding Devices | 42 | 3. Configuring Bonding Devices |
41 | 3.1 Configuration with sysconfig support | 43 | 3.1 Configuration with Sysconfig Support |
42 | 3.1.1 Using DHCP with sysconfig | 44 | 3.1.1 Using DHCP with Sysconfig |
43 | 3.1.2 Configuring Multiple Bonds with sysconfig | 45 | 3.1.2 Configuring Multiple Bonds with Sysconfig |
44 | 3.2 Configuration with initscripts support | 46 | 3.2 Configuration with Initscripts Support |
45 | 3.2.1 Using DHCP with initscripts | 47 | 3.2.1 Using DHCP with Initscripts |
46 | 3.2.2 Configuring Multiple Bonds with initscripts | 48 | 3.2.2 Configuring Multiple Bonds with Initscripts |
47 | 3.3 Configuring Bonding Manually | 49 | 3.3 Configuring Bonding Manually with Ifenslave |
48 | 3.3.1 Configuring Multiple Bonds Manually | 50 | 3.3.1 Configuring Multiple Bonds Manually |
51 | 3.4 Configuring Bonding Manually via Sysfs | ||
49 | 52 | ||
50 | 5. Querying Bonding Configuration | 53 | 4. Querying Bonding Configuration |
51 | 5.1 Bonding Configuration | 54 | 4.1 Bonding Configuration |
52 | 5.2 Network Configuration | 55 | 4.2 Network Configuration |
53 | 56 | ||
54 | 6. Switch Configuration | 57 | 5. Switch Configuration |
55 | 58 | ||
56 | 7. 802.1q VLAN Support | 59 | 6. 802.1q VLAN Support |
57 | 60 | ||
58 | 8. Link Monitoring | 61 | 7. Link Monitoring |
59 | 8.1 ARP Monitor Operation | 62 | 7.1 ARP Monitor Operation |
60 | 8.2 Configuring Multiple ARP Targets | 63 | 7.2 Configuring Multiple ARP Targets |
61 | 8.3 MII Monitor Operation | 64 | 7.3 MII Monitor Operation |
62 | 65 | ||
63 | 9. Potential Trouble Sources | 66 | 8. Potential Trouble Sources |
64 | 9.1 Adventures in Routing | 67 | 8.1 Adventures in Routing |
65 | 9.2 Ethernet Device Renaming | 68 | 8.2 Ethernet Device Renaming |
66 | 9.3 Painfully Slow Or No Failed Link Detection By Miimon | 69 | 8.3 Painfully Slow Or No Failed Link Detection By Miimon |
67 | 70 | ||
68 | 10. SNMP agents | 71 | 9. SNMP agents |
69 | 72 | ||
70 | 11. Promiscuous mode | 73 | 10. Promiscuous mode |
71 | 74 | ||
72 | 12. Configuring Bonding for High Availability | 75 | 11. Configuring Bonding for High Availability |
73 | 12.1 High Availability in a Single Switch Topology | 76 | 11.1 High Availability in a Single Switch Topology |
74 | 12.2 High Availability in a Multiple Switch Topology | 77 | 11.2 High Availability in a Multiple Switch Topology |
75 | 12.2.1 HA Bonding Mode Selection for Multiple Switch Topology | 78 | 11.2.1 HA Bonding Mode Selection for Multiple Switch Topology |
76 | 12.2.2 HA Link Monitoring for Multiple Switch Topology | 79 | 11.2.2 HA Link Monitoring for Multiple Switch Topology |
77 | 80 | ||
78 | 13. Configuring Bonding for Maximum Throughput | 81 | 12. Configuring Bonding for Maximum Throughput |
79 | 13.1 Maximum Throughput in a Single Switch Topology | 82 | 12.1 Maximum Throughput in a Single Switch Topology |
80 | 13.1.1 MT Bonding Mode Selection for Single Switch Topology | 83 | 12.1.1 MT Bonding Mode Selection for Single Switch Topology |
81 | 13.1.2 MT Link Monitoring for Single Switch Topology | 84 | 12.1.2 MT Link Monitoring for Single Switch Topology |
82 | 13.2 Maximum Throughput in a Multiple Switch Topology | 85 | 12.2 Maximum Throughput in a Multiple Switch Topology |
83 | 13.2.1 MT Bonding Mode Selection for Multiple Switch Topology | 86 | 12.2.1 MT Bonding Mode Selection for Multiple Switch Topology |
84 | 13.2.2 MT Link Monitoring for Multiple Switch Topology | 87 | 12.2.2 MT Link Monitoring for Multiple Switch Topology |
85 | 88 | ||
86 | 14. Switch Behavior Issues | 89 | 13. Switch Behavior Issues |
87 | 14.1 Link Establishment and Failover Delays | 90 | 13.1 Link Establishment and Failover Delays |
88 | 14.2 Duplicated Incoming Packets | 91 | 13.2 Duplicated Incoming Packets |
89 | 92 | ||
90 | 15. Hardware Specific Considerations | 93 | 14. Hardware Specific Considerations |
91 | 15.1 IBM BladeCenter | 94 | 14.1 IBM BladeCenter |
92 | 95 | ||
93 | 16. Frequently Asked Questions | 96 | 15. Frequently Asked Questions |
94 | 97 | ||
95 | 17. Resources and Links | 98 | 16. Resources and Links |
96 | 99 | ||
97 | 100 | ||
98 | 1. Bonding Driver Installation | 101 | 1. Bonding Driver Installation |
@@ -156,6 +159,9 @@ you're trying to build it for. Some distros (e.g., Red Hat from 7.1 | |||
156 | onwards) do not have /usr/include/linux symbolically linked to the | 159 | onwards) do not have /usr/include/linux symbolically linked to the |
157 | default kernel source include directory. | 160 | default kernel source include directory. |
158 | 161 | ||
162 | SECOND IMPORTANT NOTE: | ||
163 | If you plan to configure bonding using sysfs, you do not need | ||
164 | to use ifenslave. | ||
159 | 165 | ||
160 | 2. Bonding Driver Options | 166 | 2. Bonding Driver Options |
161 | ========================= | 167 | ========================= |
@@ -270,7 +276,7 @@ mode | |||
270 | In bonding version 2.6.2 or later, when a failover | 276 | In bonding version 2.6.2 or later, when a failover |
271 | occurs in active-backup mode, bonding will issue one | 277 | occurs in active-backup mode, bonding will issue one |
272 | or more gratuitous ARPs on the newly active slave. | 278 | or more gratuitous ARPs on the newly active slave. |
273 | One gratutious ARP is issued for the bonding master | 279 | One gratuitous ARP is issued for the bonding master |
274 | interface and each VLAN interfaces configured above | 280 | interface and each VLAN interfaces configured above |
275 | it, provided that the interface has at least one IP | 281 | it, provided that the interface has at least one IP |
276 | address configured. Gratuitous ARPs issued for VLAN | 282 | address configured. Gratuitous ARPs issued for VLAN |
@@ -377,7 +383,7 @@ mode | |||
377 | When a link is reconnected or a new slave joins the | 383 | When a link is reconnected or a new slave joins the |
378 | bond the receive traffic is redistributed among all | 384 | bond the receive traffic is redistributed among all |
379 | active slaves in the bond by initiating ARP Replies | 385 | active slaves in the bond by initiating ARP Replies |
380 | with the selected mac address to each of the | 386 | with the selected MAC address to each of the |
381 | clients. The updelay parameter (detailed below) must | 387 | clients. The updelay parameter (detailed below) must |
382 | be set to a value equal or greater than the switch's | 388 | be set to a value equal or greater than the switch's |
383 | forwarding delay so that the ARP Replies sent to the | 389 | forwarding delay so that the ARP Replies sent to the |
@@ -498,11 +504,12 @@ not exist, and the layer2 policy is the only policy. | |||
498 | 3. Configuring Bonding Devices | 504 | 3. Configuring Bonding Devices |
499 | ============================== | 505 | ============================== |
500 | 506 | ||
501 | There are, essentially, two methods for configuring bonding: | 507 | You can configure bonding using either your distro's network |
502 | with support from the distro's network initialization scripts, and | 508 | initialization scripts, or manually using either ifenslave or the |
503 | without. Distros generally use one of two packages for the network | 509 | sysfs interface. Distros generally use one of two packages for the |
504 | initialization scripts: initscripts or sysconfig. Recent versions of | 510 | network initialization scripts: initscripts or sysconfig. Recent |
505 | these packages have support for bonding, while older versions do not. | 511 | versions of these packages have support for bonding, while older |
512 | versions do not. | ||
506 | 513 | ||
507 | We will first describe the options for configuring bonding for | 514 | We will first describe the options for configuring bonding for |
508 | distros using versions of initscripts and sysconfig with full or | 515 | distros using versions of initscripts and sysconfig with full or |
@@ -530,7 +537,7 @@ $ grep ifenslave /sbin/ifup | |||
530 | If this returns any matches, then your initscripts or | 537 | If this returns any matches, then your initscripts or |
531 | sysconfig has support for bonding. | 538 | sysconfig has support for bonding. |
532 | 539 | ||
533 | 3.1 Configuration with sysconfig support | 540 | 3.1 Configuration with Sysconfig Support |
534 | ---------------------------------------- | 541 | ---------------------------------------- |
535 | 542 | ||
536 | This section applies to distros using a version of sysconfig | 543 | This section applies to distros using a version of sysconfig |
@@ -538,7 +545,7 @@ with bonding support, for example, SuSE Linux Enterprise Server 9. | |||
538 | 545 | ||
539 | SuSE SLES 9's networking configuration system does support | 546 | SuSE SLES 9's networking configuration system does support |
540 | bonding, however, at this writing, the YaST system configuration | 547 | bonding, however, at this writing, the YaST system configuration |
541 | frontend does not provide any means to work with bonding devices. | 548 | front end does not provide any means to work with bonding devices. |
542 | Bonding devices can be managed by hand, however, as follows. | 549 | Bonding devices can be managed by hand, however, as follows. |
543 | 550 | ||
544 | First, if they have not already been configured, configure the | 551 | First, if they have not already been configured, configure the |
@@ -660,7 +667,7 @@ format can be found in an example ifcfg template file: | |||
660 | Note that the template does not document the various BONDING_ | 667 | Note that the template does not document the various BONDING_ |
661 | settings described above, but does describe many of the other options. | 668 | settings described above, but does describe many of the other options. |
662 | 669 | ||
663 | 3.1.1 Using DHCP with sysconfig | 670 | 3.1.1 Using DHCP with Sysconfig |
664 | ------------------------------- | 671 | ------------------------------- |
665 | 672 | ||
666 | Under sysconfig, configuring a device with BOOTPROTO='dhcp' | 673 | Under sysconfig, configuring a device with BOOTPROTO='dhcp' |
@@ -670,7 +677,7 @@ attempt to obtain the device address from DHCP prior to adding any of | |||
670 | the slave devices. Without active slaves, the DHCP requests are not | 677 | the slave devices. Without active slaves, the DHCP requests are not |
671 | sent to the network. | 678 | sent to the network. |
672 | 679 | ||
673 | 3.1.2 Configuring Multiple Bonds with sysconfig | 680 | 3.1.2 Configuring Multiple Bonds with Sysconfig |
674 | ----------------------------------------------- | 681 | ----------------------------------------------- |
675 | 682 | ||
676 | The sysconfig network initialization system is capable of | 683 | The sysconfig network initialization system is capable of |
@@ -685,7 +692,7 @@ ifcfg-bondX files. | |||
685 | options in the ifcfg-bondX file, it is not necessary to add them to | 692 | options in the ifcfg-bondX file, it is not necessary to add them to |
686 | the system /etc/modules.conf or /etc/modprobe.conf configuration file. | 693 | the system /etc/modules.conf or /etc/modprobe.conf configuration file. |
687 | 694 | ||
688 | 3.2 Configuration with initscripts support | 695 | 3.2 Configuration with Initscripts Support |
689 | ------------------------------------------ | 696 | ------------------------------------------ |
690 | 697 | ||
691 | This section applies to distros using a version of initscripts | 698 | This section applies to distros using a version of initscripts |
@@ -756,7 +763,7 @@ options for your configuration. | |||
756 | will restart the networking subsystem and your bond link should be now | 763 | will restart the networking subsystem and your bond link should be now |
757 | up and running. | 764 | up and running. |
758 | 765 | ||
759 | 3.2.1 Using DHCP with initscripts | 766 | 3.2.1 Using DHCP with Initscripts |
760 | --------------------------------- | 767 | --------------------------------- |
761 | 768 | ||
762 | Recent versions of initscripts (the version supplied with | 769 | Recent versions of initscripts (the version supplied with |
@@ -768,7 +775,7 @@ above, except replace the line "BOOTPROTO=none" with "BOOTPROTO=dhcp" | |||
768 | and add a line consisting of "TYPE=Bonding". Note that the TYPE value | 775 | and add a line consisting of "TYPE=Bonding". Note that the TYPE value |
769 | is case sensitive. | 776 | is case sensitive. |
770 | 777 | ||
771 | 3.2.2 Configuring Multiple Bonds with initscripts | 778 | 3.2.2 Configuring Multiple Bonds with Initscripts |
772 | ------------------------------------------------- | 779 | ------------------------------------------------- |
773 | 780 | ||
774 | At this writing, the initscripts package does not directly | 781 | At this writing, the initscripts package does not directly |
@@ -784,8 +791,8 @@ Fedora Core kernels, and has been seen on RHEL 4 as well. On kernels | |||
784 | exhibiting this problem, it will be impossible to configure multiple | 791 | exhibiting this problem, it will be impossible to configure multiple |
785 | bonds with differing parameters. | 792 | bonds with differing parameters. |
786 | 793 | ||
787 | 3.3 Configuring Bonding Manually | 794 | 3.3 Configuring Bonding Manually with Ifenslave |
788 | -------------------------------- | 795 | ----------------------------------------------- |
789 | 796 | ||
790 | This section applies to distros whose network initialization | 797 | This section applies to distros whose network initialization |
791 | scripts (the sysconfig or initscripts package) do not have specific | 798 | scripts (the sysconfig or initscripts package) do not have specific |
@@ -889,11 +896,139 @@ install bond1 /sbin/modprobe --ignore-install bonding -o bond1 \ | |||
889 | This may be repeated any number of times, specifying a new and | 896 | This may be repeated any number of times, specifying a new and |
890 | unique name in place of bond1 for each subsequent instance. | 897 | unique name in place of bond1 for each subsequent instance. |
891 | 898 | ||
899 | 3.4 Configuring Bonding Manually via Sysfs | ||
900 | ------------------------------------------ | ||
901 | |||
902 | Starting with version 3.0, Channel Bonding may be configured | ||
903 | via the sysfs interface. This interface allows dynamic configuration | ||
904 | of all bonds in the system without unloading the module. It also | ||
905 | allows for adding and removing bonds at runtime. Ifenslave is no | ||
906 | longer required, though it is still supported. | ||
907 | |||
908 | Use of the sysfs interface allows you to use multiple bonds | ||
909 | with different configurations without having to reload the module. | ||
910 | It also allows you to use multiple, differently configured bonds when | ||
911 | bonding is compiled into the kernel. | ||
912 | |||
913 | You must have the sysfs filesystem mounted to configure | ||
914 | bonding this way. The examples in this document assume that you | ||
915 | are using the standard mount point for sysfs, e.g. /sys. If your | ||
916 | sysfs filesystem is mounted elsewhere, you will need to adjust the | ||
917 | example paths accordingly. | ||
918 | |||
919 | Creating and Destroying Bonds | ||
920 | ----------------------------- | ||
921 | To add a new bond foo: | ||
922 | # echo +foo > /sys/class/net/bonding_masters | ||
923 | |||
924 | To remove an existing bond bar: | ||
925 | # echo -bar > /sys/class/net/bonding_masters | ||
926 | |||
927 | To show all existing bonds: | ||
928 | # cat /sys/class/net/bonding_masters | ||
929 | |||
930 | NOTE: due to 4K size limitation of sysfs files, this list may be | ||
931 | truncated if you have more than a few hundred bonds. This is unlikely | ||
932 | to occur under normal operating conditions. | ||
933 | |||
934 | Adding and Removing Slaves | ||
935 | -------------------------- | ||
936 | Interfaces may be enslaved to a bond using the file | ||
937 | /sys/class/net/<bond>/bonding/slaves. The semantics for this file | ||
938 | are the same as for the bonding_masters file. | ||
939 | |||
940 | To enslave interface eth0 to bond bond0: | ||
941 | # ifconfig bond0 up | ||
942 | # echo +eth0 > /sys/class/net/bond0/bonding/slaves | ||
943 | |||
944 | To free slave eth0 from bond bond0: | ||
945 | # echo -eth0 > /sys/class/net/bond0/bonding/slaves | ||
946 | |||
947 | NOTE: The bond must be up before slaves can be added. All | ||
948 | slaves are freed when the interface is brought down. | ||
949 | |||
950 | When an interface is enslaved to a bond, symlinks between the | ||
951 | two are created in the sysfs filesystem. In this case, you would get | ||
952 | /sys/class/net/bond0/slave_eth0 pointing to /sys/class/net/eth0, and | ||
953 | /sys/class/net/eth0/master pointing to /sys/class/net/bond0. | ||
954 | |||
955 | This means that you can tell quickly whether or not an | ||
956 | interface is enslaved by looking for the master symlink. Thus: | ||
957 | # echo -eth0 > /sys/class/net/eth0/master/bonding/slaves | ||
958 | will free eth0 from whatever bond it is enslaved to, regardless of | ||
959 | the name of the bond interface. | ||
960 | |||
961 | Changing a Bond's Configuration | ||
962 | ------------------------------- | ||
963 | Each bond may be configured individually by manipulating the | ||
964 | files located in /sys/class/net/<bond name>/bonding | ||
965 | |||
966 | The names of these files correspond directly with the command- | ||
967 | line parameters described elsewhere in in this file, and, with the | ||
968 | exception of arp_ip_target, they accept the same values. To see the | ||
969 | current setting, simply cat the appropriate file. | ||
970 | |||
971 | A few examples will be given here; for specific usage | ||
972 | guidelines for each parameter, see the appropriate section in this | ||
973 | document. | ||
974 | |||
975 | To configure bond0 for balance-alb mode: | ||
976 | # ifconfig bond0 down | ||
977 | # echo 6 > /sys/class/net/bond0/bonding/mode | ||
978 | - or - | ||
979 | # echo balance-alb > /sys/class/net/bond0/bonding/mode | ||
980 | NOTE: The bond interface must be down before the mode can be | ||
981 | changed. | ||
982 | |||
983 | To enable MII monitoring on bond0 with a 1 second interval: | ||
984 | # echo 1000 > /sys/class/net/bond0/bonding/miimon | ||
985 | NOTE: If ARP monitoring is enabled, it will disabled when MII | ||
986 | monitoring is enabled, and vice-versa. | ||
987 | |||
988 | To add ARP targets: | ||
989 | # echo +192.168.0.100 > /sys/class/net/bond0/bonding/arp_ip_target | ||
990 | # echo +192.168.0.101 > /sys/class/net/bond0/bonding/arp_ip_target | ||
991 | NOTE: up to 10 target addresses may be specified. | ||
992 | |||
993 | To remove an ARP target: | ||
994 | # echo -192.168.0.100 > /sys/class/net/bond0/bonding/arp_ip_target | ||
995 | |||
996 | Example Configuration | ||
997 | --------------------- | ||
998 | We begin with the same example that is shown in section 3.3, | ||
999 | executed with sysfs, and without using ifenslave. | ||
1000 | |||
1001 | To make a simple bond of two e100 devices (presumed to be eth0 | ||
1002 | and eth1), and have it persist across reboots, edit the appropriate | ||
1003 | file (/etc/init.d/boot.local or /etc/rc.d/rc.local), and add the | ||
1004 | following: | ||
1005 | |||
1006 | modprobe bonding | ||
1007 | modprobe e100 | ||
1008 | echo balance-alb > /sys/class/net/bond0/bonding/mode | ||
1009 | ifconfig bond0 192.168.1.1 netmask 255.255.255.0 up | ||
1010 | echo 100 > /sys/class/net/bond0/bonding/miimon | ||
1011 | echo +eth0 > /sys/class/net/bond0/bonding/slaves | ||
1012 | echo +eth1 > /sys/class/net/bond0/bonding/slaves | ||
1013 | |||
1014 | To add a second bond, with two e1000 interfaces in | ||
1015 | active-backup mode, using ARP monitoring, add the following lines to | ||
1016 | your init script: | ||
1017 | |||
1018 | modprobe e1000 | ||
1019 | echo +bond1 > /sys/class/net/bonding_masters | ||
1020 | echo active-backup > /sys/class/net/bond1/bonding/mode | ||
1021 | ifconfig bond1 192.168.2.1 netmask 255.255.255.0 up | ||
1022 | echo +192.168.2.100 /sys/class/net/bond1/bonding/arp_ip_target | ||
1023 | echo 2000 > /sys/class/net/bond1/bonding/arp_interval | ||
1024 | echo +eth2 > /sys/class/net/bond1/bonding/slaves | ||
1025 | echo +eth3 > /sys/class/net/bond1/bonding/slaves | ||
1026 | |||
892 | 1027 | ||
893 | 5. Querying Bonding Configuration | 1028 | 4. Querying Bonding Configuration |
894 | ================================= | 1029 | ================================= |
895 | 1030 | ||
896 | 5.1 Bonding Configuration | 1031 | 4.1 Bonding Configuration |
897 | ------------------------- | 1032 | ------------------------- |
898 | 1033 | ||
899 | Each bonding device has a read-only file residing in the | 1034 | Each bonding device has a read-only file residing in the |
@@ -923,7 +1058,7 @@ generally as follows: | |||
923 | The precise format and contents will change depending upon the | 1058 | The precise format and contents will change depending upon the |
924 | bonding configuration, state, and version of the bonding driver. | 1059 | bonding configuration, state, and version of the bonding driver. |
925 | 1060 | ||
926 | 5.2 Network configuration | 1061 | 4.2 Network configuration |
927 | ------------------------- | 1062 | ------------------------- |
928 | 1063 | ||
929 | The network configuration can be inspected using the ifconfig | 1064 | The network configuration can be inspected using the ifconfig |
@@ -958,7 +1093,7 @@ eth1 Link encap:Ethernet HWaddr 00:C0:F0:1F:37:B4 | |||
958 | collisions:0 txqueuelen:100 | 1093 | collisions:0 txqueuelen:100 |
959 | Interrupt:9 Base address:0x1400 | 1094 | Interrupt:9 Base address:0x1400 |
960 | 1095 | ||
961 | 6. Switch Configuration | 1096 | 5. Switch Configuration |
962 | ======================= | 1097 | ======================= |
963 | 1098 | ||
964 | For this section, "switch" refers to whatever system the | 1099 | For this section, "switch" refers to whatever system the |
@@ -991,7 +1126,7 @@ transmit policy for an EtherChannel group; all three will interoperate | |||
991 | with another EtherChannel group. | 1126 | with another EtherChannel group. |
992 | 1127 | ||
993 | 1128 | ||
994 | 7. 802.1q VLAN Support | 1129 | 6. 802.1q VLAN Support |
995 | ====================== | 1130 | ====================== |
996 | 1131 | ||
997 | It is possible to configure VLAN devices over a bond interface | 1132 | It is possible to configure VLAN devices over a bond interface |
@@ -1042,7 +1177,7 @@ underlying device -- i.e. the bonding interface -- to promiscuous | |||
1042 | mode, which might not be what you want. | 1177 | mode, which might not be what you want. |
1043 | 1178 | ||
1044 | 1179 | ||
1045 | 8. Link Monitoring | 1180 | 7. Link Monitoring |
1046 | ================== | 1181 | ================== |
1047 | 1182 | ||
1048 | The bonding driver at present supports two schemes for | 1183 | The bonding driver at present supports two schemes for |
@@ -1053,7 +1188,7 @@ monitor. | |||
1053 | bonding driver itself, it is not possible to enable both ARP and MII | 1188 | bonding driver itself, it is not possible to enable both ARP and MII |
1054 | monitoring simultaneously. | 1189 | monitoring simultaneously. |
1055 | 1190 | ||
1056 | 8.1 ARP Monitor Operation | 1191 | 7.1 ARP Monitor Operation |
1057 | ------------------------- | 1192 | ------------------------- |
1058 | 1193 | ||
1059 | The ARP monitor operates as its name suggests: it sends ARP | 1194 | The ARP monitor operates as its name suggests: it sends ARP |
@@ -1071,7 +1206,7 @@ those slaves will stay down. If networking monitoring (tcpdump, etc) | |||
1071 | shows the ARP requests and replies on the network, then it may be that | 1206 | shows the ARP requests and replies on the network, then it may be that |
1072 | your device driver is not updating last_rx and trans_start. | 1207 | your device driver is not updating last_rx and trans_start. |
1073 | 1208 | ||
1074 | 8.2 Configuring Multiple ARP Targets | 1209 | 7.2 Configuring Multiple ARP Targets |
1075 | ------------------------------------ | 1210 | ------------------------------------ |
1076 | 1211 | ||
1077 | While ARP monitoring can be done with just one target, it can | 1212 | While ARP monitoring can be done with just one target, it can |
@@ -1094,7 +1229,7 @@ alias bond0 bonding | |||
1094 | options bond0 arp_interval=60 arp_ip_target=192.168.0.100 | 1229 | options bond0 arp_interval=60 arp_ip_target=192.168.0.100 |
1095 | 1230 | ||
1096 | 1231 | ||
1097 | 8.3 MII Monitor Operation | 1232 | 7.3 MII Monitor Operation |
1098 | ------------------------- | 1233 | ------------------------- |
1099 | 1234 | ||
1100 | The MII monitor monitors only the carrier state of the local | 1235 | The MII monitor monitors only the carrier state of the local |
@@ -1120,14 +1255,14 @@ does not support or had some error in processing both the MII register | |||
1120 | and ethtool requests), then the MII monitor will assume the link is | 1255 | and ethtool requests), then the MII monitor will assume the link is |
1121 | up. | 1256 | up. |
1122 | 1257 | ||
1123 | 9. Potential Sources of Trouble | 1258 | 8. Potential Sources of Trouble |
1124 | =============================== | 1259 | =============================== |
1125 | 1260 | ||
1126 | 9.1 Adventures in Routing | 1261 | 8.1 Adventures in Routing |
1127 | ------------------------- | 1262 | ------------------------- |
1128 | 1263 | ||
1129 | When bonding is configured, it is important that the slave | 1264 | When bonding is configured, it is important that the slave |
1130 | devices not have routes that supercede routes of the master (or, | 1265 | devices not have routes that supersede routes of the master (or, |
1131 | generally, not have routes at all). For example, suppose the bonding | 1266 | generally, not have routes at all). For example, suppose the bonding |
1132 | device bond0 has two slaves, eth0 and eth1, and the routing table is | 1267 | device bond0 has two slaves, eth0 and eth1, and the routing table is |
1133 | as follows: | 1268 | as follows: |
@@ -1154,11 +1289,11 @@ by the state of the routing table. | |||
1154 | 1289 | ||
1155 | The solution here is simply to insure that slaves do not have | 1290 | The solution here is simply to insure that slaves do not have |
1156 | routes of their own, and if for some reason they must, those routes do | 1291 | routes of their own, and if for some reason they must, those routes do |
1157 | not supercede routes of their master. This should generally be the | 1292 | not supersede routes of their master. This should generally be the |
1158 | case, but unusual configurations or errant manual or automatic static | 1293 | case, but unusual configurations or errant manual or automatic static |
1159 | route additions may cause trouble. | 1294 | route additions may cause trouble. |
1160 | 1295 | ||
1161 | 9.2 Ethernet Device Renaming | 1296 | 8.2 Ethernet Device Renaming |
1162 | ---------------------------- | 1297 | ---------------------------- |
1163 | 1298 | ||
1164 | On systems with network configuration scripts that do not | 1299 | On systems with network configuration scripts that do not |
@@ -1207,7 +1342,7 @@ modprobe with --ignore-install to cause the normal action to then take | |||
1207 | place. Full documentation on this can be found in the modprobe.conf | 1342 | place. Full documentation on this can be found in the modprobe.conf |
1208 | and modprobe manual pages. | 1343 | and modprobe manual pages. |
1209 | 1344 | ||
1210 | 9.3. Painfully Slow Or No Failed Link Detection By Miimon | 1345 | 8.3. Painfully Slow Or No Failed Link Detection By Miimon |
1211 | --------------------------------------------------------- | 1346 | --------------------------------------------------------- |
1212 | 1347 | ||
1213 | By default, bonding enables the use_carrier option, which | 1348 | By default, bonding enables the use_carrier option, which |
@@ -1235,7 +1370,7 @@ carrier state. It has no way to determine the state of devices on or | |||
1235 | beyond other ports of a switch, or if a switch is refusing to pass | 1370 | beyond other ports of a switch, or if a switch is refusing to pass |
1236 | traffic while still maintaining carrier on. | 1371 | traffic while still maintaining carrier on. |
1237 | 1372 | ||
1238 | 10. SNMP agents | 1373 | 9. SNMP agents |
1239 | =============== | 1374 | =============== |
1240 | 1375 | ||
1241 | If running SNMP agents, the bonding driver should be loaded | 1376 | If running SNMP agents, the bonding driver should be loaded |
@@ -1281,7 +1416,7 @@ ifDescr, the association between the IP address and IfIndex remains | |||
1281 | and SNMP functions such as Interface_Scan_Next will report that | 1416 | and SNMP functions such as Interface_Scan_Next will report that |
1282 | association. | 1417 | association. |
1283 | 1418 | ||
1284 | 11. Promiscuous mode | 1419 | 10. Promiscuous mode |
1285 | ==================== | 1420 | ==================== |
1286 | 1421 | ||
1287 | When running network monitoring tools, e.g., tcpdump, it is | 1422 | When running network monitoring tools, e.g., tcpdump, it is |
@@ -1308,7 +1443,7 @@ sending to peers that are unassigned or if the load is unbalanced. | |||
1308 | the active slave changes (e.g., due to a link failure), the | 1443 | the active slave changes (e.g., due to a link failure), the |
1309 | promiscuous setting will be propagated to the new active slave. | 1444 | promiscuous setting will be propagated to the new active slave. |
1310 | 1445 | ||
1311 | 12. Configuring Bonding for High Availability | 1446 | 11. Configuring Bonding for High Availability |
1312 | ============================================= | 1447 | ============================================= |
1313 | 1448 | ||
1314 | High Availability refers to configurations that provide | 1449 | High Availability refers to configurations that provide |
@@ -1318,7 +1453,7 @@ goal is to provide the maximum availability of network connectivity | |||
1318 | (i.e., the network always works), even though other configurations | 1453 | (i.e., the network always works), even though other configurations |
1319 | could provide higher throughput. | 1454 | could provide higher throughput. |
1320 | 1455 | ||
1321 | 12.1 High Availability in a Single Switch Topology | 1456 | 11.1 High Availability in a Single Switch Topology |
1322 | -------------------------------------------------- | 1457 | -------------------------------------------------- |
1323 | 1458 | ||
1324 | If two hosts (or a host and a single switch) are directly | 1459 | If two hosts (or a host and a single switch) are directly |
@@ -1332,7 +1467,7 @@ the load will be rebalanced across the remaining devices. | |||
1332 | See Section 13, "Configuring Bonding for Maximum Throughput" | 1467 | See Section 13, "Configuring Bonding for Maximum Throughput" |
1333 | for information on configuring bonding with one peer device. | 1468 | for information on configuring bonding with one peer device. |
1334 | 1469 | ||
1335 | 12.2 High Availability in a Multiple Switch Topology | 1470 | 11.2 High Availability in a Multiple Switch Topology |
1336 | ---------------------------------------------------- | 1471 | ---------------------------------------------------- |
1337 | 1472 | ||
1338 | With multiple switches, the configuration of bonding and the | 1473 | With multiple switches, the configuration of bonding and the |
@@ -1359,7 +1494,7 @@ switches (ISL, or inter switch link), and multiple ports connecting to | |||
1359 | the outside world ("port3" on each switch). There is no technical | 1494 | the outside world ("port3" on each switch). There is no technical |
1360 | reason that this could not be extended to a third switch. | 1495 | reason that this could not be extended to a third switch. |
1361 | 1496 | ||
1362 | 12.2.1 HA Bonding Mode Selection for Multiple Switch Topology | 1497 | 11.2.1 HA Bonding Mode Selection for Multiple Switch Topology |
1363 | ------------------------------------------------------------- | 1498 | ------------------------------------------------------------- |
1364 | 1499 | ||
1365 | In a topology such as the example above, the active-backup and | 1500 | In a topology such as the example above, the active-backup and |
@@ -1381,7 +1516,7 @@ broadcast: This mode is really a special purpose mode, and is suitable | |||
1381 | necessary for some specific one-way traffic to reach both | 1516 | necessary for some specific one-way traffic to reach both |
1382 | independent networks, then the broadcast mode may be suitable. | 1517 | independent networks, then the broadcast mode may be suitable. |
1383 | 1518 | ||
1384 | 12.2.2 HA Link Monitoring Selection for Multiple Switch Topology | 1519 | 11.2.2 HA Link Monitoring Selection for Multiple Switch Topology |
1385 | ---------------------------------------------------------------- | 1520 | ---------------------------------------------------------------- |
1386 | 1521 | ||
1387 | The choice of link monitoring ultimately depends upon your | 1522 | The choice of link monitoring ultimately depends upon your |
@@ -1402,10 +1537,10 @@ regardless of which switch is active, the ARP monitor has a suitable | |||
1402 | target to query. | 1537 | target to query. |
1403 | 1538 | ||
1404 | 1539 | ||
1405 | 13. Configuring Bonding for Maximum Throughput | 1540 | 12. Configuring Bonding for Maximum Throughput |
1406 | ============================================== | 1541 | ============================================== |
1407 | 1542 | ||
1408 | 13.1 Maximizing Throughput in a Single Switch Topology | 1543 | 12.1 Maximizing Throughput in a Single Switch Topology |
1409 | ------------------------------------------------------ | 1544 | ------------------------------------------------------ |
1410 | 1545 | ||
1411 | In a single switch configuration, the best method to maximize | 1546 | In a single switch configuration, the best method to maximize |
@@ -1476,7 +1611,7 @@ destination to make load balancing decisions. The behavior of each | |||
1476 | mode is described below. | 1611 | mode is described below. |
1477 | 1612 | ||
1478 | 1613 | ||
1479 | 13.1.1 MT Bonding Mode Selection for Single Switch Topology | 1614 | 12.1.1 MT Bonding Mode Selection for Single Switch Topology |
1480 | ----------------------------------------------------------- | 1615 | ----------------------------------------------------------- |
1481 | 1616 | ||
1482 | This configuration is the easiest to set up and to understand, | 1617 | This configuration is the easiest to set up and to understand, |
@@ -1607,7 +1742,7 @@ balance-alb: This mode is everything that balance-tlb is, and more. | |||
1607 | device driver must support changing the hardware address while | 1742 | device driver must support changing the hardware address while |
1608 | the device is open. | 1743 | the device is open. |
1609 | 1744 | ||
1610 | 13.1.2 MT Link Monitoring for Single Switch Topology | 1745 | 12.1.2 MT Link Monitoring for Single Switch Topology |
1611 | ---------------------------------------------------- | 1746 | ---------------------------------------------------- |
1612 | 1747 | ||
1613 | The choice of link monitoring may largely depend upon which | 1748 | The choice of link monitoring may largely depend upon which |
@@ -1616,7 +1751,7 @@ support the use of the ARP monitor, and are thus restricted to using | |||
1616 | the MII monitor (which does not provide as high a level of end to end | 1751 | the MII monitor (which does not provide as high a level of end to end |
1617 | assurance as the ARP monitor). | 1752 | assurance as the ARP monitor). |
1618 | 1753 | ||
1619 | 13.2 Maximum Throughput in a Multiple Switch Topology | 1754 | 12.2 Maximum Throughput in a Multiple Switch Topology |
1620 | ----------------------------------------------------- | 1755 | ----------------------------------------------------- |
1621 | 1756 | ||
1622 | Multiple switches may be utilized to optimize for throughput | 1757 | Multiple switches may be utilized to optimize for throughput |
@@ -1651,7 +1786,7 @@ a single 72 port switch. | |||
1651 | can be equipped with an additional network device connected to an | 1786 | can be equipped with an additional network device connected to an |
1652 | external network; this host then additionally acts as a gateway. | 1787 | external network; this host then additionally acts as a gateway. |
1653 | 1788 | ||
1654 | 13.2.1 MT Bonding Mode Selection for Multiple Switch Topology | 1789 | 12.2.1 MT Bonding Mode Selection for Multiple Switch Topology |
1655 | ------------------------------------------------------------- | 1790 | ------------------------------------------------------------- |
1656 | 1791 | ||
1657 | In actual practice, the bonding mode typically employed in | 1792 | In actual practice, the bonding mode typically employed in |
@@ -1664,7 +1799,7 @@ packets has arrived). When employed in this fashion, the balance-rr | |||
1664 | mode allows individual connections between two hosts to effectively | 1799 | mode allows individual connections between two hosts to effectively |
1665 | utilize greater than one interface's bandwidth. | 1800 | utilize greater than one interface's bandwidth. |
1666 | 1801 | ||
1667 | 13.2.2 MT Link Monitoring for Multiple Switch Topology | 1802 | 12.2.2 MT Link Monitoring for Multiple Switch Topology |
1668 | ------------------------------------------------------ | 1803 | ------------------------------------------------------ |
1669 | 1804 | ||
1670 | Again, in actual practice, the MII monitor is most often used | 1805 | Again, in actual practice, the MII monitor is most often used |
@@ -1674,10 +1809,10 @@ advantages over the MII monitor are mitigated by the volume of probes | |||
1674 | needed as the number of systems involved grows (remember that each | 1809 | needed as the number of systems involved grows (remember that each |
1675 | host in the network is configured with bonding). | 1810 | host in the network is configured with bonding). |
1676 | 1811 | ||
1677 | 14. Switch Behavior Issues | 1812 | 13. Switch Behavior Issues |
1678 | ========================== | 1813 | ========================== |
1679 | 1814 | ||
1680 | 14.1 Link Establishment and Failover Delays | 1815 | 13.1 Link Establishment and Failover Delays |
1681 | ------------------------------------------- | 1816 | ------------------------------------------- |
1682 | 1817 | ||
1683 | Some switches exhibit undesirable behavior with regard to the | 1818 | Some switches exhibit undesirable behavior with regard to the |
@@ -1712,7 +1847,7 @@ switches take a long time to go into backup mode, it may be desirable | |||
1712 | to not activate a backup interface immediately after a link goes down. | 1847 | to not activate a backup interface immediately after a link goes down. |
1713 | Failover may be delayed via the downdelay bonding module option. | 1848 | Failover may be delayed via the downdelay bonding module option. |
1714 | 1849 | ||
1715 | 14.2 Duplicated Incoming Packets | 1850 | 13.2 Duplicated Incoming Packets |
1716 | -------------------------------- | 1851 | -------------------------------- |
1717 | 1852 | ||
1718 | It is not uncommon to observe a short burst of duplicated | 1853 | It is not uncommon to observe a short burst of duplicated |
@@ -1751,14 +1886,14 @@ behavior, it can be induced by clearing the MAC forwarding table (on | |||
1751 | most Cisco switches, the privileged command "clear mac address-table | 1886 | most Cisco switches, the privileged command "clear mac address-table |
1752 | dynamic" will accomplish this). | 1887 | dynamic" will accomplish this). |
1753 | 1888 | ||
1754 | 15. Hardware Specific Considerations | 1889 | 14. Hardware Specific Considerations |
1755 | ==================================== | 1890 | ==================================== |
1756 | 1891 | ||
1757 | This section contains additional information for configuring | 1892 | This section contains additional information for configuring |
1758 | bonding on specific hardware platforms, or for interfacing bonding | 1893 | bonding on specific hardware platforms, or for interfacing bonding |
1759 | with particular switches or other devices. | 1894 | with particular switches or other devices. |
1760 | 1895 | ||
1761 | 15.1 IBM BladeCenter | 1896 | 14.1 IBM BladeCenter |
1762 | -------------------- | 1897 | -------------------- |
1763 | 1898 | ||
1764 | This applies to the JS20 and similar systems. | 1899 | This applies to the JS20 and similar systems. |
@@ -1861,7 +1996,7 @@ bonding driver. | |||
1861 | avoid fail-over delay issues when using bonding. | 1996 | avoid fail-over delay issues when using bonding. |
1862 | 1997 | ||
1863 | 1998 | ||
1864 | 16. Frequently Asked Questions | 1999 | 15. Frequently Asked Questions |
1865 | ============================== | 2000 | ============================== |
1866 | 2001 | ||
1867 | 1. Is it SMP safe? | 2002 | 1. Is it SMP safe? |
@@ -1925,7 +2060,7 @@ not have special switch requirements, but do need device drivers that | |||
1925 | support specific features (described in the appropriate section under | 2060 | support specific features (described in the appropriate section under |
1926 | module parameters, above). | 2061 | module parameters, above). |
1927 | 2062 | ||
1928 | In 802.3ad mode, it works with with systems that support IEEE | 2063 | In 802.3ad mode, it works with systems that support IEEE |
1929 | 802.3ad Dynamic Link Aggregation. Most managed and many unmanaged | 2064 | 802.3ad Dynamic Link Aggregation. Most managed and many unmanaged |
1930 | switches currently available support 802.3ad. | 2065 | switches currently available support 802.3ad. |
1931 | 2066 | ||
diff --git a/Documentation/networking/ip-sysctl.txt b/Documentation/networking/ip-sysctl.txt index f12007b80a46..d46338af6002 100644 --- a/Documentation/networking/ip-sysctl.txt +++ b/Documentation/networking/ip-sysctl.txt | |||
@@ -362,6 +362,13 @@ tcp_workaround_signed_windows - BOOLEAN | |||
362 | not receive a window scaling option from them. | 362 | not receive a window scaling option from them. |
363 | Default: 0 | 363 | Default: 0 |
364 | 364 | ||
365 | tcp_slow_start_after_idle - BOOLEAN | ||
366 | If set, provide RFC2861 behavior and time out the congestion | ||
367 | window after an idle period. An idle period is defined at | ||
368 | the current RTO. If unset, the congestion window will not | ||
369 | be timed out after an idle period. | ||
370 | Default: 1 | ||
371 | |||
365 | IP Variables: | 372 | IP Variables: |
366 | 373 | ||
367 | ip_local_port_range - 2 INTEGERS | 374 | ip_local_port_range - 2 INTEGERS |
diff --git a/Documentation/networking/netdevices.txt b/Documentation/networking/netdevices.txt index 3c0a5ba614d7..847cedb238f6 100644 --- a/Documentation/networking/netdevices.txt +++ b/Documentation/networking/netdevices.txt | |||
@@ -42,9 +42,9 @@ dev->get_stats: | |||
42 | Context: nominally process, but don't sleep inside an rwlock | 42 | Context: nominally process, but don't sleep inside an rwlock |
43 | 43 | ||
44 | dev->hard_start_xmit: | 44 | dev->hard_start_xmit: |
45 | Synchronization: dev->xmit_lock spinlock. | 45 | Synchronization: netif_tx_lock spinlock. |
46 | When the driver sets NETIF_F_LLTX in dev->features this will be | 46 | When the driver sets NETIF_F_LLTX in dev->features this will be |
47 | called without holding xmit_lock. In this case the driver | 47 | called without holding netif_tx_lock. In this case the driver |
48 | has to lock by itself when needed. It is recommended to use a try lock | 48 | has to lock by itself when needed. It is recommended to use a try lock |
49 | for this and return -1 when the spin lock fails. | 49 | for this and return -1 when the spin lock fails. |
50 | The locking there should also properly protect against | 50 | The locking there should also properly protect against |
@@ -62,12 +62,12 @@ dev->hard_start_xmit: | |||
62 | Only valid when NETIF_F_LLTX is set. | 62 | Only valid when NETIF_F_LLTX is set. |
63 | 63 | ||
64 | dev->tx_timeout: | 64 | dev->tx_timeout: |
65 | Synchronization: dev->xmit_lock spinlock. | 65 | Synchronization: netif_tx_lock spinlock. |
66 | Context: BHs disabled | 66 | Context: BHs disabled |
67 | Notes: netif_queue_stopped() is guaranteed true | 67 | Notes: netif_queue_stopped() is guaranteed true |
68 | 68 | ||
69 | dev->set_multicast_list: | 69 | dev->set_multicast_list: |
70 | Synchronization: dev->xmit_lock spinlock. | 70 | Synchronization: netif_tx_lock spinlock. |
71 | Context: BHs disabled | 71 | Context: BHs disabled |
72 | 72 | ||
73 | dev->poll: | 73 | dev->poll: |
diff --git a/Documentation/networking/tuntap.txt b/Documentation/networking/tuntap.txt index 76750fb9151a..839cbb71388b 100644 --- a/Documentation/networking/tuntap.txt +++ b/Documentation/networking/tuntap.txt | |||
@@ -39,10 +39,13 @@ Copyright (C) 1999-2000 Maxim Krasnyansky <max_mk@yahoo.com> | |||
39 | mknod /dev/net/tun c 10 200 | 39 | mknod /dev/net/tun c 10 200 |
40 | 40 | ||
41 | Set permissions: | 41 | Set permissions: |
42 | e.g. chmod 0700 /dev/net/tun | 42 | e.g. chmod 0666 /dev/net/tun |
43 | if you want the device only accessible by root. Giving regular users the | 43 | There's no harm in allowing the device to be accessible by non-root users, |
44 | right to assign network devices is NOT a good idea. Users could assign | 44 | since CAP_NET_ADMIN is required for creating network devices or for |
45 | bogus network interfaces to trick firewalls or administrators. | 45 | connecting to network devices which aren't owned by the user in question. |
46 | If you want to create persistent devices and give ownership of them to | ||
47 | unprivileged users, then you need the /dev/net/tun device to be usable by | ||
48 | those users. | ||
46 | 49 | ||
47 | Driver module autoloading | 50 | Driver module autoloading |
48 | 51 | ||
diff --git a/Documentation/pci.txt b/Documentation/pci.txt index 66bbbf1d1ef6..3242e5c1ee9c 100644 --- a/Documentation/pci.txt +++ b/Documentation/pci.txt | |||
@@ -213,9 +213,17 @@ have been remapped by the kernel. | |||
213 | 213 | ||
214 | See Documentation/IO-mapping.txt for how to access device memory. | 214 | See Documentation/IO-mapping.txt for how to access device memory. |
215 | 215 | ||
216 | You still need to call request_region() for I/O regions and | 216 | The device driver needs to call pci_request_region() to make sure |
217 | request_mem_region() for memory regions to make sure nobody else is using the | 217 | no other device is already using the same resource. The driver is expected |
218 | same device. | 218 | to determine MMIO and IO Port resource availability _before_ calling |
219 | pci_enable_device(). Conversely, drivers should call pci_release_region() | ||
220 | _after_ calling pci_disable_device(). The idea is to prevent two devices | ||
221 | colliding on the same address range. | ||
222 | |||
223 | Generic flavors of pci_request_region() are request_mem_region() | ||
224 | (for MMIO ranges) and request_region() (for IO Port ranges). | ||
225 | Use these for address resources that are not described by "normal" PCI | ||
226 | interfaces (e.g. BAR). | ||
219 | 227 | ||
220 | All interrupt handlers should be registered with SA_SHIRQ and use the devid | 228 | All interrupt handlers should be registered with SA_SHIRQ and use the devid |
221 | to map IRQs to devices (remember that all PCI interrupts are shared). | 229 | to map IRQs to devices (remember that all PCI interrupts are shared). |
diff --git a/Documentation/pi-futex.txt b/Documentation/pi-futex.txt new file mode 100644 index 000000000000..5d61dacd21f6 --- /dev/null +++ b/Documentation/pi-futex.txt | |||
@@ -0,0 +1,121 @@ | |||
1 | Lightweight PI-futexes | ||
2 | ---------------------- | ||
3 | |||
4 | We are calling them lightweight for 3 reasons: | ||
5 | |||
6 | - in the user-space fastpath a PI-enabled futex involves no kernel work | ||
7 | (or any other PI complexity) at all. No registration, no extra kernel | ||
8 | calls - just pure fast atomic ops in userspace. | ||
9 | |||
10 | - even in the slowpath, the system call and scheduling pattern is very | ||
11 | similar to normal futexes. | ||
12 | |||
13 | - the in-kernel PI implementation is streamlined around the mutex | ||
14 | abstraction, with strict rules that keep the implementation | ||
15 | relatively simple: only a single owner may own a lock (i.e. no | ||
16 | read-write lock support), only the owner may unlock a lock, no | ||
17 | recursive locking, etc. | ||
18 | |||
19 | Priority Inheritance - why? | ||
20 | --------------------------- | ||
21 | |||
22 | The short reply: user-space PI helps achieving/improving determinism for | ||
23 | user-space applications. In the best-case, it can help achieve | ||
24 | determinism and well-bound latencies. Even in the worst-case, PI will | ||
25 | improve the statistical distribution of locking related application | ||
26 | delays. | ||
27 | |||
28 | The longer reply: | ||
29 | ----------------- | ||
30 | |||
31 | Firstly, sharing locks between multiple tasks is a common programming | ||
32 | technique that often cannot be replaced with lockless algorithms. As we | ||
33 | can see it in the kernel [which is a quite complex program in itself], | ||
34 | lockless structures are rather the exception than the norm - the current | ||
35 | ratio of lockless vs. locky code for shared data structures is somewhere | ||
36 | between 1:10 and 1:100. Lockless is hard, and the complexity of lockless | ||
37 | algorithms often endangers to ability to do robust reviews of said code. | ||
38 | I.e. critical RT apps often choose lock structures to protect critical | ||
39 | data structures, instead of lockless algorithms. Furthermore, there are | ||
40 | cases (like shared hardware, or other resource limits) where lockless | ||
41 | access is mathematically impossible. | ||
42 | |||
43 | Media players (such as Jack) are an example of reasonable application | ||
44 | design with multiple tasks (with multiple priority levels) sharing | ||
45 | short-held locks: for example, a highprio audio playback thread is | ||
46 | combined with medium-prio construct-audio-data threads and low-prio | ||
47 | display-colory-stuff threads. Add video and decoding to the mix and | ||
48 | we've got even more priority levels. | ||
49 | |||
50 | So once we accept that synchronization objects (locks) are an | ||
51 | unavoidable fact of life, and once we accept that multi-task userspace | ||
52 | apps have a very fair expectation of being able to use locks, we've got | ||
53 | to think about how to offer the option of a deterministic locking | ||
54 | implementation to user-space. | ||
55 | |||
56 | Most of the technical counter-arguments against doing priority | ||
57 | inheritance only apply to kernel-space locks. But user-space locks are | ||
58 | different, there we cannot disable interrupts or make the task | ||
59 | non-preemptible in a critical section, so the 'use spinlocks' argument | ||
60 | does not apply (user-space spinlocks have the same priority inversion | ||
61 | problems as other user-space locking constructs). Fact is, pretty much | ||
62 | the only technique that currently enables good determinism for userspace | ||
63 | locks (such as futex-based pthread mutexes) is priority inheritance: | ||
64 | |||
65 | Currently (without PI), if a high-prio and a low-prio task shares a lock | ||
66 | [this is a quite common scenario for most non-trivial RT applications], | ||
67 | even if all critical sections are coded carefully to be deterministic | ||
68 | (i.e. all critical sections are short in duration and only execute a | ||
69 | limited number of instructions), the kernel cannot guarantee any | ||
70 | deterministic execution of the high-prio task: any medium-priority task | ||
71 | could preempt the low-prio task while it holds the shared lock and | ||
72 | executes the critical section, and could delay it indefinitely. | ||
73 | |||
74 | Implementation: | ||
75 | --------------- | ||
76 | |||
77 | As mentioned before, the userspace fastpath of PI-enabled pthread | ||
78 | mutexes involves no kernel work at all - they behave quite similarly to | ||
79 | normal futex-based locks: a 0 value means unlocked, and a value==TID | ||
80 | means locked. (This is the same method as used by list-based robust | ||
81 | futexes.) Userspace uses atomic ops to lock/unlock these mutexes without | ||
82 | entering the kernel. | ||
83 | |||
84 | To handle the slowpath, we have added two new futex ops: | ||
85 | |||
86 | FUTEX_LOCK_PI | ||
87 | FUTEX_UNLOCK_PI | ||
88 | |||
89 | If the lock-acquire fastpath fails, [i.e. an atomic transition from 0 to | ||
90 | TID fails], then FUTEX_LOCK_PI is called. The kernel does all the | ||
91 | remaining work: if there is no futex-queue attached to the futex address | ||
92 | yet then the code looks up the task that owns the futex [it has put its | ||
93 | own TID into the futex value], and attaches a 'PI state' structure to | ||
94 | the futex-queue. The pi_state includes an rt-mutex, which is a PI-aware, | ||
95 | kernel-based synchronization object. The 'other' task is made the owner | ||
96 | of the rt-mutex, and the FUTEX_WAITERS bit is atomically set in the | ||
97 | futex value. Then this task tries to lock the rt-mutex, on which it | ||
98 | blocks. Once it returns, it has the mutex acquired, and it sets the | ||
99 | futex value to its own TID and returns. Userspace has no other work to | ||
100 | perform - it now owns the lock, and futex value contains | ||
101 | FUTEX_WAITERS|TID. | ||
102 | |||
103 | If the unlock side fastpath succeeds, [i.e. userspace manages to do a | ||
104 | TID -> 0 atomic transition of the futex value], then no kernel work is | ||
105 | triggered. | ||
106 | |||
107 | If the unlock fastpath fails (because the FUTEX_WAITERS bit is set), | ||
108 | then FUTEX_UNLOCK_PI is called, and the kernel unlocks the futex on the | ||
109 | behalf of userspace - and it also unlocks the attached | ||
110 | pi_state->rt_mutex and thus wakes up any potential waiters. | ||
111 | |||
112 | Note that under this approach, contrary to previous PI-futex approaches, | ||
113 | there is no prior 'registration' of a PI-futex. [which is not quite | ||
114 | possible anyway, due to existing ABI properties of pthread mutexes.] | ||
115 | |||
116 | Also, under this scheme, 'robustness' and 'PI' are two orthogonal | ||
117 | properties of futexes, and all four combinations are possible: futex, | ||
118 | robust-futex, PI-futex, robust+PI-futex. | ||
119 | |||
120 | More details about priority inheritance can be found in | ||
121 | Documentation/rtmutex.txt. | ||
diff --git a/Documentation/power/devices.txt b/Documentation/power/devices.txt index f987afe43e28..fba1e05c47c7 100644 --- a/Documentation/power/devices.txt +++ b/Documentation/power/devices.txt | |||
@@ -135,96 +135,6 @@ HW. | |||
135 | 135 | ||
136 | FREEZE -- stop DMA and interrupts, and be prepared to reinit HW from | 136 | FREEZE -- stop DMA and interrupts, and be prepared to reinit HW from |
137 | scratch. That probably means stop accepting upstream requests, the | 137 | scratch. That probably means stop accepting upstream requests, the |
138 | actual policy of what to do with them beeing specific to a given | ||
139 | driver. It's acceptable for a network driver to just drop packets | ||
140 | while a block driver is expected to block the queue so no request is | ||
141 | lost. (Use IDE as an example on how to do that). FREEZE requires no | ||
142 | power state change, and it's expected for drivers to be able to | ||
143 | quickly transition back to operating state. | ||
144 | |||
145 | SUSPEND -- like FREEZE, but also put hardware into low-power state. If | ||
146 | there's need to distinguish several levels of sleep, additional flag | ||
147 | is probably best way to do that. | ||
148 | |||
149 | Transitions are only from a resumed state to a suspended state, never | ||
150 | between 2 suspended states. (ON -> FREEZE or ON -> SUSPEND can happen, | ||
151 | FREEZE -> SUSPEND or SUSPEND -> FREEZE can not). | ||
152 | |||
153 | All events are: | ||
154 | |||
155 | [NOTE NOTE NOTE: If you are driver author, you should not care; you | ||
156 | should only look at event, and ignore flags.] | ||
157 | |||
158 | #Prepare for suspend -- userland is still running but we are going to | ||
159 | #enter suspend state. This gives drivers chance to load firmware from | ||
160 | #disk and store it in memory, or do other activities taht require | ||
161 | #operating userland, ability to kmalloc GFP_KERNEL, etc... All of these | ||
162 | #are forbiden once the suspend dance is started.. event = ON, flags = | ||
163 | #PREPARE_TO_SUSPEND | ||
164 | |||
165 | Apm standby -- prepare for APM event. Quiesce devices to make life | ||
166 | easier for APM BIOS. event = FREEZE, flags = APM_STANDBY | ||
167 | |||
168 | Apm suspend -- same as APM_STANDBY, but it we should probably avoid | ||
169 | spinning down disks. event = FREEZE, flags = APM_SUSPEND | ||
170 | |||
171 | System halt, reboot -- quiesce devices to make life easier for BIOS. event | ||
172 | = FREEZE, flags = SYSTEM_HALT or SYSTEM_REBOOT | ||
173 | |||
174 | System shutdown -- at least disks need to be spun down, or data may be | ||
175 | lost. Quiesce devices, just to make life easier for BIOS. event = | ||
176 | FREEZE, flags = SYSTEM_SHUTDOWN | ||
177 | |||
178 | Kexec -- turn off DMAs and put hardware into some state where new | ||
179 | kernel can take over. event = FREEZE, flags = KEXEC | ||
180 | |||
181 | Powerdown at end of swsusp -- very similar to SYSTEM_SHUTDOWN, except wake | ||
182 | may need to be enabled on some devices. This actually has at least 3 | ||
183 | subtypes, system can reboot, enter S4 and enter S5 at the end of | ||
184 | swsusp. event = FREEZE, flags = SWSUSP and one of SYSTEM_REBOOT, | ||
185 | SYSTEM_SHUTDOWN, SYSTEM_S4 | ||
186 | |||
187 | Suspend to ram -- put devices into low power state. event = SUSPEND, | ||
188 | flags = SUSPEND_TO_RAM | ||
189 | |||
190 | Freeze for swsusp snapshot -- stop DMA and interrupts. No need to put | ||
191 | devices into low power mode, but you must be able to reinitialize | ||
192 | device from scratch in resume method. This has two flavors, its done | ||
193 | once on suspending kernel, once on resuming kernel. event = FREEZE, | ||
194 | flags = DURING_SUSPEND or DURING_RESUME | ||
195 | |||
196 | Device detach requested from /sys -- deinitialize device; proably same as | ||
197 | SYSTEM_SHUTDOWN, I do not understand this one too much. probably event | ||
198 | = FREEZE, flags = DEV_DETACH. | ||
199 | |||
200 | #These are not really events sent: | ||
201 | # | ||
202 | #System fully on -- device is working normally; this is probably never | ||
203 | #passed to suspend() method... event = ON, flags = 0 | ||
204 | # | ||
205 | #Ready after resume -- userland is now running, again. Time to free any | ||
206 | #memory you ate during prepare to suspend... event = ON, flags = | ||
207 | #READY_AFTER_RESUME | ||
208 | # | ||
209 | |||
210 | |||
211 | pm_message_t meaning | ||
212 | |||
213 | pm_message_t has two fields. event ("major"), and flags. If driver | ||
214 | does not know event code, it aborts the request, returning error. Some | ||
215 | drivers may need to deal with special cases based on the actual type | ||
216 | of suspend operation being done at the system level. This is why | ||
217 | there are flags. | ||
218 | |||
219 | Event codes are: | ||
220 | |||
221 | ON -- no need to do anything except special cases like broken | ||
222 | HW. | ||
223 | |||
224 | # NOTIFICATION -- pretty much same as ON? | ||
225 | |||
226 | FREEZE -- stop DMA and interrupts, and be prepared to reinit HW from | ||
227 | scratch. That probably means stop accepting upstream requests, the | ||
228 | actual policy of what to do with them being specific to a given | 138 | actual policy of what to do with them being specific to a given |
229 | driver. It's acceptable for a network driver to just drop packets | 139 | driver. It's acceptable for a network driver to just drop packets |
230 | while a block driver is expected to block the queue so no request is | 140 | while a block driver is expected to block the queue so no request is |
diff --git a/Documentation/power/swsusp.txt b/Documentation/power/swsusp.txt index d7814a113ee1..823b2cf6e3dc 100644 --- a/Documentation/power/swsusp.txt +++ b/Documentation/power/swsusp.txt | |||
@@ -18,10 +18,11 @@ Some warnings, first. | |||
18 | * | 18 | * |
19 | * (*) suspend/resume support is needed to make it safe. | 19 | * (*) suspend/resume support is needed to make it safe. |
20 | * | 20 | * |
21 | * If you have any filesystems on USB devices mounted before suspend, | 21 | * If you have any filesystems on USB devices mounted before software suspend, |
22 | * they won't be accessible after resume and you may lose data, as though | 22 | * they won't be accessible after resume and you may lose data, as though |
23 | * you have unplugged the USB devices with mounted filesystems on them | 23 | * you have unplugged the USB devices with mounted filesystems on them; |
24 | * (see the FAQ below for details). | 24 | * see the FAQ below for details. (This is not true for more traditional |
25 | * power states like "standby", which normally don't turn USB off.) | ||
25 | 26 | ||
26 | You need to append resume=/dev/your_swap_partition to kernel command | 27 | You need to append resume=/dev/your_swap_partition to kernel command |
27 | line. Then you suspend by | 28 | line. Then you suspend by |
@@ -204,7 +205,7 @@ Q: There don't seem to be any generally useful behavioral | |||
204 | distinctions between SUSPEND and FREEZE. | 205 | distinctions between SUSPEND and FREEZE. |
205 | 206 | ||
206 | A: Doing SUSPEND when you are asked to do FREEZE is always correct, | 207 | A: Doing SUSPEND when you are asked to do FREEZE is always correct, |
207 | but it may be unneccessarily slow. If you want USB to stay simple, | 208 | but it may be unneccessarily slow. If you want your driver to stay simple, |
208 | slowness may not matter to you. It can always be fixed later. | 209 | slowness may not matter to you. It can always be fixed later. |
209 | 210 | ||
210 | For devices like disk it does matter, you do not want to spindown for | 211 | For devices like disk it does matter, you do not want to spindown for |
@@ -349,25 +350,72 @@ Q: How do I make suspend more verbose? | |||
349 | 350 | ||
350 | A: If you want to see any non-error kernel messages on the virtual | 351 | A: If you want to see any non-error kernel messages on the virtual |
351 | terminal the kernel switches to during suspend, you have to set the | 352 | terminal the kernel switches to during suspend, you have to set the |
352 | kernel console loglevel to at least 5, for example by doing | 353 | kernel console loglevel to at least 4 (KERN_WARNING), for example by |
353 | 354 | doing | |
354 | echo 5 > /proc/sys/kernel/printk | 355 | |
356 | # save the old loglevel | ||
357 | read LOGLEVEL DUMMY < /proc/sys/kernel/printk | ||
358 | # set the loglevel so we see the progress bar. | ||
359 | # if the level is higher than needed, we leave it alone. | ||
360 | if [ $LOGLEVEL -lt 5 ]; then | ||
361 | echo 5 > /proc/sys/kernel/printk | ||
362 | fi | ||
363 | |||
364 | IMG_SZ=0 | ||
365 | read IMG_SZ < /sys/power/image_size | ||
366 | echo -n disk > /sys/power/state | ||
367 | RET=$? | ||
368 | # | ||
369 | # the logic here is: | ||
370 | # if image_size > 0 (without kernel support, IMG_SZ will be zero), | ||
371 | # then try again with image_size set to zero. | ||
372 | if [ $RET -ne 0 -a $IMG_SZ -ne 0 ]; then # try again with minimal image size | ||
373 | echo 0 > /sys/power/image_size | ||
374 | echo -n disk > /sys/power/state | ||
375 | RET=$? | ||
376 | fi | ||
377 | |||
378 | # restore previous loglevel | ||
379 | echo $LOGLEVEL > /proc/sys/kernel/printk | ||
380 | exit $RET | ||
355 | 381 | ||
356 | Q: Is this true that if I have a mounted filesystem on a USB device and | 382 | Q: Is this true that if I have a mounted filesystem on a USB device and |
357 | I suspend to disk, I can lose data unless the filesystem has been mounted | 383 | I suspend to disk, I can lose data unless the filesystem has been mounted |
358 | with "sync"? | 384 | with "sync"? |
359 | 385 | ||
360 | A: That's right. It depends on your hardware, and it could be true even for | 386 | A: That's right ... if you disconnect that device, you may lose data. |
361 | suspend-to-RAM. In fact, even with "-o sync" you can lose data if your | 387 | In fact, even with "-o sync" you can lose data if your programs have |
362 | programs have information in buffers they haven't written out to disk. | 388 | information in buffers they haven't written out to a disk you disconnect, |
389 | or if you disconnect before the device finished saving data you wrote. | ||
363 | 390 | ||
364 | If you're lucky, your hardware will support low-power modes for USB | 391 | Software suspend normally powers down USB controllers, which is equivalent |
365 | controllers while the system is asleep. Lots of hardware doesn't, | 392 | to disconnecting all USB devices attached to your system. |
366 | however. Shutting off the power to a USB controller is equivalent to | ||
367 | unplugging all the attached devices. | ||
368 | 393 | ||
369 | Remember that it's always a bad idea to unplug a disk drive containing a | 394 | Your system might well support low-power modes for its USB controllers |
370 | mounted filesystem. With USB that's true even when your system is asleep! | 395 | while the system is asleep, maintaining the connection, using true sleep |
371 | The safest thing is to unmount all USB-based filesystems before suspending | 396 | modes like "suspend-to-RAM" or "standby". (Don't write "disk" to the |
372 | and remount them after resuming. | 397 | /sys/power/state file; write "standby" or "mem".) We've not seen any |
398 | hardware that can use these modes through software suspend, although in | ||
399 | theory some systems might support "platform" or "firmware" modes that | ||
400 | won't break the USB connections. | ||
373 | 401 | ||
402 | Remember that it's always a bad idea to unplug a disk drive containing a | ||
403 | mounted filesystem. That's true even when your system is asleep! The | ||
404 | safest thing is to unmount all filesystems on removable media (such USB, | ||
405 | Firewire, CompactFlash, MMC, external SATA, or even IDE hotplug bays) | ||
406 | before suspending; then remount them after resuming. | ||
407 | |||
408 | Q: I upgraded the kernel from 2.6.15 to 2.6.16. Both kernels were | ||
409 | compiled with the similar configuration files. Anyway I found that | ||
410 | suspend to disk (and resume) is much slower on 2.6.16 compared to | ||
411 | 2.6.15. Any idea for why that might happen or how can I speed it up? | ||
412 | |||
413 | A: This is because the size of the suspend image is now greater than | ||
414 | for 2.6.15 (by saving more data we can get more responsive system | ||
415 | after resume). | ||
416 | |||
417 | There's the /sys/power/image_size knob that controls the size of the | ||
418 | image. If you set it to 0 (eg. by echo 0 > /sys/power/image_size as | ||
419 | root), the 2.6.15 behavior should be restored. If it is still too | ||
420 | slow, take a look at suspend.sf.net -- userland suspend is faster and | ||
421 | supports LZF compression to speed it up further. | ||
diff --git a/Documentation/power/video.txt b/Documentation/power/video.txt index 43a889f8f08d..d859faa3a463 100644 --- a/Documentation/power/video.txt +++ b/Documentation/power/video.txt | |||
@@ -90,6 +90,7 @@ Table of known working notebooks: | |||
90 | Model hack (or "how to do it") | 90 | Model hack (or "how to do it") |
91 | ------------------------------------------------------------------------------ | 91 | ------------------------------------------------------------------------------ |
92 | Acer Aspire 1406LC ole's late BIOS init (7), turn off DRI | 92 | Acer Aspire 1406LC ole's late BIOS init (7), turn off DRI |
93 | Acer TM 230 s3_bios (2) | ||
93 | Acer TM 242FX vbetool (6) | 94 | Acer TM 242FX vbetool (6) |
94 | Acer TM C110 video_post (8) | 95 | Acer TM C110 video_post (8) |
95 | Acer TM C300 vga=normal (only suspend on console, not in X), vbetool (6) or video_post (8) | 96 | Acer TM C300 vga=normal (only suspend on console, not in X), vbetool (6) or video_post (8) |
@@ -115,6 +116,7 @@ Dell D610 vga=normal and X (possibly vbestate (6) too, but not tested) | |||
115 | Dell Inspiron 4000 ??? (*) | 116 | Dell Inspiron 4000 ??? (*) |
116 | Dell Inspiron 500m ??? (*) | 117 | Dell Inspiron 500m ??? (*) |
117 | Dell Inspiron 510m ??? | 118 | Dell Inspiron 510m ??? |
119 | Dell Inspiron 5150 vbetool needed (6) | ||
118 | Dell Inspiron 600m ??? (*) | 120 | Dell Inspiron 600m ??? (*) |
119 | Dell Inspiron 8200 ??? (*) | 121 | Dell Inspiron 8200 ??? (*) |
120 | Dell Inspiron 8500 ??? (*) | 122 | Dell Inspiron 8500 ??? (*) |
@@ -125,6 +127,7 @@ HP NX7000 ??? (*) | |||
125 | HP Pavilion ZD7000 vbetool post needed, need open-source nv driver for X | 127 | HP Pavilion ZD7000 vbetool post needed, need open-source nv driver for X |
126 | HP Omnibook XE3 athlon version none (1) | 128 | HP Omnibook XE3 athlon version none (1) |
127 | HP Omnibook XE3GC none (1), video is S3 Savage/IX-MV | 129 | HP Omnibook XE3GC none (1), video is S3 Savage/IX-MV |
130 | HP Omnibook XE3L-GF vbetool (6) | ||
128 | HP Omnibook 5150 none (1), (S1 also works OK) | 131 | HP Omnibook 5150 none (1), (S1 also works OK) |
129 | IBM TP T20, model 2647-44G none (1), video is S3 Inc. 86C270-294 Savage/IX-MV, vesafb gets "interesting" but X work. | 132 | IBM TP T20, model 2647-44G none (1), video is S3 Inc. 86C270-294 Savage/IX-MV, vesafb gets "interesting" but X work. |
130 | IBM TP A31 / Type 2652-M5G s3_mode (3) [works ok with BIOS 1.04 2002-08-23, but not at all with BIOS 1.11 2004-11-05 :-(] | 133 | IBM TP A31 / Type 2652-M5G s3_mode (3) [works ok with BIOS 1.04 2002-08-23, but not at all with BIOS 1.11 2004-11-05 :-(] |
@@ -157,6 +160,7 @@ Sony Vaio vgn-s260 X or boot-radeon can init it (5) | |||
157 | Sony Vaio vgn-S580BH vga=normal, but suspend from X. Console will be blank unless you return to X. | 160 | Sony Vaio vgn-S580BH vga=normal, but suspend from X. Console will be blank unless you return to X. |
158 | Sony Vaio vgn-FS115B s3_bios (2),s3_mode (4) | 161 | Sony Vaio vgn-FS115B s3_bios (2),s3_mode (4) |
159 | Toshiba Libretto L5 none (1) | 162 | Toshiba Libretto L5 none (1) |
163 | Toshiba Libretto 100CT/110CT vbetool (6) | ||
160 | Toshiba Portege 3020CT s3_mode (3) | 164 | Toshiba Portege 3020CT s3_mode (3) |
161 | Toshiba Satellite 4030CDT s3_mode (3) (S1 also works OK) | 165 | Toshiba Satellite 4030CDT s3_mode (3) (S1 also works OK) |
162 | Toshiba Satellite 4080XCDT s3_mode (3) (S1 also works OK) | 166 | Toshiba Satellite 4080XCDT s3_mode (3) (S1 also works OK) |
diff --git a/Documentation/robust-futexes.txt b/Documentation/robust-futexes.txt index df82d75245a0..76e8064b8c3a 100644 --- a/Documentation/robust-futexes.txt +++ b/Documentation/robust-futexes.txt | |||
@@ -95,7 +95,7 @@ comparison. If the thread has registered a list, then normally the list | |||
95 | is empty. If the thread/process crashed or terminated in some incorrect | 95 | is empty. If the thread/process crashed or terminated in some incorrect |
96 | way then the list might be non-empty: in this case the kernel carefully | 96 | way then the list might be non-empty: in this case the kernel carefully |
97 | walks the list [not trusting it], and marks all locks that are owned by | 97 | walks the list [not trusting it], and marks all locks that are owned by |
98 | this thread with the FUTEX_OWNER_DEAD bit, and wakes up one waiter (if | 98 | this thread with the FUTEX_OWNER_DIED bit, and wakes up one waiter (if |
99 | any). | 99 | any). |
100 | 100 | ||
101 | The list is guaranteed to be private and per-thread at do_exit() time, | 101 | The list is guaranteed to be private and per-thread at do_exit() time, |
diff --git a/Documentation/rt-mutex-design.txt b/Documentation/rt-mutex-design.txt new file mode 100644 index 000000000000..c472ffacc2f6 --- /dev/null +++ b/Documentation/rt-mutex-design.txt | |||
@@ -0,0 +1,781 @@ | |||
1 | # | ||
2 | # Copyright (c) 2006 Steven Rostedt | ||
3 | # Licensed under the GNU Free Documentation License, Version 1.2 | ||
4 | # | ||
5 | |||
6 | RT-mutex implementation design | ||
7 | ------------------------------ | ||
8 | |||
9 | This document tries to describe the design of the rtmutex.c implementation. | ||
10 | It doesn't describe the reasons why rtmutex.c exists. For that please see | ||
11 | Documentation/rt-mutex.txt. Although this document does explain problems | ||
12 | that happen without this code, but that is in the concept to understand | ||
13 | what the code actually is doing. | ||
14 | |||
15 | The goal of this document is to help others understand the priority | ||
16 | inheritance (PI) algorithm that is used, as well as reasons for the | ||
17 | decisions that were made to implement PI in the manner that was done. | ||
18 | |||
19 | |||
20 | Unbounded Priority Inversion | ||
21 | ---------------------------- | ||
22 | |||
23 | Priority inversion is when a lower priority process executes while a higher | ||
24 | priority process wants to run. This happens for several reasons, and | ||
25 | most of the time it can't be helped. Anytime a high priority process wants | ||
26 | to use a resource that a lower priority process has (a mutex for example), | ||
27 | the high priority process must wait until the lower priority process is done | ||
28 | with the resource. This is a priority inversion. What we want to prevent | ||
29 | is something called unbounded priority inversion. That is when the high | ||
30 | priority process is prevented from running by a lower priority process for | ||
31 | an undetermined amount of time. | ||
32 | |||
33 | The classic example of unbounded priority inversion is were you have three | ||
34 | processes, let's call them processes A, B, and C, where A is the highest | ||
35 | priority process, C is the lowest, and B is in between. A tries to grab a lock | ||
36 | that C owns and must wait and lets C run to release the lock. But in the | ||
37 | meantime, B executes, and since B is of a higher priority than C, it preempts C, | ||
38 | but by doing so, it is in fact preempting A which is a higher priority process. | ||
39 | Now there's no way of knowing how long A will be sleeping waiting for C | ||
40 | to release the lock, because for all we know, B is a CPU hog and will | ||
41 | never give C a chance to release the lock. This is called unbounded priority | ||
42 | inversion. | ||
43 | |||
44 | Here's a little ASCII art to show the problem. | ||
45 | |||
46 | grab lock L1 (owned by C) | ||
47 | | | ||
48 | A ---+ | ||
49 | C preempted by B | ||
50 | | | ||
51 | C +----+ | ||
52 | |||
53 | B +--------> | ||
54 | B now keeps A from running. | ||
55 | |||
56 | |||
57 | Priority Inheritance (PI) | ||
58 | ------------------------- | ||
59 | |||
60 | There are several ways to solve this issue, but other ways are out of scope | ||
61 | for this document. Here we only discuss PI. | ||
62 | |||
63 | PI is where a process inherits the priority of another process if the other | ||
64 | process blocks on a lock owned by the current process. To make this easier | ||
65 | to understand, let's use the previous example, with processes A, B, and C again. | ||
66 | |||
67 | This time, when A blocks on the lock owned by C, C would inherit the priority | ||
68 | of A. So now if B becomes runnable, it would not preempt C, since C now has | ||
69 | the high priority of A. As soon as C releases the lock, it loses its | ||
70 | inherited priority, and A then can continue with the resource that C had. | ||
71 | |||
72 | Terminology | ||
73 | ----------- | ||
74 | |||
75 | Here I explain some terminology that is used in this document to help describe | ||
76 | the design that is used to implement PI. | ||
77 | |||
78 | PI chain - The PI chain is an ordered series of locks and processes that cause | ||
79 | processes to inherit priorities from a previous process that is | ||
80 | blocked on one of its locks. This is described in more detail | ||
81 | later in this document. | ||
82 | |||
83 | mutex - In this document, to differentiate from locks that implement | ||
84 | PI and spin locks that are used in the PI code, from now on | ||
85 | the PI locks will be called a mutex. | ||
86 | |||
87 | lock - In this document from now on, I will use the term lock when | ||
88 | referring to spin locks that are used to protect parts of the PI | ||
89 | algorithm. These locks disable preemption for UP (when | ||
90 | CONFIG_PREEMPT is enabled) and on SMP prevents multiple CPUs from | ||
91 | entering critical sections simultaneously. | ||
92 | |||
93 | spin lock - Same as lock above. | ||
94 | |||
95 | waiter - A waiter is a struct that is stored on the stack of a blocked | ||
96 | process. Since the scope of the waiter is within the code for | ||
97 | a process being blocked on the mutex, it is fine to allocate | ||
98 | the waiter on the process's stack (local variable). This | ||
99 | structure holds a pointer to the task, as well as the mutex that | ||
100 | the task is blocked on. It also has the plist node structures to | ||
101 | place the task in the waiter_list of a mutex as well as the | ||
102 | pi_list of a mutex owner task (described below). | ||
103 | |||
104 | waiter is sometimes used in reference to the task that is waiting | ||
105 | on a mutex. This is the same as waiter->task. | ||
106 | |||
107 | waiters - A list of processes that are blocked on a mutex. | ||
108 | |||
109 | top waiter - The highest priority process waiting on a specific mutex. | ||
110 | |||
111 | top pi waiter - The highest priority process waiting on one of the mutexes | ||
112 | that a specific process owns. | ||
113 | |||
114 | Note: task and process are used interchangeably in this document, mostly to | ||
115 | differentiate between two processes that are being described together. | ||
116 | |||
117 | |||
118 | PI chain | ||
119 | -------- | ||
120 | |||
121 | The PI chain is a list of processes and mutexes that may cause priority | ||
122 | inheritance to take place. Multiple chains may converge, but a chain | ||
123 | would never diverge, since a process can't be blocked on more than one | ||
124 | mutex at a time. | ||
125 | |||
126 | Example: | ||
127 | |||
128 | Process: A, B, C, D, E | ||
129 | Mutexes: L1, L2, L3, L4 | ||
130 | |||
131 | A owns: L1 | ||
132 | B blocked on L1 | ||
133 | B owns L2 | ||
134 | C blocked on L2 | ||
135 | C owns L3 | ||
136 | D blocked on L3 | ||
137 | D owns L4 | ||
138 | E blocked on L4 | ||
139 | |||
140 | The chain would be: | ||
141 | |||
142 | E->L4->D->L3->C->L2->B->L1->A | ||
143 | |||
144 | To show where two chains merge, we could add another process F and | ||
145 | another mutex L5 where B owns L5 and F is blocked on mutex L5. | ||
146 | |||
147 | The chain for F would be: | ||
148 | |||
149 | F->L5->B->L1->A | ||
150 | |||
151 | Since a process may own more than one mutex, but never be blocked on more than | ||
152 | one, the chains merge. | ||
153 | |||
154 | Here we show both chains: | ||
155 | |||
156 | E->L4->D->L3->C->L2-+ | ||
157 | | | ||
158 | +->B->L1->A | ||
159 | | | ||
160 | F->L5-+ | ||
161 | |||
162 | For PI to work, the processes at the right end of these chains (or we may | ||
163 | also call it the Top of the chain) must be equal to or higher in priority | ||
164 | than the processes to the left or below in the chain. | ||
165 | |||
166 | Also since a mutex may have more than one process blocked on it, we can | ||
167 | have multiple chains merge at mutexes. If we add another process G that is | ||
168 | blocked on mutex L2: | ||
169 | |||
170 | G->L2->B->L1->A | ||
171 | |||
172 | And once again, to show how this can grow I will show the merging chains | ||
173 | again. | ||
174 | |||
175 | E->L4->D->L3->C-+ | ||
176 | +->L2-+ | ||
177 | | | | ||
178 | G-+ +->B->L1->A | ||
179 | | | ||
180 | F->L5-+ | ||
181 | |||
182 | |||
183 | Plist | ||
184 | ----- | ||
185 | |||
186 | Before I go further and talk about how the PI chain is stored through lists | ||
187 | on both mutexes and processes, I'll explain the plist. This is similar to | ||
188 | the struct list_head functionality that is already in the kernel. | ||
189 | The implementation of plist is out of scope for this document, but it is | ||
190 | very important to understand what it does. | ||
191 | |||
192 | There are a few differences between plist and list, the most important one | ||
193 | being that plist is a priority sorted linked list. This means that the | ||
194 | priorities of the plist are sorted, such that it takes O(1) to retrieve the | ||
195 | highest priority item in the list. Obviously this is useful to store processes | ||
196 | based on their priorities. | ||
197 | |||
198 | Another difference, which is important for implementation, is that, unlike | ||
199 | list, the head of the list is a different element than the nodes of a list. | ||
200 | So the head of the list is declared as struct plist_head and nodes that will | ||
201 | be added to the list are declared as struct plist_node. | ||
202 | |||
203 | |||
204 | Mutex Waiter List | ||
205 | ----------------- | ||
206 | |||
207 | Every mutex keeps track of all the waiters that are blocked on itself. The mutex | ||
208 | has a plist to store these waiters by priority. This list is protected by | ||
209 | a spin lock that is located in the struct of the mutex. This lock is called | ||
210 | wait_lock. Since the modification of the waiter list is never done in | ||
211 | interrupt context, the wait_lock can be taken without disabling interrupts. | ||
212 | |||
213 | |||
214 | Task PI List | ||
215 | ------------ | ||
216 | |||
217 | To keep track of the PI chains, each process has its own PI list. This is | ||
218 | a list of all top waiters of the mutexes that are owned by the process. | ||
219 | Note that this list only holds the top waiters and not all waiters that are | ||
220 | blocked on mutexes owned by the process. | ||
221 | |||
222 | The top of the task's PI list is always the highest priority task that | ||
223 | is waiting on a mutex that is owned by the task. So if the task has | ||
224 | inherited a priority, it will always be the priority of the task that is | ||
225 | at the top of this list. | ||
226 | |||
227 | This list is stored in the task structure of a process as a plist called | ||
228 | pi_list. This list is protected by a spin lock also in the task structure, | ||
229 | called pi_lock. This lock may also be taken in interrupt context, so when | ||
230 | locking the pi_lock, interrupts must be disabled. | ||
231 | |||
232 | |||
233 | Depth of the PI Chain | ||
234 | --------------------- | ||
235 | |||
236 | The maximum depth of the PI chain is not dynamic, and could actually be | ||
237 | defined. But is very complex to figure it out, since it depends on all | ||
238 | the nesting of mutexes. Let's look at the example where we have 3 mutexes, | ||
239 | L1, L2, and L3, and four separate functions func1, func2, func3 and func4. | ||
240 | The following shows a locking order of L1->L2->L3, but may not actually | ||
241 | be directly nested that way. | ||
242 | |||
243 | void func1(void) | ||
244 | { | ||
245 | mutex_lock(L1); | ||
246 | |||
247 | /* do anything */ | ||
248 | |||
249 | mutex_unlock(L1); | ||
250 | } | ||
251 | |||
252 | void func2(void) | ||
253 | { | ||
254 | mutex_lock(L1); | ||
255 | mutex_lock(L2); | ||
256 | |||
257 | /* do something */ | ||
258 | |||
259 | mutex_unlock(L2); | ||
260 | mutex_unlock(L1); | ||
261 | } | ||
262 | |||
263 | void func3(void) | ||
264 | { | ||
265 | mutex_lock(L2); | ||
266 | mutex_lock(L3); | ||
267 | |||
268 | /* do something else */ | ||
269 | |||
270 | mutex_unlock(L3); | ||
271 | mutex_unlock(L2); | ||
272 | } | ||
273 | |||
274 | void func4(void) | ||
275 | { | ||
276 | mutex_lock(L3); | ||
277 | |||
278 | /* do something again */ | ||
279 | |||
280 | mutex_unlock(L3); | ||
281 | } | ||
282 | |||
283 | Now we add 4 processes that run each of these functions separately. | ||
284 | Processes A, B, C, and D which run functions func1, func2, func3 and func4 | ||
285 | respectively, and such that D runs first and A last. With D being preempted | ||
286 | in func4 in the "do something again" area, we have a locking that follows: | ||
287 | |||
288 | D owns L3 | ||
289 | C blocked on L3 | ||
290 | C owns L2 | ||
291 | B blocked on L2 | ||
292 | B owns L1 | ||
293 | A blocked on L1 | ||
294 | |||
295 | And thus we have the chain A->L1->B->L2->C->L3->D. | ||
296 | |||
297 | This gives us a PI depth of 4 (four processes), but looking at any of the | ||
298 | functions individually, it seems as though they only have at most a locking | ||
299 | depth of two. So, although the locking depth is defined at compile time, | ||
300 | it still is very difficult to find the possibilities of that depth. | ||
301 | |||
302 | Now since mutexes can be defined by user-land applications, we don't want a DOS | ||
303 | type of application that nests large amounts of mutexes to create a large | ||
304 | PI chain, and have the code holding spin locks while looking at a large | ||
305 | amount of data. So to prevent this, the implementation not only implements | ||
306 | a maximum lock depth, but also only holds at most two different locks at a | ||
307 | time, as it walks the PI chain. More about this below. | ||
308 | |||
309 | |||
310 | Mutex owner and flags | ||
311 | --------------------- | ||
312 | |||
313 | The mutex structure contains a pointer to the owner of the mutex. If the | ||
314 | mutex is not owned, this owner is set to NULL. Since all architectures | ||
315 | have the task structure on at least a four byte alignment (and if this is | ||
316 | not true, the rtmutex.c code will be broken!), this allows for the two | ||
317 | least significant bits to be used as flags. This part is also described | ||
318 | in Documentation/rt-mutex.txt, but will also be briefly described here. | ||
319 | |||
320 | Bit 0 is used as the "Pending Owner" flag. This is described later. | ||
321 | Bit 1 is used as the "Has Waiters" flags. This is also described later | ||
322 | in more detail, but is set whenever there are waiters on a mutex. | ||
323 | |||
324 | |||
325 | cmpxchg Tricks | ||
326 | -------------- | ||
327 | |||
328 | Some architectures implement an atomic cmpxchg (Compare and Exchange). This | ||
329 | is used (when applicable) to keep the fast path of grabbing and releasing | ||
330 | mutexes short. | ||
331 | |||
332 | cmpxchg is basically the following function performed atomically: | ||
333 | |||
334 | unsigned long _cmpxchg(unsigned long *A, unsigned long *B, unsigned long *C) | ||
335 | { | ||
336 | unsigned long T = *A; | ||
337 | if (*A == *B) { | ||
338 | *A = *C; | ||
339 | } | ||
340 | return T; | ||
341 | } | ||
342 | #define cmpxchg(a,b,c) _cmpxchg(&a,&b,&c) | ||
343 | |||
344 | This is really nice to have, since it allows you to only update a variable | ||
345 | if the variable is what you expect it to be. You know if it succeeded if | ||
346 | the return value (the old value of A) is equal to B. | ||
347 | |||
348 | The macro rt_mutex_cmpxchg is used to try to lock and unlock mutexes. If | ||
349 | the architecture does not support CMPXCHG, then this macro is simply set | ||
350 | to fail every time. But if CMPXCHG is supported, then this will | ||
351 | help out extremely to keep the fast path short. | ||
352 | |||
353 | The use of rt_mutex_cmpxchg with the flags in the owner field help optimize | ||
354 | the system for architectures that support it. This will also be explained | ||
355 | later in this document. | ||
356 | |||
357 | |||
358 | Priority adjustments | ||
359 | -------------------- | ||
360 | |||
361 | The implementation of the PI code in rtmutex.c has several places that a | ||
362 | process must adjust its priority. With the help of the pi_list of a | ||
363 | process this is rather easy to know what needs to be adjusted. | ||
364 | |||
365 | The functions implementing the task adjustments are rt_mutex_adjust_prio, | ||
366 | __rt_mutex_adjust_prio (same as the former, but expects the task pi_lock | ||
367 | to already be taken), rt_mutex_get_prio, and rt_mutex_setprio. | ||
368 | |||
369 | rt_mutex_getprio and rt_mutex_setprio are only used in __rt_mutex_adjust_prio. | ||
370 | |||
371 | rt_mutex_getprio returns the priority that the task should have. Either the | ||
372 | task's own normal priority, or if a process of a higher priority is waiting on | ||
373 | a mutex owned by the task, then that higher priority should be returned. | ||
374 | Since the pi_list of a task holds an order by priority list of all the top | ||
375 | waiters of all the mutexes that the task owns, rt_mutex_getprio simply needs | ||
376 | to compare the top pi waiter to its own normal priority, and return the higher | ||
377 | priority back. | ||
378 | |||
379 | (Note: if looking at the code, you will notice that the lower number of | ||
380 | prio is returned. This is because the prio field in the task structure | ||
381 | is an inverse order of the actual priority. So a "prio" of 5 is | ||
382 | of higher priority than a "prio" of 10.) | ||
383 | |||
384 | __rt_mutex_adjust_prio examines the result of rt_mutex_getprio, and if the | ||
385 | result does not equal the task's current priority, then rt_mutex_setprio | ||
386 | is called to adjust the priority of the task to the new priority. | ||
387 | Note that rt_mutex_setprio is defined in kernel/sched.c to implement the | ||
388 | actual change in priority. | ||
389 | |||
390 | It is interesting to note that __rt_mutex_adjust_prio can either increase | ||
391 | or decrease the priority of the task. In the case that a higher priority | ||
392 | process has just blocked on a mutex owned by the task, __rt_mutex_adjust_prio | ||
393 | would increase/boost the task's priority. But if a higher priority task | ||
394 | were for some reason to leave the mutex (timeout or signal), this same function | ||
395 | would decrease/unboost the priority of the task. That is because the pi_list | ||
396 | always contains the highest priority task that is waiting on a mutex owned | ||
397 | by the task, so we only need to compare the priority of that top pi waiter | ||
398 | to the normal priority of the given task. | ||
399 | |||
400 | |||
401 | High level overview of the PI chain walk | ||
402 | ---------------------------------------- | ||
403 | |||
404 | The PI chain walk is implemented by the function rt_mutex_adjust_prio_chain. | ||
405 | |||
406 | The implementation has gone through several iterations, and has ended up | ||
407 | with what we believe is the best. It walks the PI chain by only grabbing | ||
408 | at most two locks at a time, and is very efficient. | ||
409 | |||
410 | The rt_mutex_adjust_prio_chain can be used either to boost or lower process | ||
411 | priorities. | ||
412 | |||
413 | rt_mutex_adjust_prio_chain is called with a task to be checked for PI | ||
414 | (de)boosting (the owner of a mutex that a process is blocking on), a flag to | ||
415 | check for deadlocking, the mutex that the task owns, and a pointer to a waiter | ||
416 | that is the process's waiter struct that is blocked on the mutex (although this | ||
417 | parameter may be NULL for deboosting). | ||
418 | |||
419 | For this explanation, I will not mention deadlock detection. This explanation | ||
420 | will try to stay at a high level. | ||
421 | |||
422 | When this function is called, there are no locks held. That also means | ||
423 | that the state of the owner and lock can change when entered into this function. | ||
424 | |||
425 | Before this function is called, the task has already had rt_mutex_adjust_prio | ||
426 | performed on it. This means that the task is set to the priority that it | ||
427 | should be at, but the plist nodes of the task's waiter have not been updated | ||
428 | with the new priorities, and that this task may not be in the proper locations | ||
429 | in the pi_lists and wait_lists that the task is blocked on. This function | ||
430 | solves all that. | ||
431 | |||
432 | A loop is entered, where task is the owner to be checked for PI changes that | ||
433 | was passed by parameter (for the first iteration). The pi_lock of this task is | ||
434 | taken to prevent any more changes to the pi_list of the task. This also | ||
435 | prevents new tasks from completing the blocking on a mutex that is owned by this | ||
436 | task. | ||
437 | |||
438 | If the task is not blocked on a mutex then the loop is exited. We are at | ||
439 | the top of the PI chain. | ||
440 | |||
441 | A check is now done to see if the original waiter (the process that is blocked | ||
442 | on the current mutex) is the top pi waiter of the task. That is, is this | ||
443 | waiter on the top of the task's pi_list. If it is not, it either means that | ||
444 | there is another process higher in priority that is blocked on one of the | ||
445 | mutexes that the task owns, or that the waiter has just woken up via a signal | ||
446 | or timeout and has left the PI chain. In either case, the loop is exited, since | ||
447 | we don't need to do any more changes to the priority of the current task, or any | ||
448 | task that owns a mutex that this current task is waiting on. A priority chain | ||
449 | walk is only needed when a new top pi waiter is made to a task. | ||
450 | |||
451 | The next check sees if the task's waiter plist node has the priority equal to | ||
452 | the priority the task is set at. If they are equal, then we are done with | ||
453 | the loop. Remember that the function started with the priority of the | ||
454 | task adjusted, but the plist nodes that hold the task in other processes | ||
455 | pi_lists have not been adjusted. | ||
456 | |||
457 | Next, we look at the mutex that the task is blocked on. The mutex's wait_lock | ||
458 | is taken. This is done by a spin_trylock, because the locking order of the | ||
459 | pi_lock and wait_lock goes in the opposite direction. If we fail to grab the | ||
460 | lock, the pi_lock is released, and we restart the loop. | ||
461 | |||
462 | Now that we have both the pi_lock of the task as well as the wait_lock of | ||
463 | the mutex the task is blocked on, we update the task's waiter's plist node | ||
464 | that is located on the mutex's wait_list. | ||
465 | |||
466 | Now we release the pi_lock of the task. | ||
467 | |||
468 | Next the owner of the mutex has its pi_lock taken, so we can update the | ||
469 | task's entry in the owner's pi_list. If the task is the highest priority | ||
470 | process on the mutex's wait_list, then we remove the previous top waiter | ||
471 | from the owner's pi_list, and replace it with the task. | ||
472 | |||
473 | Note: It is possible that the task was the current top waiter on the mutex, | ||
474 | in which case the task is not yet on the pi_list of the waiter. This | ||
475 | is OK, since plist_del does nothing if the plist node is not on any | ||
476 | list. | ||
477 | |||
478 | If the task was not the top waiter of the mutex, but it was before we | ||
479 | did the priority updates, that means we are deboosting/lowering the | ||
480 | task. In this case, the task is removed from the pi_list of the owner, | ||
481 | and the new top waiter is added. | ||
482 | |||
483 | Lastly, we unlock both the pi_lock of the task, as well as the mutex's | ||
484 | wait_lock, and continue the loop again. On the next iteration of the | ||
485 | loop, the previous owner of the mutex will be the task that will be | ||
486 | processed. | ||
487 | |||
488 | Note: One might think that the owner of this mutex might have changed | ||
489 | since we just grab the mutex's wait_lock. And one could be right. | ||
490 | The important thing to remember is that the owner could not have | ||
491 | become the task that is being processed in the PI chain, since | ||
492 | we have taken that task's pi_lock at the beginning of the loop. | ||
493 | So as long as there is an owner of this mutex that is not the same | ||
494 | process as the tasked being worked on, we are OK. | ||
495 | |||
496 | Looking closely at the code, one might be confused. The check for the | ||
497 | end of the PI chain is when the task isn't blocked on anything or the | ||
498 | task's waiter structure "task" element is NULL. This check is | ||
499 | protected only by the task's pi_lock. But the code to unlock the mutex | ||
500 | sets the task's waiter structure "task" element to NULL with only | ||
501 | the protection of the mutex's wait_lock, which was not taken yet. | ||
502 | Isn't this a race condition if the task becomes the new owner? | ||
503 | |||
504 | The answer is No! The trick is the spin_trylock of the mutex's | ||
505 | wait_lock. If we fail that lock, we release the pi_lock of the | ||
506 | task and continue the loop, doing the end of PI chain check again. | ||
507 | |||
508 | In the code to release the lock, the wait_lock of the mutex is held | ||
509 | the entire time, and it is not let go when we grab the pi_lock of the | ||
510 | new owner of the mutex. So if the switch of a new owner were to happen | ||
511 | after the check for end of the PI chain and the grabbing of the | ||
512 | wait_lock, the unlocking code would spin on the new owner's pi_lock | ||
513 | but never give up the wait_lock. So the PI chain loop is guaranteed to | ||
514 | fail the spin_trylock on the wait_lock, release the pi_lock, and | ||
515 | try again. | ||
516 | |||
517 | If you don't quite understand the above, that's OK. You don't have to, | ||
518 | unless you really want to make a proof out of it ;) | ||
519 | |||
520 | |||
521 | Pending Owners and Lock stealing | ||
522 | -------------------------------- | ||
523 | |||
524 | One of the flags in the owner field of the mutex structure is "Pending Owner". | ||
525 | What this means is that an owner was chosen by the process releasing the | ||
526 | mutex, but that owner has yet to wake up and actually take the mutex. | ||
527 | |||
528 | Why is this important? Why can't we just give the mutex to another process | ||
529 | and be done with it? | ||
530 | |||
531 | The PI code is to help with real-time processes, and to let the highest | ||
532 | priority process run as long as possible with little latencies and delays. | ||
533 | If a high priority process owns a mutex that a lower priority process is | ||
534 | blocked on, when the mutex is released it would be given to the lower priority | ||
535 | process. What if the higher priority process wants to take that mutex again. | ||
536 | The high priority process would fail to take that mutex that it just gave up | ||
537 | and it would need to boost the lower priority process to run with full | ||
538 | latency of that critical section (since the low priority process just entered | ||
539 | it). | ||
540 | |||
541 | There's no reason a high priority process that gives up a mutex should be | ||
542 | penalized if it tries to take that mutex again. If the new owner of the | ||
543 | mutex has not woken up yet, there's no reason that the higher priority process | ||
544 | could not take that mutex away. | ||
545 | |||
546 | To solve this, we introduced Pending Ownership and Lock Stealing. When a | ||
547 | new process is given a mutex that it was blocked on, it is only given | ||
548 | pending ownership. This means that it's the new owner, unless a higher | ||
549 | priority process comes in and tries to grab that mutex. If a higher priority | ||
550 | process does come along and wants that mutex, we let the higher priority | ||
551 | process "steal" the mutex from the pending owner (only if it is still pending) | ||
552 | and continue with the mutex. | ||
553 | |||
554 | |||
555 | Taking of a mutex (The walk through) | ||
556 | ------------------------------------ | ||
557 | |||
558 | OK, now let's take a look at the detailed walk through of what happens when | ||
559 | taking a mutex. | ||
560 | |||
561 | The first thing that is tried is the fast taking of the mutex. This is | ||
562 | done when we have CMPXCHG enabled (otherwise the fast taking automatically | ||
563 | fails). Only when the owner field of the mutex is NULL can the lock be | ||
564 | taken with the CMPXCHG and nothing else needs to be done. | ||
565 | |||
566 | If there is contention on the lock, whether it is owned or pending owner | ||
567 | we go about the slow path (rt_mutex_slowlock). | ||
568 | |||
569 | The slow path function is where the task's waiter structure is created on | ||
570 | the stack. This is because the waiter structure is only needed for the | ||
571 | scope of this function. The waiter structure holds the nodes to store | ||
572 | the task on the wait_list of the mutex, and if need be, the pi_list of | ||
573 | the owner. | ||
574 | |||
575 | The wait_lock of the mutex is taken since the slow path of unlocking the | ||
576 | mutex also takes this lock. | ||
577 | |||
578 | We then call try_to_take_rt_mutex. This is where the architecture that | ||
579 | does not implement CMPXCHG would always grab the lock (if there's no | ||
580 | contention). | ||
581 | |||
582 | try_to_take_rt_mutex is used every time the task tries to grab a mutex in the | ||
583 | slow path. The first thing that is done here is an atomic setting of | ||
584 | the "Has Waiters" flag of the mutex's owner field. Yes, this could really | ||
585 | be false, because if the the mutex has no owner, there are no waiters and | ||
586 | the current task also won't have any waiters. But we don't have the lock | ||
587 | yet, so we assume we are going to be a waiter. The reason for this is to | ||
588 | play nice for those architectures that do have CMPXCHG. By setting this flag | ||
589 | now, the owner of the mutex can't release the mutex without going into the | ||
590 | slow unlock path, and it would then need to grab the wait_lock, which this | ||
591 | code currently holds. So setting the "Has Waiters" flag forces the owner | ||
592 | to synchronize with this code. | ||
593 | |||
594 | Now that we know that we can't have any races with the owner releasing the | ||
595 | mutex, we check to see if we can take the ownership. This is done if the | ||
596 | mutex doesn't have a owner, or if we can steal the mutex from a pending | ||
597 | owner. Let's look at the situations we have here. | ||
598 | |||
599 | 1) Has owner that is pending | ||
600 | ---------------------------- | ||
601 | |||
602 | The mutex has a owner, but it hasn't woken up and the mutex flag | ||
603 | "Pending Owner" is set. The first check is to see if the owner isn't the | ||
604 | current task. This is because this function is also used for the pending | ||
605 | owner to grab the mutex. When a pending owner wakes up, it checks to see | ||
606 | if it can take the mutex, and this is done if the owner is already set to | ||
607 | itself. If so, we succeed and leave the function, clearing the "Pending | ||
608 | Owner" bit. | ||
609 | |||
610 | If the pending owner is not current, we check to see if the current priority is | ||
611 | higher than the pending owner. If not, we fail the function and return. | ||
612 | |||
613 | There's also something special about a pending owner. That is a pending owner | ||
614 | is never blocked on a mutex. So there is no PI chain to worry about. It also | ||
615 | means that if the mutex doesn't have any waiters, there's no accounting needed | ||
616 | to update the pending owner's pi_list, since we only worry about processes | ||
617 | blocked on the current mutex. | ||
618 | |||
619 | If there are waiters on this mutex, and we just stole the ownership, we need | ||
620 | to take the top waiter, remove it from the pi_list of the pending owner, and | ||
621 | add it to the current pi_list. Note that at this moment, the pending owner | ||
622 | is no longer on the list of waiters. This is fine, since the pending owner | ||
623 | would add itself back when it realizes that it had the ownership stolen | ||
624 | from itself. When the pending owner tries to grab the mutex, it will fail | ||
625 | in try_to_take_rt_mutex if the owner field points to another process. | ||
626 | |||
627 | 2) No owner | ||
628 | ----------- | ||
629 | |||
630 | If there is no owner (or we successfully stole the lock), we set the owner | ||
631 | of the mutex to current, and set the flag of "Has Waiters" if the current | ||
632 | mutex actually has waiters, or we clear the flag if it doesn't. See, it was | ||
633 | OK that we set that flag early, since now it is cleared. | ||
634 | |||
635 | 3) Failed to grab ownership | ||
636 | --------------------------- | ||
637 | |||
638 | The most interesting case is when we fail to take ownership. This means that | ||
639 | there exists an owner, or there's a pending owner with equal or higher | ||
640 | priority than the current task. | ||
641 | |||
642 | We'll continue on the failed case. | ||
643 | |||
644 | If the mutex has a timeout, we set up a timer to go off to break us out | ||
645 | of this mutex if we failed to get it after a specified amount of time. | ||
646 | |||
647 | Now we enter a loop that will continue to try to take ownership of the mutex, or | ||
648 | fail from a timeout or signal. | ||
649 | |||
650 | Once again we try to take the mutex. This will usually fail the first time | ||
651 | in the loop, since it had just failed to get the mutex. But the second time | ||
652 | in the loop, this would likely succeed, since the task would likely be | ||
653 | the pending owner. | ||
654 | |||
655 | If the mutex is TASK_INTERRUPTIBLE a check for signals and timeout is done | ||
656 | here. | ||
657 | |||
658 | The waiter structure has a "task" field that points to the task that is blocked | ||
659 | on the mutex. This field can be NULL the first time it goes through the loop | ||
660 | or if the task is a pending owner and had it's mutex stolen. If the "task" | ||
661 | field is NULL then we need to set up the accounting for it. | ||
662 | |||
663 | Task blocks on mutex | ||
664 | -------------------- | ||
665 | |||
666 | The accounting of a mutex and process is done with the waiter structure of | ||
667 | the process. The "task" field is set to the process, and the "lock" field | ||
668 | to the mutex. The plist nodes are initialized to the processes current | ||
669 | priority. | ||
670 | |||
671 | Since the wait_lock was taken at the entry of the slow lock, we can safely | ||
672 | add the waiter to the wait_list. If the current process is the highest | ||
673 | priority process currently waiting on this mutex, then we remove the | ||
674 | previous top waiter process (if it exists) from the pi_list of the owner, | ||
675 | and add the current process to that list. Since the pi_list of the owner | ||
676 | has changed, we call rt_mutex_adjust_prio on the owner to see if the owner | ||
677 | should adjust its priority accordingly. | ||
678 | |||
679 | If the owner is also blocked on a lock, and had its pi_list changed | ||
680 | (or deadlock checking is on), we unlock the wait_lock of the mutex and go ahead | ||
681 | and run rt_mutex_adjust_prio_chain on the owner, as described earlier. | ||
682 | |||
683 | Now all locks are released, and if the current process is still blocked on a | ||
684 | mutex (waiter "task" field is not NULL), then we go to sleep (call schedule). | ||
685 | |||
686 | Waking up in the loop | ||
687 | --------------------- | ||
688 | |||
689 | The schedule can then wake up for a few reasons. | ||
690 | 1) we were given pending ownership of the mutex. | ||
691 | 2) we received a signal and was TASK_INTERRUPTIBLE | ||
692 | 3) we had a timeout and was TASK_INTERRUPTIBLE | ||
693 | |||
694 | In any of these cases, we continue the loop and once again try to grab the | ||
695 | ownership of the mutex. If we succeed, we exit the loop, otherwise we continue | ||
696 | and on signal and timeout, will exit the loop, or if we had the mutex stolen | ||
697 | we just simply add ourselves back on the lists and go back to sleep. | ||
698 | |||
699 | Note: For various reasons, because of timeout and signals, the steal mutex | ||
700 | algorithm needs to be careful. This is because the current process is | ||
701 | still on the wait_list. And because of dynamic changing of priorities, | ||
702 | especially on SCHED_OTHER tasks, the current process can be the | ||
703 | highest priority task on the wait_list. | ||
704 | |||
705 | Failed to get mutex on Timeout or Signal | ||
706 | ---------------------------------------- | ||
707 | |||
708 | If a timeout or signal occurred, the waiter's "task" field would not be | ||
709 | NULL and the task needs to be taken off the wait_list of the mutex and perhaps | ||
710 | pi_list of the owner. If this process was a high priority process, then | ||
711 | the rt_mutex_adjust_prio_chain needs to be executed again on the owner, | ||
712 | but this time it will be lowering the priorities. | ||
713 | |||
714 | |||
715 | Unlocking the Mutex | ||
716 | ------------------- | ||
717 | |||
718 | The unlocking of a mutex also has a fast path for those architectures with | ||
719 | CMPXCHG. Since the taking of a mutex on contention always sets the | ||
720 | "Has Waiters" flag of the mutex's owner, we use this to know if we need to | ||
721 | take the slow path when unlocking the mutex. If the mutex doesn't have any | ||
722 | waiters, the owner field of the mutex would equal the current process and | ||
723 | the mutex can be unlocked by just replacing the owner field with NULL. | ||
724 | |||
725 | If the owner field has the "Has Waiters" bit set (or CMPXCHG is not available), | ||
726 | the slow unlock path is taken. | ||
727 | |||
728 | The first thing done in the slow unlock path is to take the wait_lock of the | ||
729 | mutex. This synchronizes the locking and unlocking of the mutex. | ||
730 | |||
731 | A check is made to see if the mutex has waiters or not. On architectures that | ||
732 | do not have CMPXCHG, this is the location that the owner of the mutex will | ||
733 | determine if a waiter needs to be awoken or not. On architectures that | ||
734 | do have CMPXCHG, that check is done in the fast path, but it is still needed | ||
735 | in the slow path too. If a waiter of a mutex woke up because of a signal | ||
736 | or timeout between the time the owner failed the fast path CMPXCHG check and | ||
737 | the grabbing of the wait_lock, the mutex may not have any waiters, thus the | ||
738 | owner still needs to make this check. If there are no waiters than the mutex | ||
739 | owner field is set to NULL, the wait_lock is released and nothing more is | ||
740 | needed. | ||
741 | |||
742 | If there are waiters, then we need to wake one up and give that waiter | ||
743 | pending ownership. | ||
744 | |||
745 | On the wake up code, the pi_lock of the current owner is taken. The top | ||
746 | waiter of the lock is found and removed from the wait_list of the mutex | ||
747 | as well as the pi_list of the current owner. The task field of the new | ||
748 | pending owner's waiter structure is set to NULL, and the owner field of the | ||
749 | mutex is set to the new owner with the "Pending Owner" bit set, as well | ||
750 | as the "Has Waiters" bit if there still are other processes blocked on the | ||
751 | mutex. | ||
752 | |||
753 | The pi_lock of the previous owner is released, and the new pending owner's | ||
754 | pi_lock is taken. Remember that this is the trick to prevent the race | ||
755 | condition in rt_mutex_adjust_prio_chain from adding itself as a waiter | ||
756 | on the mutex. | ||
757 | |||
758 | We now clear the "pi_blocked_on" field of the new pending owner, and if | ||
759 | the mutex still has waiters pending, we add the new top waiter to the pi_list | ||
760 | of the pending owner. | ||
761 | |||
762 | Finally we unlock the pi_lock of the pending owner and wake it up. | ||
763 | |||
764 | |||
765 | Contact | ||
766 | ------- | ||
767 | |||
768 | For updates on this document, please email Steven Rostedt <rostedt@goodmis.org> | ||
769 | |||
770 | |||
771 | Credits | ||
772 | ------- | ||
773 | |||
774 | Author: Steven Rostedt <rostedt@goodmis.org> | ||
775 | |||
776 | Reviewers: Ingo Molnar, Thomas Gleixner, Thomas Duetsch, and Randy Dunlap | ||
777 | |||
778 | Updates | ||
779 | ------- | ||
780 | |||
781 | This document was originally written for 2.6.17-rc3-mm1 | ||
diff --git a/Documentation/rt-mutex.txt b/Documentation/rt-mutex.txt new file mode 100644 index 000000000000..243393d882ee --- /dev/null +++ b/Documentation/rt-mutex.txt | |||
@@ -0,0 +1,79 @@ | |||
1 | RT-mutex subsystem with PI support | ||
2 | ---------------------------------- | ||
3 | |||
4 | RT-mutexes with priority inheritance are used to support PI-futexes, | ||
5 | which enable pthread_mutex_t priority inheritance attributes | ||
6 | (PTHREAD_PRIO_INHERIT). [See Documentation/pi-futex.txt for more details | ||
7 | about PI-futexes.] | ||
8 | |||
9 | This technology was developed in the -rt tree and streamlined for | ||
10 | pthread_mutex support. | ||
11 | |||
12 | Basic principles: | ||
13 | ----------------- | ||
14 | |||
15 | RT-mutexes extend the semantics of simple mutexes by the priority | ||
16 | inheritance protocol. | ||
17 | |||
18 | A low priority owner of a rt-mutex inherits the priority of a higher | ||
19 | priority waiter until the rt-mutex is released. If the temporarily | ||
20 | boosted owner blocks on a rt-mutex itself it propagates the priority | ||
21 | boosting to the owner of the other rt_mutex it gets blocked on. The | ||
22 | priority boosting is immediately removed once the rt_mutex has been | ||
23 | unlocked. | ||
24 | |||
25 | This approach allows us to shorten the block of high-prio tasks on | ||
26 | mutexes which protect shared resources. Priority inheritance is not a | ||
27 | magic bullet for poorly designed applications, but it allows | ||
28 | well-designed applications to use userspace locks in critical parts of | ||
29 | an high priority thread, without losing determinism. | ||
30 | |||
31 | The enqueueing of the waiters into the rtmutex waiter list is done in | ||
32 | priority order. For same priorities FIFO order is chosen. For each | ||
33 | rtmutex, only the top priority waiter is enqueued into the owner's | ||
34 | priority waiters list. This list too queues in priority order. Whenever | ||
35 | the top priority waiter of a task changes (for example it timed out or | ||
36 | got a signal), the priority of the owner task is readjusted. [The | ||
37 | priority enqueueing is handled by "plists", see include/linux/plist.h | ||
38 | for more details.] | ||
39 | |||
40 | RT-mutexes are optimized for fastpath operations and have no internal | ||
41 | locking overhead when locking an uncontended mutex or unlocking a mutex | ||
42 | without waiters. The optimized fastpath operations require cmpxchg | ||
43 | support. [If that is not available then the rt-mutex internal spinlock | ||
44 | is used] | ||
45 | |||
46 | The state of the rt-mutex is tracked via the owner field of the rt-mutex | ||
47 | structure: | ||
48 | |||
49 | rt_mutex->owner holds the task_struct pointer of the owner. Bit 0 and 1 | ||
50 | are used to keep track of the "owner is pending" and "rtmutex has | ||
51 | waiters" state. | ||
52 | |||
53 | owner bit1 bit0 | ||
54 | NULL 0 0 mutex is free (fast acquire possible) | ||
55 | NULL 0 1 invalid state | ||
56 | NULL 1 0 Transitional state* | ||
57 | NULL 1 1 invalid state | ||
58 | taskpointer 0 0 mutex is held (fast release possible) | ||
59 | taskpointer 0 1 task is pending owner | ||
60 | taskpointer 1 0 mutex is held and has waiters | ||
61 | taskpointer 1 1 task is pending owner and mutex has waiters | ||
62 | |||
63 | Pending-ownership handling is a performance optimization: | ||
64 | pending-ownership is assigned to the first (highest priority) waiter of | ||
65 | the mutex, when the mutex is released. The thread is woken up and once | ||
66 | it starts executing it can acquire the mutex. Until the mutex is taken | ||
67 | by it (bit 0 is cleared) a competing higher priority thread can "steal" | ||
68 | the mutex which puts the woken up thread back on the waiters list. | ||
69 | |||
70 | The pending-ownership optimization is especially important for the | ||
71 | uninterrupted workflow of high-prio tasks which repeatedly | ||
72 | takes/releases locks that have lower-prio waiters. Without this | ||
73 | optimization the higher-prio thread would ping-pong to the lower-prio | ||
74 | task [because at unlock time we always assign a new owner]. | ||
75 | |||
76 | (*) The "mutex has waiters" bit gets set to take the lock. If the lock | ||
77 | doesn't already have an owner, this bit is quickly cleared if there are | ||
78 | no waiters. So this is a transitional state to synchronize with looking | ||
79 | at the owner field of the mutex and the mutex owner releasing the lock. | ||
diff --git a/Documentation/rtc.txt b/Documentation/rtc.txt index 95d17b3e2eee..2a58f985795a 100644 --- a/Documentation/rtc.txt +++ b/Documentation/rtc.txt | |||
@@ -44,8 +44,10 @@ normal timer interrupt, which is 100Hz. | |||
44 | Programming and/or enabling interrupt frequencies greater than 64Hz is | 44 | Programming and/or enabling interrupt frequencies greater than 64Hz is |
45 | only allowed by root. This is perhaps a bit conservative, but we don't want | 45 | only allowed by root. This is perhaps a bit conservative, but we don't want |
46 | an evil user generating lots of IRQs on a slow 386sx-16, where it might have | 46 | an evil user generating lots of IRQs on a slow 386sx-16, where it might have |
47 | a negative impact on performance. Note that the interrupt handler is only | 47 | a negative impact on performance. This 64Hz limit can be changed by writing |
48 | a few lines of code to minimize any possibility of this effect. | 48 | a different value to /proc/sys/dev/rtc/max-user-freq. Note that the |
49 | interrupt handler is only a few lines of code to minimize any possibility | ||
50 | of this effect. | ||
49 | 51 | ||
50 | Also, if the kernel time is synchronized with an external source, the | 52 | Also, if the kernel time is synchronized with an external source, the |
51 | kernel will write the time back to the CMOS clock every 11 minutes. In | 53 | kernel will write the time back to the CMOS clock every 11 minutes. In |
@@ -81,6 +83,7 @@ that will be using this driver. | |||
81 | */ | 83 | */ |
82 | 84 | ||
83 | #include <stdio.h> | 85 | #include <stdio.h> |
86 | #include <stdlib.h> | ||
84 | #include <linux/rtc.h> | 87 | #include <linux/rtc.h> |
85 | #include <sys/ioctl.h> | 88 | #include <sys/ioctl.h> |
86 | #include <sys/time.h> | 89 | #include <sys/time.h> |
diff --git a/Documentation/scsi/00-INDEX b/Documentation/scsi/00-INDEX index e7da8c3a255b..12354830c6b0 100644 --- a/Documentation/scsi/00-INDEX +++ b/Documentation/scsi/00-INDEX | |||
@@ -30,8 +30,6 @@ aic7xxx.txt | |||
30 | - info on driver for Adaptec controllers | 30 | - info on driver for Adaptec controllers |
31 | aic7xxx_old.txt | 31 | aic7xxx_old.txt |
32 | - info on driver for Adaptec controllers, old generation | 32 | - info on driver for Adaptec controllers, old generation |
33 | cpqfc.txt | ||
34 | - info on driver for Compaq Tachyon TS adapters | ||
35 | dpti.txt | 33 | dpti.txt |
36 | - info on driver for DPT SmartRAID and Adaptec I2O RAID based adapters | 34 | - info on driver for DPT SmartRAID and Adaptec I2O RAID based adapters |
37 | dtc3x80.txt | 35 | dtc3x80.txt |
diff --git a/Documentation/scsi/ChangeLog.megaraid_sas b/Documentation/scsi/ChangeLog.megaraid_sas index 2dafa63bd370..0a85a7e8120e 100644 --- a/Documentation/scsi/ChangeLog.megaraid_sas +++ b/Documentation/scsi/ChangeLog.megaraid_sas | |||
@@ -1,3 +1,16 @@ | |||
1 | |||
2 | 1 Release Date : Wed Feb 03 14:31:44 PST 2006 - Sumant Patro <Sumant.Patro@lsil.com> | ||
3 | 2 Current Version : 00.00.02.04 | ||
4 | 3 Older Version : 00.00.02.04 | ||
5 | |||
6 | i. Remove superflous instance_lock | ||
7 | |||
8 | gets rid of the otherwise superflous instance_lock and avoids an unsave | ||
9 | unsynchronized access in the error handler. | ||
10 | |||
11 | - Christoph Hellwig <hch@lst.de> | ||
12 | |||
13 | |||
1 | 1 Release Date : Wed Feb 03 14:31:44 PST 2006 - Sumant Patro <Sumant.Patro@lsil.com> | 14 | 1 Release Date : Wed Feb 03 14:31:44 PST 2006 - Sumant Patro <Sumant.Patro@lsil.com> |
2 | 2 Current Version : 00.00.02.04 | 15 | 2 Current Version : 00.00.02.04 |
3 | 3 Older Version : 00.00.02.04 | 16 | 3 Older Version : 00.00.02.04 |
diff --git a/Documentation/scsi/aacraid.txt b/Documentation/scsi/aacraid.txt index 820fd0793502..be55670851a4 100644 --- a/Documentation/scsi/aacraid.txt +++ b/Documentation/scsi/aacraid.txt | |||
@@ -24,10 +24,10 @@ Supported Cards/Chipsets | |||
24 | 9005:0285:9005:0296 Adaptec 2240S (SabreExpress) | 24 | 9005:0285:9005:0296 Adaptec 2240S (SabreExpress) |
25 | 9005:0285:9005:0290 Adaptec 2410SA (Jaguar) | 25 | 9005:0285:9005:0290 Adaptec 2410SA (Jaguar) |
26 | 9005:0285:9005:0293 Adaptec 21610SA (Corsair-16) | 26 | 9005:0285:9005:0293 Adaptec 21610SA (Corsair-16) |
27 | 9005:0285:103c:3227 Adaptec 2610SA (Bearcat) | 27 | 9005:0285:103c:3227 Adaptec 2610SA (Bearcat HP release) |
28 | 9005:0285:9005:0292 Adaptec 2810SA (Corsair-8) | 28 | 9005:0285:9005:0292 Adaptec 2810SA (Corsair-8) |
29 | 9005:0285:9005:0294 Adaptec Prowler | 29 | 9005:0285:9005:0294 Adaptec Prowler |
30 | 9005:0286:9005:029d Adaptec 2420SA (Intruder) | 30 | 9005:0286:9005:029d Adaptec 2420SA (Intruder HP release) |
31 | 9005:0286:9005:029c Adaptec 2620SA (Intruder) | 31 | 9005:0286:9005:029c Adaptec 2620SA (Intruder) |
32 | 9005:0286:9005:029b Adaptec 2820SA (Intruder) | 32 | 9005:0286:9005:029b Adaptec 2820SA (Intruder) |
33 | 9005:0286:9005:02a7 Adaptec 2830SA (Skyray) | 33 | 9005:0286:9005:02a7 Adaptec 2830SA (Skyray) |
@@ -38,7 +38,7 @@ Supported Cards/Chipsets | |||
38 | 9005:0285:9005:0297 Adaptec 4005SAS (AvonPark) | 38 | 9005:0285:9005:0297 Adaptec 4005SAS (AvonPark) |
39 | 9005:0285:9005:0299 Adaptec 4800SAS (Marauder-X) | 39 | 9005:0285:9005:0299 Adaptec 4800SAS (Marauder-X) |
40 | 9005:0285:9005:029a Adaptec 4805SAS (Marauder-E) | 40 | 9005:0285:9005:029a Adaptec 4805SAS (Marauder-E) |
41 | 9005:0286:9005:02a2 Adaptec 4810SAS (Hurricane) | 41 | 9005:0286:9005:02a2 Adaptec 3800SAS (Hurricane44) |
42 | 1011:0046:9005:0364 Adaptec 5400S (Mustang) | 42 | 1011:0046:9005:0364 Adaptec 5400S (Mustang) |
43 | 1011:0046:9005:0365 Adaptec 5400S (Mustang) | 43 | 1011:0046:9005:0365 Adaptec 5400S (Mustang) |
44 | 9005:0283:9005:0283 Adaptec Catapult (3210S with arc firmware) | 44 | 9005:0283:9005:0283 Adaptec Catapult (3210S with arc firmware) |
@@ -72,7 +72,7 @@ Supported Cards/Chipsets | |||
72 | 9005:0286:9005:02a1 ICP ICP9087MA (Lancer) | 72 | 9005:0286:9005:02a1 ICP ICP9087MA (Lancer) |
73 | 9005:0286:9005:02a4 ICP ICP9085LI (Marauder-X) | 73 | 9005:0286:9005:02a4 ICP ICP9085LI (Marauder-X) |
74 | 9005:0286:9005:02a5 ICP ICP5085BR (Marauder-E) | 74 | 9005:0286:9005:02a5 ICP ICP5085BR (Marauder-E) |
75 | 9005:0286:9005:02a3 ICP ICP5085AU (Hurricane) | 75 | 9005:0286:9005:02a3 ICP ICP5445AU (Hurricane44) |
76 | 9005:0286:9005:02a6 ICP ICP9067MA (Intruder-6) | 76 | 9005:0286:9005:02a6 ICP ICP9067MA (Intruder-6) |
77 | 9005:0286:9005:02a9 ICP ICP5087AU (Skyray) | 77 | 9005:0286:9005:02a9 ICP ICP5087AU (Skyray) |
78 | 9005:0286:9005:02aa ICP ICP5047AU (Skyray) | 78 | 9005:0286:9005:02aa ICP ICP5047AU (Skyray) |
diff --git a/Documentation/scsi/cpqfc.txt b/Documentation/scsi/cpqfc.txt deleted file mode 100644 index dd33e61c0645..000000000000 --- a/Documentation/scsi/cpqfc.txt +++ /dev/null | |||
@@ -1,272 +0,0 @@ | |||
1 | Notes for CPQFCTS driver for Compaq Tachyon TS | ||
2 | Fibre Channel Host Bus Adapter, PCI 64-bit, 66MHz | ||
3 | for Linux (RH 6.1, 6.2 kernel 2.2.12-32, 2.2.14-5) | ||
4 | SMP tested | ||
5 | Tested in single and dual HBA configuration, 32 and 64bit busses, | ||
6 | 33 and 66MHz. Only supports FC-AL. | ||
7 | SEST size 512 Exchanges (simultaneous I/Os) limited by module kmalloc() | ||
8 | max of 128k bytes contiguous. | ||
9 | |||
10 | Ver 2.5.4 Oct 03, 2002 | ||
11 | * fixed memcpy of sense buffer in ioctl to copy the smaller defined size | ||
12 | Ver 2.5.3 Aug 01, 2002 | ||
13 | * fix the passthru ioctl to handle the Scsi_Cmnd->request being a pointer | ||
14 | Ver 2.5.1 Jul 30, 2002 | ||
15 | * fix ioctl to pay attention to the specified LUN. | ||
16 | Ver 2.5.0 Nov 29, 2001 | ||
17 | * eliminated io_request_lock. This change makes the driver specific | ||
18 | to the 2.5.x kernels. | ||
19 | * silenced excessively noisy printks. | ||
20 | |||
21 | Ver 2.1.2 July 23, 2002 | ||
22 | * initialize DumCmnd->lun in cpqfcTS_ioctl (used in fcFindLoggedInPorts as LUN index) | ||
23 | |||
24 | Ver 2.1.1 Oct 18, 2001 | ||
25 | * reinitialize Cmnd->SCp.sent_command (used to identify commands as | ||
26 | passthrus) on calling scsi_done, since the scsi mid layer does not | ||
27 | use (or reinitialize) this field to prevent subsequent comands from | ||
28 | having it set incorrectly. | ||
29 | |||
30 | Ver 2.1.0 Aug 27, 2001 | ||
31 | * Revise driver to use new kernel 2.4.x PCI DMA API, instead of | ||
32 | virt_to_bus(). (enables driver to work w/ ia64 systems with >2Gb RAM.) | ||
33 | Rework main scatter-gather code to handle cases where SG element | ||
34 | lengths are larger than 0x7FFFF bytes and use as many scatter | ||
35 | gather pages as necessary. (Steve Cameron) | ||
36 | * Makefile changes to bring cpqfc into line w/ rest of SCSI drivers | ||
37 | (thanks to Keith Owens) | ||
38 | |||
39 | Ver 2.0.5 Aug 06, 2001 | ||
40 | * Reject non-existent luns in the driver rather than letting the | ||
41 | hardware do it. (some HW behaves differently than others in this area.) | ||
42 | * Changed Makefile to rely on "make dep" instead of explicit dependencies | ||
43 | * ifdef'ed out fibre channel analyzer triggering debug code | ||
44 | * fixed a jiffies wrapping issue | ||
45 | |||
46 | Ver 2.0.4 Aug 01, 2001 | ||
47 | * Incorporated fix for target device reset from Steeleye | ||
48 | * Fixed passthrough ioctl so it doesn't hang. | ||
49 | * Fixed hang in launch_FCworker_thread() that occurred on some machines. | ||
50 | * Avoid problem when number of volumes in a single cabinet > 8 | ||
51 | |||
52 | Ver 2.0.2 July 23, 2001 | ||
53 | Changed the semiphore changes so the driver would compile in 2.4.7. | ||
54 | This version is for 2.4.7 and beyond. | ||
55 | |||
56 | Ver 2.0.1 May 7, 2001 | ||
57 | Merged version 1.3.6 fixes into version 2.0.0. | ||
58 | |||
59 | Ver 2.0.0 May 7, 2001 | ||
60 | Fixed problem so spinlock is being initialized to UNLOCKED. | ||
61 | Fixed updated driver so it compiles in the 2.4 tree. | ||
62 | |||
63 | Ver 1.3.6 Feb 27, 2001 | ||
64 | Added Target_Device_Reset function for SCSI error handling | ||
65 | Fixed problem with not reseting addressing mode after implicit logout | ||
66 | |||
67 | |||
68 | Ver 1.3.4 Sep 7, 2000 | ||
69 | Added Modinfo information | ||
70 | Fixed problem with statically linking the driver | ||
71 | |||
72 | Ver 1.3.3, Aug 23, 2000 | ||
73 | Fixed device/function number in ioctl | ||
74 | |||
75 | Ver 1.3.2, July 27, 2000 | ||
76 | Add include for Alpha compile on 2.2.14 kernel (cpq*i2c.c) | ||
77 | Change logic for different FCP-RSP sense_buffer location for HSG80 target | ||
78 | And search for Agilent Tachyon XL2 HBAs (not finished! - in test) | ||
79 | |||
80 | Tested with | ||
81 | (storage): | ||
82 | Compaq RA-4x000, RAID firmware ver 2.40 - 2.54 | ||
83 | Seagate FC drives model ST39102FC, rev 0006 | ||
84 | Hitachi DK31CJ-72FC rev J8A8 | ||
85 | IBM DDYF-T18350R rev F60K | ||
86 | Compaq FC-SCSI bridge w/ DLT 35/70 Gb DLT (tape) | ||
87 | (servers): | ||
88 | Compaq PL-1850R | ||
89 | Compaq PL-6500 Xeon (400MHz) | ||
90 | Compaq PL-8500 (500MHz, 66MHz, 64bit PCI) | ||
91 | Compaq Alpha DS20 (RH 6.1) | ||
92 | (hubs): | ||
93 | Vixel Rapport 1000 (7-port "dumb") | ||
94 | Gadzoox Gibralter (12-port "dumb") | ||
95 | Gadzoox Capellix 2000, 3000 | ||
96 | (switches): | ||
97 | Brocade 2010, 2400, 2800, rev 2.0.3a (& later) | ||
98 | Gadzoox 3210 (Fabric blade beta) | ||
99 | Vixel 7100 (Fabric beta firmare - known hot plug issues) | ||
100 | using "qa_test" (esp. io_test script) suite modified from Unix tests. | ||
101 | |||
102 | Installation: | ||
103 | make menuconfig | ||
104 | (select SCSI low-level, Compaq FC HBA) | ||
105 | make modules | ||
106 | make modules_install | ||
107 | |||
108 | e.g. insmod -f cpqfc | ||
109 | |||
110 | Due to Fabric/switch delays, driver requires 4 seconds | ||
111 | to initialize. If adapters are found, there will be a entries at | ||
112 | /proc/scsi/cpqfcTS/* | ||
113 | |||
114 | sample contents of startup messages | ||
115 | |||
116 | ************************* | ||
117 | scsi_register allocating 3596 bytes for CPQFCHBA | ||
118 | ioremap'd Membase: c887e600 | ||
119 | HBA Tachyon RevId 1.2 | ||
120 | Allocating 119808 for 576 Exchanges @ c0dc0000 | ||
121 | Allocating 112904 for LinkQ @ c0c20000 (576 elements) | ||
122 | Allocating 110600 for TachSEST for 512 Exchanges | ||
123 | cpqfcTS: writing IMQ BASE 7C0000h PI 7C4000h | ||
124 | cpqfcTS: SEST c0e40000(virt): Wrote base E40000h @ c887e740 | ||
125 | cpqfcTS: New FC port 0000E8h WWN: 500507650642499D SCSI Chan/Trgt 0/0 | ||
126 | cpqfcTS: New FC port 0000EFh WWN: 50000E100000D5A6 SCSI Chan/Trgt 0/1 | ||
127 | cpqfcTS: New FC port 0000E4h WWN: 21000020370097BB SCSI Chan/Trgt 0/2 | ||
128 | cpqfcTS: New FC port 0000E2h WWN: 2100002037009946 SCSI Chan/Trgt 0/3 | ||
129 | cpqfcTS: New FC port 0000E1h WWN: 21000020370098FE SCSI Chan/Trgt 0/4 | ||
130 | cpqfcTS: New FC port 0000E0h WWN: 21000020370097B2 SCSI Chan/Trgt 0/5 | ||
131 | cpqfcTS: New FC port 0000DCh WWN: 2100002037006CC1 SCSI Chan/Trgt 0/6 | ||
132 | cpqfcTS: New FC port 0000DAh WWN: 21000020370059F6 SCSI Chan/Trgt 0/7 | ||
133 | cpqfcTS: New FC port 00000Fh WWN: 500805F1FADB0E20 SCSI Chan/Trgt 0/8 | ||
134 | cpqfcTS: New FC port 000008h WWN: 500805F1FADB0EBA SCSI Chan/Trgt 0/9 | ||
135 | cpqfcTS: New FC port 000004h WWN: 500805F1FADB1EB9 SCSI Chan/Trgt 0/10 | ||
136 | cpqfcTS: New FC port 000002h WWN: 500805F1FADB1ADE SCSI Chan/Trgt 0/11 | ||
137 | cpqfcTS: New FC port 000001h WWN: 500805F1FADBA2CA SCSI Chan/Trgt 0/12 | ||
138 | scsi4 : Compaq FibreChannel HBA Tachyon TS HPFC-5166A/1.2: WWN 500508B200193F50 | ||
139 | on PCI bus 0 device 0xa0fc irq 5 IObaseL 0x3400, MEMBASE 0xc6ef8600 | ||
140 | PCI bus width 32 bits, bus speed 33 MHz | ||
141 | FCP-SCSI Driver v1.3.0 | ||
142 | GBIC detected: Short-wave. LPSM 0h Monitor | ||
143 | scsi : 5 hosts. | ||
144 | Vendor: IBM Model: DDYF-T18350R Rev: F60K | ||
145 | Type: Direct-Access ANSI SCSI revision: 03 | ||
146 | Detected scsi disk sdb at scsi4, channel 0, id 0, lun 0 | ||
147 | Vendor: HITACHI Model: DK31CJ-72FC Rev: J8A8 | ||
148 | Type: Direct-Access ANSI SCSI revision: 02 | ||
149 | Detected scsi disk sdc at scsi4, channel 0, id 1, lun 0 | ||
150 | Vendor: SEAGATE Model: ST39102FC Rev: 0006 | ||
151 | Type: Direct-Access ANSI SCSI revision: 02 | ||
152 | Detected scsi disk sdd at scsi4, channel 0, id 2, lun 0 | ||
153 | Vendor: SEAGATE Model: ST39102FC Rev: 0006 | ||
154 | Type: Direct-Access ANSI SCSI revision: 02 | ||
155 | Detected scsi disk sde at scsi4, channel 0, id 3, lun 0 | ||
156 | Vendor: SEAGATE Model: ST39102FC Rev: 0006 | ||
157 | Type: Direct-Access ANSI SCSI revision: 02 | ||
158 | Detected scsi disk sdf at scsi4, channel 0, id 4, lun 0 | ||
159 | Vendor: SEAGATE Model: ST39102FC Rev: 0006 | ||
160 | Type: Direct-Access ANSI SCSI revision: 02 | ||
161 | Detected scsi disk sdg at scsi4, channel 0, id 5, lun 0 | ||
162 | Vendor: SEAGATE Model: ST39102FC Rev: 0006 | ||
163 | Type: Direct-Access ANSI SCSI revision: 02 | ||
164 | Detected scsi disk sdh at scsi4, channel 0, id 6, lun 0 | ||
165 | Vendor: SEAGATE Model: ST39102FC Rev: 0006 | ||
166 | Type: Direct-Access ANSI SCSI revision: 02 | ||
167 | Detected scsi disk sdi at scsi4, channel 0, id 7, lun 0 | ||
168 | Vendor: COMPAQ Model: LOGICAL VOLUME Rev: 2.48 | ||
169 | Type: Direct-Access ANSI SCSI revision: 02 | ||
170 | Detected scsi disk sdj at scsi4, channel 0, id 8, lun 0 | ||
171 | Vendor: COMPAQ Model: LOGICAL VOLUME Rev: 2.48 | ||
172 | Type: Direct-Access ANSI SCSI revision: 02 | ||
173 | Detected scsi disk sdk at scsi4, channel 0, id 8, lun 1 | ||
174 | Vendor: COMPAQ Model: LOGICAL VOLUME Rev: 2.40 | ||
175 | Type: Direct-Access ANSI SCSI revision: 02 | ||
176 | Detected scsi disk sdl at scsi4, channel 0, id 9, lun 0 | ||
177 | Vendor: COMPAQ Model: LOGICAL VOLUME Rev: 2.40 | ||
178 | Type: Direct-Access ANSI SCSI revision: 02 | ||
179 | Detected scsi disk sdm at scsi4, channel 0, id 9, lun 1 | ||
180 | Vendor: COMPAQ Model: LOGICAL VOLUME Rev: 2.54 | ||
181 | Type: Direct-Access ANSI SCSI revision: 02 | ||
182 | Detected scsi disk sdn at scsi4, channel 0, id 10, lun 0 | ||
183 | Vendor: COMPAQ Model: LOGICAL VOLUME Rev: 2.54 | ||
184 | Type: Direct-Access ANSI SCSI revision: 02 | ||
185 | Detected scsi disk sdo at scsi4, channel 0, id 11, lun 0 | ||
186 | Vendor: COMPAQ Model: LOGICAL VOLUME Rev: 2.54 | ||
187 | Type: Direct-Access ANSI SCSI revision: 02 | ||
188 | Detected scsi disk sdp at scsi4, channel 0, id 11, lun 1 | ||
189 | Vendor: COMPAQ Model: LOGICAL VOLUME Rev: 2.54 | ||
190 | Type: Direct-Access ANSI SCSI revision: 02 | ||
191 | Detected scsi disk sdq at scsi4, channel 0, id 12, lun 0 | ||
192 | Vendor: COMPAQ Model: LOGICAL VOLUME Rev: 2.54 | ||
193 | Type: Direct-Access ANSI SCSI revision: 02 | ||
194 | Detected scsi disk sdr at scsi4, channel 0, id 12, lun 1 | ||
195 | resize_dma_pool: unknown device type 12 | ||
196 | resize_dma_pool: unknown device type 12 | ||
197 | SCSI device sdb: hdwr sector= 512 bytes. Sectors= 35843670 [17501 MB] [17.5 GB] | ||
198 | sdb: sdb1 | ||
199 | SCSI device sdc: hdwr sector= 512 bytes. Sectors= 144410880 [70513 MB] [70.5 GB] | ||
200 | sdc: sdc1 | ||
201 | SCSI device sdd: hdwr sector= 512 bytes. Sectors= 17783240 [8683 MB] [8.7 GB] | ||
202 | sdd: sdd1 | ||
203 | SCSI device sde: hdwr sector= 512 bytes. Sectors= 17783240 [8683 MB] [8.7 GB] | ||
204 | sde: sde1 | ||
205 | SCSI device sdf: hdwr sector= 512 bytes. Sectors= 17783240 [8683 MB] [8.7 GB] | ||
206 | sdf: sdf1 | ||
207 | SCSI device sdg: hdwr sector= 512 bytes. Sectors= 17783240 [8683 MB] [8.7 GB] | ||
208 | sdg: sdg1 | ||
209 | SCSI device sdh: hdwr sector= 512 bytes. Sectors= 17783240 [8683 MB] [8.7 GB] | ||
210 | sdh: sdh1 | ||
211 | SCSI device sdi: hdwr sector= 512 bytes. Sectors= 17783240 [8683 MB] [8.7 GB] | ||
212 | sdi: sdi1 | ||
213 | SCSI device sdj: hdwr sector= 512 bytes. Sectors= 2056160 [1003 MB] [1.0 GB] | ||
214 | sdj: sdj1 | ||
215 | SCSI device sdk: hdwr sector= 512 bytes. Sectors= 2052736 [1002 MB] [1.0 GB] | ||
216 | sdk: sdk1 | ||
217 | SCSI device sdl: hdwr sector= 512 bytes. Sectors= 17764320 [8673 MB] [8.7 GB] | ||
218 | sdl: sdl1 | ||
219 | SCSI device sdm: hdwr sector= 512 bytes. Sectors= 8380320 [4091 MB] [4.1 GB] | ||
220 | sdm: sdm1 | ||
221 | SCSI device sdn: hdwr sector= 512 bytes. Sectors= 17764320 [8673 MB] [8.7 GB] | ||
222 | sdn: sdn1 | ||
223 | SCSI device sdo: hdwr sector= 512 bytes. Sectors= 17764320 [8673 MB] [8.7 GB] | ||
224 | sdo: sdo1 | ||
225 | SCSI device sdp: hdwr sector= 512 bytes. Sectors= 17764320 [8673 MB] [8.7 GB] | ||
226 | sdp: sdp1 | ||
227 | SCSI device sdq: hdwr sector= 512 bytes. Sectors= 2056160 [1003 MB] [1.0 GB] | ||
228 | sdq: sdq1 | ||
229 | SCSI device sdr: hdwr sector= 512 bytes. Sectors= 2052736 [1002 MB] [1.0 GB] | ||
230 | sdr: sdr1 | ||
231 | |||
232 | ************************* | ||
233 | |||
234 | If a GBIC of type Short-wave, Long-wave, or Copper is detected, it will | ||
235 | print out; otherwise, "none" is displayed. If the cabling is correct | ||
236 | and a loop circuit is completed, you should see "Monitor"; otherwise, | ||
237 | "LoopFail" (on open circuit) or some LPSM number/state with bit 3 set. | ||
238 | |||
239 | |||
240 | ERRATA: | ||
241 | 1. Normally, Linux Scsi queries FC devices with INQUIRY strings. All LUNs | ||
242 | found according to INQUIRY should get READ commands at sector 0 to find | ||
243 | partition table, etc. Older kernels only query the first 4 devices. Some | ||
244 | Linux kernels only look for one LUN per target (i.e. FC device). | ||
245 | |||
246 | 2. Physically removing a device, or a malfunctioning system which hides a | ||
247 | device, leads to a 30-second timeout and subsequent _abort call. | ||
248 | In some process contexts, this will hang the kernel (crashing the system). | ||
249 | Single bit errors in frames and virtually all hot plugging events are | ||
250 | gracefully handled with internal driver timer and Abort processing. | ||
251 | |||
252 | 3. Some SCSI drives with error conditions will not handle the 7 second timeout | ||
253 | in this software driver, leading to infinite retries on timed out SCSI commands. | ||
254 | The 7 secs balances the need to quickly recover from lost frames (esp. on sequence | ||
255 | initiatives) and time needed by older/slower/error-state drives in responding. | ||
256 | This can be easily changed in "Exchanges[].timeOut". | ||
257 | |||
258 | 4. Due to the nature of FC soft addressing, there is no assurance that the | ||
259 | same LUNs (drives) will have the same path (e.g. /dev/sdb1) from one boot to | ||
260 | next. Dynamic soft address changes (i.e. 24-bit FC port_id) are | ||
261 | supported during run time (e.g. due to hot plug event) by the use of WWN to | ||
262 | SCSI Nexus (channel/target/LUN) mapping. | ||
263 | |||
264 | 5. Compaq RA4x00 firmware version 2.54 and later supports SSP (Selective | ||
265 | Storage Presentation), which maps LUNs to a WWN. If RA4x00 firmware prior | ||
266 | 2.54 (e.g. older controller) is used, or the FC HBA is replaced (another WWN | ||
267 | is used), logical volumes on the RA4x00 will no longer be visible. | ||
268 | |||
269 | |||
270 | Send questions/comments to: | ||
271 | Amy Vanzant-Hodge (fibrechannel@compaq.com) | ||
272 | |||
diff --git a/Documentation/scsi/hptiop.txt b/Documentation/scsi/hptiop.txt new file mode 100644 index 000000000000..d28a31247d4c --- /dev/null +++ b/Documentation/scsi/hptiop.txt | |||
@@ -0,0 +1,92 @@ | |||
1 | HIGHPOINT ROCKETRAID 3xxx RAID DRIVER (hptiop) | ||
2 | |||
3 | Controller Register Map | ||
4 | ------------------------- | ||
5 | |||
6 | The controller IOP is accessed via PCI BAR0. | ||
7 | |||
8 | BAR0 offset Register | ||
9 | 0x10 Inbound Message Register 0 | ||
10 | 0x14 Inbound Message Register 1 | ||
11 | 0x18 Outbound Message Register 0 | ||
12 | 0x1C Outbound Message Register 1 | ||
13 | 0x20 Inbound Doorbell Register | ||
14 | 0x24 Inbound Interrupt Status Register | ||
15 | 0x28 Inbound Interrupt Mask Register | ||
16 | 0x30 Outbound Interrupt Status Register | ||
17 | 0x34 Outbound Interrupt Mask Register | ||
18 | 0x40 Inbound Queue Port | ||
19 | 0x44 Outbound Queue Port | ||
20 | |||
21 | |||
22 | I/O Request Workflow | ||
23 | ---------------------- | ||
24 | |||
25 | All queued requests are handled via inbound/outbound queue port. | ||
26 | A request packet can be allocated in either IOP or host memory. | ||
27 | |||
28 | To send a request to the controller: | ||
29 | |||
30 | - Get a free request packet by reading the inbound queue port or | ||
31 | allocate a free request in host DMA coherent memory. | ||
32 | |||
33 | The value returned from the inbound queue port is an offset | ||
34 | relative to the IOP BAR0. | ||
35 | |||
36 | Requests allocated in host memory must be aligned on 32-bytes boundary. | ||
37 | |||
38 | - Fill the packet. | ||
39 | |||
40 | - Post the packet to IOP by writing it to inbound queue. For requests | ||
41 | allocated in IOP memory, write the offset to inbound queue port. For | ||
42 | requests allocated in host memory, write (0x80000000|(bus_addr>>5)) | ||
43 | to the inbound queue port. | ||
44 | |||
45 | - The IOP process the request. When the request is completed, it | ||
46 | will be put into outbound queue. An outbound interrupt will be | ||
47 | generated. | ||
48 | |||
49 | For requests allocated in IOP memory, the request offset is posted to | ||
50 | outbound queue. | ||
51 | |||
52 | For requests allocated in host memory, (0x80000000|(bus_addr>>5)) | ||
53 | is posted to the outbound queue. If IOP_REQUEST_FLAG_OUTPUT_CONTEXT | ||
54 | flag is set in the request, the low 32-bit context value will be | ||
55 | posted instead. | ||
56 | |||
57 | - The host read the outbound queue and complete the request. | ||
58 | |||
59 | For requests allocated in IOP memory, the host driver free the request | ||
60 | by writing it to the outbound queue. | ||
61 | |||
62 | Non-queued requests (reset/flush etc) can be sent via inbound message | ||
63 | register 0. An outbound message with the same value indicates the completion | ||
64 | of an inbound message. | ||
65 | |||
66 | |||
67 | User-level Interface | ||
68 | --------------------- | ||
69 | |||
70 | The driver exposes following sysfs attributes: | ||
71 | |||
72 | NAME R/W Description | ||
73 | driver-version R driver version string | ||
74 | firmware-version R firmware version string | ||
75 | |||
76 | The driver registers char device "hptiop" to communicate with HighPoint RAID | ||
77 | management software. Its ioctl routine acts as a general binary interface | ||
78 | between the IOP firmware and HighPoint RAID management software. New management | ||
79 | functions can be implemented in application/firmware without modification | ||
80 | in driver code. | ||
81 | |||
82 | |||
83 | ----------------------------------------------------------------------------- | ||
84 | Copyright (C) 2006 HighPoint Technologies, Inc. All Rights Reserved. | ||
85 | |||
86 | This file is distributed in the hope that it will be useful, | ||
87 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
88 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
89 | GNU General Public License for more details. | ||
90 | |||
91 | linux@highpoint-tech.com | ||
92 | http://www.highpoint-tech.com | ||
diff --git a/Documentation/scsi/ppa.txt b/Documentation/scsi/ppa.txt index 0dac88d86d87..5d9223bc1bd5 100644 --- a/Documentation/scsi/ppa.txt +++ b/Documentation/scsi/ppa.txt | |||
@@ -12,5 +12,3 @@ http://www.torque.net/parport/ | |||
12 | Email list for Linux Parport | 12 | Email list for Linux Parport |
13 | linux-parport@torque.net | 13 | linux-parport@torque.net |
14 | 14 | ||
15 | Email for problems with ZIP or ZIP Plus drivers | ||
16 | campbell@torque.net | ||
diff --git a/Documentation/sound/alsa/ALSA-Configuration.txt b/Documentation/sound/alsa/ALSA-Configuration.txt index 0ee2c7dfc482..87d76a5c73d0 100644 --- a/Documentation/sound/alsa/ALSA-Configuration.txt +++ b/Documentation/sound/alsa/ALSA-Configuration.txt | |||
@@ -366,7 +366,9 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed. | |||
366 | 366 | ||
367 | Module for C-Media CMI8338 and 8738 PCI sound cards. | 367 | Module for C-Media CMI8338 and 8738 PCI sound cards. |
368 | 368 | ||
369 | mpu_port - 0x300,0x310,0x320,0x330, 0 = disable (default) | 369 | mpu_port - 0x300,0x310,0x320,0x330 = legacy port, |
370 | 1 = integrated PCI port, | ||
371 | 0 = disable (default) | ||
370 | fm_port - 0x388 (default), 0 = disable (default) | 372 | fm_port - 0x388 (default), 0 = disable (default) |
371 | soft_ac3 - Software-conversion of raw SPDIF packets (model 033 only) | 373 | soft_ac3 - Software-conversion of raw SPDIF packets (model 033 only) |
372 | (default = 1) | 374 | (default = 1) |
@@ -468,7 +470,7 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed. | |||
468 | 470 | ||
469 | Module for multifunction CS5535 companion PCI device | 471 | Module for multifunction CS5535 companion PCI device |
470 | 472 | ||
471 | This module supports multiple cards. | 473 | The power-management is supported. |
472 | 474 | ||
473 | Module snd-dt019x | 475 | Module snd-dt019x |
474 | ----------------- | 476 | ----------------- |
@@ -707,8 +709,10 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed. | |||
707 | Module snd-hda-intel | 709 | Module snd-hda-intel |
708 | -------------------- | 710 | -------------------- |
709 | 711 | ||
710 | Module for Intel HD Audio (ICH6, ICH6M, ICH7), ATI SB450, | 712 | Module for Intel HD Audio (ICH6, ICH6M, ESB2, ICH7, ICH8), |
711 | VIA VT8251/VT8237A | 713 | ATI SB450, SB600, RS600, |
714 | VIA VT8251/VT8237A, | ||
715 | SIS966, ULI M5461 | ||
712 | 716 | ||
713 | model - force the model name | 717 | model - force the model name |
714 | position_fix - Fix DMA pointer (0 = auto, 1 = none, 2 = POSBUF, 3 = FIFO size) | 718 | position_fix - Fix DMA pointer (0 = auto, 1 = none, 2 = POSBUF, 3 = FIFO size) |
@@ -778,6 +782,7 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed. | |||
778 | AD1981 | 782 | AD1981 |
779 | basic 3-jack (default) | 783 | basic 3-jack (default) |
780 | hp HP nx6320 | 784 | hp HP nx6320 |
785 | thinkpad Lenovo Thinkpad T60/X60/Z60 | ||
781 | 786 | ||
782 | AD1986A | 787 | AD1986A |
783 | 6stack 6-jack, separate surrounds (default) | 788 | 6stack 6-jack, separate surrounds (default) |
@@ -1633,9 +1638,7 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed. | |||
1633 | 1638 | ||
1634 | About capture IBL, see the description of snd-vx222 module. | 1639 | About capture IBL, see the description of snd-vx222 module. |
1635 | 1640 | ||
1636 | Note: the driver is build only when CONFIG_ISA is set. | 1641 | Note: snd-vxp440 driver is merged to snd-vxpocket driver since |
1637 | |||
1638 | Note2: snd-vxp440 driver is merged to snd-vxpocket driver since | ||
1639 | ALSA 1.0.10. | 1642 | ALSA 1.0.10. |
1640 | 1643 | ||
1641 | The power-management is supported. | 1644 | The power-management is supported. |
@@ -1662,8 +1665,6 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed. | |||
1662 | 1665 | ||
1663 | Module for Sound Core PDAudioCF sound card. | 1666 | Module for Sound Core PDAudioCF sound card. |
1664 | 1667 | ||
1665 | Note: the driver is build only when CONFIG_ISA is set. | ||
1666 | |||
1667 | The power-management is supported. | 1668 | The power-management is supported. |
1668 | 1669 | ||
1669 | 1670 | ||
diff --git a/Documentation/sound/alsa/DocBook/writing-an-alsa-driver.tmpl b/Documentation/sound/alsa/DocBook/writing-an-alsa-driver.tmpl index 1faf76383bab..635cbb94357c 100644 --- a/Documentation/sound/alsa/DocBook/writing-an-alsa-driver.tmpl +++ b/Documentation/sound/alsa/DocBook/writing-an-alsa-driver.tmpl | |||
@@ -4215,7 +4215,7 @@ struct _snd_pcm_runtime { | |||
4215 | <programlisting> | 4215 | <programlisting> |
4216 | <![CDATA[ | 4216 | <![CDATA[ |
4217 | struct snd_rawmidi *rmidi; | 4217 | struct snd_rawmidi *rmidi; |
4218 | snd_mpu401_uart_new(card, 0, MPU401_HW_MPU401, port, integrated, | 4218 | snd_mpu401_uart_new(card, 0, MPU401_HW_MPU401, port, info_flags, |
4219 | irq, irq_flags, &rmidi); | 4219 | irq, irq_flags, &rmidi); |
4220 | ]]> | 4220 | ]]> |
4221 | </programlisting> | 4221 | </programlisting> |
@@ -4242,15 +4242,36 @@ struct _snd_pcm_runtime { | |||
4242 | </para> | 4242 | </para> |
4243 | 4243 | ||
4244 | <para> | 4244 | <para> |
4245 | The 5th argument is bitflags for additional information. | ||
4245 | When the i/o port address above is a part of the PCI i/o | 4246 | When the i/o port address above is a part of the PCI i/o |
4246 | region, the MPU401 i/o port might have been already allocated | 4247 | region, the MPU401 i/o port might have been already allocated |
4247 | (reserved) by the driver itself. In such a case, pass non-zero | 4248 | (reserved) by the driver itself. In such a case, pass a bit flag |
4248 | to the 5th argument | 4249 | <constant>MPU401_INFO_INTEGRATED</constant>, |
4249 | (<parameter>integrated</parameter>). Otherwise, pass 0 to it, | ||
4250 | and | 4250 | and |
4251 | the mpu401-uart layer will allocate the i/o ports by itself. | 4251 | the mpu401-uart layer will allocate the i/o ports by itself. |
4252 | </para> | 4252 | </para> |
4253 | 4253 | ||
4254 | <para> | ||
4255 | When the controller supports only the input or output MIDI stream, | ||
4256 | pass <constant>MPU401_INFO_INPUT</constant> or | ||
4257 | <constant>MPU401_INFO_OUTPUT</constant> bitflag, respectively. | ||
4258 | Then the rawmidi instance is created as a single stream. | ||
4259 | </para> | ||
4260 | |||
4261 | <para> | ||
4262 | <constant>MPU401_INFO_MMIO</constant> bitflag is used to change | ||
4263 | the access method to MMIO (via readb and writeb) instead of | ||
4264 | iob and outb. In this case, you have to pass the iomapped address | ||
4265 | to <function>snd_mpu401_uart_new()</function>. | ||
4266 | </para> | ||
4267 | |||
4268 | <para> | ||
4269 | When <constant>MPU401_INFO_TX_IRQ</constant> is set, the output | ||
4270 | stream isn't checked in the default interrupt handler. The driver | ||
4271 | needs to call <function>snd_mpu401_uart_interrupt_tx()</function> | ||
4272 | by itself to start processing the output stream in irq handler. | ||
4273 | </para> | ||
4274 | |||
4254 | <para> | 4275 | <para> |
4255 | Usually, the port address corresponds to the command port and | 4276 | Usually, the port address corresponds to the command port and |
4256 | port + 1 corresponds to the data port. If not, you may change | 4277 | port + 1 corresponds to the data port. If not, you may change |
@@ -5333,7 +5354,7 @@ struct _snd_pcm_runtime { | |||
5333 | <informalexample> | 5354 | <informalexample> |
5334 | <programlisting> | 5355 | <programlisting> |
5335 | <![CDATA[ | 5356 | <![CDATA[ |
5336 | snd_info_set_text_ops(entry, chip, read_size, my_proc_read); | 5357 | snd_info_set_text_ops(entry, chip, my_proc_read); |
5337 | ]]> | 5358 | ]]> |
5338 | </programlisting> | 5359 | </programlisting> |
5339 | </informalexample> | 5360 | </informalexample> |
@@ -5394,7 +5415,6 @@ struct _snd_pcm_runtime { | |||
5394 | <informalexample> | 5415 | <informalexample> |
5395 | <programlisting> | 5416 | <programlisting> |
5396 | <![CDATA[ | 5417 | <![CDATA[ |
5397 | entry->c.text.write_size = 256; | ||
5398 | entry->c.text.write = my_proc_write; | 5418 | entry->c.text.write = my_proc_write; |
5399 | ]]> | 5419 | ]]> |
5400 | </programlisting> | 5420 | </programlisting> |
@@ -5402,22 +5422,6 @@ struct _snd_pcm_runtime { | |||
5402 | </para> | 5422 | </para> |
5403 | 5423 | ||
5404 | <para> | 5424 | <para> |
5405 | The buffer size for read is set to 1024 implicitly by | ||
5406 | <function>snd_info_set_text_ops()</function>. It should suffice | ||
5407 | in most cases (the size will be aligned to | ||
5408 | <constant>PAGE_SIZE</constant> anyway), but if you need to handle | ||
5409 | very large text files, you can set it explicitly, too. | ||
5410 | |||
5411 | <informalexample> | ||
5412 | <programlisting> | ||
5413 | <![CDATA[ | ||
5414 | entry->c.text.read_size = 65536; | ||
5415 | ]]> | ||
5416 | </programlisting> | ||
5417 | </informalexample> | ||
5418 | </para> | ||
5419 | |||
5420 | <para> | ||
5421 | For the write callback, you can use | 5425 | For the write callback, you can use |
5422 | <function>snd_info_get_line()</function> to get a text line, and | 5426 | <function>snd_info_get_line()</function> to get a text line, and |
5423 | <function>snd_info_get_str()</function> to retrieve a string from | 5427 | <function>snd_info_get_str()</function> to retrieve a string from |
@@ -5562,7 +5566,7 @@ struct _snd_pcm_runtime { | |||
5562 | power status.</para></listitem> | 5566 | power status.</para></listitem> |
5563 | <listitem><para>Call <function>snd_pcm_suspend_all()</function> to suspend the running PCM streams.</para></listitem> | 5567 | <listitem><para>Call <function>snd_pcm_suspend_all()</function> to suspend the running PCM streams.</para></listitem> |
5564 | <listitem><para>If AC97 codecs are used, call | 5568 | <listitem><para>If AC97 codecs are used, call |
5565 | <function>snd_ac97_resume()</function> for each codec.</para></listitem> | 5569 | <function>snd_ac97_suspend()</function> for each codec.</para></listitem> |
5566 | <listitem><para>Save the register values if necessary.</para></listitem> | 5570 | <listitem><para>Save the register values if necessary.</para></listitem> |
5567 | <listitem><para>Stop the hardware if necessary.</para></listitem> | 5571 | <listitem><para>Stop the hardware if necessary.</para></listitem> |
5568 | <listitem><para>Disable the PCI device by calling | 5572 | <listitem><para>Disable the PCI device by calling |
diff --git a/Documentation/sparc/sbus_drivers.txt b/Documentation/sparc/sbus_drivers.txt index 876195dc2aef..4b9351624f13 100644 --- a/Documentation/sparc/sbus_drivers.txt +++ b/Documentation/sparc/sbus_drivers.txt | |||
@@ -25,42 +25,84 @@ the bits necessary to run your device. The most commonly | |||
25 | used members of this structure, and their typical usage, | 25 | used members of this structure, and their typical usage, |
26 | will be detailed below. | 26 | will be detailed below. |
27 | 27 | ||
28 | Here is how probing is performed by an SBUS driver | 28 | Here is a piece of skeleton code for perofming a device |
29 | under Linux: | 29 | probe in an SBUS driverunder Linux: |
30 | 30 | ||
31 | static void init_one_mydevice(struct sbus_dev *sdev) | 31 | static int __devinit mydevice_probe_one(struct sbus_dev *sdev) |
32 | { | 32 | { |
33 | struct mysdevice *mp = kzalloc(sizeof(*mp), GFP_KERNEL); | ||
34 | |||
35 | if (!mp) | ||
36 | return -ENODEV; | ||
37 | |||
38 | ... | ||
39 | dev_set_drvdata(&sdev->ofdev.dev, mp); | ||
40 | return 0; | ||
33 | ... | 41 | ... |
34 | } | 42 | } |
35 | 43 | ||
36 | static int mydevice_match(struct sbus_dev *sdev) | 44 | static int __devinit mydevice_probe(struct of_device *dev, |
45 | const struct of_device_id *match) | ||
37 | { | 46 | { |
38 | if (some_criteria(sdev)) | 47 | struct sbus_dev *sdev = to_sbus_device(&dev->dev); |
39 | return 1; | 48 | |
40 | return 0; | 49 | return mydevice_probe_one(sdev); |
41 | } | 50 | } |
42 | 51 | ||
43 | static void mydevice_probe(void) | 52 | static int __devexit mydevice_remove(struct of_device *dev) |
44 | { | 53 | { |
45 | struct sbus_bus *sbus; | 54 | struct sbus_dev *sdev = to_sbus_device(&dev->dev); |
46 | struct sbus_dev *sdev; | 55 | struct mydevice *mp = dev_get_drvdata(&dev->dev); |
47 | 56 | ||
48 | for_each_sbus(sbus) { | 57 | return mydevice_remove_one(sdev, mp); |
49 | for_each_sbusdev(sdev, sbus) { | ||
50 | if (mydevice_match(sdev)) | ||
51 | init_one_mydevice(sdev); | ||
52 | } | ||
53 | } | ||
54 | } | 58 | } |
55 | 59 | ||
56 | All this does is walk through all SBUS devices in the | 60 | static struct of_device_id mydevice_match[] = { |
57 | system, checks each to see if it is of the type which | 61 | { |
58 | your driver is written for, and if so it calls the init | 62 | .name = "mydevice", |
59 | routine to attach the device and prepare to drive it. | 63 | }, |
64 | {}, | ||
65 | }; | ||
66 | |||
67 | MODULE_DEVICE_TABLE(of, mydevice_match); | ||
60 | 68 | ||
61 | "init_one_mydevice" might do things like allocate software | 69 | static struct of_platform_driver mydevice_driver = { |
62 | state structures, map in I/O registers, place the hardware | 70 | .name = "mydevice", |
63 | into an initialized state, etc. | 71 | .match_table = mydevice_match, |
72 | .probe = mydevice_probe, | ||
73 | .remove = __devexit_p(mydevice_remove), | ||
74 | }; | ||
75 | |||
76 | static int __init mydevice_init(void) | ||
77 | { | ||
78 | return of_register_driver(&mydevice_driver, &sbus_bus_type); | ||
79 | } | ||
80 | |||
81 | static void __exit mydevice_exit(void) | ||
82 | { | ||
83 | of_unregister_driver(&mydevice_driver); | ||
84 | } | ||
85 | |||
86 | module_init(mydevice_init); | ||
87 | module_exit(mydevice_exit); | ||
88 | |||
89 | The mydevice_match table is a series of entries which | ||
90 | describes what SBUS devices your driver is meant for. In the | ||
91 | simplest case you specify a string for the 'name' field. Every | ||
92 | SBUS device with a 'name' property matching your string will | ||
93 | be passed one-by-one to your .probe method. | ||
94 | |||
95 | You should store away your device private state structure | ||
96 | pointer in the drvdata area so that you can retrieve it later on | ||
97 | in your .remove method. | ||
98 | |||
99 | Any memory allocated, registers mapped, IRQs registered, | ||
100 | etc. must be undone by your .remove method so that all resources | ||
101 | of your device are relased by the time it returns. | ||
102 | |||
103 | You should _NOT_ use the for_each_sbus(), for_each_sbusdev(), | ||
104 | and for_all_sbusdev() interfaces. They are deprecated, will be | ||
105 | removed, and no new driver should reference them ever. | ||
64 | 106 | ||
65 | Mapping and Accessing I/O Registers | 107 | Mapping and Accessing I/O Registers |
66 | 108 | ||
@@ -263,10 +305,3 @@ discussed above and plus it handles both PCI and SBUS boards. | |||
263 | Lance driver abuses consistent mappings for data transfer. | 305 | Lance driver abuses consistent mappings for data transfer. |
264 | It is a nifty trick which we do not particularly recommend... | 306 | It is a nifty trick which we do not particularly recommend... |
265 | Just check it out and know that it's legal. | 307 | Just check it out and know that it's legal. |
266 | |||
267 | Bad examples, do NOT use | ||
268 | |||
269 | drivers/video/cgsix.c | ||
270 | This one uses result of sbus_ioremap as if it is an address. | ||
271 | This does NOT work on sparc64 and therefore is broken. We will | ||
272 | convert it at a later date. | ||
diff --git a/Documentation/sparse.txt b/Documentation/sparse.txt index 3f1c5464b1c9..5a311c38dd1a 100644 --- a/Documentation/sparse.txt +++ b/Documentation/sparse.txt | |||
@@ -1,5 +1,6 @@ | |||
1 | Copyright 2004 Linus Torvalds | 1 | Copyright 2004 Linus Torvalds |
2 | Copyright 2004 Pavel Machek <pavel@suse.cz> | 2 | Copyright 2004 Pavel Machek <pavel@suse.cz> |
3 | Copyright 2006 Bob Copeland <me@bobcopeland.com> | ||
3 | 4 | ||
4 | Using sparse for typechecking | 5 | Using sparse for typechecking |
5 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 6 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
@@ -41,15 +42,8 @@ sure that bitwise types don't get mixed up (little-endian vs big-endian | |||
41 | vs cpu-endian vs whatever), and there the constant "0" really _is_ | 42 | vs cpu-endian vs whatever), and there the constant "0" really _is_ |
42 | special. | 43 | special. |
43 | 44 | ||
44 | Use | 45 | Getting sparse |
45 | 46 | ~~~~~~~~~~~~~~ | |
46 | make C=[12] CF=-Wbitwise | ||
47 | |||
48 | or you don't get any checking at all. | ||
49 | |||
50 | |||
51 | Where to get sparse | ||
52 | ~~~~~~~~~~~~~~~~~~~ | ||
53 | 47 | ||
54 | With git, you can just get it from | 48 | With git, you can just get it from |
55 | 49 | ||
@@ -57,7 +51,7 @@ With git, you can just get it from | |||
57 | 51 | ||
58 | and DaveJ has tar-balls at | 52 | and DaveJ has tar-balls at |
59 | 53 | ||
60 | http://www.codemonkey.org.uk/projects/git-snapshots/sparse/ | 54 | http://www.codemonkey.org.uk/projects/git-snapshots/sparse/ |
61 | 55 | ||
62 | 56 | ||
63 | Once you have it, just do | 57 | Once you have it, just do |
@@ -65,8 +59,20 @@ Once you have it, just do | |||
65 | make | 59 | make |
66 | make install | 60 | make install |
67 | 61 | ||
68 | as your regular user, and it will install sparse in your ~/bin directory. | 62 | as a regular user, and it will install sparse in your ~/bin directory. |
69 | After that, doing a kernel make with "make C=1" will run sparse on all the | 63 | |
70 | C files that get recompiled, or with "make C=2" will run sparse on the | 64 | Using sparse |
71 | files whether they need to be recompiled or not (ie the latter is fast way | 65 | ~~~~~~~~~~~~ |
72 | to check the whole tree if you have already built it). | 66 | |
67 | Do a kernel make with "make C=1" to run sparse on all the C files that get | ||
68 | recompiled, or use "make C=2" to run sparse on the files whether they need to | ||
69 | be recompiled or not. The latter is a fast way to check the whole tree if you | ||
70 | have already built it. | ||
71 | |||
72 | The optional make variable CF can be used to pass arguments to sparse. The | ||
73 | build system passes -Wbitwise to sparse automatically. To perform endianness | ||
74 | checks, you may define __CHECK_ENDIAN__: | ||
75 | |||
76 | make C=2 CF="-D__CHECK_ENDIAN__" | ||
77 | |||
78 | These checks are disabled by default as they generate a host of warnings. | ||
diff --git a/Documentation/sysctl/vm.txt b/Documentation/sysctl/vm.txt index a46c10fcddfc..2dc246af4885 100644 --- a/Documentation/sysctl/vm.txt +++ b/Documentation/sysctl/vm.txt | |||
@@ -29,6 +29,7 @@ Currently, these files are in /proc/sys/vm: | |||
29 | - drop-caches | 29 | - drop-caches |
30 | - zone_reclaim_mode | 30 | - zone_reclaim_mode |
31 | - zone_reclaim_interval | 31 | - zone_reclaim_interval |
32 | - panic_on_oom | ||
32 | 33 | ||
33 | ============================================================== | 34 | ============================================================== |
34 | 35 | ||
@@ -178,3 +179,15 @@ Time is set in seconds and set by default to 30 seconds. | |||
178 | Reduce the interval if undesired off node allocations occur. However, too | 179 | Reduce the interval if undesired off node allocations occur. However, too |
179 | frequent scans will have a negative impact onoff node allocation performance. | 180 | frequent scans will have a negative impact onoff node allocation performance. |
180 | 181 | ||
182 | ============================================================= | ||
183 | |||
184 | panic_on_oom | ||
185 | |||
186 | This enables or disables panic on out-of-memory feature. If this is set to 1, | ||
187 | the kernel panics when out-of-memory happens. If this is set to 0, the kernel | ||
188 | will kill some rogue process, called oom_killer. Usually, oom_killer can kill | ||
189 | rogue processes and system will survive. If you want to panic the system | ||
190 | rather than killing rogue processes, set this to 1. | ||
191 | |||
192 | The default value is 0. | ||
193 | |||
diff --git a/Documentation/sysrq.txt b/Documentation/sysrq.txt index ad0bedf678b3..e0188a23fd5e 100644 --- a/Documentation/sysrq.txt +++ b/Documentation/sysrq.txt | |||
@@ -115,8 +115,9 @@ trojan program is running at console and which could grab your password | |||
115 | when you would try to login. It will kill all programs on given console | 115 | when you would try to login. It will kill all programs on given console |
116 | and thus letting you make sure that the login prompt you see is actually | 116 | and thus letting you make sure that the login prompt you see is actually |
117 | the one from init, not some trojan program. | 117 | the one from init, not some trojan program. |
118 | IMPORTANT:In its true form it is not a true SAK like the one in :IMPORTANT | 118 | IMPORTANT: In its true form it is not a true SAK like the one in a :IMPORTANT |
119 | IMPORTANT:c2 compliant systems, and it should be mistook as such. :IMPORTANT | 119 | IMPORTANT: c2 compliant system, and it should not be mistaken as :IMPORTANT |
120 | IMPORTANT: such. :IMPORTANT | ||
120 | It seems other find it useful as (System Attention Key) which is | 121 | It seems other find it useful as (System Attention Key) which is |
121 | useful when you want to exit a program that will not let you switch consoles. | 122 | useful when you want to exit a program that will not let you switch consoles. |
122 | (For example, X or a svgalib program.) | 123 | (For example, X or a svgalib program.) |
diff --git a/Documentation/tty.txt b/Documentation/tty.txt index 8ff7bc2a0811..dab56604745d 100644 --- a/Documentation/tty.txt +++ b/Documentation/tty.txt | |||
@@ -80,13 +80,6 @@ receive_buf() - Hand buffers of bytes from the driver to the ldisc | |||
80 | for processing. Semantics currently rather | 80 | for processing. Semantics currently rather |
81 | mysterious 8( | 81 | mysterious 8( |
82 | 82 | ||
83 | receive_room() - Can be called by the driver layer at any time when | ||
84 | the ldisc is opened. The ldisc must be able to | ||
85 | handle the reported amount of data at that instant. | ||
86 | Synchronization between active receive_buf and | ||
87 | receive_room calls is down to the driver not the | ||
88 | ldisc. Must not sleep. | ||
89 | |||
90 | write_wakeup() - May be called at any point between open and close. | 83 | write_wakeup() - May be called at any point between open and close. |
91 | The TTY_DO_WRITE_WAKEUP flag indicates if a call | 84 | The TTY_DO_WRITE_WAKEUP flag indicates if a call |
92 | is needed but always races versus calls. Thus the | 85 | is needed but always races versus calls. Thus the |
diff --git a/Documentation/usb/usbmon.txt b/Documentation/usb/usbmon.txt index 63cb7edd177e..e65ec828d7aa 100644 --- a/Documentation/usb/usbmon.txt +++ b/Documentation/usb/usbmon.txt | |||
@@ -29,14 +29,13 @@ if usbmon is built into the kernel. | |||
29 | 29 | ||
30 | # mount -t debugfs none_debugs /sys/kernel/debug | 30 | # mount -t debugfs none_debugs /sys/kernel/debug |
31 | # modprobe usbmon | 31 | # modprobe usbmon |
32 | # | ||
32 | 33 | ||
33 | Verify that bus sockets are present. | 34 | Verify that bus sockets are present. |
34 | 35 | ||
35 | [root@lembas zaitcev]# ls /sys/kernel/debug/usbmon | 36 | # ls /sys/kernel/debug/usbmon |
36 | 1s 1t 2s 2t 3s 3t 4s 4t | 37 | 1s 1t 2s 2t 3s 3t 4s 4t |
37 | [root@lembas zaitcev]# | 38 | # |
38 | |||
39 | # ls /sys/kernel | ||
40 | 39 | ||
41 | 2. Find which bus connects to the desired device | 40 | 2. Find which bus connects to the desired device |
42 | 41 | ||
@@ -76,7 +75,7 @@ that the file size is not excessive for your favourite editor. | |||
76 | 75 | ||
77 | * Raw text data format | 76 | * Raw text data format |
78 | 77 | ||
79 | The '0t' type data consists of a stream of events, such as URB submission, | 78 | The '1t' type data consists of a stream of events, such as URB submission, |
80 | URB callback, submission error. Every event is a text line, which consists | 79 | URB callback, submission error. Every event is a text line, which consists |
81 | of whitespace separated words. The number of position of words may depend | 80 | of whitespace separated words. The number of position of words may depend |
82 | on the event type, but there is a set of words, common for all types. | 81 | on the event type, but there is a set of words, common for all types. |
@@ -97,20 +96,25 @@ Here is the list of words, from left to right: | |||
97 | Zi Zo Isochronous input and output | 96 | Zi Zo Isochronous input and output |
98 | Ii Io Interrupt input and output | 97 | Ii Io Interrupt input and output |
99 | Bi Bo Bulk input and output | 98 | Bi Bo Bulk input and output |
100 | Device address and Endpoint number are decimal numbers with leading zeroes | 99 | Device address and Endpoint number are 3-digit and 2-digit (respectively) |
101 | or 3 and 2 positions, correspondingly. | 100 | decimal numbers, with leading zeroes. |
102 | - URB Status. This field makes no sense for submissions, but is present | 101 | - URB Status. In most cases, this field contains a number, sometimes negative, |
103 | to help scripts with parsing. In error case, it contains the error code. | 102 | which represents a "status" field of the URB. This field makes no sense for |
104 | In case of a setup packet, it contains a Setup Tag. If scripts read a number | 103 | submissions, but is present anyway to help scripts with parsing. When an |
105 | in this field, they proceed to read Data Length. Otherwise, they read | 104 | error occurs, the field contains the error code. In case of a submission of |
106 | the setup packet before reading the Data Length. | 105 | a Control packet, this field contains a Setup Tag instead of an error code. |
106 | It is easy to tell whether the Setup Tag is present because it is never a | ||
107 | number. Thus if scripts find a number in this field, they proceed to read | ||
108 | Data Length. If they find something else, like a letter, they read the setup | ||
109 | packet before reading the Data Length. | ||
107 | - Setup packet, if present, consists of 5 words: one of each for bmRequestType, | 110 | - Setup packet, if present, consists of 5 words: one of each for bmRequestType, |
108 | bRequest, wValue, wIndex, wLength, as specified by the USB Specification 2.0. | 111 | bRequest, wValue, wIndex, wLength, as specified by the USB Specification 2.0. |
109 | These words are safe to decode if Setup Tag was 's'. Otherwise, the setup | 112 | These words are safe to decode if Setup Tag was 's'. Otherwise, the setup |
110 | packet was present, but not captured, and the fields contain filler. | 113 | packet was present, but not captured, and the fields contain filler. |
111 | - Data Length. This is the actual length in the URB. | 114 | - Data Length. For submissions, this is the requested length. For callbacks, |
115 | this is the actual length. | ||
112 | - Data tag. The usbmon may not always capture data, even if length is nonzero. | 116 | - Data tag. The usbmon may not always capture data, even if length is nonzero. |
113 | Only if tag is '=', the data words are present. | 117 | The data words are present only if this tag is '='. |
114 | - Data words follow, in big endian hexadecimal format. Notice that they are | 118 | - Data words follow, in big endian hexadecimal format. Notice that they are |
115 | not machine words, but really just a byte stream split into words to make | 119 | not machine words, but really just a byte stream split into words to make |
116 | it easier to read. Thus, the last word may contain from one to four bytes. | 120 | it easier to read. Thus, the last word may contain from one to four bytes. |
diff --git a/Documentation/video4linux/CARDLIST.bttv b/Documentation/video4linux/CARDLIST.bttv index b72706c58a44..4efa4645885f 100644 --- a/Documentation/video4linux/CARDLIST.bttv +++ b/Documentation/video4linux/CARDLIST.bttv | |||
@@ -87,7 +87,7 @@ | |||
87 | 86 -> Osprey 101/151 w/ svid | 87 | 86 -> Osprey 101/151 w/ svid |
88 | 87 -> Osprey 200/201/250/251 | 88 | 87 -> Osprey 200/201/250/251 |
89 | 88 -> Osprey 200/250 [0070:ff01] | 89 | 88 -> Osprey 200/250 [0070:ff01] |
90 | 89 -> Osprey 210/220 | 90 | 89 -> Osprey 210/220/230 |
91 | 90 -> Osprey 500 [0070:ff02] | 91 | 90 -> Osprey 500 [0070:ff02] |
92 | 91 -> Osprey 540 [0070:ff04] | 92 | 91 -> Osprey 540 [0070:ff04] |
93 | 92 -> Osprey 2000 [0070:ff03] | 93 | 92 -> Osprey 2000 [0070:ff03] |
@@ -111,7 +111,7 @@ | |||
111 | 110 -> IVC-100 [ff00:a132] | 111 | 110 -> IVC-100 [ff00:a132] |
112 | 111 -> IVC-120G [ff00:a182,ff01:a182,ff02:a182,ff03:a182,ff04:a182,ff05:a182,ff06:a182,ff07:a182,ff08:a182,ff09:a182,ff0a:a182,ff0b:a182,ff0c:a182,ff0d:a182,ff0e:a182,ff0f:a182] | 112 | 111 -> IVC-120G [ff00:a182,ff01:a182,ff02:a182,ff03:a182,ff04:a182,ff05:a182,ff06:a182,ff07:a182,ff08:a182,ff09:a182,ff0a:a182,ff0b:a182,ff0c:a182,ff0d:a182,ff0e:a182,ff0f:a182] |
113 | 112 -> pcHDTV HD-2000 TV [7063:2000] | 113 | 112 -> pcHDTV HD-2000 TV [7063:2000] |
114 | 113 -> Twinhan DST + clones [11bd:0026,1822:0001,270f:fc00] | 114 | 113 -> Twinhan DST + clones [11bd:0026,1822:0001,270f:fc00,1822:0026] |
115 | 114 -> Winfast VC100 [107d:6607] | 115 | 114 -> Winfast VC100 [107d:6607] |
116 | 115 -> Teppro TEV-560/InterVision IV-560 | 116 | 115 -> Teppro TEV-560/InterVision IV-560 |
117 | 116 -> SIMUS GVC1100 [aa6a:82b2] | 117 | 116 -> SIMUS GVC1100 [aa6a:82b2] |
diff --git a/Documentation/video4linux/CARDLIST.cx88 b/Documentation/video4linux/CARDLIST.cx88 index 3b39a91b24bd..6cb63ddf6163 100644 --- a/Documentation/video4linux/CARDLIST.cx88 +++ b/Documentation/video4linux/CARDLIST.cx88 | |||
@@ -15,7 +15,7 @@ | |||
15 | 14 -> KWorld/VStream XPert DVB-T [17de:08a6] | 15 | 14 -> KWorld/VStream XPert DVB-T [17de:08a6] |
16 | 15 -> DViCO FusionHDTV DVB-T1 [18ac:db00] | 16 | 15 -> DViCO FusionHDTV DVB-T1 [18ac:db00] |
17 | 16 -> KWorld LTV883RF | 17 | 16 -> KWorld LTV883RF |
18 | 17 -> DViCO FusionHDTV 3 Gold-Q [18ac:d810] | 18 | 17 -> DViCO FusionHDTV 3 Gold-Q [18ac:d810,18ac:d800] |
19 | 18 -> Hauppauge Nova-T DVB-T [0070:9002,0070:9001] | 19 | 18 -> Hauppauge Nova-T DVB-T [0070:9002,0070:9001] |
20 | 19 -> Conexant DVB-T reference design [14f1:0187] | 20 | 19 -> Conexant DVB-T reference design [14f1:0187] |
21 | 20 -> Provideo PV259 [1540:2580] | 21 | 20 -> Provideo PV259 [1540:2580] |
@@ -40,8 +40,13 @@ | |||
40 | 39 -> KWorld DVB-S 100 [17de:08b2] | 40 | 39 -> KWorld DVB-S 100 [17de:08b2] |
41 | 40 -> Hauppauge WinTV-HVR1100 DVB-T/Hybrid [0070:9400,0070:9402] | 41 | 40 -> Hauppauge WinTV-HVR1100 DVB-T/Hybrid [0070:9400,0070:9402] |
42 | 41 -> Hauppauge WinTV-HVR1100 DVB-T/Hybrid (Low Profile) [0070:9800,0070:9802] | 42 | 41 -> Hauppauge WinTV-HVR1100 DVB-T/Hybrid (Low Profile) [0070:9800,0070:9802] |
43 | 42 -> digitalnow DNTV Live! DVB-T Pro [1822:0025] | 43 | 42 -> digitalnow DNTV Live! DVB-T Pro [1822:0025,1822:0019] |
44 | 43 -> KWorld/VStream XPert DVB-T with cx22702 [17de:08a1] | 44 | 43 -> KWorld/VStream XPert DVB-T with cx22702 [17de:08a1] |
45 | 44 -> DViCO FusionHDTV DVB-T Dual Digital [18ac:db50,18ac:db54] | 45 | 44 -> DViCO FusionHDTV DVB-T Dual Digital [18ac:db50,18ac:db54] |
46 | 45 -> KWorld HardwareMpegTV XPert [17de:0840] | 46 | 45 -> KWorld HardwareMpegTV XPert [17de:0840] |
47 | 46 -> DViCO FusionHDTV DVB-T Hybrid [18ac:db40,18ac:db44] | 47 | 46 -> DViCO FusionHDTV DVB-T Hybrid [18ac:db40,18ac:db44] |
48 | 47 -> pcHDTV HD5500 HDTV [7063:5500] | ||
49 | 48 -> Kworld MCE 200 Deluxe [17de:0841] | ||
50 | 49 -> PixelView PlayTV P7000 [1554:4813] | ||
51 | 50 -> NPG Tech Real TV FM Top 10 [14f1:0842] | ||
52 | 51 -> WinFast DTV2000 H [107d:665e] | ||
diff --git a/Documentation/video4linux/CARDLIST.saa7134 b/Documentation/video4linux/CARDLIST.saa7134 index bca50903233f..9068b669f5ee 100644 --- a/Documentation/video4linux/CARDLIST.saa7134 +++ b/Documentation/video4linux/CARDLIST.saa7134 | |||
@@ -93,3 +93,4 @@ | |||
93 | 92 -> AVerMedia A169 B1 [1461:6360] | 93 | 92 -> AVerMedia A169 B1 [1461:6360] |
94 | 93 -> Medion 7134 Bridge #2 [16be:0005] | 94 | 93 -> Medion 7134 Bridge #2 [16be:0005] |
95 | 94 -> LifeView FlyDVB-T Hybrid Cardbus [5168:3306,5168:3502] | 95 | 94 -> LifeView FlyDVB-T Hybrid Cardbus [5168:3306,5168:3502] |
96 | 95 -> LifeView FlyVIDEO3000 (NTSC) [5169:0138] | ||
diff --git a/Documentation/video4linux/CARDLIST.tuner b/Documentation/video4linux/CARDLIST.tuner index 1bcdac67dd8c..44134f04b82a 100644 --- a/Documentation/video4linux/CARDLIST.tuner +++ b/Documentation/video4linux/CARDLIST.tuner | |||
@@ -62,7 +62,7 @@ tuner=60 - Thomson DTT 761X (ATSC/NTSC) | |||
62 | tuner=61 - Tena TNF9533-D/IF/TNF9533-B/DF | 62 | tuner=61 - Tena TNF9533-D/IF/TNF9533-B/DF |
63 | tuner=62 - Philips TEA5767HN FM Radio | 63 | tuner=62 - Philips TEA5767HN FM Radio |
64 | tuner=63 - Philips FMD1216ME MK3 Hybrid Tuner | 64 | tuner=63 - Philips FMD1216ME MK3 Hybrid Tuner |
65 | tuner=64 - LG TDVS-H062F/TUA6034 | 65 | tuner=64 - LG TDVS-H06xF |
66 | tuner=65 - Ymec TVF66T5-B/DFF | 66 | tuner=65 - Ymec TVF66T5-B/DFF |
67 | tuner=66 - LG TALN series | 67 | tuner=66 - LG TALN series |
68 | tuner=67 - Philips TD1316 Hybrid Tuner | 68 | tuner=67 - Philips TD1316 Hybrid Tuner |
@@ -71,3 +71,4 @@ tuner=69 - Tena TNF 5335 and similar models | |||
71 | tuner=70 - Samsung TCPN 2121P30A | 71 | tuner=70 - Samsung TCPN 2121P30A |
72 | tuner=71 - Xceive xc3028 | 72 | tuner=71 - Xceive xc3028 |
73 | tuner=72 - Thomson FE6600 | 73 | tuner=72 - Thomson FE6600 |
74 | tuner=73 - Samsung TCPG 6121P30A | ||
diff --git a/Documentation/video4linux/CQcam.txt b/Documentation/video4linux/CQcam.txt index 464e4cec94cb..ade8651e2443 100644 --- a/Documentation/video4linux/CQcam.txt +++ b/Documentation/video4linux/CQcam.txt | |||
@@ -185,207 +185,10 @@ this work is documented at the video4linux2 site listed below. | |||
185 | 185 | ||
186 | 9.0 --- A sample program using v4lgrabber, | 186 | 9.0 --- A sample program using v4lgrabber, |
187 | 187 | ||
188 | This program is a simple image grabber that will copy a frame from the | 188 | v4lgrab is a simple image grabber that will copy a frame from the |
189 | first video device, /dev/video0 to standard output in portable pixmap | 189 | first video device, /dev/video0 to standard output in portable pixmap |
190 | format (.ppm) Using this like: 'v4lgrab | convert - c-qcam.jpg' | 190 | format (.ppm) To produce .jpg output, you can use it like this: |
191 | produced this picture of me at | 191 | 'v4lgrab | convert - c-qcam.jpg' |
192 | http://mug.sys.virginia.edu/~drf5n/extras/c-qcam.jpg | ||
193 | |||
194 | -------------------- 8< ---------------- 8< ----------------------------- | ||
195 | |||
196 | /* Simple Video4Linux image grabber. */ | ||
197 | /* | ||
198 | * Video4Linux Driver Test/Example Framegrabbing Program | ||
199 | * | ||
200 | * Compile with: | ||
201 | * gcc -s -Wall -Wstrict-prototypes v4lgrab.c -o v4lgrab | ||
202 | * Use as: | ||
203 | * v4lgrab >image.ppm | ||
204 | * | ||
205 | * Copyright (C) 1998-05-03, Phil Blundell <philb@gnu.org> | ||
206 | * Copied from http://www.tazenda.demon.co.uk/phil/vgrabber.c | ||
207 | * with minor modifications (Dave Forrest, drf5n@virginia.edu). | ||
208 | * | ||
209 | */ | ||
210 | |||
211 | #include <unistd.h> | ||
212 | #include <sys/types.h> | ||
213 | #include <sys/stat.h> | ||
214 | #include <fcntl.h> | ||
215 | #include <stdio.h> | ||
216 | #include <sys/ioctl.h> | ||
217 | #include <stdlib.h> | ||
218 | |||
219 | #include <linux/types.h> | ||
220 | #include <linux/videodev.h> | ||
221 | |||
222 | #define FILE "/dev/video0" | ||
223 | |||
224 | /* Stole this from tvset.c */ | ||
225 | |||
226 | #define READ_VIDEO_PIXEL(buf, format, depth, r, g, b) \ | ||
227 | { \ | ||
228 | switch (format) \ | ||
229 | { \ | ||
230 | case VIDEO_PALETTE_GREY: \ | ||
231 | switch (depth) \ | ||
232 | { \ | ||
233 | case 4: \ | ||
234 | case 6: \ | ||
235 | case 8: \ | ||
236 | (r) = (g) = (b) = (*buf++ << 8);\ | ||
237 | break; \ | ||
238 | \ | ||
239 | case 16: \ | ||
240 | (r) = (g) = (b) = \ | ||
241 | *((unsigned short *) buf); \ | ||
242 | buf += 2; \ | ||
243 | break; \ | ||
244 | } \ | ||
245 | break; \ | ||
246 | \ | ||
247 | \ | ||
248 | case VIDEO_PALETTE_RGB565: \ | ||
249 | { \ | ||
250 | unsigned short tmp = *(unsigned short *)buf; \ | ||
251 | (r) = tmp&0xF800; \ | ||
252 | (g) = (tmp<<5)&0xFC00; \ | ||
253 | (b) = (tmp<<11)&0xF800; \ | ||
254 | buf += 2; \ | ||
255 | } \ | ||
256 | break; \ | ||
257 | \ | ||
258 | case VIDEO_PALETTE_RGB555: \ | ||
259 | (r) = (buf[0]&0xF8)<<8; \ | ||
260 | (g) = ((buf[0] << 5 | buf[1] >> 3)&0xF8)<<8; \ | ||
261 | (b) = ((buf[1] << 2 ) & 0xF8)<<8; \ | ||
262 | buf += 2; \ | ||
263 | break; \ | ||
264 | \ | ||
265 | case VIDEO_PALETTE_RGB24: \ | ||
266 | (r) = buf[0] << 8; (g) = buf[1] << 8; \ | ||
267 | (b) = buf[2] << 8; \ | ||
268 | buf += 3; \ | ||
269 | break; \ | ||
270 | \ | ||
271 | default: \ | ||
272 | fprintf(stderr, \ | ||
273 | "Format %d not yet supported\n", \ | ||
274 | format); \ | ||
275 | } \ | ||
276 | } | ||
277 | |||
278 | int get_brightness_adj(unsigned char *image, long size, int *brightness) { | ||
279 | long i, tot = 0; | ||
280 | for (i=0;i<size*3;i++) | ||
281 | tot += image[i]; | ||
282 | *brightness = (128 - tot/(size*3))/3; | ||
283 | return !((tot/(size*3)) >= 126 && (tot/(size*3)) <= 130); | ||
284 | } | ||
285 | |||
286 | int main(int argc, char ** argv) | ||
287 | { | ||
288 | int fd = open(FILE, O_RDONLY), f; | ||
289 | struct video_capability cap; | ||
290 | struct video_window win; | ||
291 | struct video_picture vpic; | ||
292 | |||
293 | unsigned char *buffer, *src; | ||
294 | int bpp = 24, r, g, b; | ||
295 | unsigned int i, src_depth; | ||
296 | |||
297 | if (fd < 0) { | ||
298 | perror(FILE); | ||
299 | exit(1); | ||
300 | } | ||
301 | |||
302 | if (ioctl(fd, VIDIOCGCAP, &cap) < 0) { | ||
303 | perror("VIDIOGCAP"); | ||
304 | fprintf(stderr, "(" FILE " not a video4linux device?)\n"); | ||
305 | close(fd); | ||
306 | exit(1); | ||
307 | } | ||
308 | |||
309 | if (ioctl(fd, VIDIOCGWIN, &win) < 0) { | ||
310 | perror("VIDIOCGWIN"); | ||
311 | close(fd); | ||
312 | exit(1); | ||
313 | } | ||
314 | |||
315 | if (ioctl(fd, VIDIOCGPICT, &vpic) < 0) { | ||
316 | perror("VIDIOCGPICT"); | ||
317 | close(fd); | ||
318 | exit(1); | ||
319 | } | ||
320 | |||
321 | if (cap.type & VID_TYPE_MONOCHROME) { | ||
322 | vpic.depth=8; | ||
323 | vpic.palette=VIDEO_PALETTE_GREY; /* 8bit grey */ | ||
324 | if(ioctl(fd, VIDIOCSPICT, &vpic) < 0) { | ||
325 | vpic.depth=6; | ||
326 | if(ioctl(fd, VIDIOCSPICT, &vpic) < 0) { | ||
327 | vpic.depth=4; | ||
328 | if(ioctl(fd, VIDIOCSPICT, &vpic) < 0) { | ||
329 | fprintf(stderr, "Unable to find a supported capture format.\n"); | ||
330 | close(fd); | ||
331 | exit(1); | ||
332 | } | ||
333 | } | ||
334 | } | ||
335 | } else { | ||
336 | vpic.depth=24; | ||
337 | vpic.palette=VIDEO_PALETTE_RGB24; | ||
338 | |||
339 | if(ioctl(fd, VIDIOCSPICT, &vpic) < 0) { | ||
340 | vpic.palette=VIDEO_PALETTE_RGB565; | ||
341 | vpic.depth=16; | ||
342 | |||
343 | if(ioctl(fd, VIDIOCSPICT, &vpic)==-1) { | ||
344 | vpic.palette=VIDEO_PALETTE_RGB555; | ||
345 | vpic.depth=15; | ||
346 | |||
347 | if(ioctl(fd, VIDIOCSPICT, &vpic)==-1) { | ||
348 | fprintf(stderr, "Unable to find a supported capture format.\n"); | ||
349 | return -1; | ||
350 | } | ||
351 | } | ||
352 | } | ||
353 | } | ||
354 | |||
355 | buffer = malloc(win.width * win.height * bpp); | ||
356 | if (!buffer) { | ||
357 | fprintf(stderr, "Out of memory.\n"); | ||
358 | exit(1); | ||
359 | } | ||
360 | |||
361 | do { | ||
362 | int newbright; | ||
363 | read(fd, buffer, win.width * win.height * bpp); | ||
364 | f = get_brightness_adj(buffer, win.width * win.height, &newbright); | ||
365 | if (f) { | ||
366 | vpic.brightness += (newbright << 8); | ||
367 | if(ioctl(fd, VIDIOCSPICT, &vpic)==-1) { | ||
368 | perror("VIDIOSPICT"); | ||
369 | break; | ||
370 | } | ||
371 | } | ||
372 | } while (f); | ||
373 | |||
374 | fprintf(stdout, "P6\n%d %d 255\n", win.width, win.height); | ||
375 | |||
376 | src = buffer; | ||
377 | |||
378 | for (i = 0; i < win.width * win.height; i++) { | ||
379 | READ_VIDEO_PIXEL(src, vpic.palette, src_depth, r, g, b); | ||
380 | fputc(r>>8, stdout); | ||
381 | fputc(g>>8, stdout); | ||
382 | fputc(b>>8, stdout); | ||
383 | } | ||
384 | |||
385 | close(fd); | ||
386 | return 0; | ||
387 | } | ||
388 | -------------------- 8< ---------------- 8< ----------------------------- | ||
389 | 192 | ||
390 | 193 | ||
391 | 10.0 --- Other Information | 194 | 10.0 --- Other Information |
diff --git a/Documentation/video4linux/README.pvrusb2 b/Documentation/video4linux/README.pvrusb2 new file mode 100644 index 000000000000..c73a32c34528 --- /dev/null +++ b/Documentation/video4linux/README.pvrusb2 | |||
@@ -0,0 +1,212 @@ | |||
1 | |||
2 | $Id$ | ||
3 | Mike Isely <isely@pobox.com> | ||
4 | |||
5 | pvrusb2 driver | ||
6 | |||
7 | Background: | ||
8 | |||
9 | This driver is intended for the "Hauppauge WinTV PVR USB 2.0", which | ||
10 | is a USB 2.0 hosted TV Tuner. This driver is a work in progress. | ||
11 | Its history started with the reverse-engineering effort by Björn | ||
12 | Danielsson <pvrusb2@dax.nu> whose web page can be found here: | ||
13 | |||
14 | http://pvrusb2.dax.nu/ | ||
15 | |||
16 | From there Aurelien Alleaume <slts@free.fr> began an effort to | ||
17 | create a video4linux compatible driver. I began with Aurelien's | ||
18 | last known snapshot and evolved the driver to the state it is in | ||
19 | here. | ||
20 | |||
21 | More information on this driver can be found at: | ||
22 | |||
23 | http://www.isely.net/pvrusb2.html | ||
24 | |||
25 | |||
26 | This driver has a strong separation of layers. They are very | ||
27 | roughly: | ||
28 | |||
29 | 1a. Low level wire-protocol implementation with the device. | ||
30 | |||
31 | 1b. I2C adaptor implementation and corresponding I2C client drivers | ||
32 | implemented elsewhere in V4L. | ||
33 | |||
34 | 1c. High level hardware driver implementation which coordinates all | ||
35 | activities that ensure correct operation of the device. | ||
36 | |||
37 | 2. A "context" layer which manages instancing of driver, setup, | ||
38 | tear-down, arbitration, and interaction with high level | ||
39 | interfaces appropriately as devices are hotplugged in the | ||
40 | system. | ||
41 | |||
42 | 3. High level interfaces which glue the driver to various published | ||
43 | Linux APIs (V4L, sysfs, maybe DVB in the future). | ||
44 | |||
45 | The most important shearing layer is between the top 2 layers. A | ||
46 | lot of work went into the driver to ensure that any kind of | ||
47 | conceivable API can be laid on top of the core driver. (Yes, the | ||
48 | driver internally leverages V4L to do its work but that really has | ||
49 | nothing to do with the API published by the driver to the outside | ||
50 | world.) The architecture allows for different APIs to | ||
51 | simultaneously access the driver. I have a strong sense of fairness | ||
52 | about APIs and also feel that it is a good design principle to keep | ||
53 | implementation and interface isolated from each other. Thus while | ||
54 | right now the V4L high level interface is the most complete, the | ||
55 | sysfs high level interface will work equally well for similar | ||
56 | functions, and there's no reason I see right now why it shouldn't be | ||
57 | possible to produce a DVB high level interface that can sit right | ||
58 | alongside V4L. | ||
59 | |||
60 | NOTE: Complete documentation on the pvrusb2 driver is contained in | ||
61 | the html files within the doc directory; these are exactly the same | ||
62 | as what is on the web site at the time. Browse those files | ||
63 | (especially the FAQ) before asking questions. | ||
64 | |||
65 | |||
66 | Building | ||
67 | |||
68 | To build these modules essentially amounts to just running "Make", | ||
69 | but you need the kernel source tree nearby and you will likely also | ||
70 | want to set a few controlling environment variables first in order | ||
71 | to link things up with that source tree. Please see the Makefile | ||
72 | here for comments that explain how to do that. | ||
73 | |||
74 | |||
75 | Source file list / functional overview: | ||
76 | |||
77 | (Note: The term "module" used below generally refers to loosely | ||
78 | defined functional units within the pvrusb2 driver and bears no | ||
79 | relation to the Linux kernel's concept of a loadable module.) | ||
80 | |||
81 | pvrusb2-audio.[ch] - This is glue logic that resides between this | ||
82 | driver and the msp3400.ko I2C client driver (which is found | ||
83 | elsewhere in V4L). | ||
84 | |||
85 | pvrusb2-context.[ch] - This module implements the context for an | ||
86 | instance of the driver. Everything else eventually ties back to | ||
87 | or is otherwise instanced within the data structures implemented | ||
88 | here. Hotplugging is ultimately coordinated here. All high level | ||
89 | interfaces tie into the driver through this module. This module | ||
90 | helps arbitrate each interface's access to the actual driver core, | ||
91 | and is designed to allow concurrent access through multiple | ||
92 | instances of multiple interfaces (thus you can for example change | ||
93 | the tuner's frequency through sysfs while simultaneously streaming | ||
94 | video through V4L out to an instance of mplayer). | ||
95 | |||
96 | pvrusb2-debug.h - This header defines a printk() wrapper and a mask | ||
97 | of debugging bit definitions for the various kinds of debug | ||
98 | messages that can be enabled within the driver. | ||
99 | |||
100 | pvrusb2-debugifc.[ch] - This module implements a crude command line | ||
101 | oriented debug interface into the driver. Aside from being part | ||
102 | of the process for implementing manual firmware extraction (see | ||
103 | the pvrusb2 web site mentioned earlier), probably I'm the only one | ||
104 | who has ever used this. It is mainly a debugging aid. | ||
105 | |||
106 | pvrusb2-eeprom.[ch] - This is glue logic that resides between this | ||
107 | driver the tveeprom.ko module, which is itself implemented | ||
108 | elsewhere in V4L. | ||
109 | |||
110 | pvrusb2-encoder.[ch] - This module implements all protocol needed to | ||
111 | interact with the Conexant mpeg2 encoder chip within the pvrusb2 | ||
112 | device. It is a crude echo of corresponding logic in ivtv, | ||
113 | however the design goals (strict isolation) and physical layer | ||
114 | (proxy through USB instead of PCI) are enough different that this | ||
115 | implementation had to be completely different. | ||
116 | |||
117 | pvrusb2-hdw-internal.h - This header defines the core data structure | ||
118 | in the driver used to track ALL internal state related to control | ||
119 | of the hardware. Nobody outside of the core hardware-handling | ||
120 | modules should have any business using this header. All external | ||
121 | access to the driver should be through one of the high level | ||
122 | interfaces (e.g. V4L, sysfs, etc), and in fact even those high | ||
123 | level interfaces are restricted to the API defined in | ||
124 | pvrusb2-hdw.h and NOT this header. | ||
125 | |||
126 | pvrusb2-hdw.h - This header defines the full internal API for | ||
127 | controlling the hardware. High level interfaces (e.g. V4L, sysfs) | ||
128 | will work through here. | ||
129 | |||
130 | pvrusb2-hdw.c - This module implements all the various bits of logic | ||
131 | that handle overall control of a specific pvrusb2 device. | ||
132 | (Policy, instantiation, and arbitration of pvrusb2 devices fall | ||
133 | within the jurisdiction of pvrusb-context not here). | ||
134 | |||
135 | pvrusb2-i2c-chips-*.c - These modules implement the glue logic to | ||
136 | tie together and configure various I2C modules as they attach to | ||
137 | the I2C bus. There are two versions of this file. The "v4l2" | ||
138 | version is intended to be used in-tree alongside V4L, where we | ||
139 | implement just the logic that makes sense for a pure V4L | ||
140 | environment. The "all" version is intended for use outside of | ||
141 | V4L, where we might encounter other possibly "challenging" modules | ||
142 | from ivtv or older kernel snapshots (or even the support modules | ||
143 | in the standalone snapshot). | ||
144 | |||
145 | pvrusb2-i2c-cmd-v4l1.[ch] - This module implements generic V4L1 | ||
146 | compatible commands to the I2C modules. It is here where state | ||
147 | changes inside the pvrusb2 driver are translated into V4L1 | ||
148 | commands that are in turn send to the various I2C modules. | ||
149 | |||
150 | pvrusb2-i2c-cmd-v4l2.[ch] - This module implements generic V4L2 | ||
151 | compatible commands to the I2C modules. It is here where state | ||
152 | changes inside the pvrusb2 driver are translated into V4L2 | ||
153 | commands that are in turn send to the various I2C modules. | ||
154 | |||
155 | pvrusb2-i2c-core.[ch] - This module provides an implementation of a | ||
156 | kernel-friendly I2C adaptor driver, through which other external | ||
157 | I2C client drivers (e.g. msp3400, tuner, lirc) may connect and | ||
158 | operate corresponding chips within the the pvrusb2 device. It is | ||
159 | through here that other V4L modules can reach into this driver to | ||
160 | operate specific pieces (and those modules are in turn driven by | ||
161 | glue logic which is coordinated by pvrusb2-hdw, doled out by | ||
162 | pvrusb2-context, and then ultimately made available to users | ||
163 | through one of the high level interfaces). | ||
164 | |||
165 | pvrusb2-io.[ch] - This module implements a very low level ring of | ||
166 | transfer buffers, required in order to stream data from the | ||
167 | device. This module is *very* low level. It only operates the | ||
168 | buffers and makes no attempt to define any policy or mechanism for | ||
169 | how such buffers might be used. | ||
170 | |||
171 | pvrusb2-ioread.[ch] - This module layers on top of pvrusb2-io.[ch] | ||
172 | to provide a streaming API usable by a read() system call style of | ||
173 | I/O. Right now this is the only layer on top of pvrusb2-io.[ch], | ||
174 | however the underlying architecture here was intended to allow for | ||
175 | other styles of I/O to be implemented with additonal modules, like | ||
176 | mmap()'ed buffers or something even more exotic. | ||
177 | |||
178 | pvrusb2-main.c - This is the top level of the driver. Module level | ||
179 | and USB core entry points are here. This is our "main". | ||
180 | |||
181 | pvrusb2-sysfs.[ch] - This is the high level interface which ties the | ||
182 | pvrusb2 driver into sysfs. Through this interface you can do | ||
183 | everything with the driver except actually stream data. | ||
184 | |||
185 | pvrusb2-tuner.[ch] - This is glue logic that resides between this | ||
186 | driver and the tuner.ko I2C client driver (which is found | ||
187 | elsewhere in V4L). | ||
188 | |||
189 | pvrusb2-util.h - This header defines some common macros used | ||
190 | throughout the driver. These macros are not really specific to | ||
191 | the driver, but they had to go somewhere. | ||
192 | |||
193 | pvrusb2-v4l2.[ch] - This is the high level interface which ties the | ||
194 | pvrusb2 driver into video4linux. It is through here that V4L | ||
195 | applications can open and operate the driver in the usual V4L | ||
196 | ways. Note that **ALL** V4L functionality is published only | ||
197 | through here and nowhere else. | ||
198 | |||
199 | pvrusb2-video-*.[ch] - This is glue logic that resides between this | ||
200 | driver and the saa711x.ko I2C client driver (which is found | ||
201 | elsewhere in V4L). Note that saa711x.ko used to be known as | ||
202 | saa7115.ko in ivtv. There are two versions of this; one is | ||
203 | selected depending on the particular saa711[5x].ko that is found. | ||
204 | |||
205 | pvrusb2.h - This header contains compile time tunable parameters | ||
206 | (and at the moment the driver has very little that needs to be | ||
207 | tuned). | ||
208 | |||
209 | |||
210 | -Mike Isely | ||
211 | isely@pobox.com | ||
212 | |||
diff --git a/Documentation/video4linux/Zoran b/Documentation/video4linux/Zoran index be9f21b84555..040a2c841ae9 100644 --- a/Documentation/video4linux/Zoran +++ b/Documentation/video4linux/Zoran | |||
@@ -33,6 +33,21 @@ Inputs/outputs: Composite and S-video | |||
33 | Norms: PAL, SECAM (720x576 @ 25 fps), NTSC (720x480 @ 29.97 fps) | 33 | Norms: PAL, SECAM (720x576 @ 25 fps), NTSC (720x480 @ 29.97 fps) |
34 | Card number: 7 | 34 | Card number: 7 |
35 | 35 | ||
36 | AverMedia 6 Eyes AVS6EYES: | ||
37 | * Zoran zr36067 PCI controller | ||
38 | * Zoran zr36060 MJPEG codec | ||
39 | * Samsung ks0127 TV decoder | ||
40 | * Conexant bt866 TV encoder | ||
41 | Drivers to use: videodev, i2c-core, i2c-algo-bit, | ||
42 | videocodec, ks0127, bt866, zr36060, zr36067 | ||
43 | Inputs/outputs: Six physical inputs. 1-6 are composite, | ||
44 | 1-2, 3-4, 5-6 doubles as S-video, | ||
45 | 1-3 triples as component. | ||
46 | One composite output. | ||
47 | Norms: PAL, SECAM (720x576 @ 25 fps), NTSC (720x480 @ 29.97 fps) | ||
48 | Card number: 8 | ||
49 | Not autodetected, card=8 is necessary. | ||
50 | |||
36 | Linux Media Labs LML33: | 51 | Linux Media Labs LML33: |
37 | * Zoran zr36067 PCI controller | 52 | * Zoran zr36067 PCI controller |
38 | * Zoran zr36060 MJPEG codec | 53 | * Zoran zr36060 MJPEG codec |
@@ -192,6 +207,10 @@ Micronas vpx3220a TV decoder | |||
192 | was introduced in 1996, is used in the DC30 and DC30+ and | 207 | was introduced in 1996, is used in the DC30 and DC30+ and |
193 | can handle: PAL B/G/H/I, PAL N, PAL M, NTSC M, NTSC 44, PAL 60, SECAM,NTSC Comb | 208 | can handle: PAL B/G/H/I, PAL N, PAL M, NTSC M, NTSC 44, PAL 60, SECAM,NTSC Comb |
194 | 209 | ||
210 | Samsung ks0127 TV decoder | ||
211 | is used in the AVS6EYES card and | ||
212 | can handle: NTSC-M/N/44, PAL-M/N/B/G/H/I/D/K/L and SECAM | ||
213 | |||
195 | =========================== | 214 | =========================== |
196 | 215 | ||
197 | 1.2 What the TV encoder can do an what not | 216 | 1.2 What the TV encoder can do an what not |
@@ -221,6 +240,10 @@ ITT mse3000 TV encoder | |||
221 | was introduced in 1991, is used in the DC10 old | 240 | was introduced in 1991, is used in the DC10 old |
222 | can generate: PAL , NTSC , SECAM | 241 | can generate: PAL , NTSC , SECAM |
223 | 242 | ||
243 | Conexant bt866 TV encoder | ||
244 | is used in AVS6EYES, and | ||
245 | can generate: NTSC/PAL, PALM, PALN | ||
246 | |||
224 | The adv717x, should be able to produce PAL N. But you find nothing PAL N | 247 | The adv717x, should be able to produce PAL N. But you find nothing PAL N |
225 | specific in the registers. Seem that you have to reuse a other standard | 248 | specific in the registers. Seem that you have to reuse a other standard |
226 | to generate PAL N, maybe it would work if you use the PAL M settings. | 249 | to generate PAL N, maybe it would work if you use the PAL M settings. |
diff --git a/Documentation/video4linux/bttv/CONTRIBUTORS b/Documentation/video4linux/bttv/CONTRIBUTORS index aef49db8847d..8aad6dd93d6b 100644 --- a/Documentation/video4linux/bttv/CONTRIBUTORS +++ b/Documentation/video4linux/bttv/CONTRIBUTORS | |||
@@ -1,4 +1,4 @@ | |||
1 | Contributors to bttv: | 1 | Contributors to bttv: |
2 | 2 | ||
3 | Michael Chu <mmchu@pobox.com> | 3 | Michael Chu <mmchu@pobox.com> |
4 | AverMedia fix and more flexible card recognition | 4 | AverMedia fix and more flexible card recognition |
@@ -8,8 +8,8 @@ Alan Cox <alan@redhat.com> | |||
8 | 8 | ||
9 | Chris Kleitsch | 9 | Chris Kleitsch |
10 | Hardware I2C | 10 | Hardware I2C |
11 | 11 | ||
12 | Gerd Knorr <kraxel@cs.tu-berlin.de> | 12 | Gerd Knorr <kraxel@cs.tu-berlin.de> |
13 | Radio card (ITT sound processor) | 13 | Radio card (ITT sound processor) |
14 | 14 | ||
15 | bigfoot <bigfoot@net-way.net> | 15 | bigfoot <bigfoot@net-way.net> |
@@ -18,7 +18,7 @@ Ragnar Hojland Espinosa <ragnar@macula.net> | |||
18 | 18 | ||
19 | 19 | ||
20 | + many more (please mail me if you are missing in this list and would | 20 | + many more (please mail me if you are missing in this list and would |
21 | like to be mentioned) | 21 | like to be mentioned) |
22 | 22 | ||
23 | 23 | ||
24 | 24 | ||
diff --git a/Documentation/video4linux/cx2341x/fw-calling.txt b/Documentation/video4linux/cx2341x/fw-calling.txt new file mode 100644 index 000000000000..8d21181de537 --- /dev/null +++ b/Documentation/video4linux/cx2341x/fw-calling.txt | |||
@@ -0,0 +1,69 @@ | |||
1 | This page describes how to make calls to the firmware api. | ||
2 | |||
3 | How to call | ||
4 | =========== | ||
5 | |||
6 | The preferred calling convention is known as the firmware mailbox. The | ||
7 | mailboxes are basically a fixed length array that serves as the call-stack. | ||
8 | |||
9 | Firmware mailboxes can be located by searching the encoder and decoder memory | ||
10 | for a 16 byte signature. That signature will be located on a 256-byte boundary. | ||
11 | |||
12 | Signature: | ||
13 | 0x78, 0x56, 0x34, 0x12, 0x12, 0x78, 0x56, 0x34, | ||
14 | 0x34, 0x12, 0x78, 0x56, 0x56, 0x34, 0x12, 0x78 | ||
15 | |||
16 | The firmware implements 20 mailboxes of 20 32-bit words. The first 10 are | ||
17 | reserved for API calls. The second 10 are used by the firmware for event | ||
18 | notification. | ||
19 | |||
20 | Index Name | ||
21 | ----- ---- | ||
22 | 0 Flags | ||
23 | 1 Command | ||
24 | 2 Return value | ||
25 | 3 Timeout | ||
26 | 4-19 Parameter/Result | ||
27 | |||
28 | |||
29 | The flags are defined in the following table. The direction is from the | ||
30 | perspective of the firmware. | ||
31 | |||
32 | Bit Direction Purpose | ||
33 | --- --------- ------- | ||
34 | 2 O Firmware has processed the command. | ||
35 | 1 I Driver has finished setting the parameters. | ||
36 | 0 I Driver is using this mailbox. | ||
37 | |||
38 | |||
39 | The command is a 32-bit enumerator. The API specifics may be found in the | ||
40 | fw-*-api.txt documents. | ||
41 | |||
42 | The return value is a 32-bit enumerator. Only two values are currently defined: | ||
43 | 0=success and -1=command undefined. | ||
44 | |||
45 | There are 16 parameters/results 32-bit fields. The driver populates these fields | ||
46 | with values for all the parameters required by the call. The driver overwrites | ||
47 | these fields with result values returned by the call. The API specifics may be | ||
48 | found in the fw-*-api.txt documents. | ||
49 | |||
50 | The timeout value protects the card from a hung driver thread. If the driver | ||
51 | doesn't handle the completed call within the timeout specified, the firmware | ||
52 | will reset that mailbox. | ||
53 | |||
54 | To make an API call, the driver iterates over each mailbox looking for the | ||
55 | first one available (bit 0 has been cleared). The driver sets that bit, fills | ||
56 | in the command enumerator, the timeout value and any required parameters. The | ||
57 | driver then sets the parameter ready bit (bit 1). The firmware scans the | ||
58 | mailboxes for pending commands, processes them, sets the result code, populates | ||
59 | the result value array with that call's return values and sets the call | ||
60 | complete bit (bit 2). Once bit 2 is set, the driver should retrieve the results | ||
61 | and clear all the flags. If the driver does not perform this task within the | ||
62 | time set in the timeout register, the firmware will reset that mailbox. | ||
63 | |||
64 | Event notifications are sent from the firmware to the host. The host tells the | ||
65 | firmware which events it is interested in via an API call. That call tells the | ||
66 | firmware which notification mailbox to use. The firmware signals the host via | ||
67 | an interrupt. Only the 16 Results fields are used, the Flags, Command, Return | ||
68 | value and Timeout words are not used. | ||
69 | |||
diff --git a/Documentation/video4linux/cx2341x/fw-decoder-api.txt b/Documentation/video4linux/cx2341x/fw-decoder-api.txt new file mode 100644 index 000000000000..9df4fb3ea0f2 --- /dev/null +++ b/Documentation/video4linux/cx2341x/fw-decoder-api.txt | |||
@@ -0,0 +1,319 @@ | |||
1 | Decoder firmware API description | ||
2 | ================================ | ||
3 | |||
4 | Note: this API is part of the decoder firmware, so it's cx23415 only. | ||
5 | |||
6 | ------------------------------------------------------------------------------- | ||
7 | |||
8 | Name CX2341X_DEC_PING_FW | ||
9 | Enum 0/0x00 | ||
10 | Description | ||
11 | This API call does nothing. It may be used to check if the firmware | ||
12 | is responding. | ||
13 | |||
14 | ------------------------------------------------------------------------------- | ||
15 | |||
16 | Name CX2341X_DEC_START_PLAYBACK | ||
17 | Enum 1/0x01 | ||
18 | Description | ||
19 | Begin or resume playback. | ||
20 | Param[0] | ||
21 | 0 based frame number in GOP to begin playback from. | ||
22 | Param[1] | ||
23 | Specifies the number of muted audio frames to play before normal | ||
24 | audio resumes. | ||
25 | |||
26 | ------------------------------------------------------------------------------- | ||
27 | |||
28 | Name CX2341X_DEC_STOP_PLAYBACK | ||
29 | Enum 2/0x02 | ||
30 | Description | ||
31 | Ends playback and clears all decoder buffers. If PTS is not zero, | ||
32 | playback stops at specified PTS. | ||
33 | Param[0] | ||
34 | Display 0=last frame, 1=black | ||
35 | Param[1] | ||
36 | PTS low | ||
37 | Param[2] | ||
38 | PTS high | ||
39 | |||
40 | ------------------------------------------------------------------------------- | ||
41 | |||
42 | Name CX2341X_DEC_SET_PLAYBACK_SPEED | ||
43 | Enum 3/0x03 | ||
44 | Description | ||
45 | Playback stream at speed other than normal. There are two modes of | ||
46 | operation: | ||
47 | Smooth: host transfers entire stream and firmware drops unused | ||
48 | frames. | ||
49 | Coarse: host drops frames based on indexing as required to achieve | ||
50 | desired speed. | ||
51 | Param[0] | ||
52 | Bitmap: | ||
53 | 0:7 0 normal | ||
54 | 1 fast only "1.5 times" | ||
55 | n nX fast, 1/nX slow | ||
56 | 30 Framedrop: | ||
57 | '0' during 1.5 times play, every other B frame is dropped | ||
58 | '1' during 1.5 times play, stream is unchanged (bitrate | ||
59 | must not exceed 8mbps) | ||
60 | 31 Speed: | ||
61 | '0' slow | ||
62 | '1' fast | ||
63 | Param[1] | ||
64 | Direction: 0=forward, 1=reverse | ||
65 | Param[2] | ||
66 | Picture mask: | ||
67 | 1=I frames | ||
68 | 3=I, P frames | ||
69 | 7=I, P, B frames | ||
70 | Param[3] | ||
71 | B frames per GOP (for reverse play only) | ||
72 | Param[4] | ||
73 | Mute audio: 0=disable, 1=enable | ||
74 | Param[5] | ||
75 | Display 0=frame, 1=field | ||
76 | Param[6] | ||
77 | Specifies the number of muted audio frames to play before normal audio | ||
78 | resumes. | ||
79 | |||
80 | ------------------------------------------------------------------------------- | ||
81 | |||
82 | Name CX2341X_DEC_STEP_VIDEO | ||
83 | Enum 5/0x05 | ||
84 | Description | ||
85 | Each call to this API steps the playback to the next unit defined below | ||
86 | in the current playback direction. | ||
87 | Param[0] | ||
88 | 0=frame, 1=top field, 2=bottom field | ||
89 | |||
90 | ------------------------------------------------------------------------------- | ||
91 | |||
92 | Name CX2341X_DEC_SET_DMA_BLOCK_SIZE | ||
93 | Enum 8/0x08 | ||
94 | Description | ||
95 | Set DMA transfer block size. Counterpart to API 0xC9 | ||
96 | Param[0] | ||
97 | DMA transfer block size in bytes. A different size may be specified | ||
98 | when issuing the DMA transfer command. | ||
99 | |||
100 | ------------------------------------------------------------------------------- | ||
101 | |||
102 | Name CX2341X_DEC_GET_XFER_INFO | ||
103 | Enum 9/0x09 | ||
104 | Description | ||
105 | This API call may be used to detect an end of stream condtion. | ||
106 | Result[0] | ||
107 | Stream type | ||
108 | Result[1] | ||
109 | Address offset | ||
110 | Result[2] | ||
111 | Maximum bytes to transfer | ||
112 | Result[3] | ||
113 | Buffer fullness | ||
114 | |||
115 | ------------------------------------------------------------------------------- | ||
116 | |||
117 | Name CX2341X_DEC_GET_DMA_STATUS | ||
118 | Enum 10/0x0A | ||
119 | Description | ||
120 | Status of the last DMA transfer | ||
121 | Result[0] | ||
122 | Bit 1 set means transfer complete | ||
123 | Bit 2 set means DMA error | ||
124 | Bit 3 set means linked list error | ||
125 | Result[1] | ||
126 | DMA type: 0=MPEG, 1=OSD, 2=YUV | ||
127 | |||
128 | ------------------------------------------------------------------------------- | ||
129 | |||
130 | Name CX2341X_DEC_SCHED_DMA_FROM_HOST | ||
131 | Enum 11/0x0B | ||
132 | Description | ||
133 | Setup DMA from host operation. Counterpart to API 0xCC | ||
134 | Param[0] | ||
135 | Memory address of link list | ||
136 | Param[1] | ||
137 | Total # of bytes to transfer | ||
138 | Param[2] | ||
139 | DMA type (0=MPEG, 1=OSD, 2=YUV) | ||
140 | |||
141 | ------------------------------------------------------------------------------- | ||
142 | |||
143 | Name CX2341X_DEC_PAUSE_PLAYBACK | ||
144 | Enum 13/0x0D | ||
145 | Description | ||
146 | Freeze playback immediately. In this mode, when internal buffers are | ||
147 | full, no more data will be accepted and data request IRQs will be | ||
148 | masked. | ||
149 | Param[0] | ||
150 | Display: 0=last frame, 1=black | ||
151 | |||
152 | ------------------------------------------------------------------------------- | ||
153 | |||
154 | Name CX2341X_DEC_HALT_FW | ||
155 | Enum 14/0x0E | ||
156 | Description | ||
157 | The firmware is halted and no further API calls are serviced until | ||
158 | the firmware is uploaded again. | ||
159 | |||
160 | ------------------------------------------------------------------------------- | ||
161 | |||
162 | Name CX2341X_DEC_SET_STANDARD | ||
163 | Enum 16/0x10 | ||
164 | Description | ||
165 | Selects display standard | ||
166 | Param[0] | ||
167 | 0=NTSC, 1=PAL | ||
168 | |||
169 | ------------------------------------------------------------------------------- | ||
170 | |||
171 | Name CX2341X_DEC_GET_VERSION | ||
172 | Enum 17/0x11 | ||
173 | Description | ||
174 | Returns decoder firmware version information | ||
175 | Result[0] | ||
176 | Version bitmask: | ||
177 | Bits 0:15 build | ||
178 | Bits 16:23 minor | ||
179 | Bits 24:31 major | ||
180 | |||
181 | ------------------------------------------------------------------------------- | ||
182 | |||
183 | Name CX2341X_DEC_SET_STREAM_INPUT | ||
184 | Enum 20/0x14 | ||
185 | Description | ||
186 | Select decoder stream input port | ||
187 | Param[0] | ||
188 | 0=memory (default), 1=streaming | ||
189 | |||
190 | ------------------------------------------------------------------------------- | ||
191 | |||
192 | Name CX2341X_DEC_GET_TIMING_INFO | ||
193 | Enum 21/0x15 | ||
194 | Description | ||
195 | Returns timing information from start of playback | ||
196 | Result[0] | ||
197 | Frame count by decode order | ||
198 | Result[1] | ||
199 | Video PTS bits 0:31 by display order | ||
200 | Result[2] | ||
201 | Video PTS bit 32 by display order | ||
202 | Result[3] | ||
203 | SCR bits 0:31 by display order | ||
204 | Result[4] | ||
205 | SCR bit 32 by display order | ||
206 | |||
207 | ------------------------------------------------------------------------------- | ||
208 | |||
209 | Name CX2341X_DEC_SET_AUDIO_MODE | ||
210 | Enum 22/0x16 | ||
211 | Description | ||
212 | Select audio mode | ||
213 | Param[0] | ||
214 | Dual mono mode action | ||
215 | Param[1] | ||
216 | Stereo mode action: | ||
217 | 0=Stereo, 1=Left, 2=Right, 3=Mono, 4=Swap, -1=Unchanged | ||
218 | |||
219 | ------------------------------------------------------------------------------- | ||
220 | |||
221 | Name CX2341X_DEC_SET_EVENT_NOTIFICATION | ||
222 | Enum 23/0x17 | ||
223 | Description | ||
224 | Setup firmware to notify the host about a particular event. | ||
225 | Counterpart to API 0xD5 | ||
226 | Param[0] | ||
227 | Event: 0=Audio mode change between stereo and dual channel | ||
228 | Param[1] | ||
229 | Notification 0=disabled, 1=enabled | ||
230 | Param[2] | ||
231 | Interrupt bit | ||
232 | Param[3] | ||
233 | Mailbox slot, -1 if no mailbox required. | ||
234 | |||
235 | ------------------------------------------------------------------------------- | ||
236 | |||
237 | Name CX2341X_DEC_SET_DISPLAY_BUFFERS | ||
238 | Enum 24/0x18 | ||
239 | Description | ||
240 | Number of display buffers. To decode all frames in reverse playback you | ||
241 | must use nine buffers. | ||
242 | Param[0] | ||
243 | 0=six buffers, 1=nine buffers | ||
244 | |||
245 | ------------------------------------------------------------------------------- | ||
246 | |||
247 | Name CX2341X_DEC_EXTRACT_VBI | ||
248 | Enum 25/0x19 | ||
249 | Description | ||
250 | Extracts VBI data | ||
251 | Param[0] | ||
252 | 0=extract from extension & user data, 1=extract from private packets | ||
253 | Result[0] | ||
254 | VBI table location | ||
255 | Result[1] | ||
256 | VBI table size | ||
257 | |||
258 | ------------------------------------------------------------------------------- | ||
259 | |||
260 | Name CX2341X_DEC_SET_DECODER_SOURCE | ||
261 | Enum 26/0x1A | ||
262 | Description | ||
263 | Selects decoder source. Ensure that the parameters passed to this | ||
264 | API match the encoder settings. | ||
265 | Param[0] | ||
266 | Mode: 0=MPEG from host, 1=YUV from encoder, 2=YUV from host | ||
267 | Param[1] | ||
268 | YUV picture width | ||
269 | Param[2] | ||
270 | YUV picture height | ||
271 | Param[3] | ||
272 | Bitmap: see Param[0] of API 0xBD | ||
273 | |||
274 | ------------------------------------------------------------------------------- | ||
275 | |||
276 | Name CX2341X_DEC_SET_AUDIO_OUTPUT | ||
277 | Enum 27/0x1B | ||
278 | Description | ||
279 | Select audio output format | ||
280 | Param[0] | ||
281 | Bitmask: | ||
282 | 0:1 Data size: | ||
283 | '00' 16 bit | ||
284 | '01' 20 bit | ||
285 | '10' 24 bit | ||
286 | 2:7 Unused | ||
287 | 8:9 Mode: | ||
288 | '00' 2 channels | ||
289 | '01' 4 channels | ||
290 | '10' 6 channels | ||
291 | '11' 6 channels with one line data mode | ||
292 | (for left justified MSB first mode, 20 bit only) | ||
293 | 10:11 Unused | ||
294 | 12:13 Channel format: | ||
295 | '00' right justified MSB first mode | ||
296 | '01' left justified MSB first mode | ||
297 | '10' I2S mode | ||
298 | 14:15 Unused | ||
299 | 16:21 Right justify bit count | ||
300 | 22:31 Unused | ||
301 | |||
302 | ------------------------------------------------------------------------------- | ||
303 | |||
304 | Name CX2341X_DEC_SET_AV_DELAY | ||
305 | Enum 28/0x1C | ||
306 | Description | ||
307 | Set audio/video delay in 90Khz ticks | ||
308 | Param[0] | ||
309 | 0=A/V in sync, negative=audio lags, positive=video lags | ||
310 | |||
311 | ------------------------------------------------------------------------------- | ||
312 | |||
313 | Name CX2341X_DEC_SET_PREBUFFERING | ||
314 | Enum 30/0x1E | ||
315 | Description | ||
316 | Decoder prebuffering, when enabled up to 128KB are buffered for | ||
317 | streams <8mpbs or 640KB for streams >8mbps | ||
318 | Param[0] | ||
319 | 0=off, 1=on | ||
diff --git a/Documentation/video4linux/cx2341x/fw-dma.txt b/Documentation/video4linux/cx2341x/fw-dma.txt new file mode 100644 index 000000000000..8123e262d5b6 --- /dev/null +++ b/Documentation/video4linux/cx2341x/fw-dma.txt | |||
@@ -0,0 +1,94 @@ | |||
1 | This page describes the structures and procedures used by the cx2341x DMA | ||
2 | engine. | ||
3 | |||
4 | Introduction | ||
5 | ============ | ||
6 | |||
7 | The cx2341x PCI interface is busmaster capable. This means it has a DMA | ||
8 | engine to efficiently transfer large volumes of data between the card and main | ||
9 | memory without requiring help from a CPU. Like most hardware, it must operate | ||
10 | on contiguous physical memory. This is difficult to come by in large quantities | ||
11 | on virtual memory machines. | ||
12 | |||
13 | Therefore, it also supports a technique called "scatter-gather". The card can | ||
14 | transfer multiple buffers in one operation. Instead of allocating one large | ||
15 | contiguous buffer, the driver can allocate several smaller buffers. | ||
16 | |||
17 | In practice, I've seen the average transfer to be roughly 80K, but transfers | ||
18 | above 128K were not uncommon, particularly at startup. The 128K figure is | ||
19 | important, because that is the largest block that the kernel can normally | ||
20 | allocate. Even still, 128K blocks are hard to come by, so the driver writer is | ||
21 | urged to choose a smaller block size and learn the scatter-gather technique. | ||
22 | |||
23 | Mailbox #10 is reserved for DMA transfer information. | ||
24 | |||
25 | Flow | ||
26 | ==== | ||
27 | |||
28 | This section describes, in general, the order of events when handling DMA | ||
29 | transfers. Detailed information follows this section. | ||
30 | |||
31 | - The card raises the Encoder interrupt. | ||
32 | - The driver reads the transfer type, offset and size from Mailbox #10. | ||
33 | - The driver constructs the scatter-gather array from enough free dma buffers | ||
34 | to cover the size. | ||
35 | - The driver schedules the DMA transfer via the ScheduleDMAtoHost API call. | ||
36 | - The card raises the DMA Complete interrupt. | ||
37 | - The driver checks the DMA status register for any errors. | ||
38 | - The driver post-processes the newly transferred buffers. | ||
39 | |||
40 | NOTE! It is possible that the Encoder and DMA Complete interrupts get raised | ||
41 | simultaneously. (End of the last, start of the next, etc.) | ||
42 | |||
43 | Mailbox #10 | ||
44 | =========== | ||
45 | |||
46 | The Flags, Command, Return Value and Timeout fields are ignored. | ||
47 | |||
48 | Name: Mailbox #10 | ||
49 | Results[0]: Type: 0: MPEG. | ||
50 | Results[1]: Offset: The position relative to the card's memory space. | ||
51 | Results[2]: Size: The exact number of bytes to transfer. | ||
52 | |||
53 | My speculation is that since the StartCapture API has a capture type of "RAW" | ||
54 | available, that the type field will have other values that correspond to YUV | ||
55 | and PCM data. | ||
56 | |||
57 | Scatter-Gather Array | ||
58 | ==================== | ||
59 | |||
60 | The scatter-gather array is a contiguously allocated block of memory that | ||
61 | tells the card the source and destination of each data-block to transfer. | ||
62 | Card "addresses" are derived from the offset supplied by Mailbox #10. Host | ||
63 | addresses are the physical memory location of the target DMA buffer. | ||
64 | |||
65 | Each S-G array element is a struct of three 32-bit words. The first word is | ||
66 | the source address, the second is the destination address. Both take up the | ||
67 | entire 32 bits. The lowest 16 bits of the third word is the transfer byte | ||
68 | count. The high-bit of the third word is the "last" flag. The last-flag tells | ||
69 | the card to raise the DMA_DONE interrupt. From hard personal experience, if | ||
70 | you forget to set this bit, the card will still "work" but the stream will | ||
71 | most likely get corrupted. | ||
72 | |||
73 | The transfer count must be a multiple of 256. Therefore, the driver will need | ||
74 | to track how much data in the target buffer is valid and deal with it | ||
75 | accordingly. | ||
76 | |||
77 | Array Element: | ||
78 | |||
79 | - 32-bit Source Address | ||
80 | - 32-bit Destination Address | ||
81 | - 16-bit reserved (high bit is the last flag) | ||
82 | - 16-bit byte count | ||
83 | |||
84 | DMA Transfer Status | ||
85 | =================== | ||
86 | |||
87 | Register 0x0004 holds the DMA Transfer Status: | ||
88 | |||
89 | Bit | ||
90 | 4 Scatter-Gather array error | ||
91 | 3 DMA write error | ||
92 | 2 DMA read error | ||
93 | 1 write completed | ||
94 | 0 read completed | ||
diff --git a/Documentation/video4linux/cx2341x/fw-encoder-api.txt b/Documentation/video4linux/cx2341x/fw-encoder-api.txt new file mode 100644 index 000000000000..001c68644b08 --- /dev/null +++ b/Documentation/video4linux/cx2341x/fw-encoder-api.txt | |||
@@ -0,0 +1,694 @@ | |||
1 | Encoder firmware API description | ||
2 | ================================ | ||
3 | |||
4 | ------------------------------------------------------------------------------- | ||
5 | |||
6 | Name CX2341X_ENC_PING_FW | ||
7 | Enum 128/0x80 | ||
8 | Description | ||
9 | Does nothing. Can be used to check if the firmware is responding. | ||
10 | |||
11 | ------------------------------------------------------------------------------- | ||
12 | |||
13 | Name CX2341X_ENC_START_CAPTURE | ||
14 | Enum 129/0x81 | ||
15 | Description | ||
16 | Commences the capture of video, audio and/or VBI data. All encoding | ||
17 | parameters must be initialized prior to this API call. Captures frames | ||
18 | continuously or until a predefined number of frames have been captured. | ||
19 | Param[0] | ||
20 | Capture stream type: | ||
21 | 0=MPEG | ||
22 | 1=Raw | ||
23 | 2=Raw passthrough | ||
24 | 3=VBI | ||
25 | |||
26 | Param[1] | ||
27 | Bitmask: | ||
28 | Bit 0 when set, captures YUV | ||
29 | Bit 1 when set, captures PCM audio | ||
30 | Bit 2 when set, captures VBI (same as param[0]=3) | ||
31 | Bit 3 when set, the capture destination is the decoder | ||
32 | (same as param[0]=2) | ||
33 | Bit 4 when set, the capture destination is the host | ||
34 | Note: this parameter is only meaningful for RAW capture type. | ||
35 | |||
36 | ------------------------------------------------------------------------------- | ||
37 | |||
38 | Name CX2341X_ENC_STOP_CAPTURE | ||
39 | Enum 130/0x82 | ||
40 | Description | ||
41 | Ends a capture in progress | ||
42 | Param[0] | ||
43 | 0=stop at end of GOP (generates IRQ) | ||
44 | 1=stop immediate (no IRQ) | ||
45 | Param[1] | ||
46 | Stream type to stop, see param[0] of API 0x81 | ||
47 | Param[2] | ||
48 | Subtype, see param[1] of API 0x81 | ||
49 | |||
50 | ------------------------------------------------------------------------------- | ||
51 | |||
52 | Name CX2341X_ENC_SET_AUDIO_ID | ||
53 | Enum 137/0x89 | ||
54 | Description | ||
55 | Assigns the transport stream ID of the encoded audio stream | ||
56 | Param[0] | ||
57 | Audio Stream ID | ||
58 | |||
59 | ------------------------------------------------------------------------------- | ||
60 | |||
61 | Name CX2341X_ENC_SET_VIDEO_ID | ||
62 | Enum 139/0x8B | ||
63 | Description | ||
64 | Set video transport stream ID | ||
65 | Param[0] | ||
66 | Video stream ID | ||
67 | |||
68 | ------------------------------------------------------------------------------- | ||
69 | |||
70 | Name CX2341X_ENC_SET_PCR_ID | ||
71 | Enum 141/0x8D | ||
72 | Description | ||
73 | Assigns the transport stream ID for PCR packets | ||
74 | Param[0] | ||
75 | PCR Stream ID | ||
76 | |||
77 | ------------------------------------------------------------------------------- | ||
78 | |||
79 | Name CX2341X_ENC_SET_FRAME_RATE | ||
80 | Enum 143/0x8F | ||
81 | Description | ||
82 | Set video frames per second. Change occurs at start of new GOP. | ||
83 | Param[0] | ||
84 | 0=30fps | ||
85 | 1=25fps | ||
86 | |||
87 | ------------------------------------------------------------------------------- | ||
88 | |||
89 | Name CX2341X_ENC_SET_FRAME_SIZE | ||
90 | Enum 145/0x91 | ||
91 | Description | ||
92 | Select video stream encoding resolution. | ||
93 | Param[0] | ||
94 | Height in lines. Default 480 | ||
95 | Param[1] | ||
96 | Width in pixels. Default 720 | ||
97 | |||
98 | ------------------------------------------------------------------------------- | ||
99 | |||
100 | Name CX2341X_ENC_SET_BIT_RATE | ||
101 | Enum 149/0x95 | ||
102 | Description | ||
103 | Assign average video stream bitrate. Note on the last three params: | ||
104 | Param[3] and [4] seem to be always 0, param [5] doesn't seem to be used. | ||
105 | Param[0] | ||
106 | 0=variable bitrate, 1=constant bitrate | ||
107 | Param[1] | ||
108 | bitrate in bits per second | ||
109 | Param[2] | ||
110 | peak bitrate in bits per second, divided by 400 | ||
111 | Param[3] | ||
112 | Mux bitrate in bits per second, divided by 400. May be 0 (default). | ||
113 | Param[4] | ||
114 | Rate Control VBR Padding | ||
115 | Param[5] | ||
116 | VBV Buffer used by encoder | ||
117 | |||
118 | ------------------------------------------------------------------------------- | ||
119 | |||
120 | Name CX2341X_ENC_SET_GOP_PROPERTIES | ||
121 | Enum 151/0x97 | ||
122 | Description | ||
123 | Setup the GOP structure | ||
124 | Param[0] | ||
125 | GOP size (maximum is 34) | ||
126 | Param[1] | ||
127 | Number of B frames between the I and P frame, plus 1. | ||
128 | For example: IBBPBBPBBPBB --> GOP size: 12, number of B frames: 2+1 = 3 | ||
129 | Note that GOP size must be a multiple of (B-frames + 1). | ||
130 | |||
131 | ------------------------------------------------------------------------------- | ||
132 | |||
133 | Name CX2341X_ENC_SET_ASPECT_RATIO | ||
134 | Enum 153/0x99 | ||
135 | Description | ||
136 | Sets the encoding aspect ratio. Changes in the aspect ratio take effect | ||
137 | at the start of the next GOP. | ||
138 | Param[0] | ||
139 | '0000' forbidden | ||
140 | '0001' 1:1 square | ||
141 | '0010' 4:3 | ||
142 | '0011' 16:9 | ||
143 | '0100' 2.21:1 | ||
144 | '0101' reserved | ||
145 | .... | ||
146 | '1111' reserved | ||
147 | |||
148 | ------------------------------------------------------------------------------- | ||
149 | |||
150 | Name CX2341X_ENC_SET_DNR_FILTER_MODE | ||
151 | Enum 155/0x9B | ||
152 | Description | ||
153 | Assign Dynamic Noise Reduction operating mode | ||
154 | Param[0] | ||
155 | Bit0: Spatial filter, set=auto, clear=manual | ||
156 | Bit1: Temporal filter, set=auto, clear=manual | ||
157 | Param[1] | ||
158 | Median filter: | ||
159 | 0=Disabled | ||
160 | 1=Horizontal | ||
161 | 2=Vertical | ||
162 | 3=Horiz/Vert | ||
163 | 4=Diagonal | ||
164 | |||
165 | ------------------------------------------------------------------------------- | ||
166 | |||
167 | Name CX2341X_ENC_SET_DNR_FILTER_PROPS | ||
168 | Enum 157/0x9D | ||
169 | Description | ||
170 | These Dynamic Noise Reduction filter values are only meaningful when | ||
171 | the respective filter is set to "manual" (See API 0x9B) | ||
172 | Param[0] | ||
173 | Spatial filter: default 0, range 0:15 | ||
174 | Param[1] | ||
175 | Temporal filter: default 0, range 0:31 | ||
176 | |||
177 | ------------------------------------------------------------------------------- | ||
178 | |||
179 | Name CX2341X_ENC_SET_CORING_LEVELS | ||
180 | Enum 159/0x9F | ||
181 | Description | ||
182 | Assign Dynamic Noise Reduction median filter properties. | ||
183 | Param[0] | ||
184 | Threshold above which the luminance median filter is enabled. | ||
185 | Default: 0, range 0:255 | ||
186 | Param[1] | ||
187 | Threshold below which the luminance median filter is enabled. | ||
188 | Default: 255, range 0:255 | ||
189 | Param[2] | ||
190 | Threshold above which the chrominance median filter is enabled. | ||
191 | Default: 0, range 0:255 | ||
192 | Param[3] | ||
193 | Threshold below which the chrominance median filter is enabled. | ||
194 | Default: 255, range 0:255 | ||
195 | |||
196 | ------------------------------------------------------------------------------- | ||
197 | |||
198 | Name CX2341X_ENC_SET_SPATIAL_FILTER_TYPE | ||
199 | Enum 161/0xA1 | ||
200 | Description | ||
201 | Assign spatial prefilter parameters | ||
202 | Param[0] | ||
203 | Luminance filter | ||
204 | 0=Off | ||
205 | 1=1D Horizontal | ||
206 | 2=1D Vertical | ||
207 | 3=2D H/V Separable (default) | ||
208 | 4=2D Symmetric non-separable | ||
209 | Param[1] | ||
210 | Chrominance filter | ||
211 | 0=Off | ||
212 | 1=1D Horizontal (default) | ||
213 | |||
214 | ------------------------------------------------------------------------------- | ||
215 | |||
216 | Name CX2341X_ENC_SET_3_2_PULLDOWN | ||
217 | Enum 177/0xB1 | ||
218 | Description | ||
219 | 3:2 pulldown properties | ||
220 | Param[0] | ||
221 | 0=enabled | ||
222 | 1=disabled | ||
223 | |||
224 | ------------------------------------------------------------------------------- | ||
225 | |||
226 | Name CX2341X_ENC_SET_VBI_LINE | ||
227 | Enum 183/0xB7 | ||
228 | Description | ||
229 | Selects VBI line number. | ||
230 | Param[0] | ||
231 | Bits 0:4 line number | ||
232 | Bit 31 0=top_field, 1=bottom_field | ||
233 | Bits 0:31 all set specifies "all lines" | ||
234 | Param[1] | ||
235 | VBI line information features: 0=disabled, 1=enabled | ||
236 | Param[2] | ||
237 | Slicing: 0=None, 1=Closed Caption | ||
238 | Almost certainly not implemented. Set to 0. | ||
239 | Param[3] | ||
240 | Luminance samples in this line. | ||
241 | Almost certainly not implemented. Set to 0. | ||
242 | Param[4] | ||
243 | Chrominance samples in this line | ||
244 | Almost certainly not implemented. Set to 0. | ||
245 | |||
246 | ------------------------------------------------------------------------------- | ||
247 | |||
248 | Name CX2341X_ENC_SET_STREAM_TYPE | ||
249 | Enum 185/0xB9 | ||
250 | Description | ||
251 | Assign stream type | ||
252 | Note: Transport stream is not working in recent firmwares. | ||
253 | And in older firmwares the timestamps in the TS seem to be | ||
254 | unreliable. | ||
255 | Param[0] | ||
256 | 0=Program stream | ||
257 | 1=Transport stream | ||
258 | 2=MPEG1 stream | ||
259 | 3=PES A/V stream | ||
260 | 5=PES Video stream | ||
261 | 7=PES Audio stream | ||
262 | 10=DVD stream | ||
263 | 11=VCD stream | ||
264 | 12=SVCD stream | ||
265 | 13=DVD_S1 stream | ||
266 | 14=DVD_S2 stream | ||
267 | |||
268 | ------------------------------------------------------------------------------- | ||
269 | |||
270 | Name CX2341X_ENC_SET_OUTPUT_PORT | ||
271 | Enum 187/0xBB | ||
272 | Description | ||
273 | Assign stream output port. Normally 0 when the data is copied through | ||
274 | the PCI bus (DMA), and 1 when the data is streamed to another chip | ||
275 | (pvrusb and cx88-blackbird). | ||
276 | Param[0] | ||
277 | 0=Memory (default) | ||
278 | 1=Streaming | ||
279 | 2=Serial | ||
280 | Param[1] | ||
281 | Unknown, but leaving this to 0 seems to work best. Indications are that | ||
282 | this might have to do with USB support, although passing anything but 0 | ||
283 | onl breaks things. | ||
284 | |||
285 | ------------------------------------------------------------------------------- | ||
286 | |||
287 | Name CX2341X_ENC_SET_AUDIO_PROPERTIES | ||
288 | Enum 189/0xBD | ||
289 | Description | ||
290 | Set audio stream properties, may be called while encoding is in progress. | ||
291 | Note: all bitfields are consistent with ISO11172 documentation except | ||
292 | bits 2:3 which ISO docs define as: | ||
293 | '11' Layer I | ||
294 | '10' Layer II | ||
295 | '01' Layer III | ||
296 | '00' Undefined | ||
297 | This discrepancy may indicate a possible error in the documentation. | ||
298 | Testing indicated that only Layer II is actually working, and that | ||
299 | the minimum bitrate should be 192 kbps. | ||
300 | Param[0] | ||
301 | Bitmask: | ||
302 | 0:1 '00' 44.1Khz | ||
303 | '01' 48Khz | ||
304 | '10' 32Khz | ||
305 | '11' reserved | ||
306 | |||
307 | 2:3 '01'=Layer I | ||
308 | '10'=Layer II | ||
309 | |||
310 | 4:7 Bitrate: | ||
311 | Index | Layer I | Layer II | ||
312 | ------+-------------+------------ | ||
313 | '0000' | free format | free format | ||
314 | '0001' | 32 kbit/s | 32 kbit/s | ||
315 | '0010' | 64 kbit/s | 48 kbit/s | ||
316 | '0011' | 96 kbit/s | 56 kbit/s | ||
317 | '0100' | 128 kbit/s | 64 kbit/s | ||
318 | '0101' | 160 kbit/s | 80 kbit/s | ||
319 | '0110' | 192 kbit/s | 96 kbit/s | ||
320 | '0111' | 224 kbit/s | 112 kbit/s | ||
321 | '1000' | 256 kbit/s | 128 kbit/s | ||
322 | '1001' | 288 kbit/s | 160 kbit/s | ||
323 | '1010' | 320 kbit/s | 192 kbit/s | ||
324 | '1011' | 352 kbit/s | 224 kbit/s | ||
325 | '1100' | 384 kbit/s | 256 kbit/s | ||
326 | '1101' | 416 kbit/s | 320 kbit/s | ||
327 | '1110' | 448 kbit/s | 384 kbit/s | ||
328 | Note: For Layer II, not all combinations of total bitrate | ||
329 | and mode are allowed. See ISO11172-3 3-Annex B, Table 3-B.2 | ||
330 | |||
331 | 8:9 '00'=Stereo | ||
332 | '01'=JointStereo | ||
333 | '10'=Dual | ||
334 | '11'=Mono | ||
335 | Note: testing seems to indicate that Mono and possibly | ||
336 | JointStereo are not working (default to stereo). | ||
337 | Dual does work, though. | ||
338 | |||
339 | 10:11 Mode Extension used in joint_stereo mode. | ||
340 | In Layer I and II they indicate which subbands are in | ||
341 | intensity_stereo. All other subbands are coded in stereo. | ||
342 | '00' subbands 4-31 in intensity_stereo, bound==4 | ||
343 | '01' subbands 8-31 in intensity_stereo, bound==8 | ||
344 | '10' subbands 12-31 in intensity_stereo, bound==12 | ||
345 | '11' subbands 16-31 in intensity_stereo, bound==16 | ||
346 | |||
347 | 12:13 Emphasis: | ||
348 | '00' None | ||
349 | '01' 50/15uS | ||
350 | '10' reserved | ||
351 | '11' CCITT J.17 | ||
352 | |||
353 | 14 CRC: | ||
354 | '0' off | ||
355 | '1' on | ||
356 | |||
357 | 15 Copyright: | ||
358 | '0' off | ||
359 | '1' on | ||
360 | |||
361 | 16 Generation: | ||
362 | '0' copy | ||
363 | '1' original | ||
364 | |||
365 | ------------------------------------------------------------------------------- | ||
366 | |||
367 | Name CX2341X_ENC_HALT_FW | ||
368 | Enum 195/0xC3 | ||
369 | Description | ||
370 | The firmware is halted and no further API calls are serviced until the | ||
371 | firmware is uploaded again. | ||
372 | |||
373 | ------------------------------------------------------------------------------- | ||
374 | |||
375 | Name CX2341X_ENC_GET_VERSION | ||
376 | Enum 196/0xC4 | ||
377 | Description | ||
378 | Returns the version of the encoder firmware. | ||
379 | Result[0] | ||
380 | Version bitmask: | ||
381 | Bits 0:15 build | ||
382 | Bits 16:23 minor | ||
383 | Bits 24:31 major | ||
384 | |||
385 | ------------------------------------------------------------------------------- | ||
386 | |||
387 | Name CX2341X_ENC_SET_GOP_CLOSURE | ||
388 | Enum 197/0xC5 | ||
389 | Description | ||
390 | Assigns the GOP open/close property. | ||
391 | Param[0] | ||
392 | 0=Open | ||
393 | 1=Closed | ||
394 | |||
395 | ------------------------------------------------------------------------------- | ||
396 | |||
397 | Name CX2341X_ENC_GET_SEQ_END | ||
398 | Enum 198/0xC6 | ||
399 | Description | ||
400 | Obtains the sequence end code of the encoder's buffer. When a capture | ||
401 | is started a number of interrupts are still generated, the last of | ||
402 | which will have Result[0] set to 1 and Result[1] will contain the size | ||
403 | of the buffer. | ||
404 | Result[0] | ||
405 | State of the transfer (1 if last buffer) | ||
406 | Result[1] | ||
407 | If Result[0] is 1, this contains the size of the last buffer, undefined | ||
408 | otherwise. | ||
409 | |||
410 | ------------------------------------------------------------------------------- | ||
411 | |||
412 | Name CX2341X_ENC_SET_PGM_INDEX_INFO | ||
413 | Enum 199/0xC7 | ||
414 | Description | ||
415 | Sets the Program Index Information. | ||
416 | Param[0] | ||
417 | Picture Mask: | ||
418 | 0=No index capture | ||
419 | 1=I frames | ||
420 | 3=I,P frames | ||
421 | 7=I,P,B frames | ||
422 | Param[1] | ||
423 | Elements requested (up to 400) | ||
424 | Result[0] | ||
425 | Offset in SDF memory of the table. | ||
426 | Result[1] | ||
427 | Number of allocated elements up to a maximum of Param[1] | ||
428 | |||
429 | ------------------------------------------------------------------------------- | ||
430 | |||
431 | Name CX2341X_ENC_SET_VBI_CONFIG | ||
432 | Enum 200/0xC8 | ||
433 | Description | ||
434 | Configure VBI settings | ||
435 | Param[0] | ||
436 | Bitmap: | ||
437 | 0 Mode '0' Sliced, '1' Raw | ||
438 | 1:3 Insertion: | ||
439 | '000' insert in extension & user data | ||
440 | '001' insert in private packets | ||
441 | '010' separate stream and user data | ||
442 | '111' separate stream and private data | ||
443 | 8:15 Stream ID (normally 0xBD) | ||
444 | Param[1] | ||
445 | Frames per interrupt (max 8). Only valid in raw mode. | ||
446 | Param[2] | ||
447 | Total raw VBI frames. Only valid in raw mode. | ||
448 | Param[3] | ||
449 | Start codes | ||
450 | Param[4] | ||
451 | Stop codes | ||
452 | Param[5] | ||
453 | Lines per frame | ||
454 | Param[6] | ||
455 | Byte per line | ||
456 | Result[0] | ||
457 | Observed frames per interrupt in raw mode only. Rage 1 to Param[1] | ||
458 | Result[1] | ||
459 | Observed number of frames in raw mode. Range 1 to Param[2] | ||
460 | Result[2] | ||
461 | Memory offset to start or raw VBI data | ||
462 | |||
463 | ------------------------------------------------------------------------------- | ||
464 | |||
465 | Name CX2341X_ENC_SET_DMA_BLOCK_SIZE | ||
466 | Enum 201/0xC9 | ||
467 | Description | ||
468 | Set DMA transfer block size | ||
469 | Param[0] | ||
470 | DMA transfer block size in bytes or frames. When unit is bytes, | ||
471 | supported block sizes are 2^7, 2^8 and 2^9 bytes. | ||
472 | Param[1] | ||
473 | Unit: 0=bytes, 1=frames | ||
474 | |||
475 | ------------------------------------------------------------------------------- | ||
476 | |||
477 | Name CX2341X_ENC_GET_PREV_DMA_INFO_MB_10 | ||
478 | Enum 202/0xCA | ||
479 | Description | ||
480 | Returns information on the previous DMA transfer in conjunction with | ||
481 | bit 27 of the interrupt mask. Uses mailbox 10. | ||
482 | Result[0] | ||
483 | Type of stream | ||
484 | Result[1] | ||
485 | Address Offset | ||
486 | Result[2] | ||
487 | Maximum size of transfer | ||
488 | |||
489 | ------------------------------------------------------------------------------- | ||
490 | |||
491 | Name CX2341X_ENC_GET_PREV_DMA_INFO_MB_9 | ||
492 | Enum 203/0xCB | ||
493 | Description | ||
494 | Returns information on the previous DMA transfer in conjunction with | ||
495 | bit 27 of the interrupt mask. Uses mailbox 9. | ||
496 | Result[0] | ||
497 | Status bits: | ||
498 | Bit 0 set indicates transfer complete | ||
499 | Bit 2 set indicates transfer error | ||
500 | Bit 4 set indicates linked list error | ||
501 | Result[1] | ||
502 | DMA type | ||
503 | Result[2] | ||
504 | Presentation Time Stamp bits 0..31 | ||
505 | Result[3] | ||
506 | Presentation Time Stamp bit 32 | ||
507 | |||
508 | ------------------------------------------------------------------------------- | ||
509 | |||
510 | Name CX2341X_ENC_SCHED_DMA_TO_HOST | ||
511 | Enum 204/0xCC | ||
512 | Description | ||
513 | Setup DMA to host operation | ||
514 | Param[0] | ||
515 | Memory address of link list | ||
516 | Param[1] | ||
517 | Length of link list (wtf: what units ???) | ||
518 | Param[2] | ||
519 | DMA type (0=MPEG) | ||
520 | |||
521 | ------------------------------------------------------------------------------- | ||
522 | |||
523 | Name CX2341X_ENC_INITIALIZE_INPUT | ||
524 | Enum 205/0xCD | ||
525 | Description | ||
526 | Initializes the video input | ||
527 | |||
528 | ------------------------------------------------------------------------------- | ||
529 | |||
530 | Name CX2341X_ENC_SET_FRAME_DROP_RATE | ||
531 | Enum 208/0xD0 | ||
532 | Description | ||
533 | For each frame captured, skip specified number of frames. | ||
534 | Param[0] | ||
535 | Number of frames to skip | ||
536 | |||
537 | ------------------------------------------------------------------------------- | ||
538 | |||
539 | Name CX2341X_ENC_PAUSE_ENCODER | ||
540 | Enum 210/0xD2 | ||
541 | Description | ||
542 | During a pause condition, all frames are dropped instead of being encoded. | ||
543 | Param[0] | ||
544 | 0=Pause encoding | ||
545 | 1=Continue encoding | ||
546 | |||
547 | ------------------------------------------------------------------------------- | ||
548 | |||
549 | Name CX2341X_ENC_REFRESH_INPUT | ||
550 | Enum 211/0xD3 | ||
551 | Description | ||
552 | Refreshes the video input | ||
553 | |||
554 | ------------------------------------------------------------------------------- | ||
555 | |||
556 | Name CX2341X_ENC_SET_COPYRIGHT | ||
557 | Enum 212/0xD4 | ||
558 | Description | ||
559 | Sets stream copyright property | ||
560 | Param[0] | ||
561 | 0=Stream is not copyrighted | ||
562 | 1=Stream is copyrighted | ||
563 | |||
564 | ------------------------------------------------------------------------------- | ||
565 | |||
566 | Name CX2341X_ENC_SET_EVENT_NOTIFICATION | ||
567 | Enum 213/0xD5 | ||
568 | Description | ||
569 | Setup firmware to notify the host about a particular event. Host must | ||
570 | unmask the interrupt bit. | ||
571 | Param[0] | ||
572 | Event (0=refresh encoder input) | ||
573 | Param[1] | ||
574 | Notification 0=disabled 1=enabled | ||
575 | Param[2] | ||
576 | Interrupt bit | ||
577 | Param[3] | ||
578 | Mailbox slot, -1 if no mailbox required. | ||
579 | |||
580 | ------------------------------------------------------------------------------- | ||
581 | |||
582 | Name CX2341X_ENC_SET_NUM_VSYNC_LINES | ||
583 | Enum 214/0xD6 | ||
584 | Description | ||
585 | Depending on the analog video decoder used, this assigns the number | ||
586 | of lines for field 1 and 2. | ||
587 | Param[0] | ||
588 | Field 1 number of lines: | ||
589 | 0x00EF for SAA7114 | ||
590 | 0x00F0 for SAA7115 | ||
591 | 0x0105 for Micronas | ||
592 | Param[1] | ||
593 | Field 2 number of lines: | ||
594 | 0x00EF for SAA7114 | ||
595 | 0x00F0 for SAA7115 | ||
596 | 0x0106 for Micronas | ||
597 | |||
598 | ------------------------------------------------------------------------------- | ||
599 | |||
600 | Name CX2341X_ENC_SET_PLACEHOLDER | ||
601 | Enum 215/0xD7 | ||
602 | Description | ||
603 | Provides a mechanism of inserting custom user data in the MPEG stream. | ||
604 | Param[0] | ||
605 | 0=extension & user data | ||
606 | 1=private packet with stream ID 0xBD | ||
607 | Param[1] | ||
608 | Rate at which to insert data, in units of frames (for private packet) | ||
609 | or GOPs (for ext. & user data) | ||
610 | Param[2] | ||
611 | Number of data DWORDs (below) to insert | ||
612 | Param[3] | ||
613 | Custom data 0 | ||
614 | Param[4] | ||
615 | Custom data 1 | ||
616 | Param[5] | ||
617 | Custom data 2 | ||
618 | Param[6] | ||
619 | Custom data 3 | ||
620 | Param[7] | ||
621 | Custom data 4 | ||
622 | Param[8] | ||
623 | Custom data 5 | ||
624 | Param[9] | ||
625 | Custom data 6 | ||
626 | Param[10] | ||
627 | Custom data 7 | ||
628 | Param[11] | ||
629 | Custom data 8 | ||
630 | |||
631 | ------------------------------------------------------------------------------- | ||
632 | |||
633 | Name CX2341X_ENC_MUTE_VIDEO | ||
634 | Enum 217/0xD9 | ||
635 | Description | ||
636 | Video muting | ||
637 | Param[0] | ||
638 | Bit usage: | ||
639 | 0 '0'=video not muted | ||
640 | '1'=video muted, creates frames with the YUV color defined below | ||
641 | 1:7 Unused | ||
642 | 8:15 V chrominance information | ||
643 | 16:23 U chrominance information | ||
644 | 24:31 Y luminance information | ||
645 | |||
646 | ------------------------------------------------------------------------------- | ||
647 | |||
648 | Name CX2341X_ENC_MUTE_AUDIO | ||
649 | Enum 218/0xDA | ||
650 | Description | ||
651 | Audio muting | ||
652 | Param[0] | ||
653 | 0=audio not muted | ||
654 | 1=audio muted (produces silent mpeg audio stream) | ||
655 | |||
656 | ------------------------------------------------------------------------------- | ||
657 | |||
658 | Name CX2341X_ENC_UNKNOWN | ||
659 | Enum 219/0xDB | ||
660 | Description | ||
661 | Unknown API, it's used by Hauppauge though. | ||
662 | Param[0] | ||
663 | 0 This is the value Hauppauge uses, Unknown what it means. | ||
664 | |||
665 | ------------------------------------------------------------------------------- | ||
666 | |||
667 | Name CX2341X_ENC_MISC | ||
668 | Enum 220/0xDC | ||
669 | Description | ||
670 | Miscellaneous actions. Not known for 100% what it does. It's really a | ||
671 | sort of ioctl call. The first parameter is a command number, the second | ||
672 | the value. | ||
673 | Param[0] | ||
674 | Command number: | ||
675 | 1=set initial SCR value when starting encoding. | ||
676 | 2=set quality mode (apparently some test setting). | ||
677 | 3=setup advanced VIM protection handling (supposedly only for the cx23416 | ||
678 | for raw YUV). | ||
679 | Actually it looks like this should be 0 for saa7114/5 based card and 1 | ||
680 | for cx25840 based cards. | ||
681 | 4=generate artificial PTS timestamps | ||
682 | 5=USB flush mode | ||
683 | 6=something to do with the quantization matrix | ||
684 | 7=set navigation pack insertion for DVD | ||
685 | 8=enable scene change detection (seems to be a failure) | ||
686 | 9=set history parameters of the video input module | ||
687 | 10=set input field order of VIM | ||
688 | 11=set quantization matrix | ||
689 | 12=reset audio interface | ||
690 | 13=set audio volume delay | ||
691 | 14=set audio delay | ||
692 | |||
693 | Param[1] | ||
694 | Command value. | ||
diff --git a/Documentation/video4linux/cx2341x/fw-memory.txt b/Documentation/video4linux/cx2341x/fw-memory.txt new file mode 100644 index 000000000000..ef0aad3f88fc --- /dev/null +++ b/Documentation/video4linux/cx2341x/fw-memory.txt | |||
@@ -0,0 +1,141 @@ | |||
1 | This document describes the cx2341x memory map and documents some of the register | ||
2 | space. | ||
3 | |||
4 | Warning! This information was figured out from searching through the memory and | ||
5 | registers, this information may not be correct and is certainly not complete, and | ||
6 | was not derived from anything more than searching through the memory space with | ||
7 | commands like: | ||
8 | |||
9 | ivtvctl -O min=0x02000000,max=0x020000ff | ||
10 | |||
11 | So take this as is, I'm always searching for more stuff, it's a large | ||
12 | register space :-). | ||
13 | |||
14 | Memory Map | ||
15 | ========== | ||
16 | |||
17 | The cx2341x exposes its entire 64M memory space to the PCI host via the PCI BAR0 | ||
18 | (Base Address Register 0). The addresses here are offsets relative to the | ||
19 | address held in BAR0. | ||
20 | |||
21 | 0x00000000-0x00ffffff Encoder memory space | ||
22 | 0x00000000-0x0003ffff Encode.rom | ||
23 | ???-??? MPEG buffer(s) | ||
24 | ???-??? Raw video capture buffer(s) | ||
25 | ???-??? Raw audio capture buffer(s) | ||
26 | ???-??? Display buffers (6 or 9) | ||
27 | |||
28 | 0x01000000-0x01ffffff Decoder memory space | ||
29 | 0x01000000-0x0103ffff Decode.rom | ||
30 | ???-??? MPEG buffers(s) | ||
31 | 0x0114b000-0x0115afff Audio.rom (deprecated?) | ||
32 | |||
33 | 0x02000000-0x0200ffff Register Space | ||
34 | |||
35 | Registers | ||
36 | ========= | ||
37 | |||
38 | The registers occupy the 64k space starting at the 0x02000000 offset from BAR0. | ||
39 | All of these registers are 32 bits wide. | ||
40 | |||
41 | DMA Registers 0x000-0xff: | ||
42 | |||
43 | 0x00 - Control: | ||
44 | 0=reset/cancel, 1=read, 2=write, 4=stop | ||
45 | 0x04 - DMA status: | ||
46 | 1=read busy, 2=write busy, 4=read error, 8=write error, 16=link list error | ||
47 | 0x08 - pci DMA pointer for read link list | ||
48 | 0x0c - pci DMA pointer for write link list | ||
49 | 0x10 - read/write DMA enable: | ||
50 | 1=read enable, 2=write enable | ||
51 | 0x14 - always 0xffffffff, if set any lower instability occurs, 0x00 crashes | ||
52 | 0x18 - ?? | ||
53 | 0x1c - always 0x20 or 32, smaller values slow down DMA transactions | ||
54 | 0x20 - always value of 0x780a010a | ||
55 | 0x24-0x3c - usually just random values??? | ||
56 | 0x40 - Interrupt status | ||
57 | 0x44 - Write a bit here and shows up in Interrupt status 0x40 | ||
58 | 0x48 - Interrupt Mask | ||
59 | 0x4C - always value of 0xfffdffff, | ||
60 | if changed to 0xffffffff DMA write interrupts break. | ||
61 | 0x50 - always 0xffffffff | ||
62 | 0x54 - always 0xffffffff (0x4c, 0x50, 0x54 seem like interrupt masks, are | ||
63 | 3 processors on chip, Java ones, VPU, SPU, APU, maybe these are the | ||
64 | interrupt masks???). | ||
65 | 0x60-0x7C - random values | ||
66 | 0x80 - first write linked list reg, for Encoder Memory addr | ||
67 | 0x84 - first write linked list reg, for pci memory addr | ||
68 | 0x88 - first write linked list reg, for length of buffer in memory addr | ||
69 | (|0x80000000 or this for last link) | ||
70 | 0x8c-0xcc - rest of write linked list reg, 8 sets of 3 total, DMA goes here | ||
71 | from linked list addr in reg 0x0c, firmware must push through or | ||
72 | something. | ||
73 | 0xe0 - first (and only) read linked list reg, for pci memory addr | ||
74 | 0xe4 - first (and only) read linked list reg, for Decoder memory addr | ||
75 | 0xe8 - first (and only) read linked list reg, for length of buffer | ||
76 | 0xec-0xff - Nothing seems to be in these registers, 0xec-f4 are 0x00000000. | ||
77 | |||
78 | Memory locations for Encoder Buffers 0x700-0x7ff: | ||
79 | |||
80 | These registers show offsets of memory locations pertaining to each | ||
81 | buffer area used for encoding, have to shift them by <<1 first. | ||
82 | |||
83 | 0x07F8: Encoder SDRAM refresh | ||
84 | 0x07FC: Encoder SDRAM pre-charge | ||
85 | |||
86 | Memory locations for Decoder Buffers 0x800-0x8ff: | ||
87 | |||
88 | These registers show offsets of memory locations pertaining to each | ||
89 | buffer area used for decoding, have to shift them by <<1 first. | ||
90 | |||
91 | 0x08F8: Decoder SDRAM refresh | ||
92 | 0x08FC: Decoder SDRAM pre-charge | ||
93 | |||
94 | Other memory locations: | ||
95 | |||
96 | 0x2800: Video Display Module control | ||
97 | 0x2D00: AO (audio output?) control | ||
98 | 0x2D24: Bytes Flushed | ||
99 | 0x7000: LSB I2C write clock bit (inverted) | ||
100 | 0x7004: LSB I2C write data bit (inverted) | ||
101 | 0x7008: LSB I2C read clock bit | ||
102 | 0x700c: LSB I2C read data bit | ||
103 | 0x9008: GPIO get input state | ||
104 | 0x900c: GPIO set output state | ||
105 | 0x9020: GPIO direction (Bit7 (GPIO 0..7) - 0:input, 1:output) | ||
106 | 0x9050: SPU control | ||
107 | 0x9054: Reset HW blocks | ||
108 | 0x9058: VPU control | ||
109 | 0xA018: Bit6: interrupt pending? | ||
110 | 0xA064: APU command | ||
111 | |||
112 | |||
113 | Interrupt Status Register | ||
114 | ========================= | ||
115 | |||
116 | The definition of the bits in the interrupt status register 0x0040, and the | ||
117 | interrupt mask 0x0048. If a bit is cleared in the mask, then we want our ISR to | ||
118 | execute. | ||
119 | |||
120 | Bit | ||
121 | 31 Encoder Start Capture | ||
122 | 30 Encoder EOS | ||
123 | 29 Encoder VBI capture | ||
124 | 28 Encoder Video Input Module reset event | ||
125 | 27 Encoder DMA complete | ||
126 | 26 | ||
127 | 25 Decoder copy protect detection event | ||
128 | 24 Decoder audio mode change detection event | ||
129 | 23 | ||
130 | 22 Decoder data request | ||
131 | 21 Decoder I-Frame? done | ||
132 | 20 Decoder DMA complete | ||
133 | 19 Decoder VBI re-insertion | ||
134 | 18 Decoder DMA err (linked-list bad) | ||
135 | |||
136 | Missing | ||
137 | Encoder API call completed | ||
138 | Decoder API call completed | ||
139 | Encoder API post(?) | ||
140 | Decoder API post(?) | ||
141 | Decoder VTRACE event | ||
diff --git a/Documentation/video4linux/cx2341x/fw-osd-api.txt b/Documentation/video4linux/cx2341x/fw-osd-api.txt new file mode 100644 index 000000000000..da98ae30a37a --- /dev/null +++ b/Documentation/video4linux/cx2341x/fw-osd-api.txt | |||
@@ -0,0 +1,342 @@ | |||
1 | OSD firmware API description | ||
2 | ============================ | ||
3 | |||
4 | Note: this API is part of the decoder firmware, so it's cx23415 only. | ||
5 | |||
6 | ------------------------------------------------------------------------------- | ||
7 | |||
8 | Name CX2341X_OSD_GET_FRAMEBUFFER | ||
9 | Enum 65/0x41 | ||
10 | Description | ||
11 | Return base and length of contiguous OSD memory. | ||
12 | Result[0] | ||
13 | OSD base address | ||
14 | Result[1] | ||
15 | OSD length | ||
16 | |||
17 | ------------------------------------------------------------------------------- | ||
18 | |||
19 | Name CX2341X_OSD_GET_PIXEL_FORMAT | ||
20 | Enum 66/0x42 | ||
21 | Description | ||
22 | Query OSD format | ||
23 | Result[0] | ||
24 | 0=8bit index, 4=AlphaRGB 8:8:8:8 | ||
25 | |||
26 | ------------------------------------------------------------------------------- | ||
27 | |||
28 | Name CX2341X_OSD_SET_PIXEL_FORMAT | ||
29 | Enum 67/0x43 | ||
30 | Description | ||
31 | Assign pixel format | ||
32 | Param[0] | ||
33 | 0=8bit index, 4=AlphaRGB 8:8:8:8 | ||
34 | |||
35 | ------------------------------------------------------------------------------- | ||
36 | |||
37 | Name CX2341X_OSD_GET_STATE | ||
38 | Enum 68/0x44 | ||
39 | Description | ||
40 | Query OSD state | ||
41 | Result[0] | ||
42 | Bit 0 0=off, 1=on | ||
43 | Bits 1:2 alpha control | ||
44 | Bits 3:5 pixel format | ||
45 | |||
46 | ------------------------------------------------------------------------------- | ||
47 | |||
48 | Name CX2341X_OSD_SET_STATE | ||
49 | Enum 69/0x45 | ||
50 | Description | ||
51 | OSD switch | ||
52 | Param[0] | ||
53 | 0=off, 1=on | ||
54 | |||
55 | ------------------------------------------------------------------------------- | ||
56 | |||
57 | Name CX2341X_OSD_GET_OSD_COORDS | ||
58 | Enum 70/0x46 | ||
59 | Description | ||
60 | Retrieve coordinates of OSD area blended with video | ||
61 | Result[0] | ||
62 | OSD buffer address | ||
63 | Result[1] | ||
64 | Stride in pixels | ||
65 | Result[2] | ||
66 | Lines in OSD buffer | ||
67 | Result[3] | ||
68 | Horizontal offset in buffer | ||
69 | Result[4] | ||
70 | Vertical offset in buffer | ||
71 | |||
72 | ------------------------------------------------------------------------------- | ||
73 | |||
74 | Name CX2341X_OSD_SET_OSD_COORDS | ||
75 | Enum 71/0x47 | ||
76 | Description | ||
77 | Assign the coordinates of the OSD area to blend with video | ||
78 | Param[0] | ||
79 | buffer address | ||
80 | Param[1] | ||
81 | buffer stride in pixels | ||
82 | Param[2] | ||
83 | lines in buffer | ||
84 | Param[3] | ||
85 | horizontal offset | ||
86 | Param[4] | ||
87 | vertical offset | ||
88 | |||
89 | ------------------------------------------------------------------------------- | ||
90 | |||
91 | Name CX2341X_OSD_GET_SCREEN_COORDS | ||
92 | Enum 72/0x48 | ||
93 | Description | ||
94 | Retrieve OSD screen area coordinates | ||
95 | Result[0] | ||
96 | top left horizontal offset | ||
97 | Result[1] | ||
98 | top left vertical offset | ||
99 | Result[2] | ||
100 | bottom right hotizontal offset | ||
101 | Result[3] | ||
102 | bottom right vertical offset | ||
103 | |||
104 | ------------------------------------------------------------------------------- | ||
105 | |||
106 | Name CX2341X_OSD_SET_SCREEN_COORDS | ||
107 | Enum 73/0x49 | ||
108 | Description | ||
109 | Assign the coordinates of the screen area to blend with video | ||
110 | Param[0] | ||
111 | top left horizontal offset | ||
112 | Param[1] | ||
113 | top left vertical offset | ||
114 | Param[2] | ||
115 | bottom left horizontal offset | ||
116 | Param[3] | ||
117 | bottom left vertical offset | ||
118 | |||
119 | ------------------------------------------------------------------------------- | ||
120 | |||
121 | Name CX2341X_OSD_GET_GLOBAL_ALPHA | ||
122 | Enum 74/0x4A | ||
123 | Description | ||
124 | Retrieve OSD global alpha | ||
125 | Result[0] | ||
126 | global alpha: 0=off, 1=on | ||
127 | Result[1] | ||
128 | bits 0:7 global alpha | ||
129 | |||
130 | ------------------------------------------------------------------------------- | ||
131 | |||
132 | Name CX2341X_OSD_SET_GLOBAL_ALPHA | ||
133 | Enum 75/0x4B | ||
134 | Description | ||
135 | Update global alpha | ||
136 | Param[0] | ||
137 | global alpha: 0=off, 1=on | ||
138 | Param[1] | ||
139 | global alpha (8 bits) | ||
140 | Param[2] | ||
141 | local alpha: 0=on, 1=off | ||
142 | |||
143 | ------------------------------------------------------------------------------- | ||
144 | |||
145 | Name CX2341X_OSD_SET_BLEND_COORDS | ||
146 | Enum 78/0x4C | ||
147 | Description | ||
148 | Move start of blending area within display buffer | ||
149 | Param[0] | ||
150 | horizontal offset in buffer | ||
151 | Param[1] | ||
152 | vertical offset in buffer | ||
153 | |||
154 | ------------------------------------------------------------------------------- | ||
155 | |||
156 | Name CX2341X_OSD_GET_FLICKER_STATE | ||
157 | Enum 79/0x4F | ||
158 | Description | ||
159 | Retrieve flicker reduction module state | ||
160 | Result[0] | ||
161 | flicker state: 0=off, 1=on | ||
162 | |||
163 | ------------------------------------------------------------------------------- | ||
164 | |||
165 | Name CX2341X_OSD_SET_FLICKER_STATE | ||
166 | Enum 80/0x50 | ||
167 | Description | ||
168 | Set flicker reduction module state | ||
169 | Param[0] | ||
170 | State: 0=off, 1=on | ||
171 | |||
172 | ------------------------------------------------------------------------------- | ||
173 | |||
174 | Name CX2341X_OSD_BLT_COPY | ||
175 | Enum 82/0x52 | ||
176 | Description | ||
177 | BLT copy | ||
178 | Param[0] | ||
179 | '0000' zero | ||
180 | '0001' ~destination AND ~source | ||
181 | '0010' ~destination AND source | ||
182 | '0011' ~destination | ||
183 | '0100' destination AND ~source | ||
184 | '0101' ~source | ||
185 | '0110' destination XOR source | ||
186 | '0111' ~destination OR ~source | ||
187 | '1000' ~destination AND ~source | ||
188 | '1001' destination XNOR source | ||
189 | '1010' source | ||
190 | '1011' ~destination OR source | ||
191 | '1100' destination | ||
192 | '1101' destination OR ~source | ||
193 | '1110' destination OR source | ||
194 | '1111' one | ||
195 | |||
196 | Param[1] | ||
197 | Resulting alpha blending | ||
198 | '01' source_alpha | ||
199 | '10' destination_alpha | ||
200 | '11' source_alpha*destination_alpha+1 | ||
201 | (zero if both source and destination alpha are zero) | ||
202 | Param[2] | ||
203 | '00' output_pixel = source_pixel | ||
204 | |||
205 | '01' if source_alpha=0: | ||
206 | output_pixel = destination_pixel | ||
207 | if 256 > source_alpha > 1: | ||
208 | output_pixel = ((source_alpha + 1)*source_pixel + | ||
209 | (255 - source_alpha)*destination_pixel)/256 | ||
210 | |||
211 | '10' if destination_alpha=0: | ||
212 | output_pixel = source_pixel | ||
213 | if 255 > destination_alpha > 0: | ||
214 | output_pixel = ((255 - destination_alpha)*source_pixel + | ||
215 | (destination_alpha + 1)*destination_pixel)/256 | ||
216 | |||
217 | '11' if source_alpha=0: | ||
218 | source_temp = 0 | ||
219 | if source_alpha=255: | ||
220 | source_temp = source_pixel*256 | ||
221 | if 255 > source_alpha > 0: | ||
222 | source_temp = source_pixel*(source_alpha + 1) | ||
223 | if destination_alpha=0: | ||
224 | destination_temp = 0 | ||
225 | if destination_alpha=255: | ||
226 | destination_temp = destination_pixel*256 | ||
227 | if 255 > destination_alpha > 0: | ||
228 | destination_temp = destination_pixel*(destination_alpha + 1) | ||
229 | output_pixel = (source_temp + destination_temp)/256 | ||
230 | Param[3] | ||
231 | width | ||
232 | Param[4] | ||
233 | height | ||
234 | Param[5] | ||
235 | destination pixel mask | ||
236 | Param[6] | ||
237 | destination rectangle start address | ||
238 | Param[7] | ||
239 | destination stride in dwords | ||
240 | Param[8] | ||
241 | source stride in dwords | ||
242 | Param[9] | ||
243 | source rectangle start address | ||
244 | |||
245 | ------------------------------------------------------------------------------- | ||
246 | |||
247 | Name CX2341X_OSD_BLT_FILL | ||
248 | Enum 83/0x53 | ||
249 | Description | ||
250 | BLT fill color | ||
251 | Param[0] | ||
252 | Same as Param[0] on API 0x52 | ||
253 | Param[1] | ||
254 | Same as Param[1] on API 0x52 | ||
255 | Param[2] | ||
256 | Same as Param[2] on API 0x52 | ||
257 | Param[3] | ||
258 | width | ||
259 | Param[4] | ||
260 | height | ||
261 | Param[5] | ||
262 | destination pixel mask | ||
263 | Param[6] | ||
264 | destination rectangle start address | ||
265 | Param[7] | ||
266 | destination stride in dwords | ||
267 | Param[8] | ||
268 | color fill value | ||
269 | |||
270 | ------------------------------------------------------------------------------- | ||
271 | |||
272 | Name CX2341X_OSD_BLT_TEXT | ||
273 | Enum 84/0x54 | ||
274 | Description | ||
275 | BLT for 8 bit alpha text source | ||
276 | Param[0] | ||
277 | Same as Param[0] on API 0x52 | ||
278 | Param[1] | ||
279 | Same as Param[1] on API 0x52 | ||
280 | Param[2] | ||
281 | Same as Param[2] on API 0x52 | ||
282 | Param[3] | ||
283 | width | ||
284 | Param[4] | ||
285 | height | ||
286 | Param[5] | ||
287 | destination pixel mask | ||
288 | Param[6] | ||
289 | destination rectangle start address | ||
290 | Param[7] | ||
291 | destination stride in dwords | ||
292 | Param[8] | ||
293 | source stride in dwords | ||
294 | Param[9] | ||
295 | source rectangle start address | ||
296 | Param[10] | ||
297 | color fill value | ||
298 | |||
299 | ------------------------------------------------------------------------------- | ||
300 | |||
301 | Name CX2341X_OSD_SET_FRAMEBUFFER_WINDOW | ||
302 | Enum 86/0x56 | ||
303 | Description | ||
304 | Positions the main output window on the screen. The coordinates must be | ||
305 | such that the entire window fits on the screen. | ||
306 | Param[0] | ||
307 | window width | ||
308 | Param[1] | ||
309 | window height | ||
310 | Param[2] | ||
311 | top left window corner horizontal offset | ||
312 | Param[3] | ||
313 | top left window corner vertical offset | ||
314 | |||
315 | ------------------------------------------------------------------------------- | ||
316 | |||
317 | Name CX2341X_OSD_SET_CHROMA_KEY | ||
318 | Enum 96/0x60 | ||
319 | Description | ||
320 | Chroma key switch and color | ||
321 | Param[0] | ||
322 | state: 0=off, 1=on | ||
323 | Param[1] | ||
324 | color | ||
325 | |||
326 | ------------------------------------------------------------------------------- | ||
327 | |||
328 | Name CX2341X_OSD_GET_ALPHA_CONTENT_INDEX | ||
329 | Enum 97/0x61 | ||
330 | Description | ||
331 | Retrieve alpha content index | ||
332 | Result[0] | ||
333 | alpha content index, Range 0:15 | ||
334 | |||
335 | ------------------------------------------------------------------------------- | ||
336 | |||
337 | Name CX2341X_OSD_SET_ALPHA_CONTENT_INDEX | ||
338 | Enum 98/0x62 | ||
339 | Description | ||
340 | Assign alpha content index | ||
341 | Param[0] | ||
342 | alpha content index, range 0:15 | ||
diff --git a/Documentation/video4linux/cx2341x/fw-upload.txt b/Documentation/video4linux/cx2341x/fw-upload.txt new file mode 100644 index 000000000000..60c502ce3215 --- /dev/null +++ b/Documentation/video4linux/cx2341x/fw-upload.txt | |||
@@ -0,0 +1,49 @@ | |||
1 | This document describes how to upload the cx2341x firmware to the card. | ||
2 | |||
3 | How to find | ||
4 | =========== | ||
5 | |||
6 | See the web pages of the various projects that uses this chip for information | ||
7 | on how to obtain the firmware. | ||
8 | |||
9 | The firmware stored in a Windows driver can be detected as follows: | ||
10 | |||
11 | - Each firmware image is 256k bytes. | ||
12 | - The 1st 32-bit word of the Encoder image is 0x0000da7 | ||
13 | - The 1st 32-bit word of the Decoder image is 0x00003a7 | ||
14 | - The 2nd 32-bit word of both images is 0xaa55bb66 | ||
15 | |||
16 | How to load | ||
17 | =========== | ||
18 | |||
19 | - Issue the FWapi command to stop the encoder if it is running. Wait for the | ||
20 | command to complete. | ||
21 | - Issue the FWapi command to stop the decoder if it is running. Wait for the | ||
22 | command to complete. | ||
23 | - Issue the I2C command to the digitizer to stop emitting VSYNC events. | ||
24 | - Issue the FWapi command to halt the encoder's firmware. | ||
25 | - Sleep for 10ms. | ||
26 | - Issue the FWapi command to halt the decoder's firmware. | ||
27 | - Sleep for 10ms. | ||
28 | - Write 0x00000000 to register 0x2800 to stop the Video Display Module. | ||
29 | - Write 0x00000005 to register 0x2D00 to stop the AO (audio output?). | ||
30 | - Write 0x00000000 to register 0xA064 to ping? the APU. | ||
31 | - Write 0xFFFFFFFE to register 0x9058 to stop the VPU. | ||
32 | - Write 0xFFFFFFFF to register 0x9054 to reset the HW blocks. | ||
33 | - Write 0x00000001 to register 0x9050 to stop the SPU. | ||
34 | - Sleep for 10ms. | ||
35 | - Write 0x0000001A to register 0x07FC to init the Encoder SDRAM's pre-charge. | ||
36 | - Write 0x80000640 to register 0x07F8 to init the Encoder SDRAM's refresh to 1us. | ||
37 | - Write 0x0000001A to register 0x08FC to init the Decoder SDRAM's pre-charge. | ||
38 | - Write 0x80000640 to register 0x08F8 to init the Decoder SDRAM's refresh to 1us. | ||
39 | - Sleep for 512ms. (600ms is recommended) | ||
40 | - Transfer the encoder's firmware image to offset 0 in Encoder memory space. | ||
41 | - Transfer the decoder's firmware image to offset 0 in Decoder memory space. | ||
42 | - Use a read-modify-write operation to Clear bit 0 of register 0x9050 to | ||
43 | re-enable the SPU. | ||
44 | - Sleep for 1 second. | ||
45 | - Use a read-modify-write operation to Clear bits 3 and 0 of register 0x9058 | ||
46 | to re-enable the VPU. | ||
47 | - Sleep for 1 second. | ||
48 | - Issue status API commands to both firmware images to verify. | ||
49 | |||
diff --git a/Documentation/video4linux/cx88/hauppauge-wintv-cx88-ir.txt b/Documentation/video4linux/cx88/hauppauge-wintv-cx88-ir.txt new file mode 100644 index 000000000000..93fec32a1188 --- /dev/null +++ b/Documentation/video4linux/cx88/hauppauge-wintv-cx88-ir.txt | |||
@@ -0,0 +1,54 @@ | |||
1 | The controls for the mux are GPIO [0,1] for source, and GPIO 2 for muting. | ||
2 | |||
3 | GPIO0 GPIO1 | ||
4 | 0 0 TV Audio | ||
5 | 1 0 FM radio | ||
6 | 0 1 Line-In | ||
7 | 1 1 Mono tuner bypass or CD passthru (tuner specific) | ||
8 | |||
9 | GPIO 16(i believe) is tied to the IR port (if present). | ||
10 | |||
11 | ------------------------------------------------------------------------------------ | ||
12 | |||
13 | >From the data sheet: | ||
14 | Register 24'h20004 PCI Interrupt Status | ||
15 | bit [18] IR_SMP_INT Set when 32 input samples have been collected over | ||
16 | gpio[16] pin into GP_SAMPLE register. | ||
17 | |||
18 | What's missing from the data sheet: | ||
19 | |||
20 | Setup 4KHz sampling rate (roughly 2x oversampled; good enough for our RC5 | ||
21 | compat remote) | ||
22 | set register 0x35C050 to 0xa80a80 | ||
23 | |||
24 | enable sampling | ||
25 | set register 0x35C054 to 0x5 | ||
26 | |||
27 | Of course, enable the IRQ bit 18 in the interrupt mask register .(and | ||
28 | provide for a handler) | ||
29 | |||
30 | GP_SAMPLE register is at 0x35C058 | ||
31 | |||
32 | Bits are then right shifted into the GP_SAMPLE register at the specified | ||
33 | rate; you get an interrupt when a full DWORD is recieved. | ||
34 | You need to recover the actual RC5 bits out of the (oversampled) IR sensor | ||
35 | bits. (Hint: look for the 0/1and 1/0 crossings of the RC5 bi-phase data) An | ||
36 | actual raw RC5 code will span 2-3 DWORDS, depending on the actual alignment. | ||
37 | |||
38 | I'm pretty sure when no IR signal is present the receiver is always in a | ||
39 | marking state(1); but stray light, etc can cause intermittent noise values | ||
40 | as well. Remember, this is a free running sample of the IR receiver state | ||
41 | over time, so don't assume any sample starts at any particular place. | ||
42 | |||
43 | http://www.atmel.com/dyn/resources/prod_documents/doc2817.pdf | ||
44 | This data sheet (google search) seems to have a lovely description of the | ||
45 | RC5 basics | ||
46 | |||
47 | http://users.pandora.be/nenya/electronics/rc5/ and more data | ||
48 | |||
49 | http://www.ee.washington.edu/circuit_archive/text/ir_decode.txt | ||
50 | and even a reference to how to decode a bi-phase data stream. | ||
51 | |||
52 | http://www.xs4all.nl/~sbp/knowledge/ir/rc5.htm | ||
53 | still more info | ||
54 | |||
diff --git a/Documentation/video4linux/et61x251.txt b/Documentation/video4linux/et61x251.txt index 29340282ab5f..cd584f20a997 100644 --- a/Documentation/video4linux/et61x251.txt +++ b/Documentation/video4linux/et61x251.txt | |||
@@ -1,9 +1,9 @@ | |||
1 | 1 | ||
2 | ET61X[12]51 PC Camera Controllers | 2 | ET61X[12]51 PC Camera Controllers |
3 | Driver for Linux | 3 | Driver for Linux |
4 | ================================= | 4 | ================================= |
5 | 5 | ||
6 | - Documentation - | 6 | - Documentation - |
7 | 7 | ||
8 | 8 | ||
9 | Index | 9 | Index |
@@ -156,46 +156,46 @@ Name: video_nr | |||
156 | Type: short array (min = 0, max = 64) | 156 | Type: short array (min = 0, max = 64) |
157 | Syntax: <-1|n[,...]> | 157 | Syntax: <-1|n[,...]> |
158 | Description: Specify V4L2 minor mode number: | 158 | Description: Specify V4L2 minor mode number: |
159 | -1 = use next available | 159 | -1 = use next available |
160 | n = use minor number n | 160 | n = use minor number n |
161 | You can specify up to 64 cameras this way. | 161 | You can specify up to 64 cameras this way. |
162 | For example: | 162 | For example: |
163 | video_nr=-1,2,-1 would assign minor number 2 to the second | 163 | video_nr=-1,2,-1 would assign minor number 2 to the second |
164 | registered camera and use auto for the first one and for every | 164 | registered camera and use auto for the first one and for every |
165 | other camera. | 165 | other camera. |
166 | Default: -1 | 166 | Default: -1 |
167 | ------------------------------------------------------------------------------- | 167 | ------------------------------------------------------------------------------- |
168 | Name: force_munmap | 168 | Name: force_munmap |
169 | Type: bool array (min = 0, max = 64) | 169 | Type: bool array (min = 0, max = 64) |
170 | Syntax: <0|1[,...]> | 170 | Syntax: <0|1[,...]> |
171 | Description: Force the application to unmap previously mapped buffer memory | 171 | Description: Force the application to unmap previously mapped buffer memory |
172 | before calling any VIDIOC_S_CROP or VIDIOC_S_FMT ioctl's. Not | 172 | before calling any VIDIOC_S_CROP or VIDIOC_S_FMT ioctl's. Not |
173 | all the applications support this feature. This parameter is | 173 | all the applications support this feature. This parameter is |
174 | specific for each detected camera. | 174 | specific for each detected camera. |
175 | 0 = do not force memory unmapping | 175 | 0 = do not force memory unmapping |
176 | 1 = force memory unmapping (save memory) | 176 | 1 = force memory unmapping (save memory) |
177 | Default: 0 | 177 | Default: 0 |
178 | ------------------------------------------------------------------------------- | 178 | ------------------------------------------------------------------------------- |
179 | Name: frame_timeout | 179 | Name: frame_timeout |
180 | Type: uint array (min = 0, max = 64) | 180 | Type: uint array (min = 0, max = 64) |
181 | Syntax: <n[,...]> | 181 | Syntax: <n[,...]> |
182 | Description: Timeout for a video frame in seconds. This parameter is | 182 | Description: Timeout for a video frame in seconds. This parameter is |
183 | specific for each detected camera. This parameter can be | 183 | specific for each detected camera. This parameter can be |
184 | changed at runtime thanks to the /sys filesystem interface. | 184 | changed at runtime thanks to the /sys filesystem interface. |
185 | Default: 2 | 185 | Default: 2 |
186 | ------------------------------------------------------------------------------- | 186 | ------------------------------------------------------------------------------- |
187 | Name: debug | 187 | Name: debug |
188 | Type: ushort | 188 | Type: ushort |
189 | Syntax: <n> | 189 | Syntax: <n> |
190 | Description: Debugging information level, from 0 to 3: | 190 | Description: Debugging information level, from 0 to 3: |
191 | 0 = none (use carefully) | 191 | 0 = none (use carefully) |
192 | 1 = critical errors | 192 | 1 = critical errors |
193 | 2 = significant informations | 193 | 2 = significant informations |
194 | 3 = more verbose messages | 194 | 3 = more verbose messages |
195 | Level 3 is useful for testing only, when only one device | 195 | Level 3 is useful for testing only, when only one device |
196 | is used at the same time. It also shows some more informations | 196 | is used at the same time. It also shows some more informations |
197 | about the hardware being detected. This module parameter can be | 197 | about the hardware being detected. This module parameter can be |
198 | changed at runtime thanks to the /sys filesystem interface. | 198 | changed at runtime thanks to the /sys filesystem interface. |
199 | Default: 2 | 199 | Default: 2 |
200 | ------------------------------------------------------------------------------- | 200 | ------------------------------------------------------------------------------- |
201 | 201 | ||
diff --git a/Documentation/video4linux/ibmcam.txt b/Documentation/video4linux/ibmcam.txt index 4a40a2e99451..397a94eb77b8 100644 --- a/Documentation/video4linux/ibmcam.txt +++ b/Documentation/video4linux/ibmcam.txt | |||
@@ -21,7 +21,7 @@ Internal interface: Video For Linux (V4L) | |||
21 | Supported controls: | 21 | Supported controls: |
22 | - by V4L: Contrast, Brightness, Color, Hue | 22 | - by V4L: Contrast, Brightness, Color, Hue |
23 | - by driver options: frame rate, lighting conditions, video format, | 23 | - by driver options: frame rate, lighting conditions, video format, |
24 | default picture settings, sharpness. | 24 | default picture settings, sharpness. |
25 | 25 | ||
26 | SUPPORTED CAMERAS: | 26 | SUPPORTED CAMERAS: |
27 | 27 | ||
@@ -191,66 +191,66 @@ init_model2_sat Integer 0..255 [0x34] init_model2_sat=65 | |||
191 | init_model2_yb Integer 0..255 [0xa0] init_model2_yb=200 | 191 | init_model2_yb Integer 0..255 [0xa0] init_model2_yb=200 |
192 | 192 | ||
193 | debug You don't need this option unless you are a developer. | 193 | debug You don't need this option unless you are a developer. |
194 | If you are a developer then you will see in the code | 194 | If you are a developer then you will see in the code |
195 | what values do what. 0=off. | 195 | what values do what. 0=off. |
196 | 196 | ||
197 | flags This is a bit mask, and you can combine any number of | 197 | flags This is a bit mask, and you can combine any number of |
198 | bits to produce what you want. Usually you don't want | 198 | bits to produce what you want. Usually you don't want |
199 | any of extra features this option provides: | 199 | any of extra features this option provides: |
200 | 200 | ||
201 | FLAGS_RETRY_VIDIOCSYNC 1 This bit allows to retry failed | 201 | FLAGS_RETRY_VIDIOCSYNC 1 This bit allows to retry failed |
202 | VIDIOCSYNC ioctls without failing. | 202 | VIDIOCSYNC ioctls without failing. |
203 | Will work with xawtv, will not | 203 | Will work with xawtv, will not |
204 | with xrealproducer. Default is | 204 | with xrealproducer. Default is |
205 | not set. | 205 | not set. |
206 | FLAGS_MONOCHROME 2 Activates monochrome (b/w) mode. | 206 | FLAGS_MONOCHROME 2 Activates monochrome (b/w) mode. |
207 | FLAGS_DISPLAY_HINTS 4 Shows colored pixels which have | 207 | FLAGS_DISPLAY_HINTS 4 Shows colored pixels which have |
208 | magic meaning to developers. | 208 | magic meaning to developers. |
209 | FLAGS_OVERLAY_STATS 8 Shows tiny numbers on screen, | 209 | FLAGS_OVERLAY_STATS 8 Shows tiny numbers on screen, |
210 | useful only for debugging. | 210 | useful only for debugging. |
211 | FLAGS_FORCE_TESTPATTERN 16 Shows blue screen with numbers. | 211 | FLAGS_FORCE_TESTPATTERN 16 Shows blue screen with numbers. |
212 | FLAGS_SEPARATE_FRAMES 32 Shows each frame separately, as | 212 | FLAGS_SEPARATE_FRAMES 32 Shows each frame separately, as |
213 | it was received from the camera. | 213 | it was received from the camera. |
214 | Default (not set) is to mix the | 214 | Default (not set) is to mix the |
215 | preceding frame in to compensate | 215 | preceding frame in to compensate |
216 | for occasional loss of Isoc data | 216 | for occasional loss of Isoc data |
217 | on high frame rates. | 217 | on high frame rates. |
218 | FLAGS_CLEAN_FRAMES 64 Forces "cleanup" of each frame | 218 | FLAGS_CLEAN_FRAMES 64 Forces "cleanup" of each frame |
219 | prior to use; relevant only if | 219 | prior to use; relevant only if |
220 | FLAGS_SEPARATE_FRAMES is set. | 220 | FLAGS_SEPARATE_FRAMES is set. |
221 | Default is not to clean frames, | 221 | Default is not to clean frames, |
222 | this is a little faster but may | 222 | this is a little faster but may |
223 | produce flicker if frame rate is | 223 | produce flicker if frame rate is |
224 | too high and Isoc data gets lost. | 224 | too high and Isoc data gets lost. |
225 | FLAGS_NO_DECODING 128 This flag turns the video stream | 225 | FLAGS_NO_DECODING 128 This flag turns the video stream |
226 | decoder off, and dumps the raw | 226 | decoder off, and dumps the raw |
227 | Isoc data from the camera into | 227 | Isoc data from the camera into |
228 | the reading process. Useful to | 228 | the reading process. Useful to |
229 | developers, but not to users. | 229 | developers, but not to users. |
230 | 230 | ||
231 | framerate This setting controls frame rate of the camera. This is | 231 | framerate This setting controls frame rate of the camera. This is |
232 | an approximate setting (in terms of "worst" ... "best") | 232 | an approximate setting (in terms of "worst" ... "best") |
233 | because camera changes frame rate depending on amount | 233 | because camera changes frame rate depending on amount |
234 | of light available. Setting 0 is slowest, 6 is fastest. | 234 | of light available. Setting 0 is slowest, 6 is fastest. |
235 | Beware - fast settings are very demanding and may not | 235 | Beware - fast settings are very demanding and may not |
236 | work well with all video sizes. Be conservative. | 236 | work well with all video sizes. Be conservative. |
237 | 237 | ||
238 | hue_correction This highly optional setting allows to adjust the | 238 | hue_correction This highly optional setting allows to adjust the |
239 | hue of the image in a way slightly different from | 239 | hue of the image in a way slightly different from |
240 | what usual "hue" control does. Both controls affect | 240 | what usual "hue" control does. Both controls affect |
241 | YUV colorspace: regular "hue" control adjusts only | 241 | YUV colorspace: regular "hue" control adjusts only |
242 | U component, and this "hue_correction" option similarly | 242 | U component, and this "hue_correction" option similarly |
243 | adjusts only V component. However usually it is enough | 243 | adjusts only V component. However usually it is enough |
244 | to tweak only U or V to compensate for colored light or | 244 | to tweak only U or V to compensate for colored light or |
245 | color temperature; this option simply allows more | 245 | color temperature; this option simply allows more |
246 | complicated correction when and if it is necessary. | 246 | complicated correction when and if it is necessary. |
247 | 247 | ||
248 | init_brightness These settings specify _initial_ values which will be | 248 | init_brightness These settings specify _initial_ values which will be |
249 | init_contrast used to set up the camera. If your V4L application has | 249 | init_contrast used to set up the camera. If your V4L application has |
250 | init_color its own controls to adjust the picture then these | 250 | init_color its own controls to adjust the picture then these |
251 | init_hue controls will be used too. These options allow you to | 251 | init_hue controls will be used too. These options allow you to |
252 | preconfigure the camera when it gets connected, before | 252 | preconfigure the camera when it gets connected, before |
253 | any V4L application connects to it. Good for webcams. | 253 | any V4L application connects to it. Good for webcams. |
254 | 254 | ||
255 | init_model2_rg These initial settings alter color balance of the | 255 | init_model2_rg These initial settings alter color balance of the |
256 | init_model2_rg2 camera on hardware level. All four settings may be used | 256 | init_model2_rg2 camera on hardware level. All four settings may be used |
@@ -258,47 +258,47 @@ init_model2_sat to tune the camera to specific lighting conditions. These | |||
258 | init_model2_yb settings only apply to Model 2 cameras. | 258 | init_model2_yb settings only apply to Model 2 cameras. |
259 | 259 | ||
260 | lighting This option selects one of three hardware-defined | 260 | lighting This option selects one of three hardware-defined |
261 | photosensitivity settings of the camera. 0=bright light, | 261 | photosensitivity settings of the camera. 0=bright light, |
262 | 1=Medium (default), 2=Low light. This setting affects | 262 | 1=Medium (default), 2=Low light. This setting affects |
263 | frame rate: the dimmer the lighting the lower the frame | 263 | frame rate: the dimmer the lighting the lower the frame |
264 | rate (because longer exposition time is needed). The | 264 | rate (because longer exposition time is needed). The |
265 | Model 2 cameras allow values more than 2 for this option, | 265 | Model 2 cameras allow values more than 2 for this option, |
266 | thus enabling extremely high sensitivity at cost of frame | 266 | thus enabling extremely high sensitivity at cost of frame |
267 | rate, color saturation and imaging sensor noise. | 267 | rate, color saturation and imaging sensor noise. |
268 | 268 | ||
269 | sharpness This option controls smoothing (noise reduction) | 269 | sharpness This option controls smoothing (noise reduction) |
270 | made by camera. Setting 0 is most smooth, setting 6 | 270 | made by camera. Setting 0 is most smooth, setting 6 |
271 | is most sharp. Be aware that CMOS sensor used in the | 271 | is most sharp. Be aware that CMOS sensor used in the |
272 | camera is pretty noisy, so if you choose 6 you will | 272 | camera is pretty noisy, so if you choose 6 you will |
273 | be greeted with "snowy" image. Default is 4. Model 2 | 273 | be greeted with "snowy" image. Default is 4. Model 2 |
274 | cameras do not support this feature. | 274 | cameras do not support this feature. |
275 | 275 | ||
276 | size This setting chooses one of several image sizes that are | 276 | size This setting chooses one of several image sizes that are |
277 | supported by this driver. Cameras may support more, but | 277 | supported by this driver. Cameras may support more, but |
278 | it's difficult to reverse-engineer all formats. | 278 | it's difficult to reverse-engineer all formats. |
279 | Following video sizes are supported: | 279 | Following video sizes are supported: |
280 | 280 | ||
281 | size=0 128x96 (Model 1 only) | 281 | size=0 128x96 (Model 1 only) |
282 | size=1 160x120 | 282 | size=1 160x120 |
283 | size=2 176x144 | 283 | size=2 176x144 |
284 | size=3 320x240 (Model 2 only) | 284 | size=3 320x240 (Model 2 only) |
285 | size=4 352x240 (Model 2 only) | 285 | size=4 352x240 (Model 2 only) |
286 | size=5 352x288 | 286 | size=5 352x288 |
287 | size=6 640x480 (Model 3 only) | 287 | size=6 640x480 (Model 3 only) |
288 | 288 | ||
289 | The 352x288 is the native size of the Model 1 sensor | 289 | The 352x288 is the native size of the Model 1 sensor |
290 | array, so it's the best resolution the camera can | 290 | array, so it's the best resolution the camera can |
291 | yield. The best resolution of Model 2 is 176x144, and | 291 | yield. The best resolution of Model 2 is 176x144, and |
292 | larger images are produced by stretching the bitmap. | 292 | larger images are produced by stretching the bitmap. |
293 | Model 3 has sensor with 640x480 grid, and it works too, | 293 | Model 3 has sensor with 640x480 grid, and it works too, |
294 | but the frame rate will be exceptionally low (1-2 FPS); | 294 | but the frame rate will be exceptionally low (1-2 FPS); |
295 | it may be still OK for some applications, like security. | 295 | it may be still OK for some applications, like security. |
296 | Choose the image size you need. The smaller image can | 296 | Choose the image size you need. The smaller image can |
297 | support faster frame rate. Default is 352x288. | 297 | support faster frame rate. Default is 352x288. |
298 | 298 | ||
299 | For more information and the Troubleshooting FAQ visit this URL: | 299 | For more information and the Troubleshooting FAQ visit this URL: |
300 | 300 | ||
301 | http://www.linux-usb.org/ibmcam/ | 301 | http://www.linux-usb.org/ibmcam/ |
302 | 302 | ||
303 | WHAT NEEDS TO BE DONE: | 303 | WHAT NEEDS TO BE DONE: |
304 | 304 | ||
diff --git a/Documentation/video4linux/ov511.txt b/Documentation/video4linux/ov511.txt index 142741e3c578..79af610d4ba5 100644 --- a/Documentation/video4linux/ov511.txt +++ b/Documentation/video4linux/ov511.txt | |||
@@ -81,7 +81,7 @@ MODULE PARAMETERS: | |||
81 | TYPE: integer (Boolean) | 81 | TYPE: integer (Boolean) |
82 | DEFAULT: 1 | 82 | DEFAULT: 1 |
83 | DESC: Brightness is normally under automatic control and can't be set | 83 | DESC: Brightness is normally under automatic control and can't be set |
84 | manually by the video app. Set to 0 for manual control. | 84 | manually by the video app. Set to 0 for manual control. |
85 | 85 | ||
86 | NAME: autogain | 86 | NAME: autogain |
87 | TYPE: integer (Boolean) | 87 | TYPE: integer (Boolean) |
@@ -97,13 +97,13 @@ MODULE PARAMETERS: | |||
97 | TYPE: integer (0-6) | 97 | TYPE: integer (0-6) |
98 | DEFAULT: 3 | 98 | DEFAULT: 3 |
99 | DESC: Sets the threshold for printing debug messages. The higher the value, | 99 | DESC: Sets the threshold for printing debug messages. The higher the value, |
100 | the more is printed. The levels are cumulative, and are as follows: | 100 | the more is printed. The levels are cumulative, and are as follows: |
101 | 0=no debug messages | 101 | 0=no debug messages |
102 | 1=init/detection/unload and other significant messages | 102 | 1=init/detection/unload and other significant messages |
103 | 2=some warning messages | 103 | 2=some warning messages |
104 | 3=config/control function calls | 104 | 3=config/control function calls |
105 | 4=most function calls and data parsing messages | 105 | 4=most function calls and data parsing messages |
106 | 5=highly repetitive mesgs | 106 | 5=highly repetitive mesgs |
107 | 107 | ||
108 | NAME: snapshot | 108 | NAME: snapshot |
109 | TYPE: integer (Boolean) | 109 | TYPE: integer (Boolean) |
@@ -116,24 +116,24 @@ MODULE PARAMETERS: | |||
116 | TYPE: integer (1-4 for OV511, 1-31 for OV511+) | 116 | TYPE: integer (1-4 for OV511, 1-31 for OV511+) |
117 | DEFAULT: 1 | 117 | DEFAULT: 1 |
118 | DESC: Number of cameras allowed to stream simultaneously on a single bus. | 118 | DESC: Number of cameras allowed to stream simultaneously on a single bus. |
119 | Values higher than 1 reduce the data rate of each camera, allowing two | 119 | Values higher than 1 reduce the data rate of each camera, allowing two |
120 | or more to be used at once. If you have a complicated setup involving | 120 | or more to be used at once. If you have a complicated setup involving |
121 | both OV511 and OV511+ cameras, trial-and-error may be necessary for | 121 | both OV511 and OV511+ cameras, trial-and-error may be necessary for |
122 | finding the optimum setting. | 122 | finding the optimum setting. |
123 | 123 | ||
124 | NAME: compress | 124 | NAME: compress |
125 | TYPE: integer (Boolean) | 125 | TYPE: integer (Boolean) |
126 | DEFAULT: 0 | 126 | DEFAULT: 0 |
127 | DESC: Set this to 1 to turn on the camera's compression engine. This can | 127 | DESC: Set this to 1 to turn on the camera's compression engine. This can |
128 | potentially increase the frame rate at the expense of quality, if you | 128 | potentially increase the frame rate at the expense of quality, if you |
129 | have a fast CPU. You must load the proper compression module for your | 129 | have a fast CPU. You must load the proper compression module for your |
130 | camera before starting your application (ov511_decomp or ov518_decomp). | 130 | camera before starting your application (ov511_decomp or ov518_decomp). |
131 | 131 | ||
132 | NAME: testpat | 132 | NAME: testpat |
133 | TYPE: integer (Boolean) | 133 | TYPE: integer (Boolean) |
134 | DEFAULT: 0 | 134 | DEFAULT: 0 |
135 | DESC: This configures the camera's sensor to transmit a colored test-pattern | 135 | DESC: This configures the camera's sensor to transmit a colored test-pattern |
136 | instead of an image. This does not work correctly yet. | 136 | instead of an image. This does not work correctly yet. |
137 | 137 | ||
138 | NAME: dumppix | 138 | NAME: dumppix |
139 | TYPE: integer (0-2) | 139 | TYPE: integer (0-2) |
diff --git a/Documentation/video4linux/sn9c102.txt b/Documentation/video4linux/sn9c102.txt index 142920bc011f..1d20895b4354 100644 --- a/Documentation/video4linux/sn9c102.txt +++ b/Documentation/video4linux/sn9c102.txt | |||
@@ -1,9 +1,9 @@ | |||
1 | 1 | ||
2 | SN9C10x PC Camera Controllers | 2 | SN9C10x PC Camera Controllers |
3 | Driver for Linux | 3 | Driver for Linux |
4 | ============================= | 4 | ============================= |
5 | 5 | ||
6 | - Documentation - | 6 | - Documentation - |
7 | 7 | ||
8 | 8 | ||
9 | Index | 9 | Index |
@@ -176,46 +176,46 @@ Name: video_nr | |||
176 | Type: short array (min = 0, max = 64) | 176 | Type: short array (min = 0, max = 64) |
177 | Syntax: <-1|n[,...]> | 177 | Syntax: <-1|n[,...]> |
178 | Description: Specify V4L2 minor mode number: | 178 | Description: Specify V4L2 minor mode number: |
179 | -1 = use next available | 179 | -1 = use next available |
180 | n = use minor number n | 180 | n = use minor number n |
181 | You can specify up to 64 cameras this way. | 181 | You can specify up to 64 cameras this way. |
182 | For example: | 182 | For example: |
183 | video_nr=-1,2,-1 would assign minor number 2 to the second | 183 | video_nr=-1,2,-1 would assign minor number 2 to the second |
184 | recognized camera and use auto for the first one and for every | 184 | recognized camera and use auto for the first one and for every |
185 | other camera. | 185 | other camera. |
186 | Default: -1 | 186 | Default: -1 |
187 | ------------------------------------------------------------------------------- | 187 | ------------------------------------------------------------------------------- |
188 | Name: force_munmap | 188 | Name: force_munmap |
189 | Type: bool array (min = 0, max = 64) | 189 | Type: bool array (min = 0, max = 64) |
190 | Syntax: <0|1[,...]> | 190 | Syntax: <0|1[,...]> |
191 | Description: Force the application to unmap previously mapped buffer memory | 191 | Description: Force the application to unmap previously mapped buffer memory |
192 | before calling any VIDIOC_S_CROP or VIDIOC_S_FMT ioctl's. Not | 192 | before calling any VIDIOC_S_CROP or VIDIOC_S_FMT ioctl's. Not |
193 | all the applications support this feature. This parameter is | 193 | all the applications support this feature. This parameter is |
194 | specific for each detected camera. | 194 | specific for each detected camera. |
195 | 0 = do not force memory unmapping | 195 | 0 = do not force memory unmapping |
196 | 1 = force memory unmapping (save memory) | 196 | 1 = force memory unmapping (save memory) |
197 | Default: 0 | 197 | Default: 0 |
198 | ------------------------------------------------------------------------------- | 198 | ------------------------------------------------------------------------------- |
199 | Name: frame_timeout | 199 | Name: frame_timeout |
200 | Type: uint array (min = 0, max = 64) | 200 | Type: uint array (min = 0, max = 64) |
201 | Syntax: <n[,...]> | 201 | Syntax: <n[,...]> |
202 | Description: Timeout for a video frame in seconds. This parameter is | 202 | Description: Timeout for a video frame in seconds. This parameter is |
203 | specific for each detected camera. This parameter can be | 203 | specific for each detected camera. This parameter can be |
204 | changed at runtime thanks to the /sys filesystem interface. | 204 | changed at runtime thanks to the /sys filesystem interface. |
205 | Default: 2 | 205 | Default: 2 |
206 | ------------------------------------------------------------------------------- | 206 | ------------------------------------------------------------------------------- |
207 | Name: debug | 207 | Name: debug |
208 | Type: ushort | 208 | Type: ushort |
209 | Syntax: <n> | 209 | Syntax: <n> |
210 | Description: Debugging information level, from 0 to 3: | 210 | Description: Debugging information level, from 0 to 3: |
211 | 0 = none (use carefully) | 211 | 0 = none (use carefully) |
212 | 1 = critical errors | 212 | 1 = critical errors |
213 | 2 = significant informations | 213 | 2 = significant informations |
214 | 3 = more verbose messages | 214 | 3 = more verbose messages |
215 | Level 3 is useful for testing only, when only one device | 215 | Level 3 is useful for testing only, when only one device |
216 | is used. It also shows some more informations about the | 216 | is used. It also shows some more informations about the |
217 | hardware being detected. This parameter can be changed at | 217 | hardware being detected. This parameter can be changed at |
218 | runtime thanks to the /sys filesystem interface. | 218 | runtime thanks to the /sys filesystem interface. |
219 | Default: 2 | 219 | Default: 2 |
220 | ------------------------------------------------------------------------------- | 220 | ------------------------------------------------------------------------------- |
221 | 221 | ||
@@ -280,24 +280,24 @@ Byte # Value Description | |||
280 | 0x04 0xC4 Frame synchronisation pattern. | 280 | 0x04 0xC4 Frame synchronisation pattern. |
281 | 0x05 0x96 Frame synchronisation pattern. | 281 | 0x05 0x96 Frame synchronisation pattern. |
282 | 0x06 0xXX Unknown meaning. The exact value depends on the chip; | 282 | 0x06 0xXX Unknown meaning. The exact value depends on the chip; |
283 | possible values are 0x00, 0x01 and 0x20. | 283 | possible values are 0x00, 0x01 and 0x20. |
284 | 0x07 0xXX Variable value, whose bits are ff00uzzc, where ff is a | 284 | 0x07 0xXX Variable value, whose bits are ff00uzzc, where ff is a |
285 | frame counter, u is unknown, zz is a size indicator | 285 | frame counter, u is unknown, zz is a size indicator |
286 | (00 = VGA, 01 = SIF, 10 = QSIF) and c stands for | 286 | (00 = VGA, 01 = SIF, 10 = QSIF) and c stands for |
287 | "compression enabled" (1 = yes, 0 = no). | 287 | "compression enabled" (1 = yes, 0 = no). |
288 | 0x08 0xXX Brightness sum inside Auto-Exposure area (low-byte). | 288 | 0x08 0xXX Brightness sum inside Auto-Exposure area (low-byte). |
289 | 0x09 0xXX Brightness sum inside Auto-Exposure area (high-byte). | 289 | 0x09 0xXX Brightness sum inside Auto-Exposure area (high-byte). |
290 | For a pure white image, this number will be equal to 500 | 290 | For a pure white image, this number will be equal to 500 |
291 | times the area of the specified AE area. For images | 291 | times the area of the specified AE area. For images |
292 | that are not pure white, the value scales down according | 292 | that are not pure white, the value scales down according |
293 | to relative whiteness. | 293 | to relative whiteness. |
294 | 0x0A 0xXX Brightness sum outside Auto-Exposure area (low-byte). | 294 | 0x0A 0xXX Brightness sum outside Auto-Exposure area (low-byte). |
295 | 0x0B 0xXX Brightness sum outside Auto-Exposure area (high-byte). | 295 | 0x0B 0xXX Brightness sum outside Auto-Exposure area (high-byte). |
296 | For a pure white image, this number will be equal to 125 | 296 | For a pure white image, this number will be equal to 125 |
297 | times the area outside of the specified AE area. For | 297 | times the area outside of the specified AE area. For |
298 | images that are not pure white, the value scales down | 298 | images that are not pure white, the value scales down |
299 | according to relative whiteness. | 299 | according to relative whiteness. |
300 | according to relative whiteness. | 300 | according to relative whiteness. |
301 | 301 | ||
302 | The following bytes are used by the SN9C103 bridge only: | 302 | The following bytes are used by the SN9C103 bridge only: |
303 | 303 | ||
diff --git a/Documentation/video4linux/v4lgrab.c b/Documentation/video4linux/v4lgrab.c new file mode 100644 index 000000000000..079b628481cf --- /dev/null +++ b/Documentation/video4linux/v4lgrab.c | |||
@@ -0,0 +1,192 @@ | |||
1 | /* Simple Video4Linux image grabber. */ | ||
2 | /* | ||
3 | * Video4Linux Driver Test/Example Framegrabbing Program | ||
4 | * | ||
5 | * Compile with: | ||
6 | * gcc -s -Wall -Wstrict-prototypes v4lgrab.c -o v4lgrab | ||
7 | * Use as: | ||
8 | * v4lgrab >image.ppm | ||
9 | * | ||
10 | * Copyright (C) 1998-05-03, Phil Blundell <philb@gnu.org> | ||
11 | * Copied from http://www.tazenda.demon.co.uk/phil/vgrabber.c | ||
12 | * with minor modifications (Dave Forrest, drf5n@virginia.edu). | ||
13 | * | ||
14 | */ | ||
15 | |||
16 | #include <unistd.h> | ||
17 | #include <sys/types.h> | ||
18 | #include <sys/stat.h> | ||
19 | #include <fcntl.h> | ||
20 | #include <stdio.h> | ||
21 | #include <sys/ioctl.h> | ||
22 | #include <stdlib.h> | ||
23 | |||
24 | #include <linux/types.h> | ||
25 | #include <linux/videodev.h> | ||
26 | |||
27 | #define FILE "/dev/video0" | ||
28 | |||
29 | /* Stole this from tvset.c */ | ||
30 | |||
31 | #define READ_VIDEO_PIXEL(buf, format, depth, r, g, b) \ | ||
32 | { \ | ||
33 | switch (format) \ | ||
34 | { \ | ||
35 | case VIDEO_PALETTE_GREY: \ | ||
36 | switch (depth) \ | ||
37 | { \ | ||
38 | case 4: \ | ||
39 | case 6: \ | ||
40 | case 8: \ | ||
41 | (r) = (g) = (b) = (*buf++ << 8);\ | ||
42 | break; \ | ||
43 | \ | ||
44 | case 16: \ | ||
45 | (r) = (g) = (b) = \ | ||
46 | *((unsigned short *) buf); \ | ||
47 | buf += 2; \ | ||
48 | break; \ | ||
49 | } \ | ||
50 | break; \ | ||
51 | \ | ||
52 | \ | ||
53 | case VIDEO_PALETTE_RGB565: \ | ||
54 | { \ | ||
55 | unsigned short tmp = *(unsigned short *)buf; \ | ||
56 | (r) = tmp&0xF800; \ | ||
57 | (g) = (tmp<<5)&0xFC00; \ | ||
58 | (b) = (tmp<<11)&0xF800; \ | ||
59 | buf += 2; \ | ||
60 | } \ | ||
61 | break; \ | ||
62 | \ | ||
63 | case VIDEO_PALETTE_RGB555: \ | ||
64 | (r) = (buf[0]&0xF8)<<8; \ | ||
65 | (g) = ((buf[0] << 5 | buf[1] >> 3)&0xF8)<<8; \ | ||
66 | (b) = ((buf[1] << 2 ) & 0xF8)<<8; \ | ||
67 | buf += 2; \ | ||
68 | break; \ | ||
69 | \ | ||
70 | case VIDEO_PALETTE_RGB24: \ | ||
71 | (r) = buf[0] << 8; (g) = buf[1] << 8; \ | ||
72 | (b) = buf[2] << 8; \ | ||
73 | buf += 3; \ | ||
74 | break; \ | ||
75 | \ | ||
76 | default: \ | ||
77 | fprintf(stderr, \ | ||
78 | "Format %d not yet supported\n", \ | ||
79 | format); \ | ||
80 | } \ | ||
81 | } | ||
82 | |||
83 | int get_brightness_adj(unsigned char *image, long size, int *brightness) { | ||
84 | long i, tot = 0; | ||
85 | for (i=0;i<size*3;i++) | ||
86 | tot += image[i]; | ||
87 | *brightness = (128 - tot/(size*3))/3; | ||
88 | return !((tot/(size*3)) >= 126 && (tot/(size*3)) <= 130); | ||
89 | } | ||
90 | |||
91 | int main(int argc, char ** argv) | ||
92 | { | ||
93 | int fd = open(FILE, O_RDONLY), f; | ||
94 | struct video_capability cap; | ||
95 | struct video_window win; | ||
96 | struct video_picture vpic; | ||
97 | |||
98 | unsigned char *buffer, *src; | ||
99 | int bpp = 24, r, g, b; | ||
100 | unsigned int i, src_depth; | ||
101 | |||
102 | if (fd < 0) { | ||
103 | perror(FILE); | ||
104 | exit(1); | ||
105 | } | ||
106 | |||
107 | if (ioctl(fd, VIDIOCGCAP, &cap) < 0) { | ||
108 | perror("VIDIOGCAP"); | ||
109 | fprintf(stderr, "(" FILE " not a video4linux device?)\n"); | ||
110 | close(fd); | ||
111 | exit(1); | ||
112 | } | ||
113 | |||
114 | if (ioctl(fd, VIDIOCGWIN, &win) < 0) { | ||
115 | perror("VIDIOCGWIN"); | ||
116 | close(fd); | ||
117 | exit(1); | ||
118 | } | ||
119 | |||
120 | if (ioctl(fd, VIDIOCGPICT, &vpic) < 0) { | ||
121 | perror("VIDIOCGPICT"); | ||
122 | close(fd); | ||
123 | exit(1); | ||
124 | } | ||
125 | |||
126 | if (cap.type & VID_TYPE_MONOCHROME) { | ||
127 | vpic.depth=8; | ||
128 | vpic.palette=VIDEO_PALETTE_GREY; /* 8bit grey */ | ||
129 | if(ioctl(fd, VIDIOCSPICT, &vpic) < 0) { | ||
130 | vpic.depth=6; | ||
131 | if(ioctl(fd, VIDIOCSPICT, &vpic) < 0) { | ||
132 | vpic.depth=4; | ||
133 | if(ioctl(fd, VIDIOCSPICT, &vpic) < 0) { | ||
134 | fprintf(stderr, "Unable to find a supported capture format.\n"); | ||
135 | close(fd); | ||
136 | exit(1); | ||
137 | } | ||
138 | } | ||
139 | } | ||
140 | } else { | ||
141 | vpic.depth=24; | ||
142 | vpic.palette=VIDEO_PALETTE_RGB24; | ||
143 | |||
144 | if(ioctl(fd, VIDIOCSPICT, &vpic) < 0) { | ||
145 | vpic.palette=VIDEO_PALETTE_RGB565; | ||
146 | vpic.depth=16; | ||
147 | |||
148 | if(ioctl(fd, VIDIOCSPICT, &vpic)==-1) { | ||
149 | vpic.palette=VIDEO_PALETTE_RGB555; | ||
150 | vpic.depth=15; | ||
151 | |||
152 | if(ioctl(fd, VIDIOCSPICT, &vpic)==-1) { | ||
153 | fprintf(stderr, "Unable to find a supported capture format.\n"); | ||
154 | return -1; | ||
155 | } | ||
156 | } | ||
157 | } | ||
158 | } | ||
159 | |||
160 | buffer = malloc(win.width * win.height * bpp); | ||
161 | if (!buffer) { | ||
162 | fprintf(stderr, "Out of memory.\n"); | ||
163 | exit(1); | ||
164 | } | ||
165 | |||
166 | do { | ||
167 | int newbright; | ||
168 | read(fd, buffer, win.width * win.height * bpp); | ||
169 | f = get_brightness_adj(buffer, win.width * win.height, &newbright); | ||
170 | if (f) { | ||
171 | vpic.brightness += (newbright << 8); | ||
172 | if(ioctl(fd, VIDIOCSPICT, &vpic)==-1) { | ||
173 | perror("VIDIOSPICT"); | ||
174 | break; | ||
175 | } | ||
176 | } | ||
177 | } while (f); | ||
178 | |||
179 | fprintf(stdout, "P6\n%d %d 255\n", win.width, win.height); | ||
180 | |||
181 | src = buffer; | ||
182 | |||
183 | for (i = 0; i < win.width * win.height; i++) { | ||
184 | READ_VIDEO_PIXEL(src, vpic.palette, src_depth, r, g, b); | ||
185 | fputc(r>>8, stdout); | ||
186 | fputc(g>>8, stdout); | ||
187 | fputc(b>>8, stdout); | ||
188 | } | ||
189 | |||
190 | close(fd); | ||
191 | return 0; | ||
192 | } | ||
diff --git a/Documentation/video4linux/w9968cf.txt b/Documentation/video4linux/w9968cf.txt index 3b704f2aae6d..0d53ce774b01 100644 --- a/Documentation/video4linux/w9968cf.txt +++ b/Documentation/video4linux/w9968cf.txt | |||
@@ -1,9 +1,9 @@ | |||
1 | 1 | ||
2 | W996[87]CF JPEG USB Dual Mode Camera Chip | 2 | W996[87]CF JPEG USB Dual Mode Camera Chip |
3 | Driver for Linux 2.6 (basic version) | 3 | Driver for Linux 2.6 (basic version) |
4 | ========================================= | 4 | ========================================= |
5 | 5 | ||
6 | - Documentation - | 6 | - Documentation - |
7 | 7 | ||
8 | 8 | ||
9 | Index | 9 | Index |
@@ -188,57 +188,57 @@ Name: ovmod_load | |||
188 | Type: bool | 188 | Type: bool |
189 | Syntax: <0|1> | 189 | Syntax: <0|1> |
190 | Description: Automatic 'ovcamchip' module loading: 0 disabled, 1 enabled. | 190 | Description: Automatic 'ovcamchip' module loading: 0 disabled, 1 enabled. |
191 | If enabled, 'insmod' searches for the required 'ovcamchip' | 191 | If enabled, 'insmod' searches for the required 'ovcamchip' |
192 | module in the system, according to its configuration, and | 192 | module in the system, according to its configuration, and |
193 | loads that module automatically. This action is performed as | 193 | loads that module automatically. This action is performed as |
194 | once soon as the 'w9968cf' module is loaded into memory. | 194 | once soon as the 'w9968cf' module is loaded into memory. |
195 | Default: 1 | 195 | Default: 1 |
196 | Note: The kernel must be compiled with the CONFIG_KMOD option | 196 | Note: The kernel must be compiled with the CONFIG_KMOD option |
197 | enabled for the 'ovcamchip' module to be loaded and for | 197 | enabled for the 'ovcamchip' module to be loaded and for |
198 | this parameter to be present. | 198 | this parameter to be present. |
199 | ------------------------------------------------------------------------------- | 199 | ------------------------------------------------------------------------------- |
200 | Name: simcams | 200 | Name: simcams |
201 | Type: int | 201 | Type: int |
202 | Syntax: <n> | 202 | Syntax: <n> |
203 | Description: Number of cameras allowed to stream simultaneously. | 203 | Description: Number of cameras allowed to stream simultaneously. |
204 | n may vary from 0 to 32. | 204 | n may vary from 0 to 32. |
205 | Default: 32 | 205 | Default: 32 |
206 | ------------------------------------------------------------------------------- | 206 | ------------------------------------------------------------------------------- |
207 | Name: video_nr | 207 | Name: video_nr |
208 | Type: int array (min = 0, max = 32) | 208 | Type: int array (min = 0, max = 32) |
209 | Syntax: <-1|n[,...]> | 209 | Syntax: <-1|n[,...]> |
210 | Description: Specify V4L minor mode number. | 210 | Description: Specify V4L minor mode number. |
211 | -1 = use next available | 211 | -1 = use next available |
212 | n = use minor number n | 212 | n = use minor number n |
213 | You can specify up to 32 cameras this way. | 213 | You can specify up to 32 cameras this way. |
214 | For example: | 214 | For example: |
215 | video_nr=-1,2,-1 would assign minor number 2 to the second | 215 | video_nr=-1,2,-1 would assign minor number 2 to the second |
216 | recognized camera and use auto for the first one and for every | 216 | recognized camera and use auto for the first one and for every |
217 | other camera. | 217 | other camera. |
218 | Default: -1 | 218 | Default: -1 |
219 | ------------------------------------------------------------------------------- | 219 | ------------------------------------------------------------------------------- |
220 | Name: packet_size | 220 | Name: packet_size |
221 | Type: int array (min = 0, max = 32) | 221 | Type: int array (min = 0, max = 32) |
222 | Syntax: <n[,...]> | 222 | Syntax: <n[,...]> |
223 | Description: Specify the maximum data payload size in bytes for alternate | 223 | Description: Specify the maximum data payload size in bytes for alternate |
224 | settings, for each device. n is scaled between 63 and 1023. | 224 | settings, for each device. n is scaled between 63 and 1023. |
225 | Default: 1023 | 225 | Default: 1023 |
226 | ------------------------------------------------------------------------------- | 226 | ------------------------------------------------------------------------------- |
227 | Name: max_buffers | 227 | Name: max_buffers |
228 | Type: int array (min = 0, max = 32) | 228 | Type: int array (min = 0, max = 32) |
229 | Syntax: <n[,...]> | 229 | Syntax: <n[,...]> |
230 | Description: For advanced users. | 230 | Description: For advanced users. |
231 | Specify the maximum number of video frame buffers to allocate | 231 | Specify the maximum number of video frame buffers to allocate |
232 | for each device, from 2 to 32. | 232 | for each device, from 2 to 32. |
233 | Default: 2 | 233 | Default: 2 |
234 | ------------------------------------------------------------------------------- | 234 | ------------------------------------------------------------------------------- |
235 | Name: double_buffer | 235 | Name: double_buffer |
236 | Type: bool array (min = 0, max = 32) | 236 | Type: bool array (min = 0, max = 32) |
237 | Syntax: <0|1[,...]> | 237 | Syntax: <0|1[,...]> |
238 | Description: Hardware double buffering: 0 disabled, 1 enabled. | 238 | Description: Hardware double buffering: 0 disabled, 1 enabled. |
239 | It should be enabled if you want smooth video output: if you | 239 | It should be enabled if you want smooth video output: if you |
240 | obtain out of sync. video, disable it, or try to | 240 | obtain out of sync. video, disable it, or try to |
241 | decrease the 'clockdiv' module parameter value. | 241 | decrease the 'clockdiv' module parameter value. |
242 | Default: 1 for every device. | 242 | Default: 1 for every device. |
243 | ------------------------------------------------------------------------------- | 243 | ------------------------------------------------------------------------------- |
244 | Name: clamping | 244 | Name: clamping |
@@ -251,9 +251,9 @@ Name: filter_type | |||
251 | Type: int array (min = 0, max = 32) | 251 | Type: int array (min = 0, max = 32) |
252 | Syntax: <0|1|2[,...]> | 252 | Syntax: <0|1|2[,...]> |
253 | Description: Video filter type. | 253 | Description: Video filter type. |
254 | 0 none, 1 (1-2-1) 3-tap filter, 2 (2-3-6-3-2) 5-tap filter. | 254 | 0 none, 1 (1-2-1) 3-tap filter, 2 (2-3-6-3-2) 5-tap filter. |
255 | The filter is used to reduce noise and aliasing artifacts | 255 | The filter is used to reduce noise and aliasing artifacts |
256 | produced by the CCD or CMOS image sensor. | 256 | produced by the CCD or CMOS image sensor. |
257 | Default: 0 for every device. | 257 | Default: 0 for every device. |
258 | ------------------------------------------------------------------------------- | 258 | ------------------------------------------------------------------------------- |
259 | Name: largeview | 259 | Name: largeview |
@@ -266,9 +266,9 @@ Name: upscaling | |||
266 | Type: bool array (min = 0, max = 32) | 266 | Type: bool array (min = 0, max = 32) |
267 | Syntax: <0|1[,...]> | 267 | Syntax: <0|1[,...]> |
268 | Description: Software scaling (for non-compressed video only): | 268 | Description: Software scaling (for non-compressed video only): |
269 | 0 disabled, 1 enabled. | 269 | 0 disabled, 1 enabled. |
270 | Disable it if you have a slow CPU or you don't have enough | 270 | Disable it if you have a slow CPU or you don't have enough |
271 | memory. | 271 | memory. |
272 | Default: 0 for every device. | 272 | Default: 0 for every device. |
273 | Note: If 'w9968cf-vpp' is not present, this parameter is set to 0. | 273 | Note: If 'w9968cf-vpp' is not present, this parameter is set to 0. |
274 | ------------------------------------------------------------------------------- | 274 | ------------------------------------------------------------------------------- |
@@ -276,36 +276,36 @@ Name: decompression | |||
276 | Type: int array (min = 0, max = 32) | 276 | Type: int array (min = 0, max = 32) |
277 | Syntax: <0|1|2[,...]> | 277 | Syntax: <0|1|2[,...]> |
278 | Description: Software video decompression: | 278 | Description: Software video decompression: |
279 | 0 = disables decompression | 279 | 0 = disables decompression |
280 | (doesn't allow formats needing decompression). | 280 | (doesn't allow formats needing decompression). |
281 | 1 = forces decompression | 281 | 1 = forces decompression |
282 | (allows formats needing decompression only). | 282 | (allows formats needing decompression only). |
283 | 2 = allows any permitted formats. | 283 | 2 = allows any permitted formats. |
284 | Formats supporting (de)compressed video are YUV422P and | 284 | Formats supporting (de)compressed video are YUV422P and |
285 | YUV420P/YUV420 in any resolutions where width and height are | 285 | YUV420P/YUV420 in any resolutions where width and height are |
286 | multiples of 16. | 286 | multiples of 16. |
287 | Default: 2 for every device. | 287 | Default: 2 for every device. |
288 | Note: If 'w9968cf-vpp' is not present, forcing decompression is not | 288 | Note: If 'w9968cf-vpp' is not present, forcing decompression is not |
289 | allowed; in this case this parameter is set to 2. | 289 | allowed; in this case this parameter is set to 2. |
290 | ------------------------------------------------------------------------------- | 290 | ------------------------------------------------------------------------------- |
291 | Name: force_palette | 291 | Name: force_palette |
292 | Type: int array (min = 0, max = 32) | 292 | Type: int array (min = 0, max = 32) |
293 | Syntax: <0|9|10|13|15|8|7|1|6|3|4|5[,...]> | 293 | Syntax: <0|9|10|13|15|8|7|1|6|3|4|5[,...]> |
294 | Description: Force picture palette. | 294 | Description: Force picture palette. |
295 | In order: | 295 | In order: |
296 | 0 = Off - allows any of the following formats: | 296 | 0 = Off - allows any of the following formats: |
297 | 9 = UYVY 16 bpp - Original video, compression disabled | 297 | 9 = UYVY 16 bpp - Original video, compression disabled |
298 | 10 = YUV420 12 bpp - Original video, compression enabled | 298 | 10 = YUV420 12 bpp - Original video, compression enabled |
299 | 13 = YUV422P 16 bpp - Original video, compression enabled | 299 | 13 = YUV422P 16 bpp - Original video, compression enabled |
300 | 15 = YUV420P 12 bpp - Original video, compression enabled | 300 | 15 = YUV420P 12 bpp - Original video, compression enabled |
301 | 8 = YUVY 16 bpp - Software conversion from UYVY | 301 | 8 = YUVY 16 bpp - Software conversion from UYVY |
302 | 7 = YUV422 16 bpp - Software conversion from UYVY | 302 | 7 = YUV422 16 bpp - Software conversion from UYVY |
303 | 1 = GREY 8 bpp - Software conversion from UYVY | 303 | 1 = GREY 8 bpp - Software conversion from UYVY |
304 | 6 = RGB555 16 bpp - Software conversion from UYVY | 304 | 6 = RGB555 16 bpp - Software conversion from UYVY |
305 | 3 = RGB565 16 bpp - Software conversion from UYVY | 305 | 3 = RGB565 16 bpp - Software conversion from UYVY |
306 | 4 = RGB24 24 bpp - Software conversion from UYVY | 306 | 4 = RGB24 24 bpp - Software conversion from UYVY |
307 | 5 = RGB32 32 bpp - Software conversion from UYVY | 307 | 5 = RGB32 32 bpp - Software conversion from UYVY |
308 | When not 0, this parameter will override 'decompression'. | 308 | When not 0, this parameter will override 'decompression'. |
309 | Default: 0 for every device. Initial palette is 9 (UYVY). | 309 | Default: 0 for every device. Initial palette is 9 (UYVY). |
310 | Note: If 'w9968cf-vpp' is not present, this parameter is set to 9. | 310 | Note: If 'w9968cf-vpp' is not present, this parameter is set to 9. |
311 | ------------------------------------------------------------------------------- | 311 | ------------------------------------------------------------------------------- |
@@ -313,77 +313,77 @@ Name: force_rgb | |||
313 | Type: bool array (min = 0, max = 32) | 313 | Type: bool array (min = 0, max = 32) |
314 | Syntax: <0|1[,...]> | 314 | Syntax: <0|1[,...]> |
315 | Description: Read RGB video data instead of BGR: | 315 | Description: Read RGB video data instead of BGR: |
316 | 1 = use RGB component ordering. | 316 | 1 = use RGB component ordering. |
317 | 0 = use BGR component ordering. | 317 | 0 = use BGR component ordering. |
318 | This parameter has effect when using RGBX palettes only. | 318 | This parameter has effect when using RGBX palettes only. |
319 | Default: 0 for every device. | 319 | Default: 0 for every device. |
320 | ------------------------------------------------------------------------------- | 320 | ------------------------------------------------------------------------------- |
321 | Name: autobright | 321 | Name: autobright |
322 | Type: bool array (min = 0, max = 32) | 322 | Type: bool array (min = 0, max = 32) |
323 | Syntax: <0|1[,...]> | 323 | Syntax: <0|1[,...]> |
324 | Description: Image sensor automatically changes brightness: | 324 | Description: Image sensor automatically changes brightness: |
325 | 0 = no, 1 = yes | 325 | 0 = no, 1 = yes |
326 | Default: 0 for every device. | 326 | Default: 0 for every device. |
327 | ------------------------------------------------------------------------------- | 327 | ------------------------------------------------------------------------------- |
328 | Name: autoexp | 328 | Name: autoexp |
329 | Type: bool array (min = 0, max = 32) | 329 | Type: bool array (min = 0, max = 32) |
330 | Syntax: <0|1[,...]> | 330 | Syntax: <0|1[,...]> |
331 | Description: Image sensor automatically changes exposure: | 331 | Description: Image sensor automatically changes exposure: |
332 | 0 = no, 1 = yes | 332 | 0 = no, 1 = yes |
333 | Default: 1 for every device. | 333 | Default: 1 for every device. |
334 | ------------------------------------------------------------------------------- | 334 | ------------------------------------------------------------------------------- |
335 | Name: lightfreq | 335 | Name: lightfreq |
336 | Type: int array (min = 0, max = 32) | 336 | Type: int array (min = 0, max = 32) |
337 | Syntax: <50|60[,...]> | 337 | Syntax: <50|60[,...]> |
338 | Description: Light frequency in Hz: | 338 | Description: Light frequency in Hz: |
339 | 50 for European and Asian lighting, 60 for American lighting. | 339 | 50 for European and Asian lighting, 60 for American lighting. |
340 | Default: 50 for every device. | 340 | Default: 50 for every device. |
341 | ------------------------------------------------------------------------------- | 341 | ------------------------------------------------------------------------------- |
342 | Name: bandingfilter | 342 | Name: bandingfilter |
343 | Type: bool array (min = 0, max = 32) | 343 | Type: bool array (min = 0, max = 32) |
344 | Syntax: <0|1[,...]> | 344 | Syntax: <0|1[,...]> |
345 | Description: Banding filter to reduce effects of fluorescent | 345 | Description: Banding filter to reduce effects of fluorescent |
346 | lighting: | 346 | lighting: |
347 | 0 disabled, 1 enabled. | 347 | 0 disabled, 1 enabled. |
348 | This filter tries to reduce the pattern of horizontal | 348 | This filter tries to reduce the pattern of horizontal |
349 | light/dark bands caused by some (usually fluorescent) lighting. | 349 | light/dark bands caused by some (usually fluorescent) lighting. |
350 | Default: 0 for every device. | 350 | Default: 0 for every device. |
351 | ------------------------------------------------------------------------------- | 351 | ------------------------------------------------------------------------------- |
352 | Name: clockdiv | 352 | Name: clockdiv |
353 | Type: int array (min = 0, max = 32) | 353 | Type: int array (min = 0, max = 32) |
354 | Syntax: <-1|n[,...]> | 354 | Syntax: <-1|n[,...]> |
355 | Description: Force pixel clock divisor to a specific value (for experts): | 355 | Description: Force pixel clock divisor to a specific value (for experts): |
356 | n may vary from 0 to 127. | 356 | n may vary from 0 to 127. |
357 | -1 for automatic value. | 357 | -1 for automatic value. |
358 | See also the 'double_buffer' module parameter. | 358 | See also the 'double_buffer' module parameter. |
359 | Default: -1 for every device. | 359 | Default: -1 for every device. |
360 | ------------------------------------------------------------------------------- | 360 | ------------------------------------------------------------------------------- |
361 | Name: backlight | 361 | Name: backlight |
362 | Type: bool array (min = 0, max = 32) | 362 | Type: bool array (min = 0, max = 32) |
363 | Syntax: <0|1[,...]> | 363 | Syntax: <0|1[,...]> |
364 | Description: Objects are lit from behind: | 364 | Description: Objects are lit from behind: |
365 | 0 = no, 1 = yes | 365 | 0 = no, 1 = yes |
366 | Default: 0 for every device. | 366 | Default: 0 for every device. |
367 | ------------------------------------------------------------------------------- | 367 | ------------------------------------------------------------------------------- |
368 | Name: mirror | 368 | Name: mirror |
369 | Type: bool array (min = 0, max = 32) | 369 | Type: bool array (min = 0, max = 32) |
370 | Syntax: <0|1[,...]> | 370 | Syntax: <0|1[,...]> |
371 | Description: Reverse image horizontally: | 371 | Description: Reverse image horizontally: |
372 | 0 = no, 1 = yes | 372 | 0 = no, 1 = yes |
373 | Default: 0 for every device. | 373 | Default: 0 for every device. |
374 | ------------------------------------------------------------------------------- | 374 | ------------------------------------------------------------------------------- |
375 | Name: monochrome | 375 | Name: monochrome |
376 | Type: bool array (min = 0, max = 32) | 376 | Type: bool array (min = 0, max = 32) |
377 | Syntax: <0|1[,...]> | 377 | Syntax: <0|1[,...]> |
378 | Description: The image sensor is monochrome: | 378 | Description: The image sensor is monochrome: |
379 | 0 = no, 1 = yes | 379 | 0 = no, 1 = yes |
380 | Default: 0 for every device. | 380 | Default: 0 for every device. |
381 | ------------------------------------------------------------------------------- | 381 | ------------------------------------------------------------------------------- |
382 | Name: brightness | 382 | Name: brightness |
383 | Type: long array (min = 0, max = 32) | 383 | Type: long array (min = 0, max = 32) |
384 | Syntax: <n[,...]> | 384 | Syntax: <n[,...]> |
385 | Description: Set picture brightness (0-65535). | 385 | Description: Set picture brightness (0-65535). |
386 | This parameter has no effect if 'autobright' is enabled. | 386 | This parameter has no effect if 'autobright' is enabled. |
387 | Default: 31000 for every device. | 387 | Default: 31000 for every device. |
388 | ------------------------------------------------------------------------------- | 388 | ------------------------------------------------------------------------------- |
389 | Name: hue | 389 | Name: hue |
@@ -414,23 +414,23 @@ Name: debug | |||
414 | Type: int | 414 | Type: int |
415 | Syntax: <n> | 415 | Syntax: <n> |
416 | Description: Debugging information level, from 0 to 6: | 416 | Description: Debugging information level, from 0 to 6: |
417 | 0 = none (use carefully) | 417 | 0 = none (use carefully) |
418 | 1 = critical errors | 418 | 1 = critical errors |
419 | 2 = significant informations | 419 | 2 = significant informations |
420 | 3 = configuration or general messages | 420 | 3 = configuration or general messages |
421 | 4 = warnings | 421 | 4 = warnings |
422 | 5 = called functions | 422 | 5 = called functions |
423 | 6 = function internals | 423 | 6 = function internals |
424 | Level 5 and 6 are useful for testing only, when only one | 424 | Level 5 and 6 are useful for testing only, when only one |
425 | device is used. | 425 | device is used. |
426 | Default: 2 | 426 | Default: 2 |
427 | ------------------------------------------------------------------------------- | 427 | ------------------------------------------------------------------------------- |
428 | Name: specific_debug | 428 | Name: specific_debug |
429 | Type: bool | 429 | Type: bool |
430 | Syntax: <0|1> | 430 | Syntax: <0|1> |
431 | Description: Enable or disable specific debugging messages: | 431 | Description: Enable or disable specific debugging messages: |
432 | 0 = print messages concerning every level <= 'debug' level. | 432 | 0 = print messages concerning every level <= 'debug' level. |
433 | 1 = print messages concerning the level indicated by 'debug'. | 433 | 1 = print messages concerning the level indicated by 'debug'. |
434 | Default: 0 | 434 | Default: 0 |
435 | ------------------------------------------------------------------------------- | 435 | ------------------------------------------------------------------------------- |
436 | 436 | ||
diff --git a/Documentation/video4linux/zc0301.txt b/Documentation/video4linux/zc0301.txt index f55262c6733b..f406f5e80046 100644 --- a/Documentation/video4linux/zc0301.txt +++ b/Documentation/video4linux/zc0301.txt | |||
@@ -1,9 +1,9 @@ | |||
1 | 1 | ||
2 | ZC0301 Image Processor and Control Chip | 2 | ZC0301 and ZC0301P Image Processor and Control Chip |
3 | Driver for Linux | 3 | Driver for Linux |
4 | ======================================= | 4 | =================================================== |
5 | 5 | ||
6 | - Documentation - | 6 | - Documentation - |
7 | 7 | ||
8 | 8 | ||
9 | Index | 9 | Index |
@@ -51,13 +51,13 @@ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | |||
51 | 51 | ||
52 | 4. Overview and features | 52 | 4. Overview and features |
53 | ======================== | 53 | ======================== |
54 | This driver supports the video interface of the devices mounting the ZC0301 | 54 | This driver supports the video interface of the devices mounting the ZC0301 or |
55 | Image Processor and Control Chip. | 55 | ZC0301P Image Processors and Control Chips. |
56 | 56 | ||
57 | The driver relies on the Video4Linux2 and USB core modules. It has been | 57 | The driver relies on the Video4Linux2 and USB core modules. It has been |
58 | designed to run properly on SMP systems as well. | 58 | designed to run properly on SMP systems as well. |
59 | 59 | ||
60 | The latest version of the ZC0301 driver can be found at the following URL: | 60 | The latest version of the ZC0301[P] driver can be found at the following URL: |
61 | http://www.linux-projects.org/ | 61 | http://www.linux-projects.org/ |
62 | 62 | ||
63 | Some of the features of the driver are: | 63 | Some of the features of the driver are: |
@@ -117,7 +117,7 @@ supported by the USB Audio driver thanks to the ALSA API: | |||
117 | 117 | ||
118 | And finally: | 118 | And finally: |
119 | 119 | ||
120 | # USB Multimedia devices | 120 | # V4L USB devices |
121 | # | 121 | # |
122 | CONFIG_USB_ZC0301=m | 122 | CONFIG_USB_ZC0301=m |
123 | 123 | ||
@@ -146,46 +146,46 @@ Name: video_nr | |||
146 | Type: short array (min = 0, max = 64) | 146 | Type: short array (min = 0, max = 64) |
147 | Syntax: <-1|n[,...]> | 147 | Syntax: <-1|n[,...]> |
148 | Description: Specify V4L2 minor mode number: | 148 | Description: Specify V4L2 minor mode number: |
149 | -1 = use next available | 149 | -1 = use next available |
150 | n = use minor number n | 150 | n = use minor number n |
151 | You can specify up to 64 cameras this way. | 151 | You can specify up to 64 cameras this way. |
152 | For example: | 152 | For example: |
153 | video_nr=-1,2,-1 would assign minor number 2 to the second | 153 | video_nr=-1,2,-1 would assign minor number 2 to the second |
154 | registered camera and use auto for the first one and for every | 154 | registered camera and use auto for the first one and for every |
155 | other camera. | 155 | other camera. |
156 | Default: -1 | 156 | Default: -1 |
157 | ------------------------------------------------------------------------------- | 157 | ------------------------------------------------------------------------------- |
158 | Name: force_munmap | 158 | Name: force_munmap |
159 | Type: bool array (min = 0, max = 64) | 159 | Type: bool array (min = 0, max = 64) |
160 | Syntax: <0|1[,...]> | 160 | Syntax: <0|1[,...]> |
161 | Description: Force the application to unmap previously mapped buffer memory | 161 | Description: Force the application to unmap previously mapped buffer memory |
162 | before calling any VIDIOC_S_CROP or VIDIOC_S_FMT ioctl's. Not | 162 | before calling any VIDIOC_S_CROP or VIDIOC_S_FMT ioctl's. Not |
163 | all the applications support this feature. This parameter is | 163 | all the applications support this feature. This parameter is |
164 | specific for each detected camera. | 164 | specific for each detected camera. |
165 | 0 = do not force memory unmapping | 165 | 0 = do not force memory unmapping |
166 | 1 = force memory unmapping (save memory) | 166 | 1 = force memory unmapping (save memory) |
167 | Default: 0 | 167 | Default: 0 |
168 | ------------------------------------------------------------------------------- | 168 | ------------------------------------------------------------------------------- |
169 | Name: frame_timeout | 169 | Name: frame_timeout |
170 | Type: uint array (min = 0, max = 64) | 170 | Type: uint array (min = 0, max = 64) |
171 | Syntax: <n[,...]> | 171 | Syntax: <n[,...]> |
172 | Description: Timeout for a video frame in seconds. This parameter is | 172 | Description: Timeout for a video frame in seconds. This parameter is |
173 | specific for each detected camera. This parameter can be | 173 | specific for each detected camera. This parameter can be |
174 | changed at runtime thanks to the /sys filesystem interface. | 174 | changed at runtime thanks to the /sys filesystem interface. |
175 | Default: 2 | 175 | Default: 2 |
176 | ------------------------------------------------------------------------------- | 176 | ------------------------------------------------------------------------------- |
177 | Name: debug | 177 | Name: debug |
178 | Type: ushort | 178 | Type: ushort |
179 | Syntax: <n> | 179 | Syntax: <n> |
180 | Description: Debugging information level, from 0 to 3: | 180 | Description: Debugging information level, from 0 to 3: |
181 | 0 = none (use carefully) | 181 | 0 = none (use carefully) |
182 | 1 = critical errors | 182 | 1 = critical errors |
183 | 2 = significant informations | 183 | 2 = significant informations |
184 | 3 = more verbose messages | 184 | 3 = more verbose messages |
185 | Level 3 is useful for testing only, when only one device | 185 | Level 3 is useful for testing only, when only one device |
186 | is used at the same time. It also shows some more informations | 186 | is used at the same time. It also shows some more informations |
187 | about the hardware being detected. This module parameter can be | 187 | about the hardware being detected. This module parameter can be |
188 | changed at runtime thanks to the /sys filesystem interface. | 188 | changed at runtime thanks to the /sys filesystem interface. |
189 | Default: 2 | 189 | Default: 2 |
190 | ------------------------------------------------------------------------------- | 190 | ------------------------------------------------------------------------------- |
191 | 191 | ||
@@ -204,11 +204,25 @@ Vendor ID Product ID | |||
204 | 0x041e 0x4017 | 204 | 0x041e 0x4017 |
205 | 0x041e 0x401c | 205 | 0x041e 0x401c |
206 | 0x041e 0x401e | 206 | 0x041e 0x401e |
207 | 0x041e 0x401f | ||
208 | 0x041e 0x4022 | ||
207 | 0x041e 0x4034 | 209 | 0x041e 0x4034 |
208 | 0x041e 0x4035 | 210 | 0x041e 0x4035 |
211 | 0x041e 0x4036 | ||
212 | 0x041e 0x403a | ||
213 | 0x0458 0x7007 | ||
214 | 0x0458 0x700C | ||
215 | 0x0458 0x700f | ||
216 | 0x046d 0x08ae | ||
217 | 0x055f 0xd003 | ||
218 | 0x055f 0xd004 | ||
209 | 0x046d 0x08ae | 219 | 0x046d 0x08ae |
210 | 0x0ac8 0x0301 | 220 | 0x0ac8 0x0301 |
221 | 0x0ac8 0x301b | ||
222 | 0x0ac8 0x303b | ||
223 | 0x10fd 0x0128 | ||
211 | 0x10fd 0x8050 | 224 | 0x10fd 0x8050 |
225 | 0x10fd 0x804e | ||
212 | 226 | ||
213 | The list above does not imply that all those devices work with this driver: up | 227 | The list above does not imply that all those devices work with this driver: up |
214 | until now only the ones that mount the following image sensors are supported; | 228 | until now only the ones that mount the following image sensors are supported; |
@@ -217,6 +231,7 @@ kernel messages will always tell you whether this is the case: | |||
217 | Model Manufacturer | 231 | Model Manufacturer |
218 | ----- ------------ | 232 | ----- ------------ |
219 | PAS202BCB PixArt Imaging, Inc. | 233 | PAS202BCB PixArt Imaging, Inc. |
234 | PB-0330 Photobit Corporation | ||
220 | 235 | ||
221 | 236 | ||
222 | 9. Notes for V4L2 application developers | 237 | 9. Notes for V4L2 application developers |
@@ -250,5 +265,6 @@ the fingerprint is: '88E8 F32F 7244 68BA 3958 5D40 99DA 5D2A FCE6 35A4'. | |||
250 | been taken from the documentation of the ZC030x Video4Linux1 driver written | 265 | been taken from the documentation of the ZC030x Video4Linux1 driver written |
251 | by Andrew Birkett <andy@nobugs.org>; | 266 | by Andrew Birkett <andy@nobugs.org>; |
252 | - The initialization values of the ZC0301 controller connected to the PAS202BCB | 267 | - The initialization values of the ZC0301 controller connected to the PAS202BCB |
253 | image sensor have been taken from the SPCA5XX driver maintained by | 268 | and PB-0330 image sensors have been taken from the SPCA5XX driver maintained |
254 | Michel Xhaard <mxhaard@magic.fr>. | 269 | by Michel Xhaard <mxhaard@magic.fr>; |
270 | - Stanislav Lechev donated one camera. | ||
diff --git a/Documentation/vm/page_migration b/Documentation/vm/page_migration index 0dd4ef30c361..99f89aa10169 100644 --- a/Documentation/vm/page_migration +++ b/Documentation/vm/page_migration | |||
@@ -26,8 +26,13 @@ a process are located. See also the numa_maps manpage in the numactl package. | |||
26 | Manual migration is useful if for example the scheduler has relocated | 26 | Manual migration is useful if for example the scheduler has relocated |
27 | a process to a processor on a distant node. A batch scheduler or an | 27 | a process to a processor on a distant node. A batch scheduler or an |
28 | administrator may detect the situation and move the pages of the process | 28 | administrator may detect the situation and move the pages of the process |
29 | nearer to the new processor. At some point in the future we may have | 29 | nearer to the new processor. The kernel itself does only provide |
30 | some mechanism in the scheduler that will automatically move the pages. | 30 | manual page migration support. Automatic page migration may be implemented |
31 | through user space processes that move pages. A special function call | ||
32 | "move_pages" allows the moving of individual pages within a process. | ||
33 | A NUMA profiler may f.e. obtain a log showing frequent off node | ||
34 | accesses and may use the result to move pages to more advantageous | ||
35 | locations. | ||
31 | 36 | ||
32 | Larger installations usually partition the system using cpusets into | 37 | Larger installations usually partition the system using cpusets into |
33 | sections of nodes. Paul Jackson has equipped cpusets with the ability to | 38 | sections of nodes. Paul Jackson has equipped cpusets with the ability to |
@@ -62,22 +67,14 @@ A. In kernel use of migrate_pages() | |||
62 | It also prevents the swapper or other scans to encounter | 67 | It also prevents the swapper or other scans to encounter |
63 | the page. | 68 | the page. |
64 | 69 | ||
65 | 2. Generate a list of newly allocates page. These pages will contain the | 70 | 2. We need to have a function of type new_page_t that can be |
66 | contents of the pages from the first list after page migration is | 71 | passed to migrate_pages(). This function should figure out |
67 | complete. | 72 | how to allocate the correct new page given the old page. |
68 | 73 | ||
69 | 3. The migrate_pages() function is called which attempts | 74 | 3. The migrate_pages() function is called which attempts |
70 | to do the migration. It returns the moved pages in the | 75 | to do the migration. It will call the function to allocate |
71 | list specified as the third parameter and the failed | 76 | the new page for each page that is considered for |
72 | migrations in the fourth parameter. The first parameter | 77 | moving. |
73 | will contain the pages that could still be retried. | ||
74 | |||
75 | 4. The leftover pages of various types are returned | ||
76 | to the LRU using putback_to_lru_pages() or otherwise | ||
77 | disposed of. The pages will still have the refcount as | ||
78 | increased by isolate_lru_pages() if putback_to_lru_pages() is not | ||
79 | used! The kernel may want to handle the various cases of failures in | ||
80 | different ways. | ||
81 | 78 | ||
82 | B. How migrate_pages() works | 79 | B. How migrate_pages() works |
83 | ---------------------------- | 80 | ---------------------------- |
@@ -93,83 +90,58 @@ Steps: | |||
93 | 90 | ||
94 | 2. Insure that writeback is complete. | 91 | 2. Insure that writeback is complete. |
95 | 92 | ||
96 | 3. Make sure that the page has assigned swap cache entry if | 93 | 3. Prep the new page that we want to move to. It is locked |
97 | it is an anonyous page. The swap cache reference is necessary | ||
98 | to preserve the information contain in the page table maps while | ||
99 | page migration occurs. | ||
100 | |||
101 | 4. Prep the new page that we want to move to. It is locked | ||
102 | and set to not being uptodate so that all accesses to the new | 94 | and set to not being uptodate so that all accesses to the new |
103 | page immediately lock while the move is in progress. | 95 | page immediately lock while the move is in progress. |
104 | 96 | ||
105 | 5. All the page table references to the page are either dropped (file | 97 | 4. The new page is prepped with some settings from the old page so that |
106 | backed pages) or converted to swap references (anonymous pages). | 98 | accesses to the new page will discover a page with the correct settings. |
107 | This should decrease the reference count. | 99 | |
100 | 5. All the page table references to the page are converted | ||
101 | to migration entries or dropped (nonlinear vmas). | ||
102 | This decrease the mapcount of a page. If the resulting | ||
103 | mapcount is not zero then we do not migrate the page. | ||
104 | All user space processes that attempt to access the page | ||
105 | will now wait on the page lock. | ||
108 | 106 | ||
109 | 6. The radix tree lock is taken. This will cause all processes trying | 107 | 6. The radix tree lock is taken. This will cause all processes trying |
110 | to reestablish a pte to block on the radix tree spinlock. | 108 | to access the page via the mapping to block on the radix tree spinlock. |
111 | 109 | ||
112 | 7. The refcount of the page is examined and we back out if references remain | 110 | 7. The refcount of the page is examined and we back out if references remain |
113 | otherwise we know that we are the only one referencing this page. | 111 | otherwise we know that we are the only one referencing this page. |
114 | 112 | ||
115 | 8. The radix tree is checked and if it does not contain the pointer to this | 113 | 8. The radix tree is checked and if it does not contain the pointer to this |
116 | page then we back out because someone else modified the mapping first. | 114 | page then we back out because someone else modified the radix tree. |
117 | |||
118 | 9. The mapping is checked. If the mapping is gone then a truncate action may | ||
119 | be in progress and we back out. | ||
120 | |||
121 | 10. The new page is prepped with some settings from the old page so that | ||
122 | accesses to the new page will be discovered to have the correct settings. | ||
123 | 115 | ||
124 | 11. The radix tree is changed to point to the new page. | 116 | 9. The radix tree is changed to point to the new page. |
125 | 117 | ||
126 | 12. The reference count of the old page is dropped because the radix tree | 118 | 10. The reference count of the old page is dropped because the radix tree |
127 | reference is gone. | 119 | reference is gone. A reference to the new page is established because |
120 | the new page is referenced to by the radix tree. | ||
128 | 121 | ||
129 | 13. The radix tree lock is dropped. With that lookups become possible again | 122 | 11. The radix tree lock is dropped. With that lookups in the mapping |
130 | and other processes will move from spinning on the tree lock to sleeping on | 123 | become possible again. Processes will move from spinning on the tree_lock |
131 | the locked new page. | 124 | to sleeping on the locked new page. |
132 | 125 | ||
133 | 14. The page contents are copied to the new page. | 126 | 12. The page contents are copied to the new page. |
134 | 127 | ||
135 | 15. The remaining page flags are copied to the new page. | 128 | 13. The remaining page flags are copied to the new page. |
136 | 129 | ||
137 | 16. The old page flags are cleared to indicate that the page does | 130 | 14. The old page flags are cleared to indicate that the page does |
138 | not use any information anymore. | 131 | not provide any information anymore. |
139 | 132 | ||
140 | 17. Queued up writeback on the new page is triggered. | 133 | 15. Queued up writeback on the new page is triggered. |
141 | 134 | ||
142 | 18. If swap pte's were generated for the page then replace them with real | 135 | 16. If migration entries were page then replace them with real ptes. Doing |
143 | ptes. This will reenable access for processes not blocked by the page lock. | 136 | so will enable access for user space processes not already waiting for |
137 | the page lock. | ||
144 | 138 | ||
145 | 19. The page locks are dropped from the old and new page. | 139 | 19. The page locks are dropped from the old and new page. |
146 | Processes waiting on the page lock can continue. | 140 | Processes waiting on the page lock will redo their page faults |
141 | and will reach the new page. | ||
147 | 142 | ||
148 | 20. The new page is moved to the LRU and can be scanned by the swapper | 143 | 20. The new page is moved to the LRU and can be scanned by the swapper |
149 | etc again. | 144 | etc again. |
150 | 145 | ||
151 | TODO list | 146 | Christoph Lameter, May 8, 2006. |
152 | --------- | ||
153 | |||
154 | - Page migration requires the use of swap handles to preserve the | ||
155 | information of the anonymous page table entries. This means that swap | ||
156 | space is reserved but never used. The maximum number of swap handles used | ||
157 | is determined by CHUNK_SIZE (see mm/mempolicy.c) per ongoing migration. | ||
158 | Reservation of pages could be avoided by having a special type of swap | ||
159 | handle that does not require swap space and that would only track the page | ||
160 | references. Something like that was proposed by Marcelo Tosatti in the | ||
161 | past (search for migration cache on lkml or linux-mm@kvack.org). | ||
162 | |||
163 | - Page migration unmaps ptes for file backed pages and requires page | ||
164 | faults to reestablish these ptes. This could be optimized by somehow | ||
165 | recording the references before migration and then reestablish them later. | ||
166 | However, there are several locking challenges that have to be overcome | ||
167 | before this is possible. | ||
168 | |||
169 | - Page migration generates read ptes for anonymous pages. Dirty page | ||
170 | faults are required to make the pages writable again. It may be possible | ||
171 | to generate a pte marked dirty if it is known that the page is dirty and | ||
172 | that this process has the only reference to that page. | ||
173 | |||
174 | Christoph Lameter, March 8, 2006. | ||
175 | 147 | ||
diff --git a/Documentation/w1/masters/ds2490 b/Documentation/w1/masters/ds2490 new file mode 100644 index 000000000000..44a4918bd7f2 --- /dev/null +++ b/Documentation/w1/masters/ds2490 | |||
@@ -0,0 +1,18 @@ | |||
1 | Kernel driver ds2490 | ||
2 | ==================== | ||
3 | |||
4 | Supported chips: | ||
5 | * Maxim DS2490 based | ||
6 | |||
7 | Author: Evgeniy Polyakov <johnpol@2ka.mipt.ru> | ||
8 | |||
9 | |||
10 | Description | ||
11 | ----------- | ||
12 | |||
13 | The Maixm/Dallas Semiconductor DS2490 is a chip | ||
14 | which allows to build USB <-> W1 bridges. | ||
15 | |||
16 | DS9490(R) is a USB <-> W1 bus master device | ||
17 | which has 0x81 family ID integrated chip and DS2490 | ||
18 | low-level operational chip. | ||
diff --git a/Documentation/w1/w1.generic b/Documentation/w1/w1.generic index f937fbe1cacb..4c6509dd4789 100644 --- a/Documentation/w1/w1.generic +++ b/Documentation/w1/w1.generic | |||
@@ -27,8 +27,19 @@ When a w1 master driver registers with the w1 subsystem, the following occurs: | |||
27 | 27 | ||
28 | When a device is found on the bus, w1 core checks if driver for it's family is | 28 | When a device is found on the bus, w1 core checks if driver for it's family is |
29 | loaded. If so, the family driver is attached to the slave. | 29 | loaded. If so, the family driver is attached to the slave. |
30 | If there is no driver for the family, a simple sysfs entry is created | 30 | If there is no driver for the family, default one is assigned, which allows to perform |
31 | for the slave device. | 31 | almost any kind of operations. Each logical operation is a transaction |
32 | in nature, which can contain several (two or one) low-level operations. | ||
33 | Let's see how one can read EEPROM context: | ||
34 | 1. one must write control buffer, i.e. buffer containing command byte | ||
35 | and two byte address. At this step bus is reset and appropriate device | ||
36 | is selected using either W1_SKIP_ROM or W1_MATCH_ROM command. | ||
37 | Then provided control buffer is being written to the wire. | ||
38 | 2. reading. This will issue reading eeprom response. | ||
39 | |||
40 | It is possible that between 1. and 2. w1 master thread will reset bus for searching | ||
41 | and slave device will be even removed, but in this case 0xff will | ||
42 | be read, since no device was selected. | ||
32 | 43 | ||
33 | 44 | ||
34 | W1 device families | 45 | W1 device families |
@@ -89,4 +100,5 @@ driver - (standard) symlink to the w1 driver | |||
89 | name - the device name, usually the same as the directory name | 100 | name - the device name, usually the same as the directory name |
90 | w1_slave - (optional) a binary file whose meaning depends on the | 101 | w1_slave - (optional) a binary file whose meaning depends on the |
91 | family driver | 102 | family driver |
92 | 103 | rw - (optional) created for slave devices which do not have | |
104 | appropriate family driver. Allows to read/write binary data. | ||
diff --git a/Documentation/w1/w1.netlink b/Documentation/w1/w1.netlink new file mode 100644 index 000000000000..3640c7c87d45 --- /dev/null +++ b/Documentation/w1/w1.netlink | |||
@@ -0,0 +1,98 @@ | |||
1 | Userspace communication protocol over connector [1]. | ||
2 | |||
3 | |||
4 | Message types. | ||
5 | ============= | ||
6 | |||
7 | There are three types of messages between w1 core and userspace: | ||
8 | 1. Events. They are generated each time new master or slave device found | ||
9 | either due to automatic or requested search. | ||
10 | 2. Userspace commands. Includes read/write and search/alarm search comamnds. | ||
11 | 3. Replies to userspace commands. | ||
12 | |||
13 | |||
14 | Protocol. | ||
15 | ======== | ||
16 | |||
17 | [struct cn_msg] - connector header. It's length field is equal to size of the attached data. | ||
18 | [struct w1_netlink_msg] - w1 netlink header. | ||
19 | __u8 type - message type. | ||
20 | W1_SLAVE_ADD/W1_SLAVE_REMOVE - slave add/remove events. | ||
21 | W1_MASTER_ADD/W1_MASTER_REMOVE - master add/remove events. | ||
22 | W1_MASTER_CMD - userspace command for bus master device (search/alarm search). | ||
23 | W1_SLAVE_CMD - userspace command for slave device (read/write/ search/alarm search | ||
24 | for bus master device where given slave device found). | ||
25 | __u8 res - reserved | ||
26 | __u16 len - size of attached to this header data. | ||
27 | union { | ||
28 | __u8 id; - slave unique device id | ||
29 | struct w1_mst { | ||
30 | __u32 id; - master's id. | ||
31 | __u32 res; - reserved | ||
32 | } mst; | ||
33 | } id; | ||
34 | |||
35 | [strucrt w1_netlink_cmd] - command for gived master or slave device. | ||
36 | __u8 cmd - command opcode. | ||
37 | W1_CMD_READ - read command. | ||
38 | W1_CMD_WRITE - write command. | ||
39 | W1_CMD_SEARCH - search command. | ||
40 | W1_CMD_ALARM_SEARCH - alarm search command. | ||
41 | __u8 res - reserved | ||
42 | __u16 len - length of data for this command. | ||
43 | For read command data must be allocated like for write command. | ||
44 | __u8 data[0] - data for this command. | ||
45 | |||
46 | |||
47 | Each connector message can include one or more w1_netlink_msg with zero of more attached w1_netlink_cmd messages. | ||
48 | |||
49 | For event messages there are no w1_netlink_cmd embedded structures, only connector header | ||
50 | and w1_netlink_msg strucutre with "len" field being zero and filled type (one of event types) | ||
51 | and id - either 8 bytes of slave unique id in host order, or master's id, which is assigned | ||
52 | to bus master device when it is added to w1 core. | ||
53 | |||
54 | Currently replies to userspace commands are only generated for read command request. | ||
55 | One reply is generated exactly for one w1_netlink_cmd read request. | ||
56 | Replies are not combined when sent - i.e. typical reply messages looks like the following: | ||
57 | [cn_msg][w1_netlink_msg][w1_netlink_cmd] | ||
58 | cn_msg.len = sizeof(struct w1_netlink_msg) + sizeof(struct w1_netlink_cmd) + cmd->len; | ||
59 | w1_netlink_msg.len = sizeof(struct w1_netlink_cmd) + cmd->len; | ||
60 | w1_netlink_cmd.len = cmd->len; | ||
61 | |||
62 | |||
63 | Operation steps in w1 core when new command is received. | ||
64 | ======================================================= | ||
65 | |||
66 | When new message (w1_netlink_msg) is received w1 core detects if it is master of slave request, | ||
67 | according to w1_netlink_msg.type field. | ||
68 | Then master or slave device is searched for. | ||
69 | When found, master device (requested or those one on where slave device is found) is locked. | ||
70 | If slave command is requested, then reset/select procedure is started to select given device. | ||
71 | |||
72 | Then all requested in w1_netlink_msg operations are performed one by one. | ||
73 | If command requires reply (like read command) it is sent on command completion. | ||
74 | |||
75 | When all commands (w1_netlink_cmd) are processed muster device is unlocked | ||
76 | and next w1_netlink_msg header processing started. | ||
77 | |||
78 | |||
79 | Connector [1] specific documentation. | ||
80 | ==================================== | ||
81 | |||
82 | Each connector message includes two u32 fields as "address". | ||
83 | w1 uses CN_W1_IDX and CN_W1_VAL defined in include/linux/connector.h header. | ||
84 | Each message also includes sequence and acknowledge numbers. | ||
85 | Sequence number for event messages is appropriate bus master sequence number increased with | ||
86 | each event message sent "through" this master. | ||
87 | Sequence number for userspace requests is set by userspace application. | ||
88 | Sequence number for reply is the same as was in request, and | ||
89 | acknowledge number is set to seq+1. | ||
90 | |||
91 | |||
92 | Additional documantion, source code examples. | ||
93 | ============================================ | ||
94 | |||
95 | 1. Documentation/connector | ||
96 | 2. http://tservice.net.ru/~s0mbre/archive/w1 | ||
97 | This archive includes userspace application w1d.c which | ||
98 | uses read/write/search commands for all master/slave devices found on the bus. | ||
diff --git a/Documentation/x86_64/boot-options.txt b/Documentation/x86_64/boot-options.txt index f2cd6ef53ff3..6887d44d2661 100644 --- a/Documentation/x86_64/boot-options.txt +++ b/Documentation/x86_64/boot-options.txt | |||
@@ -205,6 +205,27 @@ IOMMU | |||
205 | pages Prereserve that many 128K pages for the software IO bounce buffering. | 205 | pages Prereserve that many 128K pages for the software IO bounce buffering. |
206 | force Force all IO through the software TLB. | 206 | force Force all IO through the software TLB. |
207 | 207 | ||
208 | calgary=[64k,128k,256k,512k,1M,2M,4M,8M] | ||
209 | calgary=[translate_empty_slots] | ||
210 | calgary=[disable=<PCI bus number>] | ||
211 | |||
212 | 64k,...,8M - Set the size of each PCI slot's translation table | ||
213 | when using the Calgary IOMMU. This is the size of the translation | ||
214 | table itself in main memory. The smallest table, 64k, covers an IO | ||
215 | space of 32MB; the largest, 8MB table, can cover an IO space of | ||
216 | 4GB. Normally the kernel will make the right choice by itself. | ||
217 | |||
218 | translate_empty_slots - Enable translation even on slots that have | ||
219 | no devices attached to them, in case a device will be hotplugged | ||
220 | in the future. | ||
221 | |||
222 | disable=<PCI bus number> - Disable translation on a given PHB. For | ||
223 | example, the built-in graphics adapter resides on the first bridge | ||
224 | (PCI bus number 0); if translation (isolation) is enabled on this | ||
225 | bridge, X servers that access the hardware directly from user | ||
226 | space might stop working. Use this option if you have devices that | ||
227 | are accessed from userspace directly on some PCI host bridge. | ||
228 | |||
208 | Debugging | 229 | Debugging |
209 | 230 | ||
210 | oops=panic Always panic on oopses. Default is to just kill the process, | 231 | oops=panic Always panic on oopses. Default is to just kill the process, |