aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/block/biodoc.txt10
-rw-r--r--Documentation/feature-removal-schedule.txt11
-rw-r--r--Documentation/filesystems/00-INDEX6
-rw-r--r--Documentation/filesystems/configfs/configfs.txt434
-rw-r--r--Documentation/filesystems/configfs/configfs_example.c474
-rw-r--r--Documentation/filesystems/dlmfs.txt130
-rw-r--r--Documentation/filesystems/ocfs2.txt55
-rw-r--r--Documentation/keys.txt18
-rw-r--r--Documentation/md.txt120
-rw-r--r--Documentation/power/interface.txt11
-rw-r--r--Documentation/power/swsusp.txt5
11 files changed, 1237 insertions, 37 deletions
diff --git a/Documentation/block/biodoc.txt b/Documentation/block/biodoc.txt
index 303c57a7fad9..8e63831971d5 100644
--- a/Documentation/block/biodoc.txt
+++ b/Documentation/block/biodoc.txt
@@ -263,14 +263,8 @@ A flag in the bio structure, BIO_BARRIER is used to identify a barrier i/o.
263The generic i/o scheduler would make sure that it places the barrier request and 263The generic i/o scheduler would make sure that it places the barrier request and
264all other requests coming after it after all the previous requests in the 264all other requests coming after it after all the previous requests in the
265queue. Barriers may be implemented in different ways depending on the 265queue. Barriers may be implemented in different ways depending on the
266driver. A SCSI driver for example could make use of ordered tags to 266driver. For more details regarding I/O barriers, please read barrier.txt
267preserve the necessary ordering with a lower impact on throughput. For IDE 267in this directory.
268this might be two sync cache flush: a pre and post flush when encountering
269a barrier write.
270
271There is a provision for queues to indicate what kind of barriers they
272can provide. This is as of yet unmerged, details will be added here once it
273is in the kernel.
274 268
2751.2.2 Request Priority/Latency 2691.2.2 Request Priority/Latency
276 270
diff --git a/Documentation/feature-removal-schedule.txt b/Documentation/feature-removal-schedule.txt
index cb13b963f7ae..9474501dd6cc 100644
--- a/Documentation/feature-removal-schedule.txt
+++ b/Documentation/feature-removal-schedule.txt
@@ -47,17 +47,6 @@ Who: Paul E. McKenney <paulmck@us.ibm.com>
47 47
48--------------------------- 48---------------------------
49 49
50What: IEEE1394 Audio and Music Data Transmission Protocol driver,
51 Connection Management Procedures driver
52When: November 2005
53Files: drivers/ieee1394/{amdtp,cmp}*
54Why: These are incomplete, have never worked, and are better implemented
55 in userland via raw1394 (see http://freebob.sourceforge.net/ for
56 example.)
57Who: Jody McIntyre <scjody@steamballoon.com>
58
59---------------------------
60
61What: raw1394: requests of type RAW1394_REQ_ISO_SEND, RAW1394_REQ_ISO_LISTEN 50What: raw1394: requests of type RAW1394_REQ_ISO_SEND, RAW1394_REQ_ISO_LISTEN
62When: November 2005 51When: November 2005
63Why: Deprecated in favour of the new ioctl-based rawiso interface, which is 52Why: Deprecated in favour of the new ioctl-based rawiso interface, which is
diff --git a/Documentation/filesystems/00-INDEX b/Documentation/filesystems/00-INDEX
index 7e17712f3229..74052d22d868 100644
--- a/Documentation/filesystems/00-INDEX
+++ b/Documentation/filesystems/00-INDEX
@@ -12,10 +12,14 @@ cifs.txt
12 - description of the CIFS filesystem 12 - description of the CIFS filesystem
13coda.txt 13coda.txt
14 - description of the CODA filesystem. 14 - description of the CODA filesystem.
15configfs/
16 - directory containing configfs documentation and example code.
15cramfs.txt 17cramfs.txt
16 - info on the cram filesystem for small storage (ROMs etc) 18 - info on the cram filesystem for small storage (ROMs etc)
17devfs/ 19devfs/
18 - directory containing devfs documentation. 20 - directory containing devfs documentation.
21dlmfs.txt
22 - info on the userspace interface to the OCFS2 DLM.
19ext2.txt 23ext2.txt
20 - info, mount options and specifications for the Ext2 filesystem. 24 - info, mount options and specifications for the Ext2 filesystem.
21hpfs.txt 25hpfs.txt
@@ -30,6 +34,8 @@ ntfs.txt
30 - info and mount options for the NTFS filesystem (Windows NT). 34 - info and mount options for the NTFS filesystem (Windows NT).
31proc.txt 35proc.txt
32 - info on Linux's /proc filesystem. 36 - info on Linux's /proc filesystem.
37ocfs2.txt
38 - info and mount options for the OCFS2 clustered filesystem.
33romfs.txt 39romfs.txt
34 - Description of the ROMFS filesystem. 40 - Description of the ROMFS filesystem.
35smbfs.txt 41smbfs.txt
diff --git a/Documentation/filesystems/configfs/configfs.txt b/Documentation/filesystems/configfs/configfs.txt
new file mode 100644
index 000000000000..c4ff96b7c4e0
--- /dev/null
+++ b/Documentation/filesystems/configfs/configfs.txt
@@ -0,0 +1,434 @@
1
2configfs - Userspace-driven kernel object configuation.
3
4Joel Becker <joel.becker@oracle.com>
5
6Updated: 31 March 2005
7
8Copyright (c) 2005 Oracle Corporation,
9 Joel Becker <joel.becker@oracle.com>
10
11
12[What is configfs?]
13
14configfs is a ram-based filesystem that provides the converse of
15sysfs's functionality. Where sysfs is a filesystem-based view of
16kernel objects, configfs is a filesystem-based manager of kernel
17objects, or config_items.
18
19With sysfs, an object is created in kernel (for example, when a device
20is discovered) and it is registered with sysfs. Its attributes then
21appear in sysfs, allowing userspace to read the attributes via
22readdir(3)/read(2). It may allow some attributes to be modified via
23write(2). The important point is that the object is created and
24destroyed in kernel, the kernel controls the lifecycle of the sysfs
25representation, and sysfs is merely a window on all this.
26
27A configfs config_item is created via an explicit userspace operation:
28mkdir(2). It is destroyed via rmdir(2). The attributes appear at
29mkdir(2) time, and can be read or modified via read(2) and write(2).
30As with sysfs, readdir(3) queries the list of items and/or attributes.
31symlink(2) can be used to group items together. Unlike sysfs, the
32lifetime of the representation is completely driven by userspace. The
33kernel modules backing the items must respond to this.
34
35Both sysfs and configfs can and should exist together on the same
36system. One is not a replacement for the other.
37
38[Using configfs]
39
40configfs can be compiled as a module or into the kernel. You can access
41it by doing
42
43 mount -t configfs none /config
44
45The configfs tree will be empty unless client modules are also loaded.
46These are modules that register their item types with configfs as
47subsystems. Once a client subsystem is loaded, it will appear as a
48subdirectory (or more than one) under /config. Like sysfs, the
49configfs tree is always there, whether mounted on /config or not.
50
51An item is created via mkdir(2). The item's attributes will also
52appear at this time. readdir(3) can determine what the attributes are,
53read(2) can query their default values, and write(2) can store new
54values. Like sysfs, attributes should be ASCII text files, preferably
55with only one value per file. The same efficiency caveats from sysfs
56apply. Don't mix more than one attribute in one attribute file.
57
58Like sysfs, configfs expects write(2) to store the entire buffer at
59once. When writing to configfs attributes, userspace processes should
60first read the entire file, modify the portions they wish to change, and
61then write the entire buffer back. Attribute files have a maximum size
62of one page (PAGE_SIZE, 4096 on i386).
63
64When an item needs to be destroyed, remove it with rmdir(2). An
65item cannot be destroyed if any other item has a link to it (via
66symlink(2)). Links can be removed via unlink(2).
67
68[Configuring FakeNBD: an Example]
69
70Imagine there's a Network Block Device (NBD) driver that allows you to
71access remote block devices. Call it FakeNBD. FakeNBD uses configfs
72for its configuration. Obviously, there will be a nice program that
73sysadmins use to configure FakeNBD, but somehow that program has to tell
74the driver about it. Here's where configfs comes in.
75
76When the FakeNBD driver is loaded, it registers itself with configfs.
77readdir(3) sees this just fine:
78
79 # ls /config
80 fakenbd
81
82A fakenbd connection can be created with mkdir(2). The name is
83arbitrary, but likely the tool will make some use of the name. Perhaps
84it is a uuid or a disk name:
85
86 # mkdir /config/fakenbd/disk1
87 # ls /config/fakenbd/disk1
88 target device rw
89
90The target attribute contains the IP address of the server FakeNBD will
91connect to. The device attribute is the device on the server.
92Predictably, the rw attribute determines whether the connection is
93read-only or read-write.
94
95 # echo 10.0.0.1 > /config/fakenbd/disk1/target
96 # echo /dev/sda1 > /config/fakenbd/disk1/device
97 # echo 1 > /config/fakenbd/disk1/rw
98
99That's it. That's all there is. Now the device is configured, via the
100shell no less.
101
102[Coding With configfs]
103
104Every object in configfs is a config_item. A config_item reflects an
105object in the subsystem. It has attributes that match values on that
106object. configfs handles the filesystem representation of that object
107and its attributes, allowing the subsystem to ignore all but the
108basic show/store interaction.
109
110Items are created and destroyed inside a config_group. A group is a
111collection of items that share the same attributes and operations.
112Items are created by mkdir(2) and removed by rmdir(2), but configfs
113handles that. The group has a set of operations to perform these tasks
114
115A subsystem is the top level of a client module. During initialization,
116the client module registers the subsystem with configfs, the subsystem
117appears as a directory at the top of the configfs filesystem. A
118subsystem is also a config_group, and can do everything a config_group
119can.
120
121[struct config_item]
122
123 struct config_item {
124 char *ci_name;
125 char ci_namebuf[UOBJ_NAME_LEN];
126 struct kref ci_kref;
127 struct list_head ci_entry;
128 struct config_item *ci_parent;
129 struct config_group *ci_group;
130 struct config_item_type *ci_type;
131 struct dentry *ci_dentry;
132 };
133
134 void config_item_init(struct config_item *);
135 void config_item_init_type_name(struct config_item *,
136 const char *name,
137 struct config_item_type *type);
138 struct config_item *config_item_get(struct config_item *);
139 void config_item_put(struct config_item *);
140
141Generally, struct config_item is embedded in a container structure, a
142structure that actually represents what the subsystem is doing. The
143config_item portion of that structure is how the object interacts with
144configfs.
145
146Whether statically defined in a source file or created by a parent
147config_group, a config_item must have one of the _init() functions
148called on it. This initializes the reference count and sets up the
149appropriate fields.
150
151All users of a config_item should have a reference on it via
152config_item_get(), and drop the reference when they are done via
153config_item_put().
154
155By itself, a config_item cannot do much more than appear in configfs.
156Usually a subsystem wants the item to display and/or store attributes,
157among other things. For that, it needs a type.
158
159[struct config_item_type]
160
161 struct configfs_item_operations {
162 void (*release)(struct config_item *);
163 ssize_t (*show_attribute)(struct config_item *,
164 struct configfs_attribute *,
165 char *);
166 ssize_t (*store_attribute)(struct config_item *,
167 struct configfs_attribute *,
168 const char *, size_t);
169 int (*allow_link)(struct config_item *src,
170 struct config_item *target);
171 int (*drop_link)(struct config_item *src,
172 struct config_item *target);
173 };
174
175 struct config_item_type {
176 struct module *ct_owner;
177 struct configfs_item_operations *ct_item_ops;
178 struct configfs_group_operations *ct_group_ops;
179 struct configfs_attribute **ct_attrs;
180 };
181
182The most basic function of a config_item_type is to define what
183operations can be performed on a config_item. All items that have been
184allocated dynamically will need to provide the ct_item_ops->release()
185method. This method is called when the config_item's reference count
186reaches zero. Items that wish to display an attribute need to provide
187the ct_item_ops->show_attribute() method. Similarly, storing a new
188attribute value uses the store_attribute() method.
189
190[struct configfs_attribute]
191
192 struct configfs_attribute {
193 char *ca_name;
194 struct module *ca_owner;
195 mode_t ca_mode;
196 };
197
198When a config_item wants an attribute to appear as a file in the item's
199configfs directory, it must define a configfs_attribute describing it.
200It then adds the attribute to the NULL-terminated array
201config_item_type->ct_attrs. When the item appears in configfs, the
202attribute file will appear with the configfs_attribute->ca_name
203filename. configfs_attribute->ca_mode specifies the file permissions.
204
205If an attribute is readable and the config_item provides a
206ct_item_ops->show_attribute() method, that method will be called
207whenever userspace asks for a read(2) on the attribute. The converse
208will happen for write(2).
209
210[struct config_group]
211
212A config_item cannot live in a vaccum. The only way one can be created
213is via mkdir(2) on a config_group. This will trigger creation of a
214child item.
215
216 struct config_group {
217 struct config_item cg_item;
218 struct list_head cg_children;
219 struct configfs_subsystem *cg_subsys;
220 struct config_group **default_groups;
221 };
222
223 void config_group_init(struct config_group *group);
224 void config_group_init_type_name(struct config_group *group,
225 const char *name,
226 struct config_item_type *type);
227
228
229The config_group structure contains a config_item. Properly configuring
230that item means that a group can behave as an item in its own right.
231However, it can do more: it can create child items or groups. This is
232accomplished via the group operations specified on the group's
233config_item_type.
234
235 struct configfs_group_operations {
236 struct config_item *(*make_item)(struct config_group *group,
237 const char *name);
238 struct config_group *(*make_group)(struct config_group *group,
239 const char *name);
240 int (*commit_item)(struct config_item *item);
241 void (*drop_item)(struct config_group *group,
242 struct config_item *item);
243 };
244
245A group creates child items by providing the
246ct_group_ops->make_item() method. If provided, this method is called from mkdir(2) in the group's directory. The subsystem allocates a new
247config_item (or more likely, its container structure), initializes it,
248and returns it to configfs. Configfs will then populate the filesystem
249tree to reflect the new item.
250
251If the subsystem wants the child to be a group itself, the subsystem
252provides ct_group_ops->make_group(). Everything else behaves the same,
253using the group _init() functions on the group.
254
255Finally, when userspace calls rmdir(2) on the item or group,
256ct_group_ops->drop_item() is called. As a config_group is also a
257config_item, it is not necessary for a seperate drop_group() method.
258The subsystem must config_item_put() the reference that was initialized
259upon item allocation. If a subsystem has no work to do, it may omit
260the ct_group_ops->drop_item() method, and configfs will call
261config_item_put() on the item on behalf of the subsystem.
262
263IMPORTANT: drop_item() is void, and as such cannot fail. When rmdir(2)
264is called, configfs WILL remove the item from the filesystem tree
265(assuming that it has no children to keep it busy). The subsystem is
266responsible for responding to this. If the subsystem has references to
267the item in other threads, the memory is safe. It may take some time
268for the item to actually disappear from the subsystem's usage. But it
269is gone from configfs.
270
271A config_group cannot be removed while it still has child items. This
272is implemented in the configfs rmdir(2) code. ->drop_item() will not be
273called, as the item has not been dropped. rmdir(2) will fail, as the
274directory is not empty.
275
276[struct configfs_subsystem]
277
278A subsystem must register itself, ususally at module_init time. This
279tells configfs to make the subsystem appear in the file tree.
280
281 struct configfs_subsystem {
282 struct config_group su_group;
283 struct semaphore su_sem;
284 };
285
286 int configfs_register_subsystem(struct configfs_subsystem *subsys);
287 void configfs_unregister_subsystem(struct configfs_subsystem *subsys);
288
289 A subsystem consists of a toplevel config_group and a semaphore.
290The group is where child config_items are created. For a subsystem,
291this group is usually defined statically. Before calling
292configfs_register_subsystem(), the subsystem must have initialized the
293group via the usual group _init() functions, and it must also have
294initialized the semaphore.
295 When the register call returns, the subsystem is live, and it
296will be visible via configfs. At that point, mkdir(2) can be called and
297the subsystem must be ready for it.
298
299[An Example]
300
301The best example of these basic concepts is the simple_children
302subsystem/group and the simple_child item in configfs_example.c It
303shows a trivial object displaying and storing an attribute, and a simple
304group creating and destroying these children.
305
306[Hierarchy Navigation and the Subsystem Semaphore]
307
308There is an extra bonus that configfs provides. The config_groups and
309config_items are arranged in a hierarchy due to the fact that they
310appear in a filesystem. A subsystem is NEVER to touch the filesystem
311parts, but the subsystem might be interested in this hierarchy. For
312this reason, the hierarchy is mirrored via the config_group->cg_children
313and config_item->ci_parent structure members.
314
315A subsystem can navigate the cg_children list and the ci_parent pointer
316to see the tree created by the subsystem. This can race with configfs'
317management of the hierarchy, so configfs uses the subsystem semaphore to
318protect modifications. Whenever a subsystem wants to navigate the
319hierarchy, it must do so under the protection of the subsystem
320semaphore.
321
322A subsystem will be prevented from acquiring the semaphore while a newly
323allocated item has not been linked into this hierarchy. Similarly, it
324will not be able to acquire the semaphore while a dropping item has not
325yet been unlinked. This means that an item's ci_parent pointer will
326never be NULL while the item is in configfs, and that an item will only
327be in its parent's cg_children list for the same duration. This allows
328a subsystem to trust ci_parent and cg_children while they hold the
329semaphore.
330
331[Item Aggregation Via symlink(2)]
332
333configfs provides a simple group via the group->item parent/child
334relationship. Often, however, a larger environment requires aggregation
335outside of the parent/child connection. This is implemented via
336symlink(2).
337
338A config_item may provide the ct_item_ops->allow_link() and
339ct_item_ops->drop_link() methods. If the ->allow_link() method exists,
340symlink(2) may be called with the config_item as the source of the link.
341These links are only allowed between configfs config_items. Any
342symlink(2) attempt outside the configfs filesystem will be denied.
343
344When symlink(2) is called, the source config_item's ->allow_link()
345method is called with itself and a target item. If the source item
346allows linking to target item, it returns 0. A source item may wish to
347reject a link if it only wants links to a certain type of object (say,
348in its own subsystem).
349
350When unlink(2) is called on the symbolic link, the source item is
351notified via the ->drop_link() method. Like the ->drop_item() method,
352this is a void function and cannot return failure. The subsystem is
353responsible for responding to the change.
354
355A config_item cannot be removed while it links to any other item, nor
356can it be removed while an item links to it. Dangling symlinks are not
357allowed in configfs.
358
359[Automatically Created Subgroups]
360
361A new config_group may want to have two types of child config_items.
362While this could be codified by magic names in ->make_item(), it is much
363more explicit to have a method whereby userspace sees this divergence.
364
365Rather than have a group where some items behave differently than
366others, configfs provides a method whereby one or many subgroups are
367automatically created inside the parent at its creation. Thus,
368mkdir("parent) results in "parent", "parent/subgroup1", up through
369"parent/subgroupN". Items of type 1 can now be created in
370"parent/subgroup1", and items of type N can be created in
371"parent/subgroupN".
372
373These automatic subgroups, or default groups, do not preclude other
374children of the parent group. If ct_group_ops->make_group() exists,
375other child groups can be created on the parent group directly.
376
377A configfs subsystem specifies default groups by filling in the
378NULL-terminated array default_groups on the config_group structure.
379Each group in that array is populated in the configfs tree at the same
380time as the parent group. Similarly, they are removed at the same time
381as the parent. No extra notification is provided. When a ->drop_item()
382method call notifies the subsystem the parent group is going away, it
383also means every default group child associated with that parent group.
384
385As a consequence of this, default_groups cannot be removed directly via
386rmdir(2). They also are not considered when rmdir(2) on the parent
387group is checking for children.
388
389[Committable Items]
390
391NOTE: Committable items are currently unimplemented.
392
393Some config_items cannot have a valid initial state. That is, no
394default values can be specified for the item's attributes such that the
395item can do its work. Userspace must configure one or more attributes,
396after which the subsystem can start whatever entity this item
397represents.
398
399Consider the FakeNBD device from above. Without a target address *and*
400a target device, the subsystem has no idea what block device to import.
401The simple example assumes that the subsystem merely waits until all the
402appropriate attributes are configured, and then connects. This will,
403indeed, work, but now every attribute store must check if the attributes
404are initialized. Every attribute store must fire off the connection if
405that condition is met.
406
407Far better would be an explicit action notifying the subsystem that the
408config_item is ready to go. More importantly, an explicit action allows
409the subsystem to provide feedback as to whether the attibutes are
410initialized in a way that makes sense. configfs provides this as
411committable items.
412
413configfs still uses only normal filesystem operations. An item is
414committed via rename(2). The item is moved from a directory where it
415can be modified to a directory where it cannot.
416
417Any group that provides the ct_group_ops->commit_item() method has
418committable items. When this group appears in configfs, mkdir(2) will
419not work directly in the group. Instead, the group will have two
420subdirectories: "live" and "pending". The "live" directory does not
421support mkdir(2) or rmdir(2) either. It only allows rename(2). The
422"pending" directory does allow mkdir(2) and rmdir(2). An item is
423created in the "pending" directory. Its attributes can be modified at
424will. Userspace commits the item by renaming it into the "live"
425directory. At this point, the subsystem recieves the ->commit_item()
426callback. If all required attributes are filled to satisfaction, the
427method returns zero and the item is moved to the "live" directory.
428
429As rmdir(2) does not work in the "live" directory, an item must be
430shutdown, or "uncommitted". Again, this is done via rename(2), this
431time from the "live" directory back to the "pending" one. The subsystem
432is notified by the ct_group_ops->uncommit_object() method.
433
434
diff --git a/Documentation/filesystems/configfs/configfs_example.c b/Documentation/filesystems/configfs/configfs_example.c
new file mode 100644
index 000000000000..f3c6e4946f98
--- /dev/null
+++ b/Documentation/filesystems/configfs/configfs_example.c
@@ -0,0 +1,474 @@
1/*
2 * vim: noexpandtab ts=8 sts=0 sw=8:
3 *
4 * configfs_example.c - This file is a demonstration module containing
5 * a number of configfs subsystems.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public
18 * License along with this program; if not, write to the
19 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 * Boston, MA 021110-1307, USA.
21 *
22 * Based on sysfs:
23 * sysfs is Copyright (C) 2001, 2002, 2003 Patrick Mochel
24 *
25 * configfs Copyright (C) 2005 Oracle. All rights reserved.
26 */
27
28#include <linux/init.h>
29#include <linux/module.h>
30#include <linux/slab.h>
31
32#include <linux/configfs.h>
33
34
35
36/*
37 * 01-childless
38 *
39 * This first example is a childless subsystem. It cannot create
40 * any config_items. It just has attributes.
41 *
42 * Note that we are enclosing the configfs_subsystem inside a container.
43 * This is not necessary if a subsystem has no attributes directly
44 * on the subsystem. See the next example, 02-simple-children, for
45 * such a subsystem.
46 */
47
48struct childless {
49 struct configfs_subsystem subsys;
50 int showme;
51 int storeme;
52};
53
54struct childless_attribute {
55 struct configfs_attribute attr;
56 ssize_t (*show)(struct childless *, char *);
57 ssize_t (*store)(struct childless *, const char *, size_t);
58};
59
60static inline struct childless *to_childless(struct config_item *item)
61{
62 return item ? container_of(to_configfs_subsystem(to_config_group(item)), struct childless, subsys) : NULL;
63}
64
65static ssize_t childless_showme_read(struct childless *childless,
66 char *page)
67{
68 ssize_t pos;
69
70 pos = sprintf(page, "%d\n", childless->showme);
71 childless->showme++;
72
73 return pos;
74}
75
76static ssize_t childless_storeme_read(struct childless *childless,
77 char *page)
78{
79 return sprintf(page, "%d\n", childless->storeme);
80}
81
82static ssize_t childless_storeme_write(struct childless *childless,
83 const char *page,
84 size_t count)
85{
86 unsigned long tmp;
87 char *p = (char *) page;
88
89 tmp = simple_strtoul(p, &p, 10);
90 if (!p || (*p && (*p != '\n')))
91 return -EINVAL;
92
93 if (tmp > INT_MAX)
94 return -ERANGE;
95
96 childless->storeme = tmp;
97
98 return count;
99}
100
101static ssize_t childless_description_read(struct childless *childless,
102 char *page)
103{
104 return sprintf(page,
105"[01-childless]\n"
106"\n"
107"The childless subsystem is the simplest possible subsystem in\n"
108"configfs. It does not support the creation of child config_items.\n"
109"It only has a few attributes. In fact, it isn't much different\n"
110"than a directory in /proc.\n");
111}
112
113static struct childless_attribute childless_attr_showme = {
114 .attr = { .ca_owner = THIS_MODULE, .ca_name = "showme", .ca_mode = S_IRUGO },
115 .show = childless_showme_read,
116};
117static struct childless_attribute childless_attr_storeme = {
118 .attr = { .ca_owner = THIS_MODULE, .ca_name = "storeme", .ca_mode = S_IRUGO | S_IWUSR },
119 .show = childless_storeme_read,
120 .store = childless_storeme_write,
121};
122static struct childless_attribute childless_attr_description = {
123 .attr = { .ca_owner = THIS_MODULE, .ca_name = "description", .ca_mode = S_IRUGO },
124 .show = childless_description_read,
125};
126
127static struct configfs_attribute *childless_attrs[] = {
128 &childless_attr_showme.attr,
129 &childless_attr_storeme.attr,
130 &childless_attr_description.attr,
131 NULL,
132};
133
134static ssize_t childless_attr_show(struct config_item *item,
135 struct configfs_attribute *attr,
136 char *page)
137{
138 struct childless *childless = to_childless(item);
139 struct childless_attribute *childless_attr =
140 container_of(attr, struct childless_attribute, attr);
141 ssize_t ret = 0;
142
143 if (childless_attr->show)
144 ret = childless_attr->show(childless, page);
145 return ret;
146}
147
148static ssize_t childless_attr_store(struct config_item *item,
149 struct configfs_attribute *attr,
150 const char *page, size_t count)
151{
152 struct childless *childless = to_childless(item);
153 struct childless_attribute *childless_attr =
154 container_of(attr, struct childless_attribute, attr);
155 ssize_t ret = -EINVAL;
156
157 if (childless_attr->store)
158 ret = childless_attr->store(childless, page, count);
159 return ret;
160}
161
162static struct configfs_item_operations childless_item_ops = {
163 .show_attribute = childless_attr_show,
164 .store_attribute = childless_attr_store,
165};
166
167static struct config_item_type childless_type = {
168 .ct_item_ops = &childless_item_ops,
169 .ct_attrs = childless_attrs,
170 .ct_owner = THIS_MODULE,
171};
172
173static struct childless childless_subsys = {
174 .subsys = {
175 .su_group = {
176 .cg_item = {
177 .ci_namebuf = "01-childless",
178 .ci_type = &childless_type,
179 },
180 },
181 },
182};
183
184
185/* ----------------------------------------------------------------- */
186
187/*
188 * 02-simple-children
189 *
190 * This example merely has a simple one-attribute child. Note that
191 * there is no extra attribute structure, as the child's attribute is
192 * known from the get-go. Also, there is no container for the
193 * subsystem, as it has no attributes of its own.
194 */
195
196struct simple_child {
197 struct config_item item;
198 int storeme;
199};
200
201static inline struct simple_child *to_simple_child(struct config_item *item)
202{
203 return item ? container_of(item, struct simple_child, item) : NULL;
204}
205
206static struct configfs_attribute simple_child_attr_storeme = {
207 .ca_owner = THIS_MODULE,
208 .ca_name = "storeme",
209 .ca_mode = S_IRUGO | S_IWUSR,
210};
211
212static struct configfs_attribute *simple_child_attrs[] = {
213 &simple_child_attr_storeme,
214 NULL,
215};
216
217static ssize_t simple_child_attr_show(struct config_item *item,
218 struct configfs_attribute *attr,
219 char *page)
220{
221 ssize_t count;
222 struct simple_child *simple_child = to_simple_child(item);
223
224 count = sprintf(page, "%d\n", simple_child->storeme);
225
226 return count;
227}
228
229static ssize_t simple_child_attr_store(struct config_item *item,
230 struct configfs_attribute *attr,
231 const char *page, size_t count)
232{
233 struct simple_child *simple_child = to_simple_child(item);
234 unsigned long tmp;
235 char *p = (char *) page;
236
237 tmp = simple_strtoul(p, &p, 10);
238 if (!p || (*p && (*p != '\n')))
239 return -EINVAL;
240
241 if (tmp > INT_MAX)
242 return -ERANGE;
243
244 simple_child->storeme = tmp;
245
246 return count;
247}
248
249static void simple_child_release(struct config_item *item)
250{
251 kfree(to_simple_child(item));
252}
253
254static struct configfs_item_operations simple_child_item_ops = {
255 .release = simple_child_release,
256 .show_attribute = simple_child_attr_show,
257 .store_attribute = simple_child_attr_store,
258};
259
260static struct config_item_type simple_child_type = {
261 .ct_item_ops = &simple_child_item_ops,
262 .ct_attrs = simple_child_attrs,
263 .ct_owner = THIS_MODULE,
264};
265
266
267static struct config_item *simple_children_make_item(struct config_group *group, const char *name)
268{
269 struct simple_child *simple_child;
270
271 simple_child = kmalloc(sizeof(struct simple_child), GFP_KERNEL);
272 if (!simple_child)
273 return NULL;
274
275 memset(simple_child, 0, sizeof(struct simple_child));
276
277 config_item_init_type_name(&simple_child->item, name,
278 &simple_child_type);
279
280 simple_child->storeme = 0;
281
282 return &simple_child->item;
283}
284
285static struct configfs_attribute simple_children_attr_description = {
286 .ca_owner = THIS_MODULE,
287 .ca_name = "description",
288 .ca_mode = S_IRUGO,
289};
290
291static struct configfs_attribute *simple_children_attrs[] = {
292 &simple_children_attr_description,
293 NULL,
294};
295
296static ssize_t simple_children_attr_show(struct config_item *item,
297 struct configfs_attribute *attr,
298 char *page)
299{
300 return sprintf(page,
301"[02-simple-children]\n"
302"\n"
303"This subsystem allows the creation of child config_items. These\n"
304"items have only one attribute that is readable and writeable.\n");
305}
306
307static struct configfs_item_operations simple_children_item_ops = {
308 .show_attribute = simple_children_attr_show,
309};
310
311/*
312 * Note that, since no extra work is required on ->drop_item(),
313 * no ->drop_item() is provided.
314 */
315static struct configfs_group_operations simple_children_group_ops = {
316 .make_item = simple_children_make_item,
317};
318
319static struct config_item_type simple_children_type = {
320 .ct_item_ops = &simple_children_item_ops,
321 .ct_group_ops = &simple_children_group_ops,
322 .ct_attrs = simple_children_attrs,
323};
324
325static struct configfs_subsystem simple_children_subsys = {
326 .su_group = {
327 .cg_item = {
328 .ci_namebuf = "02-simple-children",
329 .ci_type = &simple_children_type,
330 },
331 },
332};
333
334
335/* ----------------------------------------------------------------- */
336
337/*
338 * 03-group-children
339 *
340 * This example reuses the simple_children group from above. However,
341 * the simple_children group is not the subsystem itself, it is a
342 * child of the subsystem. Creation of a group in the subsystem creates
343 * a new simple_children group. That group can then have simple_child
344 * children of its own.
345 */
346
347struct simple_children {
348 struct config_group group;
349};
350
351static struct config_group *group_children_make_group(struct config_group *group, const char *name)
352{
353 struct simple_children *simple_children;
354
355 simple_children = kmalloc(sizeof(struct simple_children),
356 GFP_KERNEL);
357 if (!simple_children)
358 return NULL;
359
360 memset(simple_children, 0, sizeof(struct simple_children));
361
362 config_group_init_type_name(&simple_children->group, name,
363 &simple_children_type);
364
365 return &simple_children->group;
366}
367
368static struct configfs_attribute group_children_attr_description = {
369 .ca_owner = THIS_MODULE,
370 .ca_name = "description",
371 .ca_mode = S_IRUGO,
372};
373
374static struct configfs_attribute *group_children_attrs[] = {
375 &group_children_attr_description,
376 NULL,
377};
378
379static ssize_t group_children_attr_show(struct config_item *item,
380 struct configfs_attribute *attr,
381 char *page)
382{
383 return sprintf(page,
384"[03-group-children]\n"
385"\n"
386"This subsystem allows the creation of child config_groups. These\n"
387"groups are like the subsystem simple-children.\n");
388}
389
390static struct configfs_item_operations group_children_item_ops = {
391 .show_attribute = group_children_attr_show,
392};
393
394/*
395 * Note that, since no extra work is required on ->drop_item(),
396 * no ->drop_item() is provided.
397 */
398static struct configfs_group_operations group_children_group_ops = {
399 .make_group = group_children_make_group,
400};
401
402static struct config_item_type group_children_type = {
403 .ct_item_ops = &group_children_item_ops,
404 .ct_group_ops = &group_children_group_ops,
405 .ct_attrs = group_children_attrs,
406};
407
408static struct configfs_subsystem group_children_subsys = {
409 .su_group = {
410 .cg_item = {
411 .ci_namebuf = "03-group-children",
412 .ci_type = &group_children_type,
413 },
414 },
415};
416
417/* ----------------------------------------------------------------- */
418
419/*
420 * We're now done with our subsystem definitions.
421 * For convenience in this module, here's a list of them all. It
422 * allows the init function to easily register them. Most modules
423 * will only have one subsystem, and will only call register_subsystem
424 * on it directly.
425 */
426static struct configfs_subsystem *example_subsys[] = {
427 &childless_subsys.subsys,
428 &simple_children_subsys,
429 &group_children_subsys,
430 NULL,
431};
432
433static int __init configfs_example_init(void)
434{
435 int ret;
436 int i;
437 struct configfs_subsystem *subsys;
438
439 for (i = 0; example_subsys[i]; i++) {
440 subsys = example_subsys[i];
441
442 config_group_init(&subsys->su_group);
443 init_MUTEX(&subsys->su_sem);
444 ret = configfs_register_subsystem(subsys);
445 if (ret) {
446 printk(KERN_ERR "Error %d while registering subsystem %s\n",
447 ret,
448 subsys->su_group.cg_item.ci_namebuf);
449 goto out_unregister;
450 }
451 }
452
453 return 0;
454
455out_unregister:
456 for (; i >= 0; i--) {
457 configfs_unregister_subsystem(example_subsys[i]);
458 }
459
460 return ret;
461}
462
463static void __exit configfs_example_exit(void)
464{
465 int i;
466
467 for (i = 0; example_subsys[i]; i++) {
468 configfs_unregister_subsystem(example_subsys[i]);
469 }
470}
471
472module_init(configfs_example_init);
473module_exit(configfs_example_exit);
474MODULE_LICENSE("GPL");
diff --git a/Documentation/filesystems/dlmfs.txt b/Documentation/filesystems/dlmfs.txt
new file mode 100644
index 000000000000..9afab845a906
--- /dev/null
+++ b/Documentation/filesystems/dlmfs.txt
@@ -0,0 +1,130 @@
1dlmfs
2==================
3A minimal DLM userspace interface implemented via a virtual file
4system.
5
6dlmfs is built with OCFS2 as it requires most of its infrastructure.
7
8Project web page: http://oss.oracle.com/projects/ocfs2
9Tools web page: http://oss.oracle.com/projects/ocfs2-tools
10OCFS2 mailing lists: http://oss.oracle.com/projects/ocfs2/mailman/
11
12All code copyright 2005 Oracle except when otherwise noted.
13
14CREDITS
15=======
16
17Some code taken from ramfs which is Copyright (C) 2000 Linus Torvalds
18and Transmeta Corp.
19
20Mark Fasheh <mark.fasheh@oracle.com>
21
22Caveats
23=======
24- Right now it only works with the OCFS2 DLM, though support for other
25 DLM implementations should not be a major issue.
26
27Mount options
28=============
29None
30
31Usage
32=====
33
34If you're just interested in OCFS2, then please see ocfs2.txt. The
35rest of this document will be geared towards those who want to use
36dlmfs for easy to setup and easy to use clustered locking in
37userspace.
38
39Setup
40=====
41
42dlmfs requires that the OCFS2 cluster infrastructure be in
43place. Please download ocfs2-tools from the above url and configure a
44cluster.
45
46You'll want to start heartbeating on a volume which all the nodes in
47your lockspace can access. The easiest way to do this is via
48ocfs2_hb_ctl (distributed with ocfs2-tools). Right now it requires
49that an OCFS2 file system be in place so that it can automatically
50find it's heartbeat area, though it will eventually support heartbeat
51against raw disks.
52
53Please see the ocfs2_hb_ctl and mkfs.ocfs2 manual pages distributed
54with ocfs2-tools.
55
56Once you're heartbeating, DLM lock 'domains' can be easily created /
57destroyed and locks within them accessed.
58
59Locking
60=======
61
62Users may access dlmfs via standard file system calls, or they can use
63'libo2dlm' (distributed with ocfs2-tools) which abstracts the file
64system calls and presents a more traditional locking api.
65
66dlmfs handles lock caching automatically for the user, so a lock
67request for an already acquired lock will not generate another DLM
68call. Userspace programs are assumed to handle their own local
69locking.
70
71Two levels of locks are supported - Shared Read, and Exlcusive.
72Also supported is a Trylock operation.
73
74For information on the libo2dlm interface, please see o2dlm.h,
75distributed with ocfs2-tools.
76
77Lock value blocks can be read and written to a resource via read(2)
78and write(2) against the fd obtained via your open(2) call. The
79maximum currently supported LVB length is 64 bytes (though that is an
80OCFS2 DLM limitation). Through this mechanism, users of dlmfs can share
81small amounts of data amongst their nodes.
82
83mkdir(2) signals dlmfs to join a domain (which will have the same name
84as the resulting directory)
85
86rmdir(2) signals dlmfs to leave the domain
87
88Locks for a given domain are represented by regular inodes inside the
89domain directory. Locking against them is done via the open(2) system
90call.
91
92The open(2) call will not return until your lock has been granted or
93an error has occurred, unless it has been instructed to do a trylock
94operation. If the lock succeeds, you'll get an fd.
95
96open(2) with O_CREAT to ensure the resource inode is created - dlmfs does
97not automatically create inodes for existing lock resources.
98
99Open Flag Lock Request Type
100--------- -----------------
101O_RDONLY Shared Read
102O_RDWR Exclusive
103
104Open Flag Resulting Locking Behavior
105--------- --------------------------
106O_NONBLOCK Trylock operation
107
108You must provide exactly one of O_RDONLY or O_RDWR.
109
110If O_NONBLOCK is also provided and the trylock operation was valid but
111could not lock the resource then open(2) will return ETXTBUSY.
112
113close(2) drops the lock associated with your fd.
114
115Modes passed to mkdir(2) or open(2) are adhered to locally. Chown is
116supported locally as well. This means you can use them to restrict
117access to the resources via dlmfs on your local node only.
118
119The resource LVB may be read from the fd in either Shared Read or
120Exclusive modes via the read(2) system call. It can be written via
121write(2) only when open in Exclusive mode.
122
123Once written, an LVB will be visible to other nodes who obtain Read
124Only or higher level locks on the resource.
125
126See Also
127========
128http://opendlm.sourceforge.net/cvsmirror/opendlm/docs/dlmbook_final.pdf
129
130For more information on the VMS distributed locking API.
diff --git a/Documentation/filesystems/ocfs2.txt b/Documentation/filesystems/ocfs2.txt
new file mode 100644
index 000000000000..f2595caf052e
--- /dev/null
+++ b/Documentation/filesystems/ocfs2.txt
@@ -0,0 +1,55 @@
1OCFS2 filesystem
2==================
3OCFS2 is a general purpose extent based shared disk cluster file
4system with many similarities to ext3. It supports 64 bit inode
5numbers, and has automatically extending metadata groups which may
6also make it attractive for non-clustered use.
7
8You'll want to install the ocfs2-tools package in order to at least
9get "mount.ocfs2" and "ocfs2_hb_ctl".
10
11Project web page: http://oss.oracle.com/projects/ocfs2
12Tools web page: http://oss.oracle.com/projects/ocfs2-tools
13OCFS2 mailing lists: http://oss.oracle.com/projects/ocfs2/mailman/
14
15All code copyright 2005 Oracle except when otherwise noted.
16
17CREDITS:
18Lots of code taken from ext3 and other projects.
19
20Authors in alphabetical order:
21Joel Becker <joel.becker@oracle.com>
22Zach Brown <zach.brown@oracle.com>
23Mark Fasheh <mark.fasheh@oracle.com>
24Kurt Hackel <kurt.hackel@oracle.com>
25Sunil Mushran <sunil.mushran@oracle.com>
26Manish Singh <manish.singh@oracle.com>
27
28Caveats
29=======
30Features which OCFS2 does not support yet:
31 - sparse files
32 - extended attributes
33 - shared writeable mmap
34 - loopback is supported, but data written will not
35 be cluster coherent.
36 - quotas
37 - cluster aware flock
38 - Directory change notification (F_NOTIFY)
39 - Distributed Caching (F_SETLEASE/F_GETLEASE/break_lease)
40 - POSIX ACLs
41 - readpages / writepages (not user visible)
42
43Mount options
44=============
45
46OCFS2 supports the following mount options:
47(*) == default
48
49barrier=1 This enables/disables barriers. barrier=0 disables it,
50 barrier=1 enables it.
51errors=remount-ro(*) Remount the filesystem read-only on an error.
52errors=panic Panic and halt the machine if an error occurs.
53intr (*) Allow signals to interrupt cluster operations.
54nointr Do not allow signals to interrupt cluster
55 operations.
diff --git a/Documentation/keys.txt b/Documentation/keys.txt
index 31154882000a..6304db59bfe4 100644
--- a/Documentation/keys.txt
+++ b/Documentation/keys.txt
@@ -860,24 +860,6 @@ The structure has a number of fields, some of which are mandatory:
860 It is safe to sleep in this method. 860 It is safe to sleep in this method.
861 861
862 862
863 (*) int (*duplicate)(struct key *key, const struct key *source);
864
865 If this type of key can be duplicated, then this method should be
866 provided. It is called to copy the payload attached to the source into the
867 new key. The data length on the new key will have been updated and the
868 quota adjusted already.
869
870 This method will be called with the source key's semaphore read-locked to
871 prevent its payload from being changed, thus RCU constraints need not be
872 applied to the source key.
873
874 This method does not have to lock the destination key in order to attach a
875 payload. The fact that KEY_FLAG_INSTANTIATED is not set in key->flags
876 prevents anything else from gaining access to the key.
877
878 It is safe to sleep in this method.
879
880
881 (*) int (*update)(struct key *key, const void *data, size_t datalen); 863 (*) int (*update)(struct key *key, const void *data, size_t datalen);
882 864
883 If this type of key can be updated, then this method should be provided. 865 If this type of key can be updated, then this method should be provided.
diff --git a/Documentation/md.txt b/Documentation/md.txt
index 23e6cce40f9c..03a13c462cf2 100644
--- a/Documentation/md.txt
+++ b/Documentation/md.txt
@@ -51,6 +51,30 @@ superblock can be autodetected and run at boot time.
51The kernel parameter "raid=partitionable" (or "raid=part") means 51The kernel parameter "raid=partitionable" (or "raid=part") means
52that all auto-detected arrays are assembled as partitionable. 52that all auto-detected arrays are assembled as partitionable.
53 53
54Boot time assembly of degraded/dirty arrays
55-------------------------------------------
56
57If a raid5 or raid6 array is both dirty and degraded, it could have
58undetectable data corruption. This is because the fact that it is
59'dirty' means that the parity cannot be trusted, and the fact that it
60is degraded means that some datablocks are missing and cannot reliably
61be reconstructed (due to no parity).
62
63For this reason, md will normally refuse to start such an array. This
64requires the sysadmin to take action to explicitly start the array
65desipite possible corruption. This is normally done with
66 mdadm --assemble --force ....
67
68This option is not really available if the array has the root
69filesystem on it. In order to support this booting from such an
70array, md supports a module parameter "start_dirty_degraded" which,
71when set to 1, bypassed the checks and will allows dirty degraded
72arrays to be started.
73
74So, to boot with a root filesystem of a dirty degraded raid[56], use
75
76 md-mod.start_dirty_degraded=1
77
54 78
55Superblock formats 79Superblock formats
56------------------ 80------------------
@@ -141,6 +165,70 @@ All md devices contain:
141 in a fully functional array. If this is not yet known, the file 165 in a fully functional array. If this is not yet known, the file
142 will be empty. If an array is being resized (not currently 166 will be empty. If an array is being resized (not currently
143 possible) this will contain the larger of the old and new sizes. 167 possible) this will contain the larger of the old and new sizes.
168 Some raid level (RAID1) allow this value to be set while the
169 array is active. This will reconfigure the array. Otherwise
170 it can only be set while assembling an array.
171
172 chunk_size
173 This is the size if bytes for 'chunks' and is only relevant to
174 raid levels that involve striping (1,4,5,6,10). The address space
175 of the array is conceptually divided into chunks and consecutive
176 chunks are striped onto neighbouring devices.
177 The size should be atleast PAGE_SIZE (4k) and should be a power
178 of 2. This can only be set while assembling an array
179
180 component_size
181 For arrays with data redundancy (i.e. not raid0, linear, faulty,
182 multipath), all components must be the same size - or at least
183 there must a size that they all provide space for. This is a key
184 part or the geometry of the array. It is measured in sectors
185 and can be read from here. Writing to this value may resize
186 the array if the personality supports it (raid1, raid5, raid6),
187 and if the component drives are large enough.
188
189 metadata_version
190 This indicates the format that is being used to record metadata
191 about the array. It can be 0.90 (traditional format), 1.0, 1.1,
192 1.2 (newer format in varying locations) or "none" indicating that
193 the kernel isn't managing metadata at all.
194
195 level
196 The raid 'level' for this array. The name will often (but not
197 always) be the same as the name of the module that implements the
198 level. To be auto-loaded the module must have an alias
199 md-$LEVEL e.g. md-raid5
200 This can be written only while the array is being assembled, not
201 after it is started.
202
203 new_dev
204 This file can be written but not read. The value written should
205 be a block device number as major:minor. e.g. 8:0
206 This will cause that device to be attached to the array, if it is
207 available. It will then appear at md/dev-XXX (depending on the
208 name of the device) and further configuration is then possible.
209
210 sync_speed_min
211 sync_speed_max
212 This are similar to /proc/sys/dev/raid/speed_limit_{min,max}
213 however they only apply to the particular array.
214 If no value has been written to these, of if the word 'system'
215 is written, then the system-wide value is used. If a value,
216 in kibibytes-per-second is written, then it is used.
217 When the files are read, they show the currently active value
218 followed by "(local)" or "(system)" depending on whether it is
219 a locally set or system-wide value.
220
221 sync_completed
222 This shows the number of sectors that have been completed of
223 whatever the current sync_action is, followed by the number of
224 sectors in total that could need to be processed. The two
225 numbers are separated by a '/' thus effectively showing one
226 value, a fraction of the process that is complete.
227
228 sync_speed
229 This shows the current actual speed, in K/sec, of the current
230 sync_action. It is averaged over the last 30 seconds.
231
144 232
145As component devices are added to an md array, they appear in the 'md' 233As component devices are added to an md array, they appear in the 'md'
146directory as new directories named 234directory as new directories named
@@ -167,6 +255,38 @@ Each directory contains:
167 of being recoverred to 255 of being recoverred to
168 This list make grow in future. 256 This list make grow in future.
169 257
258 errors
259 An approximate count of read errors that have been detected on
260 this device but have not caused the device to be evicted from
261 the array (either because they were corrected or because they
262 happened while the array was read-only). When using version-1
263 metadata, this value persists across restarts of the array.
264
265 This value can be written while assembling an array thus
266 providing an ongoing count for arrays with metadata managed by
267 userspace.
268
269 slot
270 This gives the role that the device has in the array. It will
271 either be 'none' if the device is not active in the array
272 (i.e. is a spare or has failed) or an integer less than the
273 'raid_disks' number for the array indicating which possition
274 it currently fills. This can only be set while assembling an
275 array. A device for which this is set is assumed to be working.
276
277 offset
278 This gives the location in the device (in sectors from the
279 start) where data from the array will be stored. Any part of
280 the device before this offset us not touched, unless it is
281 used for storing metadata (Formats 1.1 and 1.2).
282
283 size
284 The amount of the device, after the offset, that can be used
285 for storage of data. This will normally be the same as the
286 component_size. This can be written while assembling an
287 array. If a value less than the current component_size is
288 written, component_size will be reduced to this value.
289
170 290
171An active md device will also contain and entry for each active device 291An active md device will also contain and entry for each active device
172in the array. These are named 292in the array. These are named
diff --git a/Documentation/power/interface.txt b/Documentation/power/interface.txt
index f5ebda5f4276..bd4ffb5bd49a 100644
--- a/Documentation/power/interface.txt
+++ b/Documentation/power/interface.txt
@@ -41,3 +41,14 @@ to. Writing to this file will accept one of
41It will only change to 'firmware' or 'platform' if the system supports 41It will only change to 'firmware' or 'platform' if the system supports
42it. 42it.
43 43
44/sys/power/image_size controls the size of the image created by
45the suspend-to-disk mechanism. It can be written a string
46representing a non-negative integer that will be used as an upper
47limit of the image size, in megabytes. The suspend-to-disk mechanism will
48do its best to ensure the image size will not exceed that number. However,
49if this turns out to be impossible, it will try to suspend anyway using the
50smallest image possible. In particular, if "0" is written to this file, the
51suspend image will be as small as possible.
52
53Reading from this file will display the current image size limit, which
54is set to 500 MB by default.
diff --git a/Documentation/power/swsusp.txt b/Documentation/power/swsusp.txt
index b0d50840788e..cd0fcd89a6f0 100644
--- a/Documentation/power/swsusp.txt
+++ b/Documentation/power/swsusp.txt
@@ -27,6 +27,11 @@ echo shutdown > /sys/power/disk; echo disk > /sys/power/state
27 27
28echo platform > /sys/power/disk; echo disk > /sys/power/state 28echo platform > /sys/power/disk; echo disk > /sys/power/state
29 29
30If you want to limit the suspend image size to N megabytes, do
31
32echo N > /sys/power/image_size
33
34before suspend (it is limited to 500 MB by default).
30 35
31Encrypted suspend image: 36Encrypted suspend image:
32------------------------ 37------------------------