aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/00-INDEX2
-rw-r--r--Documentation/CodingStyle3
-rw-r--r--Documentation/DMA-API.txt2
-rw-r--r--Documentation/DocBook/journal-api.tmpl4
-rw-r--r--Documentation/DocBook/usb.tmpl2
-rw-r--r--Documentation/MSI-HOWTO.txt2
-rw-r--r--Documentation/RCU/RTFP.txt36
-rw-r--r--Documentation/RCU/UP.txt79
-rw-r--r--Documentation/RCU/checklist.txt23
-rw-r--r--Documentation/RCU/rcu.txt48
-rw-r--r--Documentation/RCU/whatisRCU.txt902
-rw-r--r--Documentation/cpu-freq/cpufreq-stats.txt2
-rw-r--r--Documentation/cpusets.txt2
-rw-r--r--Documentation/crypto/descore-readme.txt2
-rw-r--r--Documentation/feature-removal-schedule.txt8
-rw-r--r--Documentation/ioctl/cdrom.txt2
-rw-r--r--Documentation/mono.txt2
-rw-r--r--Documentation/networking/bonding.txt4
-rw-r--r--Documentation/networking/wan-router.txt4
-rw-r--r--Documentation/pci.txt2
-rw-r--r--Documentation/powerpc/eeh-pci-error-recovery.txt2
-rw-r--r--Documentation/s390/s390dbf.txt2
-rw-r--r--Documentation/scsi/ibmmca.txt2
-rw-r--r--Documentation/sound/alsa/ALSA-Configuration.txt2
-rw-r--r--Documentation/sysrq.txt2
-rw-r--r--Documentation/uml/UserModeLinux-HOWTO.txt2
-rw-r--r--Documentation/usb/gadget_serial.txt2
-rw-r--r--Documentation/video4linux/Zoran2
28 files changed, 1091 insertions, 56 deletions
diff --git a/Documentation/00-INDEX b/Documentation/00-INDEX
index f6de52b01059..433cf5e9ae04 100644
--- a/Documentation/00-INDEX
+++ b/Documentation/00-INDEX
@@ -277,7 +277,7 @@ tty.txt
277unicode.txt 277unicode.txt
278 - info on the Unicode character/font mapping used in Linux. 278 - info on the Unicode character/font mapping used in Linux.
279uml/ 279uml/
280 - directory with infomation about User Mode Linux. 280 - directory with information about User Mode Linux.
281usb/ 281usb/
282 - directory with info regarding the Universal Serial Bus. 282 - directory with info regarding the Universal Serial Bus.
283video4linux/ 283video4linux/
diff --git a/Documentation/CodingStyle b/Documentation/CodingStyle
index f25b3953f513..22e5f9036f3c 100644
--- a/Documentation/CodingStyle
+++ b/Documentation/CodingStyle
@@ -236,6 +236,9 @@ ugly), but try to avoid excess. Instead, put the comments at the head
236of the function, telling people what it does, and possibly WHY it does 236of the function, telling people what it does, and possibly WHY it does
237it. 237it.
238 238
239When commenting the kernel API functions, please use the kerneldoc format.
240See the files Documentation/kernel-doc-nano-HOWTO.txt and scripts/kernel-doc
241for details.
239 242
240 Chapter 8: You've made a mess of it 243 Chapter 8: You've made a mess of it
241 244
diff --git a/Documentation/DMA-API.txt b/Documentation/DMA-API.txt
index 6ee3cd6134df..1af0f2d50220 100644
--- a/Documentation/DMA-API.txt
+++ b/Documentation/DMA-API.txt
@@ -121,7 +121,7 @@ pool's device.
121 dma_addr_t addr); 121 dma_addr_t addr);
122 122
123This puts memory back into the pool. The pool is what was passed to 123This puts memory back into the pool. The pool is what was passed to
124the the pool allocation routine; the cpu and dma addresses are what 124the pool allocation routine; the cpu and dma addresses are what
125were returned when that routine allocated the memory being freed. 125were returned when that routine allocated the memory being freed.
126 126
127 127
diff --git a/Documentation/DocBook/journal-api.tmpl b/Documentation/DocBook/journal-api.tmpl
index 1ef6f43c6d8f..341aaa4ce481 100644
--- a/Documentation/DocBook/journal-api.tmpl
+++ b/Documentation/DocBook/journal-api.tmpl
@@ -116,7 +116,7 @@ filesystem. Almost.
116 116
117You still need to actually journal your filesystem changes, this 117You still need to actually journal your filesystem changes, this
118is done by wrapping them into transactions. Additionally you 118is done by wrapping them into transactions. Additionally you
119also need to wrap the modification of each of the the buffers 119also need to wrap the modification of each of the buffers
120with calls to the journal layer, so it knows what the modifications 120with calls to the journal layer, so it knows what the modifications
121you are actually making are. To do this use journal_start() which 121you are actually making are. To do this use journal_start() which
122returns a transaction handle. 122returns a transaction handle.
@@ -128,7 +128,7 @@ and its counterpart journal_stop(), which indicates the end of a transaction
128are nestable calls, so you can reenter a transaction if necessary, 128are nestable calls, so you can reenter a transaction if necessary,
129but remember you must call journal_stop() the same number of times as 129but remember you must call journal_stop() the same number of times as
130journal_start() before the transaction is completed (or more accurately 130journal_start() before the transaction is completed (or more accurately
131leaves the the update phase). Ext3/VFS makes use of this feature to simplify 131leaves the update phase). Ext3/VFS makes use of this feature to simplify
132quota support. 132quota support.
133</para> 133</para>
134 134
diff --git a/Documentation/DocBook/usb.tmpl b/Documentation/DocBook/usb.tmpl
index f3ef0bf435e9..705c442c7bf4 100644
--- a/Documentation/DocBook/usb.tmpl
+++ b/Documentation/DocBook/usb.tmpl
@@ -841,7 +841,7 @@ usbdev_ioctl (int fd, int ifno, unsigned request, void *param)
841 File modification time is not updated by this request. 841 File modification time is not updated by this request.
842 </para><para> 842 </para><para>
843 Those struct members are from some interface descriptor 843 Those struct members are from some interface descriptor
844 applying to the the current configuration. 844 applying to the current configuration.
845 The interface number is the bInterfaceNumber value, and 845 The interface number is the bInterfaceNumber value, and
846 the altsetting number is the bAlternateSetting value. 846 the altsetting number is the bAlternateSetting value.
847 (This resets each endpoint in the interface.) 847 (This resets each endpoint in the interface.)
diff --git a/Documentation/MSI-HOWTO.txt b/Documentation/MSI-HOWTO.txt
index d5032eb480aa..63edc5f847c4 100644
--- a/Documentation/MSI-HOWTO.txt
+++ b/Documentation/MSI-HOWTO.txt
@@ -430,7 +430,7 @@ which may result in system hang. The software driver of specific
430MSI-capable hardware is responsible for whether calling 430MSI-capable hardware is responsible for whether calling
431pci_enable_msi or not. A return of zero indicates the kernel 431pci_enable_msi or not. A return of zero indicates the kernel
432successfully initializes the MSI/MSI-X capability structure of the 432successfully initializes the MSI/MSI-X capability structure of the
433device funtion. The device function is now running on MSI/MSI-X mode. 433device function. The device function is now running on MSI/MSI-X mode.
434 434
4355.6 How to tell whether MSI/MSI-X is enabled on device function 4355.6 How to tell whether MSI/MSI-X is enabled on device function
436 436
diff --git a/Documentation/RCU/RTFP.txt b/Documentation/RCU/RTFP.txt
index 9c6d450138ea..fcbcbc35b122 100644
--- a/Documentation/RCU/RTFP.txt
+++ b/Documentation/RCU/RTFP.txt
@@ -2,7 +2,8 @@ Read the F-ing Papers!
2 2
3 3
4This document describes RCU-related publications, and is followed by 4This document describes RCU-related publications, and is followed by
5the corresponding bibtex entries. 5the corresponding bibtex entries. A number of the publications may
6be found at http://www.rdrop.com/users/paulmck/RCU/.
6 7
7The first thing resembling RCU was published in 1980, when Kung and Lehman 8The first thing resembling RCU was published in 1980, when Kung and Lehman
8[Kung80] recommended use of a garbage collector to defer destruction 9[Kung80] recommended use of a garbage collector to defer destruction
@@ -113,6 +114,10 @@ describing how to make RCU safe for soft-realtime applications [Sarma04c],
113and a paper describing SELinux performance with RCU [JamesMorris04b]. 114and a paper describing SELinux performance with RCU [JamesMorris04b].
114 115
115 116
1172005 has seen further adaptation of RCU to realtime use, permitting
118preemption of RCU realtime critical sections [PaulMcKenney05a,
119PaulMcKenney05b].
120
116Bibtex Entries 121Bibtex Entries
117 122
118@article{Kung80 123@article{Kung80
@@ -410,3 +415,32 @@ Oregon Health and Sciences University"
410\url{http://www.livejournal.com/users/james_morris/2153.html} 415\url{http://www.livejournal.com/users/james_morris/2153.html}
411[Viewed December 10, 2004]" 416[Viewed December 10, 2004]"
412} 417}
418
419@unpublished{PaulMcKenney05a
420,Author="Paul E. McKenney"
421,Title="{[RFC]} {RCU} and {CONFIG\_PREEMPT\_RT} progress"
422,month="May"
423,year="2005"
424,note="Available:
425\url{http://lkml.org/lkml/2005/5/9/185}
426[Viewed May 13, 2005]"
427,annotation="
428 First publication of working lock-based deferred free patches
429 for the CONFIG_PREEMPT_RT environment.
430"
431}
432
433@conference{PaulMcKenney05b
434,Author="Paul E. McKenney and Dipankar Sarma"
435,Title="Towards Hard Realtime Response from the Linux Kernel on SMP Hardware"
436,Booktitle="linux.conf.au 2005"
437,month="April"
438,year="2005"
439,address="Canberra, Australia"
440,note="Available:
441\url{http://www.rdrop.com/users/paulmck/RCU/realtimeRCU.2005.04.23a.pdf}
442[Viewed May 13, 2005]"
443,annotation="
444 Realtime turns into making RCU yet more realtime friendly.
445"
446}
diff --git a/Documentation/RCU/UP.txt b/Documentation/RCU/UP.txt
index 3bfb84b3b7db..aab4a9ec3931 100644
--- a/Documentation/RCU/UP.txt
+++ b/Documentation/RCU/UP.txt
@@ -8,7 +8,7 @@ is that since there is only one CPU, it should not be necessary to
8wait for anything else to get done, since there are no other CPUs for 8wait for anything else to get done, since there are no other CPUs for
9anything else to be happening on. Although this approach will -sort- -of- 9anything else to be happening on. Although this approach will -sort- -of-
10work a surprising amount of the time, it is a very bad idea in general. 10work a surprising amount of the time, it is a very bad idea in general.
11This document presents two examples that demonstrate exactly how bad an 11This document presents three examples that demonstrate exactly how bad an
12idea this is. 12idea this is.
13 13
14 14
@@ -26,6 +26,9 @@ from softirq, the list scan would find itself referencing a newly freed
26element B. This situation can greatly decrease the life expectancy of 26element B. This situation can greatly decrease the life expectancy of
27your kernel. 27your kernel.
28 28
29This same problem can occur if call_rcu() is invoked from a hardware
30interrupt handler.
31
29 32
30Example 2: Function-Call Fatality 33Example 2: Function-Call Fatality
31 34
@@ -44,8 +47,37 @@ its arguments would cause it to fail to make the fundamental guarantee
44underlying RCU, namely that call_rcu() defers invoking its arguments until 47underlying RCU, namely that call_rcu() defers invoking its arguments until
45all RCU read-side critical sections currently executing have completed. 48all RCU read-side critical sections currently executing have completed.
46 49
47Quick Quiz: why is it -not- legal to invoke synchronize_rcu() in 50Quick Quiz #1: why is it -not- legal to invoke synchronize_rcu() in
48this case? 51 this case?
52
53
54Example 3: Death by Deadlock
55
56Suppose that call_rcu() is invoked while holding a lock, and that the
57callback function must acquire this same lock. In this case, if
58call_rcu() were to directly invoke the callback, the result would
59be self-deadlock.
60
61In some cases, it would possible to restructure to code so that
62the call_rcu() is delayed until after the lock is released. However,
63there are cases where this can be quite ugly:
64
651. If a number of items need to be passed to call_rcu() within
66 the same critical section, then the code would need to create
67 a list of them, then traverse the list once the lock was
68 released.
69
702. In some cases, the lock will be held across some kernel API,
71 so that delaying the call_rcu() until the lock is released
72 requires that the data item be passed up via a common API.
73 It is far better to guarantee that callbacks are invoked
74 with no locks held than to have to modify such APIs to allow
75 arbitrary data items to be passed back up through them.
76
77If call_rcu() directly invokes the callback, painful locking restrictions
78or API changes would be required.
79
80Quick Quiz #2: What locking restriction must RCU callbacks respect?
49 81
50 82
51Summary 83Summary
@@ -53,12 +85,35 @@ Summary
53Permitting call_rcu() to immediately invoke its arguments or permitting 85Permitting call_rcu() to immediately invoke its arguments or permitting
54synchronize_rcu() to immediately return breaks RCU, even on a UP system. 86synchronize_rcu() to immediately return breaks RCU, even on a UP system.
55So do not do it! Even on a UP system, the RCU infrastructure -must- 87So do not do it! Even on a UP system, the RCU infrastructure -must-
56respect grace periods. 88respect grace periods, and -must- invoke callbacks from a known environment
57 89in which no locks are held.
58 90
59Answer to Quick Quiz 91
60 92Answer to Quick Quiz #1:
61The calling function is scanning an RCU-protected linked list, and 93 Why is it -not- legal to invoke synchronize_rcu() in this case?
62is therefore within an RCU read-side critical section. Therefore, 94
63the called function has been invoked within an RCU read-side critical 95 Because the calling function is scanning an RCU-protected linked
64section, and is not permitted to block. 96 list, and is therefore within an RCU read-side critical section.
97 Therefore, the called function has been invoked within an RCU
98 read-side critical section, and is not permitted to block.
99
100Answer to Quick Quiz #2:
101 What locking restriction must RCU callbacks respect?
102
103 Any lock that is acquired within an RCU callback must be
104 acquired elsewhere using an _irq variant of the spinlock
105 primitive. For example, if "mylock" is acquired by an
106 RCU callback, then a process-context acquisition of this
107 lock must use something like spin_lock_irqsave() to
108 acquire the lock.
109
110 If the process-context code were to simply use spin_lock(),
111 then, since RCU callbacks can be invoked from softirq context,
112 the callback might be called from a softirq that interrupted
113 the process-context critical section. This would result in
114 self-deadlock.
115
116 This restriction might seem gratuitous, since very few RCU
117 callbacks acquire locks directly. However, a great many RCU
118 callbacks do acquire locks -indirectly-, for example, via
119 the kfree() primitive.
diff --git a/Documentation/RCU/checklist.txt b/Documentation/RCU/checklist.txt
index 8f3fb77c9cd3..e118a7c1a092 100644
--- a/Documentation/RCU/checklist.txt
+++ b/Documentation/RCU/checklist.txt
@@ -43,6 +43,10 @@ over a rather long period of time, but improvements are always welcome!
43 rcu_read_lock_bh()) in the read-side critical sections, 43 rcu_read_lock_bh()) in the read-side critical sections,
44 and are also an excellent aid to readability. 44 and are also an excellent aid to readability.
45 45
46 As a rough rule of thumb, any dereference of an RCU-protected
47 pointer must be covered by rcu_read_lock() or rcu_read_lock_bh()
48 or by the appropriate update-side lock.
49
463. Does the update code tolerate concurrent accesses? 503. Does the update code tolerate concurrent accesses?
47 51
48 The whole point of RCU is to permit readers to run without 52 The whole point of RCU is to permit readers to run without
@@ -90,7 +94,11 @@ over a rather long period of time, but improvements are always welcome!
90 94
91 The rcu_dereference() primitive is used by the various 95 The rcu_dereference() primitive is used by the various
92 "_rcu()" list-traversal primitives, such as the 96 "_rcu()" list-traversal primitives, such as the
93 list_for_each_entry_rcu(). 97 list_for_each_entry_rcu(). Note that it is perfectly
98 legal (if redundant) for update-side code to use
99 rcu_dereference() and the "_rcu()" list-traversal
100 primitives. This is particularly useful in code
101 that is common to readers and updaters.
94 102
95 b. If the list macros are being used, the list_add_tail_rcu() 103 b. If the list macros are being used, the list_add_tail_rcu()
96 and list_add_rcu() primitives must be used in order 104 and list_add_rcu() primitives must be used in order
@@ -150,16 +158,9 @@ over a rather long period of time, but improvements are always welcome!
150 158
151 Use of the _rcu() list-traversal primitives outside of an 159 Use of the _rcu() list-traversal primitives outside of an
152 RCU read-side critical section causes no harm other than 160 RCU read-side critical section causes no harm other than
153 a slight performance degradation on Alpha CPUs and some 161 a slight performance degradation on Alpha CPUs. It can
154 confusion on the part of people trying to read the code. 162 also be quite helpful in reducing code bloat when common
155 163 code is shared between readers and updaters.
156 Another way of thinking of this is "If you are holding the
157 lock that prevents the data structure from changing, why do
158 you also need RCU-based protection?" That said, there may
159 well be situations where use of the _rcu() list-traversal
160 primitives while the update-side lock is held results in
161 simpler and more maintainable code. The jury is still out
162 on this question.
163 164
16410. Conversely, if you are in an RCU read-side critical section, 16510. Conversely, if you are in an RCU read-side critical section,
165 you -must- use the "_rcu()" variants of the list macros. 166 you -must- use the "_rcu()" variants of the list macros.
diff --git a/Documentation/RCU/rcu.txt b/Documentation/RCU/rcu.txt
index eb444006683e..6fa092251586 100644
--- a/Documentation/RCU/rcu.txt
+++ b/Documentation/RCU/rcu.txt
@@ -64,6 +64,54 @@ o I hear that RCU is patented? What is with that?
64 Of these, one was allowed to lapse by the assignee, and the 64 Of these, one was allowed to lapse by the assignee, and the
65 others have been contributed to the Linux kernel under GPL. 65 others have been contributed to the Linux kernel under GPL.
66 66
67o I hear that RCU needs work in order to support realtime kernels?
68
69 Yes, work in progress.
70
67o Where can I find more information on RCU? 71o Where can I find more information on RCU?
68 72
69 See the RTFP.txt file in this directory. 73 See the RTFP.txt file in this directory.
74 Or point your browser at http://www.rdrop.com/users/paulmck/RCU/.
75
76o What are all these files in this directory?
77
78
79 NMI-RCU.txt
80
81 Describes how to use RCU to implement dynamic
82 NMI handlers, which can be revectored on the fly,
83 without rebooting.
84
85 RTFP.txt
86
87 List of RCU-related publications and web sites.
88
89 UP.txt
90
91 Discussion of RCU usage in UP kernels.
92
93 arrayRCU.txt
94
95 Describes how to use RCU to protect arrays, with
96 resizeable arrays whose elements reference other
97 data structures being of the most interest.
98
99 checklist.txt
100
101 Lists things to check for when inspecting code that
102 uses RCU.
103
104 listRCU.txt
105
106 Describes how to use RCU to protect linked lists.
107 This is the simplest and most common use of RCU
108 in the Linux kernel.
109
110 rcu.txt
111
112 You are reading it!
113
114 whatisRCU.txt
115
116 Overview of how the RCU implementation works. Along
117 the way, presents a conceptual view of RCU.
diff --git a/Documentation/RCU/whatisRCU.txt b/Documentation/RCU/whatisRCU.txt
new file mode 100644
index 000000000000..354d89c78377
--- /dev/null
+++ b/Documentation/RCU/whatisRCU.txt
@@ -0,0 +1,902 @@
1What is RCU?
2
3RCU is a synchronization mechanism that was added to the Linux kernel
4during the 2.5 development effort that is optimized for read-mostly
5situations. Although RCU is actually quite simple once you understand it,
6getting there can sometimes be a challenge. Part of the problem is that
7most of the past descriptions of RCU have been written with the mistaken
8assumption that there is "one true way" to describe RCU. Instead,
9the experience has been that different people must take different paths
10to arrive at an understanding of RCU. This document provides several
11different paths, as follows:
12
131. RCU OVERVIEW
142. WHAT IS RCU'S CORE API?
153. WHAT ARE SOME EXAMPLE USES OF CORE RCU API?
164. WHAT IF MY UPDATING THREAD CANNOT BLOCK?
175. WHAT ARE SOME SIMPLE IMPLEMENTATIONS OF RCU?
186. ANALOGY WITH READER-WRITER LOCKING
197. FULL LIST OF RCU APIs
208. ANSWERS TO QUICK QUIZZES
21
22People who prefer starting with a conceptual overview should focus on
23Section 1, though most readers will profit by reading this section at
24some point. People who prefer to start with an API that they can then
25experiment with should focus on Section 2. People who prefer to start
26with example uses should focus on Sections 3 and 4. People who need to
27understand the RCU implementation should focus on Section 5, then dive
28into the kernel source code. People who reason best by analogy should
29focus on Section 6. Section 7 serves as an index to the docbook API
30documentation, and Section 8 is the traditional answer key.
31
32So, start with the section that makes the most sense to you and your
33preferred method of learning. If you need to know everything about
34everything, feel free to read the whole thing -- but if you are really
35that type of person, you have perused the source code and will therefore
36never need this document anyway. ;-)
37
38
391. RCU OVERVIEW
40
41The basic idea behind RCU is to split updates into "removal" and
42"reclamation" phases. The removal phase removes references to data items
43within a data structure (possibly by replacing them with references to
44new versions of these data items), and can run concurrently with readers.
45The reason that it is safe to run the removal phase concurrently with
46readers is the semantics of modern CPUs guarantee that readers will see
47either the old or the new version of the data structure rather than a
48partially updated reference. The reclamation phase does the work of reclaiming
49(e.g., freeing) the data items removed from the data structure during the
50removal phase. Because reclaiming data items can disrupt any readers
51concurrently referencing those data items, the reclamation phase must
52not start until readers no longer hold references to those data items.
53
54Splitting the update into removal and reclamation phases permits the
55updater to perform the removal phase immediately, and to defer the
56reclamation phase until all readers active during the removal phase have
57completed, either by blocking until they finish or by registering a
58callback that is invoked after they finish. Only readers that are active
59during the removal phase need be considered, because any reader starting
60after the removal phase will be unable to gain a reference to the removed
61data items, and therefore cannot be disrupted by the reclamation phase.
62
63So the typical RCU update sequence goes something like the following:
64
65a. Remove pointers to a data structure, so that subsequent
66 readers cannot gain a reference to it.
67
68b. Wait for all previous readers to complete their RCU read-side
69 critical sections.
70
71c. At this point, there cannot be any readers who hold references
72 to the data structure, so it now may safely be reclaimed
73 (e.g., kfree()d).
74
75Step (b) above is the key idea underlying RCU's deferred destruction.
76The ability to wait until all readers are done allows RCU readers to
77use much lighter-weight synchronization, in some cases, absolutely no
78synchronization at all. In contrast, in more conventional lock-based
79schemes, readers must use heavy-weight synchronization in order to
80prevent an updater from deleting the data structure out from under them.
81This is because lock-based updaters typically update data items in place,
82and must therefore exclude readers. In contrast, RCU-based updaters
83typically take advantage of the fact that writes to single aligned
84pointers are atomic on modern CPUs, allowing atomic insertion, removal,
85and replacement of data items in a linked structure without disrupting
86readers. Concurrent RCU readers can then continue accessing the old
87versions, and can dispense with the atomic operations, memory barriers,
88and communications cache misses that are so expensive on present-day
89SMP computer systems, even in absence of lock contention.
90
91In the three-step procedure shown above, the updater is performing both
92the removal and the reclamation step, but it is often helpful for an
93entirely different thread to do the reclamation, as is in fact the case
94in the Linux kernel's directory-entry cache (dcache). Even if the same
95thread performs both the update step (step (a) above) and the reclamation
96step (step (c) above), it is often helpful to think of them separately.
97For example, RCU readers and updaters need not communicate at all,
98but RCU provides implicit low-overhead communication between readers
99and reclaimers, namely, in step (b) above.
100
101So how the heck can a reclaimer tell when a reader is done, given
102that readers are not doing any sort of synchronization operations???
103Read on to learn about how RCU's API makes this easy.
104
105
1062. WHAT IS RCU'S CORE API?
107
108The core RCU API is quite small:
109
110a. rcu_read_lock()
111b. rcu_read_unlock()
112c. synchronize_rcu() / call_rcu()
113d. rcu_assign_pointer()
114e. rcu_dereference()
115
116There are many other members of the RCU API, but the rest can be
117expressed in terms of these five, though most implementations instead
118express synchronize_rcu() in terms of the call_rcu() callback API.
119
120The five core RCU APIs are described below, the other 18 will be enumerated
121later. See the kernel docbook documentation for more info, or look directly
122at the function header comments.
123
124rcu_read_lock()
125
126 void rcu_read_lock(void);
127
128 Used by a reader to inform the reclaimer that the reader is
129 entering an RCU read-side critical section. It is illegal
130 to block while in an RCU read-side critical section, though
131 kernels built with CONFIG_PREEMPT_RCU can preempt RCU read-side
132 critical sections. Any RCU-protected data structure accessed
133 during an RCU read-side critical section is guaranteed to remain
134 unreclaimed for the full duration of that critical section.
135 Reference counts may be used in conjunction with RCU to maintain
136 longer-term references to data structures.
137
138rcu_read_unlock()
139
140 void rcu_read_unlock(void);
141
142 Used by a reader to inform the reclaimer that the reader is
143 exiting an RCU read-side critical section. Note that RCU
144 read-side critical sections may be nested and/or overlapping.
145
146synchronize_rcu()
147
148 void synchronize_rcu(void);
149
150 Marks the end of updater code and the beginning of reclaimer
151 code. It does this by blocking until all pre-existing RCU
152 read-side critical sections on all CPUs have completed.
153 Note that synchronize_rcu() will -not- necessarily wait for
154 any subsequent RCU read-side critical sections to complete.
155 For example, consider the following sequence of events:
156
157 CPU 0 CPU 1 CPU 2
158 ----------------- ------------------------- ---------------
159 1. rcu_read_lock()
160 2. enters synchronize_rcu()
161 3. rcu_read_lock()
162 4. rcu_read_unlock()
163 5. exits synchronize_rcu()
164 6. rcu_read_unlock()
165
166 To reiterate, synchronize_rcu() waits only for ongoing RCU
167 read-side critical sections to complete, not necessarily for
168 any that begin after synchronize_rcu() is invoked.
169
170 Of course, synchronize_rcu() does not necessarily return
171 -immediately- after the last pre-existing RCU read-side critical
172 section completes. For one thing, there might well be scheduling
173 delays. For another thing, many RCU implementations process
174 requests in batches in order to improve efficiencies, which can
175 further delay synchronize_rcu().
176
177 Since synchronize_rcu() is the API that must figure out when
178 readers are done, its implementation is key to RCU. For RCU
179 to be useful in all but the most read-intensive situations,
180 synchronize_rcu()'s overhead must also be quite small.
181
182 The call_rcu() API is a callback form of synchronize_rcu(),
183 and is described in more detail in a later section. Instead of
184 blocking, it registers a function and argument which are invoked
185 after all ongoing RCU read-side critical sections have completed.
186 This callback variant is particularly useful in situations where
187 it is illegal to block.
188
189rcu_assign_pointer()
190
191 typeof(p) rcu_assign_pointer(p, typeof(p) v);
192
193 Yes, rcu_assign_pointer() -is- implemented as a macro, though it
194 would be cool to be able to declare a function in this manner.
195 (Compiler experts will no doubt disagree.)
196
197 The updater uses this function to assign a new value to an
198 RCU-protected pointer, in order to safely communicate the change
199 in value from the updater to the reader. This function returns
200 the new value, and also executes any memory-barrier instructions
201 required for a given CPU architecture.
202
203 Perhaps more important, it serves to document which pointers
204 are protected by RCU. That said, rcu_assign_pointer() is most
205 frequently used indirectly, via the _rcu list-manipulation
206 primitives such as list_add_rcu().
207
208rcu_dereference()
209
210 typeof(p) rcu_dereference(p);
211
212 Like rcu_assign_pointer(), rcu_dereference() must be implemented
213 as a macro.
214
215 The reader uses rcu_dereference() to fetch an RCU-protected
216 pointer, which returns a value that may then be safely
217 dereferenced. Note that rcu_deference() does not actually
218 dereference the pointer, instead, it protects the pointer for
219 later dereferencing. It also executes any needed memory-barrier
220 instructions for a given CPU architecture. Currently, only Alpha
221 needs memory barriers within rcu_dereference() -- on other CPUs,
222 it compiles to nothing, not even a compiler directive.
223
224 Common coding practice uses rcu_dereference() to copy an
225 RCU-protected pointer to a local variable, then dereferences
226 this local variable, for example as follows:
227
228 p = rcu_dereference(head.next);
229 return p->data;
230
231 However, in this case, one could just as easily combine these
232 into one statement:
233
234 return rcu_dereference(head.next)->data;
235
236 If you are going to be fetching multiple fields from the
237 RCU-protected structure, using the local variable is of
238 course preferred. Repeated rcu_dereference() calls look
239 ugly and incur unnecessary overhead on Alpha CPUs.
240
241 Note that the value returned by rcu_dereference() is valid
242 only within the enclosing RCU read-side critical section.
243 For example, the following is -not- legal:
244
245 rcu_read_lock();
246 p = rcu_dereference(head.next);
247 rcu_read_unlock();
248 x = p->address;
249 rcu_read_lock();
250 y = p->data;
251 rcu_read_unlock();
252
253 Holding a reference from one RCU read-side critical section
254 to another is just as illegal as holding a reference from
255 one lock-based critical section to another! Similarly,
256 using a reference outside of the critical section in which
257 it was acquired is just as illegal as doing so with normal
258 locking.
259
260 As with rcu_assign_pointer(), an important function of
261 rcu_dereference() is to document which pointers are protected
262 by RCU. And, again like rcu_assign_pointer(), rcu_dereference()
263 is typically used indirectly, via the _rcu list-manipulation
264 primitives, such as list_for_each_entry_rcu().
265
266The following diagram shows how each API communicates among the
267reader, updater, and reclaimer.
268
269
270 rcu_assign_pointer()
271 +--------+
272 +---------------------->| reader |---------+
273 | +--------+ |
274 | | |
275 | | | Protect:
276 | | | rcu_read_lock()
277 | | | rcu_read_unlock()
278 | rcu_dereference() | |
279 +---------+ | |
280 | updater |<---------------------+ |
281 +---------+ V
282 | +-----------+
283 +----------------------------------->| reclaimer |
284 +-----------+
285 Defer:
286 synchronize_rcu() & call_rcu()
287
288
289The RCU infrastructure observes the time sequence of rcu_read_lock(),
290rcu_read_unlock(), synchronize_rcu(), and call_rcu() invocations in
291order to determine when (1) synchronize_rcu() invocations may return
292to their callers and (2) call_rcu() callbacks may be invoked. Efficient
293implementations of the RCU infrastructure make heavy use of batching in
294order to amortize their overhead over many uses of the corresponding APIs.
295
296There are no fewer than three RCU mechanisms in the Linux kernel; the
297diagram above shows the first one, which is by far the most commonly used.
298The rcu_dereference() and rcu_assign_pointer() primitives are used for
299all three mechanisms, but different defer and protect primitives are
300used as follows:
301
302 Defer Protect
303
304a. synchronize_rcu() rcu_read_lock() / rcu_read_unlock()
305 call_rcu()
306
307b. call_rcu_bh() rcu_read_lock_bh() / rcu_read_unlock_bh()
308
309c. synchronize_sched() preempt_disable() / preempt_enable()
310 local_irq_save() / local_irq_restore()
311 hardirq enter / hardirq exit
312 NMI enter / NMI exit
313
314These three mechanisms are used as follows:
315
316a. RCU applied to normal data structures.
317
318b. RCU applied to networking data structures that may be subjected
319 to remote denial-of-service attacks.
320
321c. RCU applied to scheduler and interrupt/NMI-handler tasks.
322
323Again, most uses will be of (a). The (b) and (c) cases are important
324for specialized uses, but are relatively uncommon.
325
326
3273. WHAT ARE SOME EXAMPLE USES OF CORE RCU API?
328
329This section shows a simple use of the core RCU API to protect a
330global pointer to a dynamically allocated structure. More typical
331uses of RCU may be found in listRCU.txt, arrayRCU.txt, and NMI-RCU.txt.
332
333 struct foo {
334 int a;
335 char b;
336 long c;
337 };
338 DEFINE_SPINLOCK(foo_mutex);
339
340 struct foo *gbl_foo;
341
342 /*
343 * Create a new struct foo that is the same as the one currently
344 * pointed to by gbl_foo, except that field "a" is replaced
345 * with "new_a". Points gbl_foo to the new structure, and
346 * frees up the old structure after a grace period.
347 *
348 * Uses rcu_assign_pointer() to ensure that concurrent readers
349 * see the initialized version of the new structure.
350 *
351 * Uses synchronize_rcu() to ensure that any readers that might
352 * have references to the old structure complete before freeing
353 * the old structure.
354 */
355 void foo_update_a(int new_a)
356 {
357 struct foo *new_fp;
358 struct foo *old_fp;
359
360 new_fp = kmalloc(sizeof(*fp), GFP_KERNEL);
361 spin_lock(&foo_mutex);
362 old_fp = gbl_foo;
363 *new_fp = *old_fp;
364 new_fp->a = new_a;
365 rcu_assign_pointer(gbl_foo, new_fp);
366 spin_unlock(&foo_mutex);
367 synchronize_rcu();
368 kfree(old_fp);
369 }
370
371 /*
372 * Return the value of field "a" of the current gbl_foo
373 * structure. Use rcu_read_lock() and rcu_read_unlock()
374 * to ensure that the structure does not get deleted out
375 * from under us, and use rcu_dereference() to ensure that
376 * we see the initialized version of the structure (important
377 * for DEC Alpha and for people reading the code).
378 */
379 int foo_get_a(void)
380 {
381 int retval;
382
383 rcu_read_lock();
384 retval = rcu_dereference(gbl_foo)->a;
385 rcu_read_unlock();
386 return retval;
387 }
388
389So, to sum up:
390
391o Use rcu_read_lock() and rcu_read_unlock() to guard RCU
392 read-side critical sections.
393
394o Within an RCU read-side critical section, use rcu_dereference()
395 to dereference RCU-protected pointers.
396
397o Use some solid scheme (such as locks or semaphores) to
398 keep concurrent updates from interfering with each other.
399
400o Use rcu_assign_pointer() to update an RCU-protected pointer.
401 This primitive protects concurrent readers from the updater,
402 -not- concurrent updates from each other! You therefore still
403 need to use locking (or something similar) to keep concurrent
404 rcu_assign_pointer() primitives from interfering with each other.
405
406o Use synchronize_rcu() -after- removing a data element from an
407 RCU-protected data structure, but -before- reclaiming/freeing
408 the data element, in order to wait for the completion of all
409 RCU read-side critical sections that might be referencing that
410 data item.
411
412See checklist.txt for additional rules to follow when using RCU.
413
414
4154. WHAT IF MY UPDATING THREAD CANNOT BLOCK?
416
417In the example above, foo_update_a() blocks until a grace period elapses.
418This is quite simple, but in some cases one cannot afford to wait so
419long -- there might be other high-priority work to be done.
420
421In such cases, one uses call_rcu() rather than synchronize_rcu().
422The call_rcu() API is as follows:
423
424 void call_rcu(struct rcu_head * head,
425 void (*func)(struct rcu_head *head));
426
427This function invokes func(head) after a grace period has elapsed.
428This invocation might happen from either softirq or process context,
429so the function is not permitted to block. The foo struct needs to
430have an rcu_head structure added, perhaps as follows:
431
432 struct foo {
433 int a;
434 char b;
435 long c;
436 struct rcu_head rcu;
437 };
438
439The foo_update_a() function might then be written as follows:
440
441 /*
442 * Create a new struct foo that is the same as the one currently
443 * pointed to by gbl_foo, except that field "a" is replaced
444 * with "new_a". Points gbl_foo to the new structure, and
445 * frees up the old structure after a grace period.
446 *
447 * Uses rcu_assign_pointer() to ensure that concurrent readers
448 * see the initialized version of the new structure.
449 *
450 * Uses call_rcu() to ensure that any readers that might have
451 * references to the old structure complete before freeing the
452 * old structure.
453 */
454 void foo_update_a(int new_a)
455 {
456 struct foo *new_fp;
457 struct foo *old_fp;
458
459 new_fp = kmalloc(sizeof(*fp), GFP_KERNEL);
460 spin_lock(&foo_mutex);
461 old_fp = gbl_foo;
462 *new_fp = *old_fp;
463 new_fp->a = new_a;
464 rcu_assign_pointer(gbl_foo, new_fp);
465 spin_unlock(&foo_mutex);
466 call_rcu(&old_fp->rcu, foo_reclaim);
467 }
468
469The foo_reclaim() function might appear as follows:
470
471 void foo_reclaim(struct rcu_head *rp)
472 {
473 struct foo *fp = container_of(rp, struct foo, rcu);
474
475 kfree(fp);
476 }
477
478The container_of() primitive is a macro that, given a pointer into a
479struct, the type of the struct, and the pointed-to field within the
480struct, returns a pointer to the beginning of the struct.
481
482The use of call_rcu() permits the caller of foo_update_a() to
483immediately regain control, without needing to worry further about the
484old version of the newly updated element. It also clearly shows the
485RCU distinction between updater, namely foo_update_a(), and reclaimer,
486namely foo_reclaim().
487
488The summary of advice is the same as for the previous section, except
489that we are now using call_rcu() rather than synchronize_rcu():
490
491o Use call_rcu() -after- removing a data element from an
492 RCU-protected data structure in order to register a callback
493 function that will be invoked after the completion of all RCU
494 read-side critical sections that might be referencing that
495 data item.
496
497Again, see checklist.txt for additional rules governing the use of RCU.
498
499
5005. WHAT ARE SOME SIMPLE IMPLEMENTATIONS OF RCU?
501
502One of the nice things about RCU is that it has extremely simple "toy"
503implementations that are a good first step towards understanding the
504production-quality implementations in the Linux kernel. This section
505presents two such "toy" implementations of RCU, one that is implemented
506in terms of familiar locking primitives, and another that more closely
507resembles "classic" RCU. Both are way too simple for real-world use,
508lacking both functionality and performance. However, they are useful
509in getting a feel for how RCU works. See kernel/rcupdate.c for a
510production-quality implementation, and see:
511
512 http://www.rdrop.com/users/paulmck/RCU
513
514for papers describing the Linux kernel RCU implementation. The OLS'01
515and OLS'02 papers are a good introduction, and the dissertation provides
516more details on the current implementation.
517
518
5195A. "TOY" IMPLEMENTATION #1: LOCKING
520
521This section presents a "toy" RCU implementation that is based on
522familiar locking primitives. Its overhead makes it a non-starter for
523real-life use, as does its lack of scalability. It is also unsuitable
524for realtime use, since it allows scheduling latency to "bleed" from
525one read-side critical section to another.
526
527However, it is probably the easiest implementation to relate to, so is
528a good starting point.
529
530It is extremely simple:
531
532 static DEFINE_RWLOCK(rcu_gp_mutex);
533
534 void rcu_read_lock(void)
535 {
536 read_lock(&rcu_gp_mutex);
537 }
538
539 void rcu_read_unlock(void)
540 {
541 read_unlock(&rcu_gp_mutex);
542 }
543
544 void synchronize_rcu(void)
545 {
546 write_lock(&rcu_gp_mutex);
547 write_unlock(&rcu_gp_mutex);
548 }
549
550[You can ignore rcu_assign_pointer() and rcu_dereference() without
551missing much. But here they are anyway. And whatever you do, don't
552forget about them when submitting patches making use of RCU!]
553
554 #define rcu_assign_pointer(p, v) ({ \
555 smp_wmb(); \
556 (p) = (v); \
557 })
558
559 #define rcu_dereference(p) ({ \
560 typeof(p) _________p1 = p; \
561 smp_read_barrier_depends(); \
562 (_________p1); \
563 })
564
565
566The rcu_read_lock() and rcu_read_unlock() primitive read-acquire
567and release a global reader-writer lock. The synchronize_rcu()
568primitive write-acquires this same lock, then immediately releases
569it. This means that once synchronize_rcu() exits, all RCU read-side
570critical sections that were in progress before synchonize_rcu() was
571called are guaranteed to have completed -- there is no way that
572synchronize_rcu() would have been able to write-acquire the lock
573otherwise.
574
575It is possible to nest rcu_read_lock(), since reader-writer locks may
576be recursively acquired. Note also that rcu_read_lock() is immune
577from deadlock (an important property of RCU). The reason for this is
578that the only thing that can block rcu_read_lock() is a synchronize_rcu().
579But synchronize_rcu() does not acquire any locks while holding rcu_gp_mutex,
580so there can be no deadlock cycle.
581
582Quick Quiz #1: Why is this argument naive? How could a deadlock
583 occur when using this algorithm in a real-world Linux
584 kernel? How could this deadlock be avoided?
585
586
5875B. "TOY" EXAMPLE #2: CLASSIC RCU
588
589This section presents a "toy" RCU implementation that is based on
590"classic RCU". It is also short on performance (but only for updates) and
591on features such as hotplug CPU and the ability to run in CONFIG_PREEMPT
592kernels. The definitions of rcu_dereference() and rcu_assign_pointer()
593are the same as those shown in the preceding section, so they are omitted.
594
595 void rcu_read_lock(void) { }
596
597 void rcu_read_unlock(void) { }
598
599 void synchronize_rcu(void)
600 {
601 int cpu;
602
603 for_each_cpu(cpu)
604 run_on(cpu);
605 }
606
607Note that rcu_read_lock() and rcu_read_unlock() do absolutely nothing.
608This is the great strength of classic RCU in a non-preemptive kernel:
609read-side overhead is precisely zero, at least on non-Alpha CPUs.
610And there is absolutely no way that rcu_read_lock() can possibly
611participate in a deadlock cycle!
612
613The implementation of synchronize_rcu() simply schedules itself on each
614CPU in turn. The run_on() primitive can be implemented straightforwardly
615in terms of the sched_setaffinity() primitive. Of course, a somewhat less
616"toy" implementation would restore the affinity upon completion rather
617than just leaving all tasks running on the last CPU, but when I said
618"toy", I meant -toy-!
619
620So how the heck is this supposed to work???
621
622Remember that it is illegal to block while in an RCU read-side critical
623section. Therefore, if a given CPU executes a context switch, we know
624that it must have completed all preceding RCU read-side critical sections.
625Once -all- CPUs have executed a context switch, then -all- preceding
626RCU read-side critical sections will have completed.
627
628So, suppose that we remove a data item from its structure and then invoke
629synchronize_rcu(). Once synchronize_rcu() returns, we are guaranteed
630that there are no RCU read-side critical sections holding a reference
631to that data item, so we can safely reclaim it.
632
633Quick Quiz #2: Give an example where Classic RCU's read-side
634 overhead is -negative-.
635
636Quick Quiz #3: If it is illegal to block in an RCU read-side
637 critical section, what the heck do you do in
638 PREEMPT_RT, where normal spinlocks can block???
639
640
6416. ANALOGY WITH READER-WRITER LOCKING
642
643Although RCU can be used in many different ways, a very common use of
644RCU is analogous to reader-writer locking. The following unified
645diff shows how closely related RCU and reader-writer locking can be.
646
647 @@ -13,15 +14,15 @@
648 struct list_head *lp;
649 struct el *p;
650
651 - read_lock();
652 - list_for_each_entry(p, head, lp) {
653 + rcu_read_lock();
654 + list_for_each_entry_rcu(p, head, lp) {
655 if (p->key == key) {
656 *result = p->data;
657 - read_unlock();
658 + rcu_read_unlock();
659 return 1;
660 }
661 }
662 - read_unlock();
663 + rcu_read_unlock();
664 return 0;
665 }
666
667 @@ -29,15 +30,16 @@
668 {
669 struct el *p;
670
671 - write_lock(&listmutex);
672 + spin_lock(&listmutex);
673 list_for_each_entry(p, head, lp) {
674 if (p->key == key) {
675 list_del(&p->list);
676 - write_unlock(&listmutex);
677 + spin_unlock(&listmutex);
678 + synchronize_rcu();
679 kfree(p);
680 return 1;
681 }
682 }
683 - write_unlock(&listmutex);
684 + spin_unlock(&listmutex);
685 return 0;
686 }
687
688Or, for those who prefer a side-by-side listing:
689
690 1 struct el { 1 struct el {
691 2 struct list_head list; 2 struct list_head list;
692 3 long key; 3 long key;
693 4 spinlock_t mutex; 4 spinlock_t mutex;
694 5 int data; 5 int data;
695 6 /* Other data fields */ 6 /* Other data fields */
696 7 }; 7 };
697 8 spinlock_t listmutex; 8 spinlock_t listmutex;
698 9 struct el head; 9 struct el head;
699
700 1 int search(long key, int *result) 1 int search(long key, int *result)
701 2 { 2 {
702 3 struct list_head *lp; 3 struct list_head *lp;
703 4 struct el *p; 4 struct el *p;
704 5 5
705 6 read_lock(); 6 rcu_read_lock();
706 7 list_for_each_entry(p, head, lp) { 7 list_for_each_entry_rcu(p, head, lp) {
707 8 if (p->key == key) { 8 if (p->key == key) {
708 9 *result = p->data; 9 *result = p->data;
70910 read_unlock(); 10 rcu_read_unlock();
71011 return 1; 11 return 1;
71112 } 12 }
71213 } 13 }
71314 read_unlock(); 14 rcu_read_unlock();
71415 return 0; 15 return 0;
71516 } 16 }
716
717 1 int delete(long key) 1 int delete(long key)
718 2 { 2 {
719 3 struct el *p; 3 struct el *p;
720 4 4
721 5 write_lock(&listmutex); 5 spin_lock(&listmutex);
722 6 list_for_each_entry(p, head, lp) { 6 list_for_each_entry(p, head, lp) {
723 7 if (p->key == key) { 7 if (p->key == key) {
724 8 list_del(&p->list); 8 list_del(&p->list);
725 9 write_unlock(&listmutex); 9 spin_unlock(&listmutex);
726 10 synchronize_rcu();
72710 kfree(p); 11 kfree(p);
72811 return 1; 12 return 1;
72912 } 13 }
73013 } 14 }
73114 write_unlock(&listmutex); 15 spin_unlock(&listmutex);
73215 return 0; 16 return 0;
73316 } 17 }
734
735Either way, the differences are quite small. Read-side locking moves
736to rcu_read_lock() and rcu_read_unlock, update-side locking moves from
737from a reader-writer lock to a simple spinlock, and a synchronize_rcu()
738precedes the kfree().
739
740However, there is one potential catch: the read-side and update-side
741critical sections can now run concurrently. In many cases, this will
742not be a problem, but it is necessary to check carefully regardless.
743For example, if multiple independent list updates must be seen as
744a single atomic update, converting to RCU will require special care.
745
746Also, the presence of synchronize_rcu() means that the RCU version of
747delete() can now block. If this is a problem, there is a callback-based
748mechanism that never blocks, namely call_rcu(), that can be used in
749place of synchronize_rcu().
750
751
7527. FULL LIST OF RCU APIs
753
754The RCU APIs are documented in docbook-format header comments in the
755Linux-kernel source code, but it helps to have a full list of the
756APIs, since there does not appear to be a way to categorize them
757in docbook. Here is the list, by category.
758
759Markers for RCU read-side critical sections:
760
761 rcu_read_lock
762 rcu_read_unlock
763 rcu_read_lock_bh
764 rcu_read_unlock_bh
765
766RCU pointer/list traversal:
767
768 rcu_dereference
769 list_for_each_rcu (to be deprecated in favor of
770 list_for_each_entry_rcu)
771 list_for_each_safe_rcu (deprecated, not used)
772 list_for_each_entry_rcu
773 list_for_each_continue_rcu (to be deprecated in favor of new
774 list_for_each_entry_continue_rcu)
775 hlist_for_each_rcu (to be deprecated in favor of
776 hlist_for_each_entry_rcu)
777 hlist_for_each_entry_rcu
778
779RCU pointer update:
780
781 rcu_assign_pointer
782 list_add_rcu
783 list_add_tail_rcu
784 list_del_rcu
785 list_replace_rcu
786 hlist_del_rcu
787 hlist_add_head_rcu
788
789RCU grace period:
790
791 synchronize_kernel (deprecated)
792 synchronize_net
793 synchronize_sched
794 synchronize_rcu
795 call_rcu
796 call_rcu_bh
797
798See the comment headers in the source code (or the docbook generated
799from them) for more information.
800
801
8028. ANSWERS TO QUICK QUIZZES
803
804Quick Quiz #1: Why is this argument naive? How could a deadlock
805 occur when using this algorithm in a real-world Linux
806 kernel? [Referring to the lock-based "toy" RCU
807 algorithm.]
808
809Answer: Consider the following sequence of events:
810
811 1. CPU 0 acquires some unrelated lock, call it
812 "problematic_lock".
813
814 2. CPU 1 enters synchronize_rcu(), write-acquiring
815 rcu_gp_mutex.
816
817 3. CPU 0 enters rcu_read_lock(), but must wait
818 because CPU 1 holds rcu_gp_mutex.
819
820 4. CPU 1 is interrupted, and the irq handler
821 attempts to acquire problematic_lock.
822
823 The system is now deadlocked.
824
825 One way to avoid this deadlock is to use an approach like
826 that of CONFIG_PREEMPT_RT, where all normal spinlocks
827 become blocking locks, and all irq handlers execute in
828 the context of special tasks. In this case, in step 4
829 above, the irq handler would block, allowing CPU 1 to
830 release rcu_gp_mutex, avoiding the deadlock.
831
832 Even in the absence of deadlock, this RCU implementation
833 allows latency to "bleed" from readers to other
834 readers through synchronize_rcu(). To see this,
835 consider task A in an RCU read-side critical section
836 (thus read-holding rcu_gp_mutex), task B blocked
837 attempting to write-acquire rcu_gp_mutex, and
838 task C blocked in rcu_read_lock() attempting to
839 read_acquire rcu_gp_mutex. Task A's RCU read-side
840 latency is holding up task C, albeit indirectly via
841 task B.
842
843 Realtime RCU implementations therefore use a counter-based
844 approach where tasks in RCU read-side critical sections
845 cannot be blocked by tasks executing synchronize_rcu().
846
847Quick Quiz #2: Give an example where Classic RCU's read-side
848 overhead is -negative-.
849
850Answer: Imagine a single-CPU system with a non-CONFIG_PREEMPT
851 kernel where a routing table is used by process-context
852 code, but can be updated by irq-context code (for example,
853 by an "ICMP REDIRECT" packet). The usual way of handling
854 this would be to have the process-context code disable
855 interrupts while searching the routing table. Use of
856 RCU allows such interrupt-disabling to be dispensed with.
857 Thus, without RCU, you pay the cost of disabling interrupts,
858 and with RCU you don't.
859
860 One can argue that the overhead of RCU in this
861 case is negative with respect to the single-CPU
862 interrupt-disabling approach. Others might argue that
863 the overhead of RCU is merely zero, and that replacing
864 the positive overhead of the interrupt-disabling scheme
865 with the zero-overhead RCU scheme does not constitute
866 negative overhead.
867
868 In real life, of course, things are more complex. But
869 even the theoretical possibility of negative overhead for
870 a synchronization primitive is a bit unexpected. ;-)
871
872Quick Quiz #3: If it is illegal to block in an RCU read-side
873 critical section, what the heck do you do in
874 PREEMPT_RT, where normal spinlocks can block???
875
876Answer: Just as PREEMPT_RT permits preemption of spinlock
877 critical sections, it permits preemption of RCU
878 read-side critical sections. It also permits
879 spinlocks blocking while in RCU read-side critical
880 sections.
881
882 Why the apparent inconsistency? Because it is it
883 possible to use priority boosting to keep the RCU
884 grace periods short if need be (for example, if running
885 short of memory). In contrast, if blocking waiting
886 for (say) network reception, there is no way to know
887 what should be boosted. Especially given that the
888 process we need to boost might well be a human being
889 who just went out for a pizza or something. And although
890 a computer-operated cattle prod might arouse serious
891 interest, it might also provoke serious objections.
892 Besides, how does the computer know what pizza parlor
893 the human being went to???
894
895
896ACKNOWLEDGEMENTS
897
898My thanks to the people who helped make this human-readable, including
899Jon Walpole, Josh Triplett, Serge Hallyn, and Suzanne Wood.
900
901
902For more information, see http://www.rdrop.com/users/paulmck/RCU.
diff --git a/Documentation/cpu-freq/cpufreq-stats.txt b/Documentation/cpu-freq/cpufreq-stats.txt
index e2d1e760b4ba..6a82948ff4bd 100644
--- a/Documentation/cpu-freq/cpufreq-stats.txt
+++ b/Documentation/cpu-freq/cpufreq-stats.txt
@@ -36,7 +36,7 @@ cpufreq stats provides following statistics (explained in detail below).
36 36
37All the statistics will be from the time the stats driver has been inserted 37All the statistics will be from the time the stats driver has been inserted
38to the time when a read of a particular statistic is done. Obviously, stats 38to the time when a read of a particular statistic is done. Obviously, stats
39driver will not have any information about the the frequcny transitions before 39driver will not have any information about the frequency transitions before
40the stats driver insertion. 40the stats driver insertion.
41 41
42-------------------------------------------------------------------------------- 42--------------------------------------------------------------------------------
diff --git a/Documentation/cpusets.txt b/Documentation/cpusets.txt
index 47f4114fbf54..d17b7d2dd771 100644
--- a/Documentation/cpusets.txt
+++ b/Documentation/cpusets.txt
@@ -277,7 +277,7 @@ rewritten to the 'tasks' file of its cpuset. This is done to avoid
277impacting the scheduler code in the kernel with a check for changes 277impacting the scheduler code in the kernel with a check for changes
278in a tasks processor placement. 278in a tasks processor placement.
279 279
280There is an exception to the above. If hotplug funtionality is used 280There is an exception to the above. If hotplug functionality is used
281to remove all the CPUs that are currently assigned to a cpuset, 281to remove all the CPUs that are currently assigned to a cpuset,
282then the kernel will automatically update the cpus_allowed of all 282then the kernel will automatically update the cpus_allowed of all
283tasks attached to CPUs in that cpuset to allow all CPUs. When memory 283tasks attached to CPUs in that cpuset to allow all CPUs. When memory
diff --git a/Documentation/crypto/descore-readme.txt b/Documentation/crypto/descore-readme.txt
index 166474c2ee0b..16e9e6350755 100644
--- a/Documentation/crypto/descore-readme.txt
+++ b/Documentation/crypto/descore-readme.txt
@@ -1,4 +1,4 @@
1Below is the orginal README file from the descore.shar package. 1Below is the original README file from the descore.shar package.
2------------------------------------------------------------------------------ 2------------------------------------------------------------------------------
3 3
4des - fast & portable DES encryption & decryption. 4des - fast & portable DES encryption & decryption.
diff --git a/Documentation/feature-removal-schedule.txt b/Documentation/feature-removal-schedule.txt
index 5f95d4b3cab1..784e08c1c80a 100644
--- a/Documentation/feature-removal-schedule.txt
+++ b/Documentation/feature-removal-schedule.txt
@@ -17,14 +17,6 @@ Who: Greg Kroah-Hartman <greg@kroah.com>
17 17
18--------------------------- 18---------------------------
19 19
20What: ACPI S4bios support
21When: May 2005
22Why: Noone uses it, and it probably does not work, anyway. swsusp is
23 faster, more reliable, and people are actually using it.
24Who: Pavel Machek <pavel@suse.cz>
25
26---------------------------
27
28What: io_remap_page_range() (macro or function) 20What: io_remap_page_range() (macro or function)
29When: September 2005 21When: September 2005
30Why: Replaced by io_remap_pfn_range() which allows more memory space 22Why: Replaced by io_remap_pfn_range() which allows more memory space
diff --git a/Documentation/ioctl/cdrom.txt b/Documentation/ioctl/cdrom.txt
index 4ccdcc6fe364..8ec32cc49eb1 100644
--- a/Documentation/ioctl/cdrom.txt
+++ b/Documentation/ioctl/cdrom.txt
@@ -878,7 +878,7 @@ DVD_READ_STRUCT Read structure
878 878
879 error returns: 879 error returns:
880 EINVAL physical.layer_num exceeds number of layers 880 EINVAL physical.layer_num exceeds number of layers
881 EIO Recieved invalid response from drive 881 EIO Received invalid response from drive
882 882
883 883
884 884
diff --git a/Documentation/mono.txt b/Documentation/mono.txt
index 6739ab9615ef..807a0c7b4737 100644
--- a/Documentation/mono.txt
+++ b/Documentation/mono.txt
@@ -30,7 +30,7 @@ other program after you have done the following:
30 Read the file 'binfmt_misc.txt' in this directory to know 30 Read the file 'binfmt_misc.txt' in this directory to know
31 more about the configuration process. 31 more about the configuration process.
32 32
333) Add the following enries to /etc/rc.local or similar script 333) Add the following entries to /etc/rc.local or similar script
34 to be run at system startup: 34 to be run at system startup:
35 35
36# Insert BINFMT_MISC module into the kernel 36# Insert BINFMT_MISC module into the kernel
diff --git a/Documentation/networking/bonding.txt b/Documentation/networking/bonding.txt
index 24d029455baa..a55f0f95b171 100644
--- a/Documentation/networking/bonding.txt
+++ b/Documentation/networking/bonding.txt
@@ -1241,7 +1241,7 @@ traffic while still maintaining carrier on.
1241 1241
1242 If running SNMP agents, the bonding driver should be loaded 1242 If running SNMP agents, the bonding driver should be loaded
1243before any network drivers participating in a bond. This requirement 1243before any network drivers participating in a bond. This requirement
1244is due to the the interface index (ipAdEntIfIndex) being associated to 1244is due to the interface index (ipAdEntIfIndex) being associated to
1245the first interface found with a given IP address. That is, there is 1245the first interface found with a given IP address. That is, there is
1246only one ipAdEntIfIndex for each IP address. For example, if eth0 and 1246only one ipAdEntIfIndex for each IP address. For example, if eth0 and
1247eth1 are slaves of bond0 and the driver for eth0 is loaded before the 1247eth1 are slaves of bond0 and the driver for eth0 is loaded before the
@@ -1937,7 +1937,7 @@ switches currently available support 802.3ad.
1937 If not explicitly configured (with ifconfig or ip link), the 1937 If not explicitly configured (with ifconfig or ip link), the
1938MAC address of the bonding device is taken from its first slave 1938MAC address of the bonding device is taken from its first slave
1939device. This MAC address is then passed to all following slaves and 1939device. This MAC address is then passed to all following slaves and
1940remains persistent (even if the the first slave is removed) until the 1940remains persistent (even if the first slave is removed) until the
1941bonding device is brought down or reconfigured. 1941bonding device is brought down or reconfigured.
1942 1942
1943 If you wish to change the MAC address, you can set it with 1943 If you wish to change the MAC address, you can set it with
diff --git a/Documentation/networking/wan-router.txt b/Documentation/networking/wan-router.txt
index aea20cd2a56e..c96897aa08b6 100644
--- a/Documentation/networking/wan-router.txt
+++ b/Documentation/networking/wan-router.txt
@@ -355,7 +355,7 @@ REVISION HISTORY
355 There is no functional difference between the two packages 355 There is no functional difference between the two packages
356 356
3572.0.7 Aug 26, 1999 o Merged X25API code into WANPIPE. 3572.0.7 Aug 26, 1999 o Merged X25API code into WANPIPE.
358 o Fixed a memeory leak for X25API 358 o Fixed a memory leak for X25API
359 o Updated the X25API code for 2.2.X kernels. 359 o Updated the X25API code for 2.2.X kernels.
360 o Improved NEM handling. 360 o Improved NEM handling.
361 361
@@ -514,7 +514,7 @@ beta2-2.2.0 Jan 8 2001
514 o Patches for 2.4.0 kernel 514 o Patches for 2.4.0 kernel
515 o Patches for 2.2.18 kernel 515 o Patches for 2.2.18 kernel
516 o Minor updates to PPP and CHLDC drivers. 516 o Minor updates to PPP and CHLDC drivers.
517 Note: No functinal difference. 517 Note: No functional difference.
518 518
519beta3-2.2.9 Jan 10 2001 519beta3-2.2.9 Jan 10 2001
520 o I missed the 2.2.18 kernel patches in beta2-2.2.0 520 o I missed the 2.2.18 kernel patches in beta2-2.2.0
diff --git a/Documentation/pci.txt b/Documentation/pci.txt
index 76d28d033657..711210b38f5f 100644
--- a/Documentation/pci.txt
+++ b/Documentation/pci.txt
@@ -84,7 +84,7 @@ Each entry consists of:
84 84
85Most drivers don't need to use the driver_data field. Best practice 85Most drivers don't need to use the driver_data field. Best practice
86for use of driver_data is to use it as an index into a static list of 86for use of driver_data is to use it as an index into a static list of
87equivalant device types, not to use it as a pointer. 87equivalent device types, not to use it as a pointer.
88 88
89Have a table entry {PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID} 89Have a table entry {PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID}
90to have probe() called for every PCI device known to the system. 90to have probe() called for every PCI device known to the system.
diff --git a/Documentation/powerpc/eeh-pci-error-recovery.txt b/Documentation/powerpc/eeh-pci-error-recovery.txt
index 2bfe71beec5b..e75d7474322c 100644
--- a/Documentation/powerpc/eeh-pci-error-recovery.txt
+++ b/Documentation/powerpc/eeh-pci-error-recovery.txt
@@ -134,7 +134,7 @@ pci_get_device_by_addr() will find the pci device associated
134with that address (if any). 134with that address (if any).
135 135
136The default include/asm-ppc64/io.h macros readb(), inb(), insb(), 136The default include/asm-ppc64/io.h macros readb(), inb(), insb(),
137etc. include a check to see if the the i/o read returned all-0xff's. 137etc. include a check to see if the i/o read returned all-0xff's.
138If so, these make a call to eeh_dn_check_failure(), which in turn 138If so, these make a call to eeh_dn_check_failure(), which in turn
139asks the firmware if the all-ff's value is the sign of a true EEH 139asks the firmware if the all-ff's value is the sign of a true EEH
140error. If it is not, processing continues as normal. The grand 140error. If it is not, processing continues as normal. The grand
diff --git a/Documentation/s390/s390dbf.txt b/Documentation/s390/s390dbf.txt
index e24fdeada970..e321a8ed2a2d 100644
--- a/Documentation/s390/s390dbf.txt
+++ b/Documentation/s390/s390dbf.txt
@@ -468,7 +468,7 @@ The hex_ascii view shows the data field in hex and ascii representation
468The raw view returns a bytestream as the debug areas are stored in memory. 468The raw view returns a bytestream as the debug areas are stored in memory.
469 469
470The sprintf view formats the debug entries in the same way as the sprintf 470The sprintf view formats the debug entries in the same way as the sprintf
471function would do. The sprintf event/expection fuctions write to the 471function would do. The sprintf event/expection functions write to the
472debug entry a pointer to the format string (size = sizeof(long)) 472debug entry a pointer to the format string (size = sizeof(long))
473and for each vararg a long value. So e.g. for a debug entry with a format 473and for each vararg a long value. So e.g. for a debug entry with a format
474string plus two varargs one would need to allocate a (3 * sizeof(long)) 474string plus two varargs one would need to allocate a (3 * sizeof(long))
diff --git a/Documentation/scsi/ibmmca.txt b/Documentation/scsi/ibmmca.txt
index 2814491600ff..2ffb3ae0ef4d 100644
--- a/Documentation/scsi/ibmmca.txt
+++ b/Documentation/scsi/ibmmca.txt
@@ -344,7 +344,7 @@
344 /proc/scsi/ibmmca/<host_no>. ibmmca_proc_info() provides this information. 344 /proc/scsi/ibmmca/<host_no>. ibmmca_proc_info() provides this information.
345 345
346 This table is quite informative for interested users. It shows the load 346 This table is quite informative for interested users. It shows the load
347 of commands on the subsystem and wether you are running the bypassed 347 of commands on the subsystem and whether you are running the bypassed
348 (software) or integrated (hardware) SCSI-command set (see below). The 348 (software) or integrated (hardware) SCSI-command set (see below). The
349 amount of accesses is shown. Read, write, modeselect is shown separately 349 amount of accesses is shown. Read, write, modeselect is shown separately
350 in order to help debugging problems with CD-ROMs or tapedrives. 350 in order to help debugging problems with CD-ROMs or tapedrives.
diff --git a/Documentation/sound/alsa/ALSA-Configuration.txt b/Documentation/sound/alsa/ALSA-Configuration.txt
index 5c49ba07e709..ebfcdf28485f 100644
--- a/Documentation/sound/alsa/ALSA-Configuration.txt
+++ b/Documentation/sound/alsa/ALSA-Configuration.txt
@@ -1459,7 +1459,7 @@ devices where %i is sound card number from zero to seven.
1459To auto-load an ALSA driver for OSS services, define the string 1459To auto-load an ALSA driver for OSS services, define the string
1460'sound-slot-%i' where %i means the slot number for OSS, which 1460'sound-slot-%i' where %i means the slot number for OSS, which
1461corresponds to the card index of ALSA. Usually, define this 1461corresponds to the card index of ALSA. Usually, define this
1462as the the same card module. 1462as the same card module.
1463 1463
1464An example configuration for a single emu10k1 card is like below: 1464An example configuration for a single emu10k1 card is like below:
1465----- /etc/modprobe.conf 1465----- /etc/modprobe.conf
diff --git a/Documentation/sysrq.txt b/Documentation/sysrq.txt
index 136d817c01ba..baf17b381588 100644
--- a/Documentation/sysrq.txt
+++ b/Documentation/sysrq.txt
@@ -171,7 +171,7 @@ the header 'include/linux/sysrq.h', this will define everything else you need.
171Next, you must create a sysrq_key_op struct, and populate it with A) the key 171Next, you must create a sysrq_key_op struct, and populate it with A) the key
172handler function you will use, B) a help_msg string, that will print when SysRQ 172handler function you will use, B) a help_msg string, that will print when SysRQ
173prints help, and C) an action_msg string, that will print right before your 173prints help, and C) an action_msg string, that will print right before your
174handler is called. Your handler must conform to the protoype in 'sysrq.h'. 174handler is called. Your handler must conform to the prototype in 'sysrq.h'.
175 175
176After the sysrq_key_op is created, you can call the macro 176After the sysrq_key_op is created, you can call the macro
177register_sysrq_key(int key, struct sysrq_key_op *op_p) that is defined in 177register_sysrq_key(int key, struct sysrq_key_op *op_p) that is defined in
diff --git a/Documentation/uml/UserModeLinux-HOWTO.txt b/Documentation/uml/UserModeLinux-HOWTO.txt
index 0c7b654fec99..544430e39980 100644
--- a/Documentation/uml/UserModeLinux-HOWTO.txt
+++ b/Documentation/uml/UserModeLinux-HOWTO.txt
@@ -2176,7 +2176,7 @@
2176 If you want to access files on the host machine from inside UML, you 2176 If you want to access files on the host machine from inside UML, you
2177 can treat it as a separate machine and either nfs mount directories 2177 can treat it as a separate machine and either nfs mount directories
2178 from the host or copy files into the virtual machine with scp or rcp. 2178 from the host or copy files into the virtual machine with scp or rcp.
2179 However, since UML is running on the the host, it can access those 2179 However, since UML is running on the host, it can access those
2180 files just like any other process and make them available inside the 2180 files just like any other process and make them available inside the
2181 virtual machine without needing to use the network. 2181 virtual machine without needing to use the network.
2182 2182
diff --git a/Documentation/usb/gadget_serial.txt b/Documentation/usb/gadget_serial.txt
index a938c3dd13d6..815f5c2301ff 100644
--- a/Documentation/usb/gadget_serial.txt
+++ b/Documentation/usb/gadget_serial.txt
@@ -20,7 +20,7 @@ License along with this program; if not, write to the Free
20Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, 20Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21MA 02111-1307 USA. 21MA 02111-1307 USA.
22 22
23This document and the the gadget serial driver itself are 23This document and the gadget serial driver itself are
24Copyright (C) 2004 by Al Borchers (alborchers@steinerpoint.com). 24Copyright (C) 2004 by Al Borchers (alborchers@steinerpoint.com).
25 25
26If you have questions, problems, or suggestions for this driver 26If you have questions, problems, or suggestions for this driver
diff --git a/Documentation/video4linux/Zoran b/Documentation/video4linux/Zoran
index 01425c21986b..52c94bd7dca1 100644
--- a/Documentation/video4linux/Zoran
+++ b/Documentation/video4linux/Zoran
@@ -222,7 +222,7 @@ was introduced in 1991, is used in the DC10 old
222can generate: PAL , NTSC , SECAM 222can generate: PAL , NTSC , SECAM
223 223
224The adv717x, should be able to produce PAL N. But you find nothing PAL N 224The adv717x, should be able to produce PAL N. But you find nothing PAL N
225specific in the the registers. Seem that you have to reuse a other standard 225specific in the registers. Seem that you have to reuse a other standard
226to generate PAL N, maybe it would work if you use the PAL M settings. 226to generate PAL N, maybe it would work if you use the PAL M settings.
227 227
228========================== 228==========================