aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/ABI/obsolete/dv13949
-rw-r--r--Documentation/ABI/testing/sysfs-bus-usb41
-rw-r--r--Documentation/DocBook/kernel-api.tmpl6
-rw-r--r--Documentation/cpusets.txt3
-rw-r--r--Documentation/feature-removal-schedule.txt72
-rw-r--r--Documentation/filesystems/afs.txt214
-rw-r--r--Documentation/filesystems/proc.txt9
-rw-r--r--Documentation/gpio.txt31
-rw-r--r--Documentation/ia64/err_inject.txt1068
-rw-r--r--Documentation/infiniband/user_mad.txt8
-rw-r--r--Documentation/kernel-parameters.txt36
-rw-r--r--Documentation/keys.txt12
-rw-r--r--Documentation/networking/bcm43xx.txt97
-rw-r--r--Documentation/networking/bonding.txt35
-rw-r--r--Documentation/networking/dccp.txt10
-rw-r--r--Documentation/networking/ip-sysctl.txt40
-rw-r--r--Documentation/networking/rxrpc.txt859
-rw-r--r--Documentation/networking/wan-router.txt1
-rw-r--r--Documentation/powerpc/booting-without-of.txt256
-rw-r--r--Documentation/s390/crypto/crypto-API.txt83
-rw-r--r--Documentation/s390/zfcpdump.txt87
-rw-r--r--Documentation/sony-laptop.txt25
-rw-r--r--Documentation/thinkpad-acpi.txt (renamed from Documentation/ibm-acpi.txt)585
-rw-r--r--Documentation/usb/usbmon.txt80
-rw-r--r--Documentation/video4linux/CARDLIST.bttv2
-rw-r--r--Documentation/video4linux/CARDLIST.cx882
-rw-r--r--Documentation/video4linux/CARDLIST.ivtv18
-rw-r--r--Documentation/video4linux/CARDLIST.saa71348
-rw-r--r--Documentation/video4linux/CARDLIST.usbvision64
-rw-r--r--Documentation/video4linux/README.ivtv187
-rw-r--r--Documentation/video4linux/cx2341x/fw-decoder-regs.txt12
-rw-r--r--Documentation/video4linux/cx2341x/fw-encoder-api.txt19
-rw-r--r--Documentation/video4linux/cx2341x/fw-osd-api.txt12
-rw-r--r--Documentation/video4linux/meye.txt7
-rw-r--r--Documentation/video4linux/sn9c102.txt64
-rw-r--r--Documentation/video4linux/zr364xx.txt65
-rw-r--r--Documentation/x86_64/boot-options.txt4
37 files changed, 3541 insertions, 590 deletions
diff --git a/Documentation/ABI/obsolete/dv1394 b/Documentation/ABI/obsolete/dv1394
new file mode 100644
index 000000000000..2ee36864ca10
--- /dev/null
+++ b/Documentation/ABI/obsolete/dv1394
@@ -0,0 +1,9 @@
1What: dv1394 (a.k.a. "OHCI-DV I/O support" for FireWire)
2Contact: linux1394-devel@lists.sourceforge.net
3Description:
4 New application development should use raw1394 + userspace libraries
5 instead, notably libiec61883 which is functionally equivalent.
6
7Users:
8 ffmpeg/libavformat (used by a variety of media players)
9 dvgrab v1.x (replaced by dvgrab2 on top of raw1394 and resp. libraries)
diff --git a/Documentation/ABI/testing/sysfs-bus-usb b/Documentation/ABI/testing/sysfs-bus-usb
new file mode 100644
index 000000000000..f9937add033d
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-bus-usb
@@ -0,0 +1,41 @@
1What: /sys/bus/usb/devices/.../power/autosuspend
2Date: March 2007
3KernelVersion: 2.6.21
4Contact: Alan Stern <stern@rowland.harvard.edu>
5Description:
6 Each USB device directory will contain a file named
7 power/autosuspend. This file holds the time (in seconds)
8 the device must be idle before it will be autosuspended.
9 0 means the device will be autosuspended as soon as
10 possible. Negative values will prevent the device from
11 being autosuspended at all, and writing a negative value
12 will resume the device if it is already suspended.
13
14 The autosuspend delay for newly-created devices is set to
15 the value of the usbcore.autosuspend module parameter.
16
17What: /sys/bus/usb/devices/.../power/level
18Date: March 2007
19KernelVersion: 2.6.21
20Contact: Alan Stern <stern@rowland.harvard.edu>
21Description:
22 Each USB device directory will contain a file named
23 power/level. This file holds a power-level setting for
24 the device, one of "on", "auto", or "suspend".
25
26 "on" means that the device is not allowed to autosuspend,
27 although normal suspends for system sleep will still
28 be honored. "auto" means the device will autosuspend
29 and autoresume in the usual manner, according to the
30 capabilities of its driver. "suspend" means the device
31 is forced into a suspended state and it will not autoresume
32 in response to I/O requests. However remote-wakeup requests
33 from the device may still be enabled (the remote-wakeup
34 setting is controlled separately by the power/wakeup
35 attribute).
36
37 During normal use, devices should be left in the "auto"
38 level. The other levels are meant for administrative uses.
39 If you want to suspend a device immediately but leave it
40 free to wake up in response to I/O requests, you should
41 write "0" to power/autosuspend.
diff --git a/Documentation/DocBook/kernel-api.tmpl b/Documentation/DocBook/kernel-api.tmpl
index 0bb90237e230..b61dfc79e1b8 100644
--- a/Documentation/DocBook/kernel-api.tmpl
+++ b/Documentation/DocBook/kernel-api.tmpl
@@ -236,6 +236,12 @@ X!Ilib/string.c
236!Enet/core/dev.c 236!Enet/core/dev.c
237!Enet/ethernet/eth.c 237!Enet/ethernet/eth.c
238!Iinclude/linux/etherdevice.h 238!Iinclude/linux/etherdevice.h
239!Edrivers/net/phy/phy.c
240!Idrivers/net/phy/phy.c
241!Edrivers/net/phy/phy_device.c
242!Idrivers/net/phy/phy_device.c
243!Edrivers/net/phy/mdio_bus.c
244!Idrivers/net/phy/mdio_bus.c
239<!-- FIXME: Removed for now since no structured comments in source 245<!-- FIXME: Removed for now since no structured comments in source
240X!Enet/core/wireless.c 246X!Enet/core/wireless.c
241--> 247-->
diff --git a/Documentation/cpusets.txt b/Documentation/cpusets.txt
index 842f0d1ab216..f2c0a6842930 100644
--- a/Documentation/cpusets.txt
+++ b/Documentation/cpusets.txt
@@ -557,6 +557,9 @@ Set some flags:
557Add some cpus: 557Add some cpus:
558# /bin/echo 0-7 > cpus 558# /bin/echo 0-7 > cpus
559 559
560Add some mems:
561# /bin/echo 0-7 > mems
562
560Now attach your shell to this cpuset: 563Now attach your shell to this cpuset:
561# /bin/echo $$ > tasks 564# /bin/echo $$ > tasks
562 565
diff --git a/Documentation/feature-removal-schedule.txt b/Documentation/feature-removal-schedule.txt
index 0bc8b0b2e103..5c88ba1ea262 100644
--- a/Documentation/feature-removal-schedule.txt
+++ b/Documentation/feature-removal-schedule.txt
@@ -6,6 +6,18 @@ be removed from this file.
6 6
7--------------------------- 7---------------------------
8 8
9What: V4L2 VIDIOC_G_MPEGCOMP and VIDIOC_S_MPEGCOMP
10When: October 2007
11Why: Broken attempt to set MPEG compression parameters. These ioctls are
12 not able to implement the wide variety of parameters that can be set
13 by hardware MPEG encoders. A new MPEG control mechanism was created
14 in kernel 2.6.18 that replaces these ioctls. See the V4L2 specification
15 (section 1.9: Extended controls) for more information on this topic.
16Who: Hans Verkuil <hverkuil@xs4all.nl> and
17 Mauro Carvalho Chehab <mchehab@infradead.org>
18
19---------------------------
20
9What: /sys/devices/.../power/state 21What: /sys/devices/.../power/state
10 dev->power.power_state 22 dev->power.power_state
11 dpm_runtime_{suspend,resume)() 23 dpm_runtime_{suspend,resume)()
@@ -39,17 +51,6 @@ Who: Dan Dennedy <dan@dennedy.org>, Stefan Richter <stefanr@s5r6.in-berlin.de>
39 51
40--------------------------- 52---------------------------
41 53
42What: dv1394 driver (CONFIG_IEEE1394_DV1394)
43When: June 2007
44Why: Replaced by raw1394 + userspace libraries, notably libiec61883. This
45 shift of application support has been indicated on www.linux1394.org
46 and developers' mailinglists for quite some time. Major applications
47 have been converted, with the exception of ffmpeg and hence xine.
48 Piped output of dvgrab2 is a partial equivalent to dv1394.
49Who: Dan Dennedy <dan@dennedy.org>, Stefan Richter <stefanr@s5r6.in-berlin.de>
50
51---------------------------
52
53What: Video4Linux API 1 ioctls and video_decoder.h from Video devices. 54What: Video4Linux API 1 ioctls and video_decoder.h from Video devices.
54When: December 2006 55When: December 2006
55Why: V4L1 AP1 was replaced by V4L2 API. during migration from 2.4 to 2.6 56Why: V4L1 AP1 was replaced by V4L2 API. during migration from 2.4 to 2.6
@@ -145,15 +146,6 @@ Who: Arjan van de Ven <arjan@linux.intel.com>
145 146
146--------------------------- 147---------------------------
147 148
148What: mount/umount uevents
149When: February 2007
150Why: These events are not correct, and do not properly let userspace know
151 when a file system has been mounted or unmounted. Userspace should
152 poll the /proc/mounts file instead to detect this properly.
153Who: Greg Kroah-Hartman <gregkh@suse.de>
154
155---------------------------
156
157What: USB driver API moves to EXPORT_SYMBOL_GPL 149What: USB driver API moves to EXPORT_SYMBOL_GPL
158When: February 2008 150When: February 2008
159Files: include/linux/usb.h, drivers/usb/core/driver.c 151Files: include/linux/usb.h, drivers/usb/core/driver.c
@@ -222,15 +214,6 @@ Who: Adrian Bunk <bunk@stusta.de>
222 214
223--------------------------- 215---------------------------
224 216
225What: IPv4 only connection tracking/NAT/helpers
226When: 2.6.22
227Why: The new layer 3 independant connection tracking replaces the old
228 IPv4 only version. After some stabilization of the new code the
229 old one will be removed.
230Who: Patrick McHardy <kaber@trash.net>
231
232---------------------------
233
234What: ACPI hooks (X86_SPEEDSTEP_CENTRINO_ACPI) in speedstep-centrino driver 217What: ACPI hooks (X86_SPEEDSTEP_CENTRINO_ACPI) in speedstep-centrino driver
235When: December 2006 218When: December 2006
236Why: Speedstep-centrino driver with ACPI hooks and acpi-cpufreq driver are 219Why: Speedstep-centrino driver with ACPI hooks and acpi-cpufreq driver are
@@ -305,18 +288,6 @@ Who: Richard Purdie <rpurdie@rpsys.net>
305 288
306--------------------------- 289---------------------------
307 290
308What: Wireless extensions over netlink (CONFIG_NET_WIRELESS_RTNETLINK)
309When: with the merge of wireless-dev, 2.6.22 or later
310Why: The option/code is
311 * not enabled on most kernels
312 * not required by any userspace tools (except an experimental one,
313 and even there only for some parts, others use ioctl)
314 * pointless since wext is no longer evolving and the ioctl
315 interface needs to be kept
316Who: Johannes Berg <johannes@sipsolutions.net>
317
318---------------------------
319
320What: i8xx_tco watchdog driver 291What: i8xx_tco watchdog driver
321When: in 2.6.22 292When: in 2.6.22
322Why: the i8xx_tco watchdog driver has been replaced by the iTCO_wdt 293Why: the i8xx_tco watchdog driver has been replaced by the iTCO_wdt
@@ -324,3 +295,22 @@ Why: the i8xx_tco watchdog driver has been replaced by the iTCO_wdt
324Who: Wim Van Sebroeck <wim@iguana.be> 295Who: Wim Van Sebroeck <wim@iguana.be>
325 296
326--------------------------- 297---------------------------
298
299What: Multipath cached routing support in ipv4
300When: in 2.6.23
301Why: Code was merged, then submitter immediately disappeared leaving
302 us with no maintainer and lots of bugs. The code should not have
303 been merged in the first place, and many aspects of it's
304 implementation are blocking more critical core networking
305 development. It's marked EXPERIMENTAL and no distribution
306 enables it because it cause obscure crashes due to unfixable bugs
307 (interfaces don't return errors so memory allocation can't be
308 handled, calling contexts of these interfaces make handling
309 errors impossible too because they get called after we've
310 totally commited to creating a route object, for example).
311 This problem has existed for years and no forward progress
312 has ever been made, and nobody steps up to try and salvage
313 this code, so we're going to finally just get rid of it.
314Who: David S. Miller <davem@davemloft.net>
315
316---------------------------
diff --git a/Documentation/filesystems/afs.txt b/Documentation/filesystems/afs.txt
index 2f4237dfb8c7..12ad6c7f4e50 100644
--- a/Documentation/filesystems/afs.txt
+++ b/Documentation/filesystems/afs.txt
@@ -1,31 +1,82 @@
1 ====================
1 kAFS: AFS FILESYSTEM 2 kAFS: AFS FILESYSTEM
2 ==================== 3 ====================
3 4
4ABOUT 5Contents:
5===== 6
7 - Overview.
8 - Usage.
9 - Mountpoints.
10 - Proc filesystem.
11 - The cell database.
12 - Security.
13 - Examples.
14
15
16========
17OVERVIEW
18========
6 19
7This filesystem provides a fairly simple AFS filesystem driver. It is under 20This filesystem provides a fairly simple secure AFS filesystem driver. It is
8development and only provides very basic facilities. It does not yet support 21under development and does not yet provide the full feature set. The features
9the following AFS features: 22it does support include:
10 23
11 (*) Write support. 24 (*) Security (currently only AFS kaserver and KerberosIV tickets).
12 (*) Communications security.
13 (*) Local caching.
14 (*) pioctl() system call.
15 (*) Automatic mounting of embedded mountpoints.
16 25
26 (*) File reading.
17 27
28 (*) Automounting.
29
30It does not yet support the following AFS features:
31
32 (*) Write support.
33
34 (*) Local caching.
35
36 (*) pioctl() system call.
37
38
39===========
40COMPILATION
41===========
42
43The filesystem should be enabled by turning on the kernel configuration
44options:
45
46 CONFIG_AF_RXRPC - The RxRPC protocol transport
47 CONFIG_RXKAD - The RxRPC Kerberos security handler
48 CONFIG_AFS - The AFS filesystem
49
50Additionally, the following can be turned on to aid debugging:
51
52 CONFIG_AF_RXRPC_DEBUG - Permit AF_RXRPC debugging to be enabled
53 CONFIG_AFS_DEBUG - Permit AFS debugging to be enabled
54
55They permit the debugging messages to be turned on dynamically by manipulating
56the masks in the following files:
57
58 /sys/module/af_rxrpc/parameters/debug
59 /sys/module/afs/parameters/debug
60
61
62=====
18USAGE 63USAGE
19===== 64=====
20 65
21When inserting the driver modules the root cell must be specified along with a 66When inserting the driver modules the root cell must be specified along with a
22list of volume location server IP addresses: 67list of volume location server IP addresses:
23 68
24 insmod rxrpc.o 69 insmod af_rxrpc.o
70 insmod rxkad.o
25 insmod kafs.o rootcell=cambridge.redhat.com:172.16.18.73:172.16.18.91 71 insmod kafs.o rootcell=cambridge.redhat.com:172.16.18.73:172.16.18.91
26 72
27The first module is a driver for the RxRPC remote operation protocol, and the 73The first module is the AF_RXRPC network protocol driver. This provides the
28second is the actual filesystem driver for the AFS filesystem. 74RxRPC remote operation protocol and may also be accessed from userspace. See:
75
76 Documentation/networking/rxrpc.txt
77
78The second module is the kerberos RxRPC security driver, and the third module
79is the actual filesystem driver for the AFS filesystem.
29 80
30Once the module has been loaded, more modules can be added by the following 81Once the module has been loaded, more modules can be added by the following
31procedure: 82procedure:
@@ -33,7 +84,7 @@ procedure:
33 echo add grand.central.org 18.7.14.88:128.2.191.224 >/proc/fs/afs/cells 84 echo add grand.central.org 18.7.14.88:128.2.191.224 >/proc/fs/afs/cells
34 85
35Where the parameters to the "add" command are the name of a cell and a list of 86Where the parameters to the "add" command are the name of a cell and a list of
36volume location servers within that cell. 87volume location servers within that cell, with the latter separated by colons.
37 88
38Filesystems can be mounted anywhere by commands similar to the following: 89Filesystems can be mounted anywhere by commands similar to the following:
39 90
@@ -42,11 +93,6 @@ Filesystems can be mounted anywhere by commands similar to the following:
42 mount -t afs "#root.afs." /afs 93 mount -t afs "#root.afs." /afs
43 mount -t afs "#root.cell." /afs/cambridge 94 mount -t afs "#root.cell." /afs/cambridge
44 95
45 NB: When using this on Linux 2.4, the mount command has to be different,
46 since the filesystem doesn't have access to the device name argument:
47
48 mount -t afs none /afs -ovol="#root.afs."
49
50Where the initial character is either a hash or a percent symbol depending on 96Where the initial character is either a hash or a percent symbol depending on
51whether you definitely want a R/W volume (hash) or whether you'd prefer a R/O 97whether you definitely want a R/W volume (hash) or whether you'd prefer a R/O
52volume, but are willing to use a R/W volume instead (percent). 98volume, but are willing to use a R/W volume instead (percent).
@@ -60,55 +106,66 @@ named volume will be looked up in the cell specified during insmod.
60Additional cells can be added through /proc (see later section). 106Additional cells can be added through /proc (see later section).
61 107
62 108
109===========
63MOUNTPOINTS 110MOUNTPOINTS
64=========== 111===========
65 112
66AFS has a concept of mountpoints. These are specially formatted symbolic links 113AFS has a concept of mountpoints. In AFS terms, these are specially formatted
67(of the same form as the "device name" passed to mount). kAFS presents these 114symbolic links (of the same form as the "device name" passed to mount). kAFS
68to the user as directories that have special properties: 115presents these to the user as directories that have a follow-link capability
116(ie: symbolic link semantics). If anyone attempts to access them, they will
117automatically cause the target volume to be mounted (if possible) on that site.
69 118
70 (*) They cannot be listed. Running a program like "ls" on them will incur an 119Automatically mounted filesystems will be automatically unmounted approximately
71 EREMOTE error (Object is remote). 120twenty minutes after they were last used. Alternatively they can be unmounted
121directly with the umount() system call.
72 122
73 (*) Other objects can't be looked up inside of them. This also incurs an 123Manually unmounting an AFS volume will cause any idle submounts upon it to be
74 EREMOTE error. 124culled first. If all are culled, then the requested volume will also be
125unmounted, otherwise error EBUSY will be returned.
75 126
76 (*) They can be queried with the readlink() system call, which will return 127This can be used by the administrator to attempt to unmount the whole AFS tree
77 the name of the mountpoint to which they point. The "readlink" program 128mounted on /afs in one go by doing:
78 will also work.
79 129
80 (*) They can be mounted on (which symbolic links can't). 130 umount /afs
81 131
82 132
133===============
83PROC FILESYSTEM 134PROC FILESYSTEM
84=============== 135===============
85 136
86The rxrpc module creates a number of files in various places in the /proc
87filesystem:
88
89 (*) Firstly, some information files are made available in a directory called
90 "/proc/net/rxrpc/". These list the extant transport endpoint, peer,
91 connection and call records.
92
93 (*) Secondly, some control files are made available in a directory called
94 "/proc/sys/rxrpc/". Currently, all these files can be used for is to
95 turn on various levels of tracing.
96
97The AFS modules creates a "/proc/fs/afs/" directory and populates it: 137The AFS modules creates a "/proc/fs/afs/" directory and populates it:
98 138
99 (*) A "cells" file that lists cells currently known to the afs module. 139 (*) A "cells" file that lists cells currently known to the afs module and
140 their usage counts:
141
142 [root@andromeda ~]# cat /proc/fs/afs/cells
143 USE NAME
144 3 cambridge.redhat.com
100 145
101 (*) A directory per cell that contains files that list volume location 146 (*) A directory per cell that contains files that list volume location
102 servers, volumes, and active servers known within that cell. 147 servers, volumes, and active servers known within that cell.
103 148
149 [root@andromeda ~]# cat /proc/fs/afs/cambridge.redhat.com/servers
150 USE ADDR STATE
151 4 172.16.18.91 0
152 [root@andromeda ~]# cat /proc/fs/afs/cambridge.redhat.com/vlservers
153 ADDRESS
154 172.16.18.91
155 [root@andromeda ~]# cat /proc/fs/afs/cambridge.redhat.com/volumes
156 USE STT VLID[0] VLID[1] VLID[2] NAME
157 1 Val 20000000 20000001 20000002 root.afs
104 158
159
160=================
105THE CELL DATABASE 161THE CELL DATABASE
106================= 162=================
107 163
108The filesystem maintains an internal database of all the cells it knows and 164The filesystem maintains an internal database of all the cells it knows and the
109the IP addresses of the volume location servers for those cells. The cell to 165IP addresses of the volume location servers for those cells. The cell to which
110which the computer belongs is added to the database when insmod is performed 166the system belongs is added to the database when insmod is performed by the
111by the "rootcell=" argument. 167"rootcell=" argument or, if compiled in, using a "kafs.rootcell=" argument on
168the kernel command line.
112 169
113Further cells can be added by commands similar to the following: 170Further cells can be added by commands similar to the following:
114 171
@@ -118,20 +175,65 @@ Further cells can be added by commands similar to the following:
118No other cell database operations are available at this time. 175No other cell database operations are available at this time.
119 176
120 177
178========
179SECURITY
180========
181
182Secure operations are initiated by acquiring a key using the klog program. A
183very primitive klog program is available at:
184
185 http://people.redhat.com/~dhowells/rxrpc/klog.c
186
187This should be compiled by:
188
189 make klog LDLIBS="-lcrypto -lcrypt -lkrb4 -lkeyutils"
190
191And then run as:
192
193 ./klog
194
195Assuming it's successful, this adds a key of type RxRPC, named for the service
196and cell, eg: "afs@<cellname>". This can be viewed with the keyctl program or
197by cat'ing /proc/keys:
198
199 [root@andromeda ~]# keyctl show
200 Session Keyring
201 -3 --alswrv 0 0 keyring: _ses.3268
202 2 --alswrv 0 0 \_ keyring: _uid.0
203 111416553 --als--v 0 0 \_ rxrpc: afs@CAMBRIDGE.REDHAT.COM
204
205Currently the username, realm, password and proposed ticket lifetime are
206compiled in to the program.
207
208It is not required to acquire a key before using AFS facilities, but if one is
209not acquired then all operations will be governed by the anonymous user parts
210of the ACLs.
211
212If a key is acquired, then all AFS operations, including mounts and automounts,
213made by a possessor of that key will be secured with that key.
214
215If a file is opened with a particular key and then the file descriptor is
216passed to a process that doesn't have that key (perhaps over an AF_UNIX
217socket), then the operations on the file will be made with key that was used to
218open the file.
219
220
221========
121EXAMPLES 222EXAMPLES
122======== 223========
123 224
124Here's what I use to test this. Some of the names and IP addresses are local 225Here's what I use to test this. Some of the names and IP addresses are local
125to my internal DNS. My "root.afs" partition has a mount point within it for 226to my internal DNS. My "root.afs" partition has a mount point within it for
126some public volumes volumes. 227some public volumes volumes.
127 228
128insmod -S /tmp/rxrpc.o 229insmod /tmp/rxrpc.o
129insmod -S /tmp/kafs.o rootcell=cambridge.redhat.com:172.16.18.73:172.16.18.91 230insmod /tmp/rxkad.o
231insmod /tmp/kafs.o rootcell=cambridge.redhat.com:172.16.18.91
130 232
131mount -t afs \%root.afs. /afs 233mount -t afs \%root.afs. /afs
132mount -t afs \%cambridge.redhat.com:root.cell. /afs/cambridge.redhat.com/ 234mount -t afs \%cambridge.redhat.com:root.cell. /afs/cambridge.redhat.com/
133 235
134echo add grand.central.org 18.7.14.88:128.2.191.224 > /proc/fs/afs/cells 236echo add grand.central.org 18.7.14.88:128.2.191.224 > /proc/fs/afs/cells
135mount -t afs "#grand.central.org:root.cell." /afs/grand.central.org/ 237mount -t afs "#grand.central.org:root.cell." /afs/grand.central.org/
136mount -t afs "#grand.central.org:root.archive." /afs/grand.central.org/archive 238mount -t afs "#grand.central.org:root.archive." /afs/grand.central.org/archive
137mount -t afs "#grand.central.org:root.contrib." /afs/grand.central.org/contrib 239mount -t afs "#grand.central.org:root.contrib." /afs/grand.central.org/contrib
@@ -141,15 +243,7 @@ mount -t afs "#grand.central.org:root.service." /afs/grand.central.org/service
141mount -t afs "#grand.central.org:root.software." /afs/grand.central.org/software 243mount -t afs "#grand.central.org:root.software." /afs/grand.central.org/software
142mount -t afs "#grand.central.org:root.user." /afs/grand.central.org/user 244mount -t afs "#grand.central.org:root.user." /afs/grand.central.org/user
143 245
144umount /afs/grand.central.org/user
145umount /afs/grand.central.org/software
146umount /afs/grand.central.org/service
147umount /afs/grand.central.org/project
148umount /afs/grand.central.org/doc
149umount /afs/grand.central.org/contrib
150umount /afs/grand.central.org/archive
151umount /afs/grand.central.org
152umount /afs/cambridge.redhat.com
153umount /afs 246umount /afs
154rmmod kafs 247rmmod kafs
248rmmod rxkad
155rmmod rxrpc 249rmmod rxrpc
diff --git a/Documentation/filesystems/proc.txt b/Documentation/filesystems/proc.txt
index 5484ab5efd4f..7aaf09b86a55 100644
--- a/Documentation/filesystems/proc.txt
+++ b/Documentation/filesystems/proc.txt
@@ -1421,6 +1421,15 @@ fewer messages that will be written. Message_burst controls when messages will
1421be dropped. The default settings limit warning messages to one every five 1421be dropped. The default settings limit warning messages to one every five
1422seconds. 1422seconds.
1423 1423
1424warnings
1425--------
1426
1427This controls console messages from the networking stack that can occur because
1428of problems on the network like duplicate address or bad checksums. Normally,
1429this should be enabled, but if the problem persists the messages can be
1430disabled.
1431
1432
1424netdev_max_backlog 1433netdev_max_backlog
1425------------------ 1434------------------
1426 1435
diff --git a/Documentation/gpio.txt b/Documentation/gpio.txt
index 989f1130f4f3..f8528db967fa 100644
--- a/Documentation/gpio.txt
+++ b/Documentation/gpio.txt
@@ -27,7 +27,7 @@ The exact capabilities of GPIOs vary between systems. Common options:
27 - Output values are writable (high=1, low=0). Some chips also have 27 - Output values are writable (high=1, low=0). Some chips also have
28 options about how that value is driven, so that for example only one 28 options about how that value is driven, so that for example only one
29 value might be driven ... supporting "wire-OR" and similar schemes 29 value might be driven ... supporting "wire-OR" and similar schemes
30 for the other value. 30 for the other value (notably, "open drain" signaling).
31 31
32 - Input values are likewise readable (1, 0). Some chips support readback 32 - Input values are likewise readable (1, 0). Some chips support readback
33 of pins configured as "output", which is very useful in such "wire-OR" 33 of pins configured as "output", which is very useful in such "wire-OR"
@@ -247,6 +247,35 @@ with gpio_get_value(), for example to initialize or update driver state
247when the IRQ is edge-triggered. 247when the IRQ is edge-triggered.
248 248
249 249
250Emulating Open Drain Signals
251----------------------------
252Sometimes shared signals need to use "open drain" signaling, where only the
253low signal level is actually driven. (That term applies to CMOS transistors;
254"open collector" is used for TTL.) A pullup resistor causes the high signal
255level. This is sometimes called a "wire-AND"; or more practically, from the
256negative logic (low=true) perspective this is a "wire-OR".
257
258One common example of an open drain signal is a shared active-low IRQ line.
259Also, bidirectional data bus signals sometimes use open drain signals.
260
261Some GPIO controllers directly support open drain outputs; many don't. When
262you need open drain signaling but your hardware doesn't directly support it,
263there's a common idiom you can use to emulate it with any GPIO pin that can
264be used as either an input or an output:
265
266 LOW: gpio_direction_output(gpio, 0) ... this drives the signal
267 and overrides the pullup.
268
269 HIGH: gpio_direction_input(gpio) ... this turns off the output,
270 so the pullup (or some other device) controls the signal.
271
272If you are "driving" the signal high but gpio_get_value(gpio) reports a low
273value (after the appropriate rise time passes), you know some other component
274is driving the shared signal low. That's not necessarily an error. As one
275common example, that's how I2C clocks are stretched: a slave that needs a
276slower clock delays the rising edge of SCK, and the I2C master adjusts its
277signaling rate accordingly.
278
250 279
251What do these conventions omit? 280What do these conventions omit?
252=============================== 281===============================
diff --git a/Documentation/ia64/err_inject.txt b/Documentation/ia64/err_inject.txt
new file mode 100644
index 000000000000..6449a7090dbb
--- /dev/null
+++ b/Documentation/ia64/err_inject.txt
@@ -0,0 +1,1068 @@
1
2IPF Machine Check (MC) error inject tool
3========================================
4
5IPF Machine Check (MC) error inject tool is used to inject MC
6errors from Linux. The tool is a test bed for IPF MC work flow including
7hardware correctable error handling, OS recoverable error handling, MC
8event logging, etc.
9
10The tool includes two parts: a kernel driver and a user application
11sample. The driver provides interface to PAL to inject error
12and query error injection capabilities. The driver code is in
13arch/ia64/kernel/err_inject.c. The application sample (shown below)
14provides a combination of various errors and calls the driver's interface
15(sysfs interface) to inject errors or query error injection capabilities.
16
17The tool can be used to test Intel IPF machine MC handling capabilities.
18It's especially useful for people who can not access hardware MC injection
19tool to inject error. It's also very useful to integrate with other
20software test suits to do stressful testing on IPF.
21
22Below is a sample application as part of the whole tool. The sample
23can be used as a working test tool. Or it can be expanded to include
24more features. It also can be a integrated into a libary or other user
25application to have more thorough test.
26
27The sample application takes err.conf as error configuation input. Gcc
28compiles the code. After you install err_inject driver, you can run
29this sample application to inject errors.
30
31Errata: Itanium 2 Processors Specification Update lists some errata against
32the pal_mc_error_inject PAL procedure. The following err.conf has been tested
33on latest Montecito PAL.
34
35err.conf:
36
37#This is configuration file for err_inject_tool.
38#The format of the each line is:
39#cpu, loop, interval, err_type_info, err_struct_info, err_data_buffer
40#where
41# cpu: logical cpu number the error will be inject in.
42# loop: times the error will be injected.
43# interval: In second. every so often one error is injected.
44# err_type_info, err_struct_info: PAL parameters.
45#
46#Note: All values are hex w/o or w/ 0x prefix.
47
48
49#On cpu2, inject only total 0x10 errors, interval 5 seconds
50#corrected, data cache, hier-2, physical addr(assigned by tool code).
51#working on Montecito latest PAL.
522, 10, 5, 4101, 95
53
54#On cpu4, inject and consume total 0x10 errors, interval 5 seconds
55#corrected, data cache, hier-2, physical addr(assigned by tool code).
56#working on Montecito latest PAL.
574, 10, 5, 4109, 95
58
59#On cpu15, inject and consume total 0x10 errors, interval 5 seconds
60#recoverable, DTR0, hier-2.
61#working on Montecito latest PAL.
620xf, 0x10, 5, 4249, 15
63
64The sample application source code:
65
66err_injection_tool.c:
67
68/*
69 * This program is free software; you can redistribute it and/or modify
70 * it under the terms of the GNU General Public License as published by
71 * the Free Software Foundation; either version 2 of the License, or
72 * (at your option) any later version.
73 *
74 * This program is distributed in the hope that it will be useful, but
75 * WITHOUT ANY WARRANTY; without even the implied warranty of
76 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
77 * NON INFRINGEMENT. See the GNU General Public License for more
78 * details.
79 *
80 * You should have received a copy of the GNU General Public License
81 * along with this program; if not, write to the Free Software
82 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
83 *
84 * Copyright (C) 2006 Intel Co
85 * Fenghua Yu <fenghua.yu@intel.com>
86 *
87 */
88#include <sys/types.h>
89#include <sys/stat.h>
90#include <fcntl.h>
91#include <stdio.h>
92#include <sched.h>
93#include <unistd.h>
94#include <stdlib.h>
95#include <stdarg.h>
96#include <string.h>
97#include <errno.h>
98#include <time.h>
99#include <sys/ipc.h>
100#include <sys/sem.h>
101#include <sys/wait.h>
102#include <sys/mman.h>
103#include <sys/shm.h>
104
105#define MAX_FN_SIZE 256
106#define MAX_BUF_SIZE 256
107#define DATA_BUF_SIZE 256
108#define NR_CPUS 512
109#define MAX_TASK_NUM 2048
110#define MIN_INTERVAL 5 // seconds
111#define ERR_DATA_BUFFER_SIZE 3 // Three 8-byte.
112#define PARA_FIELD_NUM 5
113#define MASK_SIZE (NR_CPUS/64)
114#define PATH_FORMAT "/sys/devices/system/cpu/cpu%d/err_inject/"
115
116int sched_setaffinity(pid_t pid, unsigned int len, unsigned long *mask);
117
118int verbose;
119#define vbprintf if (verbose) printf
120
121int log_info(int cpu, const char *fmt, ...)
122{
123 FILE *log;
124 char fn[MAX_FN_SIZE];
125 char buf[MAX_BUF_SIZE];
126 va_list args;
127
128 sprintf(fn, "%d.log", cpu);
129 log=fopen(fn, "a+");
130 if (log==NULL) {
131 perror("Error open:");
132 return -1;
133 }
134
135 va_start(args, fmt);
136 vprintf(fmt, args);
137 memset(buf, 0, MAX_BUF_SIZE);
138 vsprintf(buf, fmt, args);
139 va_end(args);
140
141 fwrite(buf, sizeof(buf), 1, log);
142 fclose(log);
143
144 return 0;
145}
146
147typedef unsigned long u64;
148typedef unsigned int u32;
149
150typedef union err_type_info_u {
151 struct {
152 u64 mode : 3, /* 0-2 */
153 err_inj : 3, /* 3-5 */
154 err_sev : 2, /* 6-7 */
155 err_struct : 5, /* 8-12 */
156 struct_hier : 3, /* 13-15 */
157 reserved : 48; /* 16-63 */
158 } err_type_info_u;
159 u64 err_type_info;
160} err_type_info_t;
161
162typedef union err_struct_info_u {
163 struct {
164 u64 siv : 1, /* 0 */
165 c_t : 2, /* 1-2 */
166 cl_p : 3, /* 3-5 */
167 cl_id : 3, /* 6-8 */
168 cl_dp : 1, /* 9 */
169 reserved1 : 22, /* 10-31 */
170 tiv : 1, /* 32 */
171 trigger : 4, /* 33-36 */
172 trigger_pl : 3, /* 37-39 */
173 reserved2 : 24; /* 40-63 */
174 } err_struct_info_cache;
175 struct {
176 u64 siv : 1, /* 0 */
177 tt : 2, /* 1-2 */
178 tc_tr : 2, /* 3-4 */
179 tr_slot : 8, /* 5-12 */
180 reserved1 : 19, /* 13-31 */
181 tiv : 1, /* 32 */
182 trigger : 4, /* 33-36 */
183 trigger_pl : 3, /* 37-39 */
184 reserved2 : 24; /* 40-63 */
185 } err_struct_info_tlb;
186 struct {
187 u64 siv : 1, /* 0 */
188 regfile_id : 4, /* 1-4 */
189 reg_num : 7, /* 5-11 */
190 reserved1 : 20, /* 12-31 */
191 tiv : 1, /* 32 */
192 trigger : 4, /* 33-36 */
193 trigger_pl : 3, /* 37-39 */
194 reserved2 : 24; /* 40-63 */
195 } err_struct_info_register;
196 struct {
197 u64 reserved;
198 } err_struct_info_bus_processor_interconnect;
199 u64 err_struct_info;
200} err_struct_info_t;
201
202typedef union err_data_buffer_u {
203 struct {
204 u64 trigger_addr; /* 0-63 */
205 u64 inj_addr; /* 64-127 */
206 u64 way : 5, /* 128-132 */
207 index : 20, /* 133-152 */
208 : 39; /* 153-191 */
209 } err_data_buffer_cache;
210 struct {
211 u64 trigger_addr; /* 0-63 */
212 u64 inj_addr; /* 64-127 */
213 u64 way : 5, /* 128-132 */
214 index : 20, /* 133-152 */
215 reserved : 39; /* 153-191 */
216 } err_data_buffer_tlb;
217 struct {
218 u64 trigger_addr; /* 0-63 */
219 } err_data_buffer_register;
220 struct {
221 u64 reserved; /* 0-63 */
222 } err_data_buffer_bus_processor_interconnect;
223 u64 err_data_buffer[ERR_DATA_BUFFER_SIZE];
224} err_data_buffer_t;
225
226typedef union capabilities_u {
227 struct {
228 u64 i : 1,
229 d : 1,
230 rv : 1,
231 tag : 1,
232 data : 1,
233 mesi : 1,
234 dp : 1,
235 reserved1 : 3,
236 pa : 1,
237 va : 1,
238 wi : 1,
239 reserved2 : 20,
240 trigger : 1,
241 trigger_pl : 1,
242 reserved3 : 30;
243 } capabilities_cache;
244 struct {
245 u64 d : 1,
246 i : 1,
247 rv : 1,
248 tc : 1,
249 tr : 1,
250 reserved1 : 27,
251 trigger : 1,
252 trigger_pl : 1,
253 reserved2 : 30;
254 } capabilities_tlb;
255 struct {
256 u64 gr_b0 : 1,
257 gr_b1 : 1,
258 fr : 1,
259 br : 1,
260 pr : 1,
261 ar : 1,
262 cr : 1,
263 rr : 1,
264 pkr : 1,
265 dbr : 1,
266 ibr : 1,
267 pmc : 1,
268 pmd : 1,
269 reserved1 : 3,
270 regnum : 1,
271 reserved2 : 15,
272 trigger : 1,
273 trigger_pl : 1,
274 reserved3 : 30;
275 } capabilities_register;
276 struct {
277 u64 reserved;
278 } capabilities_bus_processor_interconnect;
279} capabilities_t;
280
281typedef struct resources_s {
282 u64 ibr0 : 1,
283 ibr2 : 1,
284 ibr4 : 1,
285 ibr6 : 1,
286 dbr0 : 1,
287 dbr2 : 1,
288 dbr4 : 1,
289 dbr6 : 1,
290 reserved : 48;
291} resources_t;
292
293
294long get_page_size(void)
295{
296 long page_size=sysconf(_SC_PAGESIZE);
297 return page_size;
298}
299
300#define PAGE_SIZE (get_page_size()==-1?0x4000:get_page_size())
301#define SHM_SIZE (2*PAGE_SIZE*NR_CPUS)
302#define SHM_VA 0x2000000100000000
303
304int shmid;
305void *shmaddr;
306
307int create_shm(void)
308{
309 key_t key;
310 char fn[MAX_FN_SIZE];
311
312 /* cpu0 is always existing */
313 sprintf(fn, PATH_FORMAT, 0);
314 if ((key = ftok(fn, 's')) == -1) {
315 perror("ftok");
316 return -1;
317 }
318
319 shmid = shmget(key, SHM_SIZE, 0644 | IPC_CREAT);
320 if (shmid == -1) {
321 if (errno==EEXIST) {
322 shmid = shmget(key, SHM_SIZE, 0);
323 if (shmid == -1) {
324 perror("shmget");
325 return -1;
326 }
327 }
328 else {
329 perror("shmget");
330 return -1;
331 }
332 }
333 vbprintf("shmid=%d", shmid);
334
335 /* connect to the segment: */
336 shmaddr = shmat(shmid, (void *)SHM_VA, 0);
337 if (shmaddr == (void*)-1) {
338 perror("shmat");
339 return -1;
340 }
341
342 memset(shmaddr, 0, SHM_SIZE);
343 mlock(shmaddr, SHM_SIZE);
344
345 return 0;
346}
347
348int free_shm()
349{
350 munlock(shmaddr, SHM_SIZE);
351 shmdt(shmaddr);
352 semctl(shmid, 0, IPC_RMID);
353
354 return 0;
355}
356
357#ifdef _SEM_SEMUN_UNDEFINED
358union semun
359{
360 int val;
361 struct semid_ds *buf;
362 unsigned short int *array;
363 struct seminfo *__buf;
364};
365#endif
366
367u32 mode=1; /* 1: physical mode; 2: virtual mode. */
368int one_lock=1;
369key_t key[NR_CPUS];
370int semid[NR_CPUS];
371
372int create_sem(int cpu)
373{
374 union semun arg;
375 char fn[MAX_FN_SIZE];
376 int sid;
377
378 sprintf(fn, PATH_FORMAT, cpu);
379 sprintf(fn, "%s/%s", fn, "err_type_info");
380 if ((key[cpu] = ftok(fn, 'e')) == -1) {
381 perror("ftok");
382 return -1;
383 }
384
385 if (semid[cpu]!=0)
386 return 0;
387
388 /* clear old semaphore */
389 if ((sid = semget(key[cpu], 1, 0)) != -1)
390 semctl(sid, 0, IPC_RMID);
391
392 /* get one semaphore */
393 if ((semid[cpu] = semget(key[cpu], 1, IPC_CREAT | IPC_EXCL)) == -1) {
394 perror("semget");
395 printf("Please remove semaphore with key=0x%lx, then run the tool.\n",
396 (u64)key[cpu]);
397 return -1;
398 }
399
400 vbprintf("semid[%d]=0x%lx, key[%d]=%lx\n",cpu,(u64)semid[cpu],cpu,
401 (u64)key[cpu]);
402 /* initialize the semaphore to 1: */
403 arg.val = 1;
404 if (semctl(semid[cpu], 0, SETVAL, arg) == -1) {
405 perror("semctl");
406 return -1;
407 }
408
409 return 0;
410}
411
412static int lock(int cpu)
413{
414 struct sembuf lock;
415
416 lock.sem_num = cpu;
417 lock.sem_op = 1;
418 semop(semid[cpu], &lock, 1);
419
420 return 0;
421}
422
423static int unlock(int cpu)
424{
425 struct sembuf unlock;
426
427 unlock.sem_num = cpu;
428 unlock.sem_op = -1;
429 semop(semid[cpu], &unlock, 1);
430
431 return 0;
432}
433
434void free_sem(int cpu)
435{
436 semctl(semid[cpu], 0, IPC_RMID);
437}
438
439int wr_multi(char *fn, unsigned long *data, int size)
440{
441 int fd;
442 char buf[MAX_BUF_SIZE];
443 int ret;
444
445 if (size==1)
446 sprintf(buf, "%lx", *data);
447 else if (size==3)
448 sprintf(buf, "%lx,%lx,%lx", data[0], data[1], data[2]);
449 else {
450 fprintf(stderr,"write to file with wrong size!\n");
451 return -1;
452 }
453
454 fd=open(fn, O_RDWR);
455 if (!fd) {
456 perror("Error:");
457 return -1;
458 }
459 ret=write(fd, buf, sizeof(buf));
460 close(fd);
461 return ret;
462}
463
464int wr(char *fn, unsigned long data)
465{
466 return wr_multi(fn, &data, 1);
467}
468
469int rd(char *fn, unsigned long *data)
470{
471 int fd;
472 char buf[MAX_BUF_SIZE];
473
474 fd=open(fn, O_RDONLY);
475 if (fd<0) {
476 perror("Error:");
477 return -1;
478 }
479 read(fd, buf, MAX_BUF_SIZE);
480 *data=strtoul(buf, NULL, 16);
481 close(fd);
482 return 0;
483}
484
485int rd_status(char *path, int *status)
486{
487 char fn[MAX_FN_SIZE];
488 sprintf(fn, "%s/status", path);
489 if (rd(fn, (u64*)status)<0) {
490 perror("status reading error.\n");
491 return -1;
492 }
493
494 return 0;
495}
496
497int rd_capabilities(char *path, u64 *capabilities)
498{
499 char fn[MAX_FN_SIZE];
500 sprintf(fn, "%s/capabilities", path);
501 if (rd(fn, capabilities)<0) {
502 perror("capabilities reading error.\n");
503 return -1;
504 }
505
506 return 0;
507}
508
509int rd_all(char *path)
510{
511 unsigned long err_type_info, err_struct_info, err_data_buffer;
512 int status;
513 unsigned long capabilities, resources;
514 char fn[MAX_FN_SIZE];
515
516 sprintf(fn, "%s/err_type_info", path);
517 if (rd(fn, &err_type_info)<0) {
518 perror("err_type_info reading error.\n");
519 return -1;
520 }
521 printf("err_type_info=%lx\n", err_type_info);
522
523 sprintf(fn, "%s/err_struct_info", path);
524 if (rd(fn, &err_struct_info)<0) {
525 perror("err_struct_info reading error.\n");
526 return -1;
527 }
528 printf("err_struct_info=%lx\n", err_struct_info);
529
530 sprintf(fn, "%s/err_data_buffer", path);
531 if (rd(fn, &err_data_buffer)<0) {
532 perror("err_data_buffer reading error.\n");
533 return -1;
534 }
535 printf("err_data_buffer=%lx\n", err_data_buffer);
536
537 sprintf(fn, "%s/status", path);
538 if (rd("status", (u64*)&status)<0) {
539 perror("status reading error.\n");
540 return -1;
541 }
542 printf("status=%d\n", status);
543
544 sprintf(fn, "%s/capabilities", path);
545 if (rd(fn,&capabilities)<0) {
546 perror("capabilities reading error.\n");
547 return -1;
548 }
549 printf("capabilities=%lx\n", capabilities);
550
551 sprintf(fn, "%s/resources", path);
552 if (rd(fn, &resources)<0) {
553 perror("resources reading error.\n");
554 return -1;
555 }
556 printf("resources=%lx\n", resources);
557
558 return 0;
559}
560
561int query_capabilities(char *path, err_type_info_t err_type_info,
562 u64 *capabilities)
563{
564 char fn[MAX_FN_SIZE];
565 err_struct_info_t err_struct_info;
566 err_data_buffer_t err_data_buffer;
567
568 err_struct_info.err_struct_info=0;
569 memset(err_data_buffer.err_data_buffer, -1, ERR_DATA_BUFFER_SIZE*8);
570
571 sprintf(fn, "%s/err_type_info", path);
572 wr(fn, err_type_info.err_type_info);
573 sprintf(fn, "%s/err_struct_info", path);
574 wr(fn, 0x0);
575 sprintf(fn, "%s/err_data_buffer", path);
576 wr_multi(fn, err_data_buffer.err_data_buffer, ERR_DATA_BUFFER_SIZE);
577
578 // Fire pal_mc_error_inject procedure.
579 sprintf(fn, "%s/call_start", path);
580 wr(fn, mode);
581
582 if (rd_capabilities(path, capabilities)<0)
583 return -1;
584
585 return 0;
586}
587
588int query_all_capabilities()
589{
590 int status;
591 err_type_info_t err_type_info;
592 int err_sev, err_struct, struct_hier;
593 int cap=0;
594 u64 capabilities;
595 char path[MAX_FN_SIZE];
596
597 err_type_info.err_type_info=0; // Initial
598 err_type_info.err_type_info_u.mode=0; // Query mode;
599 err_type_info.err_type_info_u.err_inj=0;
600
601 printf("All capabilities implemented in pal_mc_error_inject:\n");
602 sprintf(path, PATH_FORMAT ,0);
603 for (err_sev=0;err_sev<3;err_sev++)
604 for (err_struct=0;err_struct<5;err_struct++)
605 for (struct_hier=0;struct_hier<5;struct_hier++)
606 {
607 status=-1;
608 capabilities=0;
609 err_type_info.err_type_info_u.err_sev=err_sev;
610 err_type_info.err_type_info_u.err_struct=err_struct;
611 err_type_info.err_type_info_u.struct_hier=struct_hier;
612
613 if (query_capabilities(path, err_type_info, &capabilities)<0)
614 continue;
615
616 if (rd_status(path, &status)<0)
617 continue;
618
619 if (status==0) {
620 cap=1;
621 printf("For err_sev=%d, err_struct=%d, struct_hier=%d: ",
622 err_sev, err_struct, struct_hier);
623 printf("capabilities 0x%lx\n", capabilities);
624 }
625 }
626 if (!cap) {
627 printf("No capabilities supported.\n");
628 return 0;
629 }
630
631 return 0;
632}
633
634int err_inject(int cpu, char *path, err_type_info_t err_type_info,
635 err_struct_info_t err_struct_info,
636 err_data_buffer_t err_data_buffer)
637{
638 int status;
639 char fn[MAX_FN_SIZE];
640
641 log_info(cpu, "err_type_info=%lx, err_struct_info=%lx, ",
642 err_type_info.err_type_info,
643 err_struct_info.err_struct_info);
644 log_info(cpu,"err_data_buffer=[%lx,%lx,%lx]\n",
645 err_data_buffer.err_data_buffer[0],
646 err_data_buffer.err_data_buffer[1],
647 err_data_buffer.err_data_buffer[2]);
648 sprintf(fn, "%s/err_type_info", path);
649 wr(fn, err_type_info.err_type_info);
650 sprintf(fn, "%s/err_struct_info", path);
651 wr(fn, err_struct_info.err_struct_info);
652 sprintf(fn, "%s/err_data_buffer", path);
653 wr_multi(fn, err_data_buffer.err_data_buffer, ERR_DATA_BUFFER_SIZE);
654
655 // Fire pal_mc_error_inject procedure.
656 sprintf(fn, "%s/call_start", path);
657 wr(fn,mode);
658
659 if (rd_status(path, &status)<0) {
660 vbprintf("fail: read status\n");
661 return -100;
662 }
663
664 if (status!=0) {
665 log_info(cpu, "fail: status=%d\n", status);
666 return status;
667 }
668
669 return status;
670}
671
672static int construct_data_buf(char *path, err_type_info_t err_type_info,
673 err_struct_info_t err_struct_info,
674 err_data_buffer_t *err_data_buffer,
675 void *va1)
676{
677 char fn[MAX_FN_SIZE];
678 u64 virt_addr=0, phys_addr=0;
679
680 vbprintf("va1=%lx\n", (u64)va1);
681 memset(&err_data_buffer->err_data_buffer_cache, 0, ERR_DATA_BUFFER_SIZE*8);
682
683 switch (err_type_info.err_type_info_u.err_struct) {
684 case 1: // Cache
685 switch (err_struct_info.err_struct_info_cache.cl_id) {
686 case 1: //Virtual addr
687 err_data_buffer->err_data_buffer_cache.inj_addr=(u64)va1;
688 break;
689 case 2: //Phys addr
690 sprintf(fn, "%s/virtual_to_phys", path);
691 virt_addr=(u64)va1;
692 if (wr(fn,virt_addr)<0)
693 return -1;
694 rd(fn, &phys_addr);
695 err_data_buffer->err_data_buffer_cache.inj_addr=phys_addr;
696 break;
697 default:
698 printf("Not supported cl_id\n");
699 break;
700 }
701 break;
702 case 2: // TLB
703 break;
704 case 3: // Register file
705 break;
706 case 4: // Bus/system interconnect
707 default:
708 printf("Not supported err_struct\n");
709 break;
710 }
711
712 return 0;
713}
714
715typedef struct {
716 u64 cpu;
717 u64 loop;
718 u64 interval;
719 u64 err_type_info;
720 u64 err_struct_info;
721 u64 err_data_buffer[ERR_DATA_BUFFER_SIZE];
722} parameters_t;
723
724parameters_t line_para;
725int para;
726
727static int empty_data_buffer(u64 *err_data_buffer)
728{
729 int empty=1;
730 int i;
731
732 for (i=0;i<ERR_DATA_BUFFER_SIZE; i++)
733 if (err_data_buffer[i]!=-1)
734 empty=0;
735
736 return empty;
737}
738
739int err_inj()
740{
741 err_type_info_t err_type_info;
742 err_struct_info_t err_struct_info;
743 err_data_buffer_t err_data_buffer;
744 int count;
745 FILE *fp;
746 unsigned long cpu, loop, interval, err_type_info_conf, err_struct_info_conf;
747 u64 err_data_buffer_conf[ERR_DATA_BUFFER_SIZE];
748 int num;
749 int i;
750 char path[MAX_FN_SIZE];
751 parameters_t parameters[MAX_TASK_NUM]={};
752 pid_t child_pid[MAX_TASK_NUM];
753 time_t current_time;
754 int status;
755
756 if (!para) {
757 fp=fopen("err.conf", "r");
758 if (fp==NULL) {
759 perror("Error open err.conf");
760 return -1;
761 }
762
763 num=0;
764 while (!feof(fp)) {
765 char buf[256];
766 memset(buf,0,256);
767 fgets(buf, 256, fp);
768 count=sscanf(buf, "%lx, %lx, %lx, %lx, %lx, %lx, %lx, %lx\n",
769 &cpu, &loop, &interval,&err_type_info_conf,
770 &err_struct_info_conf,
771 &err_data_buffer_conf[0],
772 &err_data_buffer_conf[1],
773 &err_data_buffer_conf[2]);
774 if (count!=PARA_FIELD_NUM+3) {
775 err_data_buffer_conf[0]=-1;
776 err_data_buffer_conf[1]=-1;
777 err_data_buffer_conf[2]=-1;
778 count=sscanf(buf, "%lx, %lx, %lx, %lx, %lx\n",
779 &cpu, &loop, &interval,&err_type_info_conf,
780 &err_struct_info_conf);
781 if (count!=PARA_FIELD_NUM)
782 continue;
783 }
784
785 parameters[num].cpu=cpu;
786 parameters[num].loop=loop;
787 parameters[num].interval= interval>MIN_INTERVAL
788 ?interval:MIN_INTERVAL;
789 parameters[num].err_type_info=err_type_info_conf;
790 parameters[num].err_struct_info=err_struct_info_conf;
791 memcpy(parameters[num++].err_data_buffer,
792 err_data_buffer_conf,ERR_DATA_BUFFER_SIZE*8) ;
793
794 if (num>=MAX_TASK_NUM)
795 break;
796 }
797 }
798 else {
799 parameters[0].cpu=line_para.cpu;
800 parameters[0].loop=line_para.loop;
801 parameters[0].interval= line_para.interval>MIN_INTERVAL
802 ?line_para.interval:MIN_INTERVAL;
803 parameters[0].err_type_info=line_para.err_type_info;
804 parameters[0].err_struct_info=line_para.err_struct_info;
805 memcpy(parameters[0].err_data_buffer,
806 line_para.err_data_buffer,ERR_DATA_BUFFER_SIZE*8) ;
807
808 num=1;
809 }
810
811 /* Create semaphore: If one_lock, one semaphore for all processors.
812 Otherwise, one sempaphore for each processor. */
813 if (one_lock) {
814 if (create_sem(0)) {
815 printf("Can not create semaphore...exit\n");
816 free_sem(0);
817 return -1;
818 }
819 }
820 else {
821 for (i=0;i<num;i++) {
822 if (create_sem(parameters[i].cpu)) {
823 printf("Can not create semaphore for cpu%d...exit\n",i);
824 free_sem(parameters[num].cpu);
825 return -1;
826 }
827 }
828 }
829
830 /* Create a shm segment which will be used to inject/consume errors on.*/
831 if (create_shm()==-1) {
832 printf("Error to create shm...exit\n");
833 return -1;
834 }
835
836 for (i=0;i<num;i++) {
837 pid_t pid;
838
839 current_time=time(NULL);
840 log_info(parameters[i].cpu, "\nBegine at %s", ctime(&current_time));
841 log_info(parameters[i].cpu, "Configurations:\n");
842 log_info(parameters[i].cpu,"On cpu%ld: loop=%lx, interval=%lx(s)",
843 parameters[i].cpu,
844 parameters[i].loop,
845 parameters[i].interval);
846 log_info(parameters[i].cpu," err_type_info=%lx,err_struct_info=%lx\n",
847 parameters[i].err_type_info,
848 parameters[i].err_struct_info);
849
850 sprintf(path, PATH_FORMAT, (int)parameters[i].cpu);
851 err_type_info.err_type_info=parameters[i].err_type_info;
852 err_struct_info.err_struct_info=parameters[i].err_struct_info;
853 memcpy(err_data_buffer.err_data_buffer,
854 parameters[i].err_data_buffer,
855 ERR_DATA_BUFFER_SIZE*8);
856
857 pid=fork();
858 if (pid==0) {
859 unsigned long mask[MASK_SIZE];
860 int j, k;
861
862 void *va1, *va2;
863
864 /* Allocate two memory areas va1 and va2 in shm */
865 va1=shmaddr+parameters[i].cpu*PAGE_SIZE;
866 va2=shmaddr+parameters[i].cpu*PAGE_SIZE+PAGE_SIZE;
867
868 vbprintf("va1=%lx, va2=%lx\n", (u64)va1, (u64)va2);
869 memset(va1, 0x1, PAGE_SIZE);
870 memset(va2, 0x2, PAGE_SIZE);
871
872 if (empty_data_buffer(err_data_buffer.err_data_buffer))
873 /* If not specified yet, construct data buffer
874 * with va1
875 */
876 construct_data_buf(path, err_type_info,
877 err_struct_info, &err_data_buffer,va1);
878
879 for (j=0;j<MASK_SIZE;j++)
880 mask[j]=0;
881
882 cpu=parameters[i].cpu;
883 k = cpu%64;
884 j = cpu/64;
885 mask[j]=1<<k;
886
887 if (sched_setaffinity(0, MASK_SIZE*8, mask)==-1) {
888 perror("Error sched_setaffinity:");
889 return -1;
890 }
891
892 for (j=0; j<parameters[i].loop; j++) {
893 log_info(parameters[i].cpu,"Injection ");
894 log_info(parameters[i].cpu,"on cpu%ld: #%d/%ld ",
895
896 parameters[i].cpu,j+1, parameters[i].loop);
897
898 /* Hold the lock */
899 if (one_lock)
900 lock(0);
901 else
902 /* Hold lock on this cpu */
903 lock(parameters[i].cpu);
904
905 if ((status=err_inject(parameters[i].cpu,
906 path, err_type_info,
907 err_struct_info, err_data_buffer))
908 ==0) {
909 /* consume the error for "inject only"*/
910 memcpy(va2, va1, PAGE_SIZE);
911 memcpy(va1, va2, PAGE_SIZE);
912 log_info(parameters[i].cpu,
913 "successful\n");
914 }
915 else {
916 log_info(parameters[i].cpu,"fail:");
917 log_info(parameters[i].cpu,
918 "status=%d\n", status);
919 unlock(parameters[i].cpu);
920 break;
921 }
922 if (one_lock)
923 /* Release the lock */
924 unlock(0);
925 /* Release lock on this cpu */
926 else
927 unlock(parameters[i].cpu);
928
929 if (j < parameters[i].loop-1)
930 sleep(parameters[i].interval);
931 }
932 current_time=time(NULL);
933 log_info(parameters[i].cpu, "Done at %s", ctime(&current_time));
934 return 0;
935 }
936 else if (pid<0) {
937 perror("Error fork:");
938 continue;
939 }
940 child_pid[i]=pid;
941 }
942 for (i=0;i<num;i++)
943 waitpid(child_pid[i], NULL, 0);
944
945 if (one_lock)
946 free_sem(0);
947 else
948 for (i=0;i<num;i++)
949 free_sem(parameters[i].cpu);
950
951 printf("All done.\n");
952
953 return 0;
954}
955
956void help()
957{
958 printf("err_inject_tool:\n");
959 printf("\t-q: query all capabilities. default: off\n");
960 printf("\t-m: procedure mode. 1: physical 2: virtual. default: 1\n");
961 printf("\t-i: inject errors. default: off\n");
962 printf("\t-l: one lock per cpu. default: one lock for all\n");
963 printf("\t-e: error parameters:\n");
964 printf("\t\tcpu,loop,interval,err_type_info,err_struct_info[,err_data_buffer[0],err_data_buffer[1],err_data_buffer[2]]\n");
965 printf("\t\t cpu: logical cpu number the error will be inject in.\n");
966 printf("\t\t loop: times the error will be injected.\n");
967 printf("\t\t interval: In second. every so often one error is injected.\n");
968 printf("\t\t err_type_info, err_struct_info: PAL parameters.\n");
969 printf("\t\t err_data_buffer: PAL parameter. Optional. If not present,\n");
970 printf("\t\t it's constructed by tool automatically. Be\n");
971 printf("\t\t careful to provide err_data_buffer and make\n");
972 printf("\t\t sure it's working with the environment.\n");
973 printf("\t Note:no space between error parameters.\n");
974 printf("\t default: Take error parameters from err.conf instead of command line.\n");
975 printf("\t-v: verbose. default: off\n");
976 printf("\t-h: help\n\n");
977 printf("The tool will take err.conf file as ");
978 printf("input to inject single or multiple errors ");
979 printf("on one or multiple cpus in parallel.\n");
980}
981
982int main(int argc, char **argv)
983{
984 char c;
985 int do_err_inj=0;
986 int do_query_all=0;
987 int count;
988 u32 m;
989
990 /* Default one lock for all cpu's */
991 one_lock=1;
992 while ((c = getopt(argc, argv, "m:iqvhle:")) != EOF)
993 switch (c) {
994 case 'm': /* Procedure mode. 1: phys 2: virt */
995 count=sscanf(optarg, "%x", &m);
996 if (count!=1 || (m!=1 && m!=2)) {
997 printf("Wrong mode number.\n");
998 help();
999 return -1;
1000 }
1001 mode=m;
1002 break;
1003 case 'i': /* Inject errors */
1004 do_err_inj=1;
1005 break;
1006 case 'q': /* Query */
1007 do_query_all=1;
1008 break;
1009 case 'v': /* Verbose */
1010 verbose=1;
1011 break;
1012 case 'l': /* One lock per cpu */
1013 one_lock=0;
1014 break;
1015 case 'e': /* error arguments */
1016 /* Take parameters:
1017 * #cpu, loop, interval, err_type_info, err_struct_info[, err_data_buffer]
1018 * err_data_buffer is optional. Recommend not to specify
1019 * err_data_buffer. Better to use tool to generate it.
1020 */
1021 count=sscanf(optarg,
1022 "%lx, %lx, %lx, %lx, %lx, %lx, %lx, %lx\n",
1023 &line_para.cpu,
1024 &line_para.loop,
1025 &line_para.interval,
1026 &line_para.err_type_info,
1027 &line_para.err_struct_info,
1028 &line_para.err_data_buffer[0],
1029 &line_para.err_data_buffer[1],
1030 &line_para.err_data_buffer[2]);
1031 if (count!=PARA_FIELD_NUM+3) {
1032 line_para.err_data_buffer[0]=-1,
1033 line_para.err_data_buffer[1]=-1,
1034 line_para.err_data_buffer[2]=-1;
1035 count=sscanf(optarg, "%lx, %lx, %lx, %lx, %lx\n",
1036 &line_para.cpu,
1037 &line_para.loop,
1038 &line_para.interval,
1039 &line_para.err_type_info,
1040 &line_para.err_struct_info);
1041 if (count!=PARA_FIELD_NUM) {
1042 printf("Wrong error arguments.\n");
1043 help();
1044 return -1;
1045 }
1046 }
1047 para=1;
1048 break;
1049 continue;
1050 break;
1051 case 'h':
1052 help();
1053 return 0;
1054 default:
1055 break;
1056 }
1057
1058 if (do_query_all)
1059 query_all_capabilities();
1060 if (do_err_inj)
1061 err_inj();
1062
1063 if (!do_query_all && !do_err_inj)
1064 help();
1065
1066 return 0;
1067}
1068
diff --git a/Documentation/infiniband/user_mad.txt b/Documentation/infiniband/user_mad.txt
index 750fe5e80ebc..8ec54b974b67 100644
--- a/Documentation/infiniband/user_mad.txt
+++ b/Documentation/infiniband/user_mad.txt
@@ -91,6 +91,14 @@ Sending MADs
91 if (ret != sizeof *mad + mad_length) 91 if (ret != sizeof *mad + mad_length)
92 perror("write"); 92 perror("write");
93 93
94Transaction IDs
95
96 Users of the umad devices can use the lower 32 bits of the
97 transaction ID field (that is, the least significant half of the
98 field in network byte order) in MADs being sent to match
99 request/response pairs. The upper 32 bits are reserved for use by
100 the kernel and will be overwritten before a MAD is sent.
101
94Setting IsSM Capability Bit 102Setting IsSM Capability Bit
95 103
96 To set the IsSM capability bit for a port, simply open the 104 To set the IsSM capability bit for a port, simply open the
diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt
index ef2ffded1392..84c3bd05c639 100644
--- a/Documentation/kernel-parameters.txt
+++ b/Documentation/kernel-parameters.txt
@@ -142,7 +142,7 @@ and is between 256 and 4096 characters. It is defined in the file
142 Format: <int> 142 Format: <int>
143 2: use 2nd APIC table, if available 143 2: use 2nd APIC table, if available
144 1,0: use 1st APIC table 144 1,0: use 1st APIC table
145 default: 2 145 default: 0
146 146
147 acpi_sleep= [HW,ACPI] Sleep options 147 acpi_sleep= [HW,ACPI] Sleep options
148 Format: { s3_bios, s3_mode } 148 Format: { s3_bios, s3_mode }
@@ -181,19 +181,41 @@ and is between 256 and 4096 characters. It is defined in the file
181 that require a timer override, but don't have 181 that require a timer override, but don't have
182 HPET 182 HPET
183 183
184 acpi_dbg_layer= [HW,ACPI] 184 acpi.debug_layer= [HW,ACPI]
185 Format: <int> 185 Format: <int>
186 Each bit of the <int> indicates an ACPI debug layer, 186 Each bit of the <int> indicates an ACPI debug layer,
187 1: enable, 0: disable. It is useful for boot time 187 1: enable, 0: disable. It is useful for boot time
188 debugging. After system has booted up, it can be set 188 debugging. After system has booted up, it can be set
189 via /proc/acpi/debug_layer. 189 via /sys/module/acpi/parameters/debug_layer.
190 190 CONFIG_ACPI_DEBUG must be enabled for this to produce any output.
191 acpi_dbg_level= [HW,ACPI] 191 Available bits (add the numbers together) to enable debug output
192 for specific parts of the ACPI subsystem:
193 0x01 utilities 0x02 hardware 0x04 events 0x08 tables
194 0x10 namespace 0x20 parser 0x40 dispatcher
195 0x80 executer 0x100 resources 0x200 acpica debugger
196 0x400 os services 0x800 acpica disassembler.
197 The number can be in decimal or prefixed with 0x in hex.
198 Warning: Many of these options can produce a lot of
199 output and make your system unusable. Be very careful.
200
201 acpi.debug_level= [HW,ACPI]
192 Format: <int> 202 Format: <int>
193 Each bit of the <int> indicates an ACPI debug level, 203 Each bit of the <int> indicates an ACPI debug level,
194 1: enable, 0: disable. It is useful for boot time 204 1: enable, 0: disable. It is useful for boot time
195 debugging. After system has booted up, it can be set 205 debugging. After system has booted up, it can be set
196 via /proc/acpi/debug_level. 206 via /sys/module/acpi/parameters/debug_level.
207 CONFIG_ACPI_DEBUG must be enabled for this to produce any output.
208 Available bits (add the numbers together) to enable different
209 debug output levels of the ACPI subsystem:
210 0x01 error 0x02 warn 0x04 init 0x08 debug object
211 0x10 info 0x20 init names 0x40 parse 0x80 load
212 0x100 dispatch 0x200 execute 0x400 names 0x800 operation region
213 0x1000 bfield 0x2000 tables 0x4000 values 0x8000 objects
214 0x10000 resources 0x20000 user requests 0x40000 package.
215 The number can be in decimal or prefixed with 0x in hex.
216 Warning: Many of these options can produce a lot of
217 output and make your system unusable. Be very careful.
218
197 219
198 acpi_fake_ecdt [HW,ACPI] Workaround failure due to BIOS lacking ECDT 220 acpi_fake_ecdt [HW,ACPI] Workaround failure due to BIOS lacking ECDT
199 221
@@ -1792,7 +1814,7 @@ and is between 256 and 4096 characters. It is defined in the file
1792 for newly-detected USB devices (default 2). This 1814 for newly-detected USB devices (default 2). This
1793 is the time required before an idle device will be 1815 is the time required before an idle device will be
1794 autosuspended. Devices for which the delay is set 1816 autosuspended. Devices for which the delay is set
1795 to 0 won't be autosuspended at all. 1817 to a negative value won't be autosuspended at all.
1796 1818
1797 usbhid.mousepoll= 1819 usbhid.mousepoll=
1798 [USBHID] The interval which mice are to be polled at. 1820 [USBHID] The interval which mice are to be polled at.
diff --git a/Documentation/keys.txt b/Documentation/keys.txt
index 60c665d9cfaa..81d9aa097298 100644
--- a/Documentation/keys.txt
+++ b/Documentation/keys.txt
@@ -859,6 +859,18 @@ payload contents" for more information.
859 void unregister_key_type(struct key_type *type); 859 void unregister_key_type(struct key_type *type);
860 860
861 861
862Under some circumstances, it may be desirable to desirable to deal with a
863bundle of keys. The facility provides access to the keyring type for managing
864such a bundle:
865
866 struct key_type key_type_keyring;
867
868This can be used with a function such as request_key() to find a specific
869keyring in a process's keyrings. A keyring thus found can then be searched
870with keyring_search(). Note that it is not possible to use request_key() to
871search a specific keyring, so using keyrings in this way is of limited utility.
872
873
862=================================== 874===================================
863NOTES ON ACCESSING PAYLOAD CONTENTS 875NOTES ON ACCESSING PAYLOAD CONTENTS
864=================================== 876===================================
diff --git a/Documentation/networking/bcm43xx.txt b/Documentation/networking/bcm43xx.txt
index 28541d2bee1e..a136721499bf 100644
--- a/Documentation/networking/bcm43xx.txt
+++ b/Documentation/networking/bcm43xx.txt
@@ -2,35 +2,88 @@
2 BCM43xx Linux Driver Project 2 BCM43xx Linux Driver Project
3 ============================ 3 ============================
4 4
5About this software 5Introduction
6------------------- 6------------
7 7
8The goal of this project is to develop a linux driver for Broadcom 8Many of the wireless devices found in modern notebook computers are
9BCM43xx chips, based on the specification at 9based on the wireless chips produced by Broadcom. These devices have
10http://bcm-specs.sipsolutions.net/ 10been a problem for Linux users as there is no open-source driver
11available. In addition, Broadcom has not released specifications
12for the device, and driver availability has been limited to the
13binary-only form used in the GPL versions of AP hardware such as the
14Linksys WRT54G, and the Windows and OS X drivers. Before this project
15began, the only way to use these devices were to use the Windows or
16OS X drivers with either the Linuxant or ndiswrapper modules. There
17is a strong penalty if this method is used as loading the binary-only
18module "taints" the kernel, and no kernel developer will help diagnose
19any kernel problems.
11 20
12The project page is http://bcm43xx.berlios.de/ 21Development
22-----------
13 23
24This driver has been developed using
25a clean-room technique that is described at
26http://bcm-specs.sipsolutions.net/ReverseEngineeringProcess. For legal
27reasons, none of the clean-room crew works on the on the Linux driver,
28and none of the Linux developers sees anything but the specifications,
29which are the ultimate product of the reverse-engineering group.
14 30
15Requirements 31Software
16------------ 32--------
33
34Since the release of the 2.6.17 kernel, the bcm43xx driver has been
35distributed with the kernel source, and is prebuilt in most, if not
36all, distributions. There is, however, additional software that is
37required. The firmware used by the chip is the intellectual property
38of Broadcom and they have not given the bcm43xx team redistribution
39rights to this firmware. Since we cannot legally redistribute
40the firwmare we cannot include it with the driver. Furthermore, it
41cannot be placed in the downloadable archives of any distributing
42organization; therefore, the user is responsible for obtaining the
43firmware and placing it in the appropriate location so that the driver
44can find it when initializing.
45
46To help with this process, the bcm43xx developers provide a separate
47program named bcm43xx-fwcutter to "cut" the firmware out of a
48Windows or OS X driver and write the extracted files to the proper
49location. This program is usually provided with the distribution;
50however, it may be downloaded from
51
52http://developer.berlios.de/project/showfiles.php?group_id=4547
17 53
181) Linux Kernel 2.6.16 or later 54The firmware is available in two versions. V3 firmware is used with
19 http://www.kernel.org/ 55the in-kernel bcm43xx driver that uses a software MAC layer called
56SoftMAC, and will have a microcode revision of 0x127 or smaller. The
57V4 firmware is used by an out-of-kernel driver employing a variation of
58the Devicescape MAC layer known as d80211. Once bcm43xx-d80211 reaches
59a satisfactory level of development, it will replace bcm43xx-softmac
60in the kernel as it is much more flexible and powerful.
20 61
21 You may want to configure your kernel with: 62A source for the latest V3 firmware is
22 63
23 CONFIG_DEBUG_FS (optional): 64http://downloads.openwrt.org/sources/wl_apsta-3.130.20.0.o
24 -> Kernel hacking
25 -> Debug Filesystem
26 65
272) SoftMAC IEEE 802.11 Networking Stack extension and patched ieee80211 66Once this file is downloaded, the command
28 modules: 67'bcm43xx-fwcutter -w <dir> <filename>'
29 http://softmac.sipsolutions.net/ 68will extract the microcode and write it to directory
69<dir>. The correct directory will depend on your distribution;
70however, most use '/lib/firmware'. Once this step is completed,
71the bcm3xx driver should load when the system is booted. To see
72any messages relating to the driver, issue the command 'dmesg |
73grep bcm43xx' from a terminal window. If there are any problems,
74please send that output to Bcm43xx-dev@lists.berlios.de.
30 75
313) Firmware Files 76Although the driver has been in-kernel since 2.6.17, the earliest
77version is quite limited in its capability. Patches that include
78all features of later versions are available for the stable kernel
79versions from 2.6.18. These will be needed if you use a BCM4318,
80or a PCI Express version (BCM4311 and BCM4312). In addition, if you
81have an early BCM4306 and more than 1 GB RAM, your kernel will need
82to be patched. These patches, which are being updated regularly,
83are available at ftp://lwfinger.dynalias.org/patches. Look for
84combined_2.6.YY.patch. Of course you will need kernel source downloaded
85from kernel.org, or the source from your distribution.
32 86
33 Please try fwcutter. Fwcutter can extract the firmware from various 87If you build your own kernel, please enable CONFIG_BCM43XX_DEBUG
34 binary driver files. It supports driver files from Windows, MacOS and 88and CONFIG_IEEE80211_SOFTMAC_DEBUG. The log information provided is
35 Linux. You can get fwcutter from http://bcm43xx.berlios.de/. 89essential for solving any problems.
36 Also, fwcutter comes with a README file for further instructions.
diff --git a/Documentation/networking/bonding.txt b/Documentation/networking/bonding.txt
index de809e58092f..1da566630831 100644
--- a/Documentation/networking/bonding.txt
+++ b/Documentation/networking/bonding.txt
@@ -920,40 +920,9 @@ options, you may wish to use the "max_bonds" module parameter,
920documented above. 920documented above.
921 921
922 To create multiple bonding devices with differing options, it 922 To create multiple bonding devices with differing options, it
923is necessary to load the bonding driver multiple times. Note that 923is necessary to use bonding parameters exported by sysfs, documented
924current versions of the sysconfig network initialization scripts 924in the section below.
925handle this automatically; if your distro uses these scripts, no
926special action is needed. See the section Configuring Bonding
927Devices, above, if you're not sure about your network initialization
928scripts.
929
930 To load multiple instances of the module, it is necessary to
931specify a different name for each instance (the module loading system
932requires that every loaded module, even multiple instances of the same
933module, have a unique name). This is accomplished by supplying
934multiple sets of bonding options in /etc/modprobe.conf, for example:
935
936alias bond0 bonding
937options bond0 -o bond0 mode=balance-rr miimon=100
938
939alias bond1 bonding
940options bond1 -o bond1 mode=balance-alb miimon=50
941
942 will load the bonding module two times. The first instance is
943named "bond0" and creates the bond0 device in balance-rr mode with an
944miimon of 100. The second instance is named "bond1" and creates the
945bond1 device in balance-alb mode with an miimon of 50.
946
947 In some circumstances (typically with older distributions),
948the above does not work, and the second bonding instance never sees
949its options. In that case, the second options line can be substituted
950as follows:
951
952install bond1 /sbin/modprobe --ignore-install bonding -o bond1 \
953 mode=balance-alb miimon=50
954 925
955 This may be repeated any number of times, specifying a new and
956unique name in place of bond1 for each subsequent instance.
957 926
9583.4 Configuring Bonding Manually via Sysfs 9273.4 Configuring Bonding Manually via Sysfs
959------------------------------------------ 928------------------------------------------
diff --git a/Documentation/networking/dccp.txt b/Documentation/networking/dccp.txt
index 387482e46c47..4504cc59e405 100644
--- a/Documentation/networking/dccp.txt
+++ b/Documentation/networking/dccp.txt
@@ -57,6 +57,16 @@ DCCP_SOCKOPT_SEND_CSCOV is for the receiver and has a different meaning: it
57 coverage value are also acceptable. The higher the number, the more 57 coverage value are also acceptable. The higher the number, the more
58 restrictive this setting (see [RFC 4340, sec. 9.2.1]). 58 restrictive this setting (see [RFC 4340, sec. 9.2.1]).
59 59
60The following two options apply to CCID 3 exclusively and are getsockopt()-only.
61In either case, a TFRC info struct (defined in <linux/tfrc.h>) is returned.
62DCCP_SOCKOPT_CCID_RX_INFO
63 Returns a `struct tfrc_rx_info' in optval; the buffer for optval and
64 optlen must be set to at least sizeof(struct tfrc_rx_info).
65DCCP_SOCKOPT_CCID_TX_INFO
66 Returns a `struct tfrc_tx_info' in optval; the buffer for optval and
67 optlen must be set to at least sizeof(struct tfrc_tx_info).
68
69
60Sysctl variables 70Sysctl variables
61================ 71================
62Several DCCP default parameters can be managed by the following sysctls 72Several DCCP default parameters can be managed by the following sysctls
diff --git a/Documentation/networking/ip-sysctl.txt b/Documentation/networking/ip-sysctl.txt
index d3aae1f9b4c1..af6a63ab9026 100644
--- a/Documentation/networking/ip-sysctl.txt
+++ b/Documentation/networking/ip-sysctl.txt
@@ -179,11 +179,31 @@ tcp_fin_timeout - INTEGER
179 because they eat maximum 1.5K of memory, but they tend 179 because they eat maximum 1.5K of memory, but they tend
180 to live longer. Cf. tcp_max_orphans. 180 to live longer. Cf. tcp_max_orphans.
181 181
182tcp_frto - BOOLEAN 182tcp_frto - INTEGER
183 Enables F-RTO, an enhanced recovery algorithm for TCP retransmission 183 Enables F-RTO, an enhanced recovery algorithm for TCP retransmission
184 timeouts. It is particularly beneficial in wireless environments 184 timeouts. It is particularly beneficial in wireless environments
185 where packet loss is typically due to random radio interference 185 where packet loss is typically due to random radio interference
186 rather than intermediate router congestion. 186 rather than intermediate router congestion. If set to 1, basic
187 version is enabled. 2 enables SACK enhanced F-RTO, which is
188 EXPERIMENTAL. The basic version can be used also when SACK is
189 enabled for a flow through tcp_sack sysctl.
190
191tcp_frto_response - INTEGER
192 When F-RTO has detected that a TCP retransmission timeout was
193 spurious (i.e, the timeout would have been avoided had TCP set a
194 longer retransmission timeout), TCP has several options what to do
195 next. Possible values are:
196 0 Rate halving based; a smooth and conservative response,
197 results in halved cwnd and ssthresh after one RTT
198 1 Very conservative response; not recommended because even
199 though being valid, it interacts poorly with the rest of
200 Linux TCP, halves cwnd and ssthresh immediately
201 2 Aggressive response; undoes congestion control measures
202 that are now known to be unnecessary (ignoring the
203 possibility of a lost retransmission that would require
204 TCP to be more cautious), cwnd and ssthresh are restored
205 to the values prior timeout
206 Default: 0 (rate halving based)
187 207
188tcp_keepalive_time - INTEGER 208tcp_keepalive_time - INTEGER
189 How often TCP sends out keepalive messages when keepalive is enabled. 209 How often TCP sends out keepalive messages when keepalive is enabled.
@@ -851,6 +871,15 @@ accept_redirects - BOOLEAN
851 Functional default: enabled if local forwarding is disabled. 871 Functional default: enabled if local forwarding is disabled.
852 disabled if local forwarding is enabled. 872 disabled if local forwarding is enabled.
853 873
874accept_source_route - INTEGER
875 Accept source routing (routing extension header).
876
877 > 0: Accept routing header.
878 = 0: Accept only routing header type 2.
879 < 0: Do not accept routing header.
880
881 Default: 0
882
854autoconf - BOOLEAN 883autoconf - BOOLEAN
855 Autoconfigure addresses using Prefix Information in Router 884 Autoconfigure addresses using Prefix Information in Router
856 Advertisements. 885 Advertisements.
@@ -986,7 +1015,12 @@ bridge-nf-call-ip6tables - BOOLEAN
986 Default: 1 1015 Default: 1
987 1016
988bridge-nf-filter-vlan-tagged - BOOLEAN 1017bridge-nf-filter-vlan-tagged - BOOLEAN
989 1 : pass bridged vlan-tagged ARP/IP traffic to arptables/iptables. 1018 1 : pass bridged vlan-tagged ARP/IP/IPv6 traffic to {arp,ip,ip6}tables.
1019 0 : disable this.
1020 Default: 1
1021
1022bridge-nf-filter-pppoe-tagged - BOOLEAN
1023 1 : pass bridged pppoe-tagged IP/IPv6 traffic to {ip,ip6}tables.
990 0 : disable this. 1024 0 : disable this.
991 Default: 1 1025 Default: 1
992 1026
diff --git a/Documentation/networking/rxrpc.txt b/Documentation/networking/rxrpc.txt
new file mode 100644
index 000000000000..cae231b1c134
--- /dev/null
+++ b/Documentation/networking/rxrpc.txt
@@ -0,0 +1,859 @@
1 ======================
2 RxRPC NETWORK PROTOCOL
3 ======================
4
5The RxRPC protocol driver provides a reliable two-phase transport on top of UDP
6that can be used to perform RxRPC remote operations. This is done over sockets
7of AF_RXRPC family, using sendmsg() and recvmsg() with control data to send and
8receive data, aborts and errors.
9
10Contents of this document:
11
12 (*) Overview.
13
14 (*) RxRPC protocol summary.
15
16 (*) AF_RXRPC driver model.
17
18 (*) Control messages.
19
20 (*) Socket options.
21
22 (*) Security.
23
24 (*) Example client usage.
25
26 (*) Example server usage.
27
28 (*) AF_RXRPC kernel interface.
29
30
31========
32OVERVIEW
33========
34
35RxRPC is a two-layer protocol. There is a session layer which provides
36reliable virtual connections using UDP over IPv4 (or IPv6) as the transport
37layer, but implements a real network protocol; and there's the presentation
38layer which renders structured data to binary blobs and back again using XDR
39(as does SunRPC):
40
41 +-------------+
42 | Application |
43 +-------------+
44 | XDR | Presentation
45 +-------------+
46 | RxRPC | Session
47 +-------------+
48 | UDP | Transport
49 +-------------+
50
51
52AF_RXRPC provides:
53
54 (1) Part of an RxRPC facility for both kernel and userspace applications by
55 making the session part of it a Linux network protocol (AF_RXRPC).
56
57 (2) A two-phase protocol. The client transmits a blob (the request) and then
58 receives a blob (the reply), and the server receives the request and then
59 transmits the reply.
60
61 (3) Retention of the reusable bits of the transport system set up for one call
62 to speed up subsequent calls.
63
64 (4) A secure protocol, using the Linux kernel's key retention facility to
65 manage security on the client end. The server end must of necessity be
66 more active in security negotiations.
67
68AF_RXRPC does not provide XDR marshalling/presentation facilities. That is
69left to the application. AF_RXRPC only deals in blobs. Even the operation ID
70is just the first four bytes of the request blob, and as such is beyond the
71kernel's interest.
72
73
74Sockets of AF_RXRPC family are:
75
76 (1) created as type SOCK_DGRAM;
77
78 (2) provided with a protocol of the type of underlying transport they're going
79 to use - currently only PF_INET is supported.
80
81
82The Andrew File System (AFS) is an example of an application that uses this and
83that has both kernel (filesystem) and userspace (utility) components.
84
85
86======================
87RXRPC PROTOCOL SUMMARY
88======================
89
90An overview of the RxRPC protocol:
91
92 (*) RxRPC sits on top of another networking protocol (UDP is the only option
93 currently), and uses this to provide network transport. UDP ports, for
94 example, provide transport endpoints.
95
96 (*) RxRPC supports multiple virtual "connections" from any given transport
97 endpoint, thus allowing the endpoints to be shared, even to the same
98 remote endpoint.
99
100 (*) Each connection goes to a particular "service". A connection may not go
101 to multiple services. A service may be considered the RxRPC equivalent of
102 a port number. AF_RXRPC permits multiple services to share an endpoint.
103
104 (*) Client-originating packets are marked, thus a transport endpoint can be
105 shared between client and server connections (connections have a
106 direction).
107
108 (*) Up to a billion connections may be supported concurrently between one
109 local transport endpoint and one service on one remote endpoint. An RxRPC
110 connection is described by seven numbers:
111
112 Local address }
113 Local port } Transport (UDP) address
114 Remote address }
115 Remote port }
116 Direction
117 Connection ID
118 Service ID
119
120 (*) Each RxRPC operation is a "call". A connection may make up to four
121 billion calls, but only up to four calls may be in progress on a
122 connection at any one time.
123
124 (*) Calls are two-phase and asymmetric: the client sends its request data,
125 which the service receives; then the service transmits the reply data
126 which the client receives.
127
128 (*) The data blobs are of indefinite size, the end of a phase is marked with a
129 flag in the packet. The number of packets of data making up one blob may
130 not exceed 4 billion, however, as this would cause the sequence number to
131 wrap.
132
133 (*) The first four bytes of the request data are the service operation ID.
134
135 (*) Security is negotiated on a per-connection basis. The connection is
136 initiated by the first data packet on it arriving. If security is
137 requested, the server then issues a "challenge" and then the client
138 replies with a "response". If the response is successful, the security is
139 set for the lifetime of that connection, and all subsequent calls made
140 upon it use that same security. In the event that the server lets a
141 connection lapse before the client, the security will be renegotiated if
142 the client uses the connection again.
143
144 (*) Calls use ACK packets to handle reliability. Data packets are also
145 explicitly sequenced per call.
146
147 (*) There are two types of positive acknowledgement: hard-ACKs and soft-ACKs.
148 A hard-ACK indicates to the far side that all the data received to a point
149 has been received and processed; a soft-ACK indicates that the data has
150 been received but may yet be discarded and re-requested. The sender may
151 not discard any transmittable packets until they've been hard-ACK'd.
152
153 (*) Reception of a reply data packet implicitly hard-ACK's all the data
154 packets that make up the request.
155
156 (*) An call is complete when the request has been sent, the reply has been
157 received and the final hard-ACK on the last packet of the reply has
158 reached the server.
159
160 (*) An call may be aborted by either end at any time up to its completion.
161
162
163=====================
164AF_RXRPC DRIVER MODEL
165=====================
166
167About the AF_RXRPC driver:
168
169 (*) The AF_RXRPC protocol transparently uses internal sockets of the transport
170 protocol to represent transport endpoints.
171
172 (*) AF_RXRPC sockets map onto RxRPC connection bundles. Actual RxRPC
173 connections are handled transparently. One client socket may be used to
174 make multiple simultaneous calls to the same service. One server socket
175 may handle calls from many clients.
176
177 (*) Additional parallel client connections will be initiated to support extra
178 concurrent calls, up to a tunable limit.
179
180 (*) Each connection is retained for a certain amount of time [tunable] after
181 the last call currently using it has completed in case a new call is made
182 that could reuse it.
183
184 (*) Each internal UDP socket is retained [tunable] for a certain amount of
185 time [tunable] after the last connection using it discarded, in case a new
186 connection is made that could use it.
187
188 (*) A client-side connection is only shared between calls if they have have
189 the same key struct describing their security (and assuming the calls
190 would otherwise share the connection). Non-secured calls would also be
191 able to share connections with each other.
192
193 (*) A server-side connection is shared if the client says it is.
194
195 (*) ACK'ing is handled by the protocol driver automatically, including ping
196 replying.
197
198 (*) SO_KEEPALIVE automatically pings the other side to keep the connection
199 alive [TODO].
200
201 (*) If an ICMP error is received, all calls affected by that error will be
202 aborted with an appropriate network error passed through recvmsg().
203
204
205Interaction with the user of the RxRPC socket:
206
207 (*) A socket is made into a server socket by binding an address with a
208 non-zero service ID.
209
210 (*) In the client, sending a request is achieved with one or more sendmsgs,
211 followed by the reply being received with one or more recvmsgs.
212
213 (*) The first sendmsg for a request to be sent from a client contains a tag to
214 be used in all other sendmsgs or recvmsgs associated with that call. The
215 tag is carried in the control data.
216
217 (*) connect() is used to supply a default destination address for a client
218 socket. This may be overridden by supplying an alternate address to the
219 first sendmsg() of a call (struct msghdr::msg_name).
220
221 (*) If connect() is called on an unbound client, a random local port will
222 bound before the operation takes place.
223
224 (*) A server socket may also be used to make client calls. To do this, the
225 first sendmsg() of the call must specify the target address. The server's
226 transport endpoint is used to send the packets.
227
228 (*) Once the application has received the last message associated with a call,
229 the tag is guaranteed not to be seen again, and so it can be used to pin
230 client resources. A new call can then be initiated with the same tag
231 without fear of interference.
232
233 (*) In the server, a request is received with one or more recvmsgs, then the
234 the reply is transmitted with one or more sendmsgs, and then the final ACK
235 is received with a last recvmsg.
236
237 (*) When sending data for a call, sendmsg is given MSG_MORE if there's more
238 data to come on that call.
239
240 (*) When receiving data for a call, recvmsg flags MSG_MORE if there's more
241 data to come for that call.
242
243 (*) When receiving data or messages for a call, MSG_EOR is flagged by recvmsg
244 to indicate the terminal message for that call.
245
246 (*) A call may be aborted by adding an abort control message to the control
247 data. Issuing an abort terminates the kernel's use of that call's tag.
248 Any messages waiting in the receive queue for that call will be discarded.
249
250 (*) Aborts, busy notifications and challenge packets are delivered by recvmsg,
251 and control data messages will be set to indicate the context. Receiving
252 an abort or a busy message terminates the kernel's use of that call's tag.
253
254 (*) The control data part of the msghdr struct is used for a number of things:
255
256 (*) The tag of the intended or affected call.
257
258 (*) Sending or receiving errors, aborts and busy notifications.
259
260 (*) Notifications of incoming calls.
261
262 (*) Sending debug requests and receiving debug replies [TODO].
263
264 (*) When the kernel has received and set up an incoming call, it sends a
265 message to server application to let it know there's a new call awaiting
266 its acceptance [recvmsg reports a special control message]. The server
267 application then uses sendmsg to assign a tag to the new call. Once that
268 is done, the first part of the request data will be delivered by recvmsg.
269
270 (*) The server application has to provide the server socket with a keyring of
271 secret keys corresponding to the security types it permits. When a secure
272 connection is being set up, the kernel looks up the appropriate secret key
273 in the keyring and then sends a challenge packet to the client and
274 receives a response packet. The kernel then checks the authorisation of
275 the packet and either aborts the connection or sets up the security.
276
277 (*) The name of the key a client will use to secure its communications is
278 nominated by a socket option.
279
280
281Notes on recvmsg:
282
283 (*) If there's a sequence of data messages belonging to a particular call on
284 the receive queue, then recvmsg will keep working through them until:
285
286 (a) it meets the end of that call's received data,
287
288 (b) it meets a non-data message,
289
290 (c) it meets a message belonging to a different call, or
291
292 (d) it fills the user buffer.
293
294 If recvmsg is called in blocking mode, it will keep sleeping, awaiting the
295 reception of further data, until one of the above four conditions is met.
296
297 (2) MSG_PEEK operates similarly, but will return immediately if it has put any
298 data in the buffer rather than sleeping until it can fill the buffer.
299
300 (3) If a data message is only partially consumed in filling a user buffer,
301 then the remainder of that message will be left on the front of the queue
302 for the next taker. MSG_TRUNC will never be flagged.
303
304 (4) If there is more data to be had on a call (it hasn't copied the last byte
305 of the last data message in that phase yet), then MSG_MORE will be
306 flagged.
307
308
309================
310CONTROL MESSAGES
311================
312
313AF_RXRPC makes use of control messages in sendmsg() and recvmsg() to multiplex
314calls, to invoke certain actions and to report certain conditions. These are:
315
316 MESSAGE ID SRT DATA MEANING
317 ======================= === =========== ===============================
318 RXRPC_USER_CALL_ID sr- User ID App's call specifier
319 RXRPC_ABORT srt Abort code Abort code to issue/received
320 RXRPC_ACK -rt n/a Final ACK received
321 RXRPC_NET_ERROR -rt error num Network error on call
322 RXRPC_BUSY -rt n/a Call rejected (server busy)
323 RXRPC_LOCAL_ERROR -rt error num Local error encountered
324 RXRPC_NEW_CALL -r- n/a New call received
325 RXRPC_ACCEPT s-- n/a Accept new call
326
327 (SRT = usable in Sendmsg / delivered by Recvmsg / Terminal message)
328
329 (*) RXRPC_USER_CALL_ID
330
331 This is used to indicate the application's call ID. It's an unsigned long
332 that the app specifies in the client by attaching it to the first data
333 message or in the server by passing it in association with an RXRPC_ACCEPT
334 message. recvmsg() passes it in conjunction with all messages except
335 those of the RXRPC_NEW_CALL message.
336
337 (*) RXRPC_ABORT
338
339 This is can be used by an application to abort a call by passing it to
340 sendmsg, or it can be delivered by recvmsg to indicate a remote abort was
341 received. Either way, it must be associated with an RXRPC_USER_CALL_ID to
342 specify the call affected. If an abort is being sent, then error EBADSLT
343 will be returned if there is no call with that user ID.
344
345 (*) RXRPC_ACK
346
347 This is delivered to a server application to indicate that the final ACK
348 of a call was received from the client. It will be associated with an
349 RXRPC_USER_CALL_ID to indicate the call that's now complete.
350
351 (*) RXRPC_NET_ERROR
352
353 This is delivered to an application to indicate that an ICMP error message
354 was encountered in the process of trying to talk to the peer. An
355 errno-class integer value will be included in the control message data
356 indicating the problem, and an RXRPC_USER_CALL_ID will indicate the call
357 affected.
358
359 (*) RXRPC_BUSY
360
361 This is delivered to a client application to indicate that a call was
362 rejected by the server due to the server being busy. It will be
363 associated with an RXRPC_USER_CALL_ID to indicate the rejected call.
364
365 (*) RXRPC_LOCAL_ERROR
366
367 This is delivered to an application to indicate that a local error was
368 encountered and that a call has been aborted because of it. An
369 errno-class integer value will be included in the control message data
370 indicating the problem, and an RXRPC_USER_CALL_ID will indicate the call
371 affected.
372
373 (*) RXRPC_NEW_CALL
374
375 This is delivered to indicate to a server application that a new call has
376 arrived and is awaiting acceptance. No user ID is associated with this,
377 as a user ID must subsequently be assigned by doing an RXRPC_ACCEPT.
378
379 (*) RXRPC_ACCEPT
380
381 This is used by a server application to attempt to accept a call and
382 assign it a user ID. It should be associated with an RXRPC_USER_CALL_ID
383 to indicate the user ID to be assigned. If there is no call to be
384 accepted (it may have timed out, been aborted, etc.), then sendmsg will
385 return error ENODATA. If the user ID is already in use by another call,
386 then error EBADSLT will be returned.
387
388
389==============
390SOCKET OPTIONS
391==============
392
393AF_RXRPC sockets support a few socket options at the SOL_RXRPC level:
394
395 (*) RXRPC_SECURITY_KEY
396
397 This is used to specify the description of the key to be used. The key is
398 extracted from the calling process's keyrings with request_key() and
399 should be of "rxrpc" type.
400
401 The optval pointer points to the description string, and optlen indicates
402 how long the string is, without the NUL terminator.
403
404 (*) RXRPC_SECURITY_KEYRING
405
406 Similar to above but specifies a keyring of server secret keys to use (key
407 type "keyring"). See the "Security" section.
408
409 (*) RXRPC_EXCLUSIVE_CONNECTION
410
411 This is used to request that new connections should be used for each call
412 made subsequently on this socket. optval should be NULL and optlen 0.
413
414 (*) RXRPC_MIN_SECURITY_LEVEL
415
416 This is used to specify the minimum security level required for calls on
417 this socket. optval must point to an int containing one of the following
418 values:
419
420 (a) RXRPC_SECURITY_PLAIN
421
422 Encrypted checksum only.
423
424 (b) RXRPC_SECURITY_AUTH
425
426 Encrypted checksum plus packet padded and first eight bytes of packet
427 encrypted - which includes the actual packet length.
428
429 (c) RXRPC_SECURITY_ENCRYPTED
430
431 Encrypted checksum plus entire packet padded and encrypted, including
432 actual packet length.
433
434
435========
436SECURITY
437========
438
439Currently, only the kerberos 4 equivalent protocol has been implemented
440(security index 2 - rxkad). This requires the rxkad module to be loaded and,
441on the client, tickets of the appropriate type to be obtained from the AFS
442kaserver or the kerberos server and installed as "rxrpc" type keys. This is
443normally done using the klog program. An example simple klog program can be
444found at:
445
446 http://people.redhat.com/~dhowells/rxrpc/klog.c
447
448The payload provided to add_key() on the client should be of the following
449form:
450
451 struct rxrpc_key_sec2_v1 {
452 uint16_t security_index; /* 2 */
453 uint16_t ticket_length; /* length of ticket[] */
454 uint32_t expiry; /* time at which expires */
455 uint8_t kvno; /* key version number */
456 uint8_t __pad[3];
457 uint8_t session_key[8]; /* DES session key */
458 uint8_t ticket[0]; /* the encrypted ticket */
459 };
460
461Where the ticket blob is just appended to the above structure.
462
463
464For the server, keys of type "rxrpc_s" must be made available to the server.
465They have a description of "<serviceID>:<securityIndex>" (eg: "52:2" for an
466rxkad key for the AFS VL service). When such a key is created, it should be
467given the server's secret key as the instantiation data (see the example
468below).
469
470 add_key("rxrpc_s", "52:2", secret_key, 8, keyring);
471
472A keyring is passed to the server socket by naming it in a sockopt. The server
473socket then looks the server secret keys up in this keyring when secure
474incoming connections are made. This can be seen in an example program that can
475be found at:
476
477 http://people.redhat.com/~dhowells/rxrpc/listen.c
478
479
480====================
481EXAMPLE CLIENT USAGE
482====================
483
484A client would issue an operation by:
485
486 (1) An RxRPC socket is set up by:
487
488 client = socket(AF_RXRPC, SOCK_DGRAM, PF_INET);
489
490 Where the third parameter indicates the protocol family of the transport
491 socket used - usually IPv4 but it can also be IPv6 [TODO].
492
493 (2) A local address can optionally be bound:
494
495 struct sockaddr_rxrpc srx = {
496 .srx_family = AF_RXRPC,
497 .srx_service = 0, /* we're a client */
498 .transport_type = SOCK_DGRAM, /* type of transport socket */
499 .transport.sin_family = AF_INET,
500 .transport.sin_port = htons(7000), /* AFS callback */
501 .transport.sin_address = 0, /* all local interfaces */
502 };
503 bind(client, &srx, sizeof(srx));
504
505 This specifies the local UDP port to be used. If not given, a random
506 non-privileged port will be used. A UDP port may be shared between
507 several unrelated RxRPC sockets. Security is handled on a basis of
508 per-RxRPC virtual connection.
509
510 (3) The security is set:
511
512 const char *key = "AFS:cambridge.redhat.com";
513 setsockopt(client, SOL_RXRPC, RXRPC_SECURITY_KEY, key, strlen(key));
514
515 This issues a request_key() to get the key representing the security
516 context. The minimum security level can be set:
517
518 unsigned int sec = RXRPC_SECURITY_ENCRYPTED;
519 setsockopt(client, SOL_RXRPC, RXRPC_MIN_SECURITY_LEVEL,
520 &sec, sizeof(sec));
521
522 (4) The server to be contacted can then be specified (alternatively this can
523 be done through sendmsg):
524
525 struct sockaddr_rxrpc srx = {
526 .srx_family = AF_RXRPC,
527 .srx_service = VL_SERVICE_ID,
528 .transport_type = SOCK_DGRAM, /* type of transport socket */
529 .transport.sin_family = AF_INET,
530 .transport.sin_port = htons(7005), /* AFS volume manager */
531 .transport.sin_address = ...,
532 };
533 connect(client, &srx, sizeof(srx));
534
535 (5) The request data should then be posted to the server socket using a series
536 of sendmsg() calls, each with the following control message attached:
537
538 RXRPC_USER_CALL_ID - specifies the user ID for this call
539
540 MSG_MORE should be set in msghdr::msg_flags on all but the last part of
541 the request. Multiple requests may be made simultaneously.
542
543 If a call is intended to go to a destination other then the default
544 specified through connect(), then msghdr::msg_name should be set on the
545 first request message of that call.
546
547 (6) The reply data will then be posted to the server socket for recvmsg() to
548 pick up. MSG_MORE will be flagged by recvmsg() if there's more reply data
549 for a particular call to be read. MSG_EOR will be set on the terminal
550 read for a call.
551
552 All data will be delivered with the following control message attached:
553
554 RXRPC_USER_CALL_ID - specifies the user ID for this call
555
556 If an abort or error occurred, this will be returned in the control data
557 buffer instead, and MSG_EOR will be flagged to indicate the end of that
558 call.
559
560
561====================
562EXAMPLE SERVER USAGE
563====================
564
565A server would be set up to accept operations in the following manner:
566
567 (1) An RxRPC socket is created by:
568
569 server = socket(AF_RXRPC, SOCK_DGRAM, PF_INET);
570
571 Where the third parameter indicates the address type of the transport
572 socket used - usually IPv4.
573
574 (2) Security is set up if desired by giving the socket a keyring with server
575 secret keys in it:
576
577 keyring = add_key("keyring", "AFSkeys", NULL, 0,
578 KEY_SPEC_PROCESS_KEYRING);
579
580 const char secret_key[8] = {
581 0xa7, 0x83, 0x8a, 0xcb, 0xc7, 0x83, 0xec, 0x94 };
582 add_key("rxrpc_s", "52:2", secret_key, 8, keyring);
583
584 setsockopt(server, SOL_RXRPC, RXRPC_SECURITY_KEYRING, "AFSkeys", 7);
585
586 The keyring can be manipulated after it has been given to the socket. This
587 permits the server to add more keys, replace keys, etc. whilst it is live.
588
589 (2) A local address must then be bound:
590
591 struct sockaddr_rxrpc srx = {
592 .srx_family = AF_RXRPC,
593 .srx_service = VL_SERVICE_ID, /* RxRPC service ID */
594 .transport_type = SOCK_DGRAM, /* type of transport socket */
595 .transport.sin_family = AF_INET,
596 .transport.sin_port = htons(7000), /* AFS callback */
597 .transport.sin_address = 0, /* all local interfaces */
598 };
599 bind(server, &srx, sizeof(srx));
600
601 (3) The server is then set to listen out for incoming calls:
602
603 listen(server, 100);
604
605 (4) The kernel notifies the server of pending incoming connections by sending
606 it a message for each. This is received with recvmsg() on the server
607 socket. It has no data, and has a single dataless control message
608 attached:
609
610 RXRPC_NEW_CALL
611
612 The address that can be passed back by recvmsg() at this point should be
613 ignored since the call for which the message was posted may have gone by
614 the time it is accepted - in which case the first call still on the queue
615 will be accepted.
616
617 (5) The server then accepts the new call by issuing a sendmsg() with two
618 pieces of control data and no actual data:
619
620 RXRPC_ACCEPT - indicate connection acceptance
621 RXRPC_USER_CALL_ID - specify user ID for this call
622
623 (6) The first request data packet will then be posted to the server socket for
624 recvmsg() to pick up. At that point, the RxRPC address for the call can
625 be read from the address fields in the msghdr struct.
626
627 Subsequent request data will be posted to the server socket for recvmsg()
628 to collect as it arrives. All but the last piece of the request data will
629 be delivered with MSG_MORE flagged.
630
631 All data will be delivered with the following control message attached:
632
633 RXRPC_USER_CALL_ID - specifies the user ID for this call
634
635 (8) The reply data should then be posted to the server socket using a series
636 of sendmsg() calls, each with the following control messages attached:
637
638 RXRPC_USER_CALL_ID - specifies the user ID for this call
639
640 MSG_MORE should be set in msghdr::msg_flags on all but the last message
641 for a particular call.
642
643 (9) The final ACK from the client will be posted for retrieval by recvmsg()
644 when it is received. It will take the form of a dataless message with two
645 control messages attached:
646
647 RXRPC_USER_CALL_ID - specifies the user ID for this call
648 RXRPC_ACK - indicates final ACK (no data)
649
650 MSG_EOR will be flagged to indicate that this is the final message for
651 this call.
652
653(10) Up to the point the final packet of reply data is sent, the call can be
654 aborted by calling sendmsg() with a dataless message with the following
655 control messages attached:
656
657 RXRPC_USER_CALL_ID - specifies the user ID for this call
658 RXRPC_ABORT - indicates abort code (4 byte data)
659
660 Any packets waiting in the socket's receive queue will be discarded if
661 this is issued.
662
663Note that all the communications for a particular service take place through
664the one server socket, using control messages on sendmsg() and recvmsg() to
665determine the call affected.
666
667
668=========================
669AF_RXRPC KERNEL INTERFACE
670=========================
671
672The AF_RXRPC module also provides an interface for use by in-kernel utilities
673such as the AFS filesystem. This permits such a utility to:
674
675 (1) Use different keys directly on individual client calls on one socket
676 rather than having to open a whole slew of sockets, one for each key it
677 might want to use.
678
679 (2) Avoid having RxRPC call request_key() at the point of issue of a call or
680 opening of a socket. Instead the utility is responsible for requesting a
681 key at the appropriate point. AFS, for instance, would do this during VFS
682 operations such as open() or unlink(). The key is then handed through
683 when the call is initiated.
684
685 (3) Request the use of something other than GFP_KERNEL to allocate memory.
686
687 (4) Avoid the overhead of using the recvmsg() call. RxRPC messages can be
688 intercepted before they get put into the socket Rx queue and the socket
689 buffers manipulated directly.
690
691To use the RxRPC facility, a kernel utility must still open an AF_RXRPC socket,
692bind an addess as appropriate and listen if it's to be a server socket, but
693then it passes this to the kernel interface functions.
694
695The kernel interface functions are as follows:
696
697 (*) Begin a new client call.
698
699 struct rxrpc_call *
700 rxrpc_kernel_begin_call(struct socket *sock,
701 struct sockaddr_rxrpc *srx,
702 struct key *key,
703 unsigned long user_call_ID,
704 gfp_t gfp);
705
706 This allocates the infrastructure to make a new RxRPC call and assigns
707 call and connection numbers. The call will be made on the UDP port that
708 the socket is bound to. The call will go to the destination address of a
709 connected client socket unless an alternative is supplied (srx is
710 non-NULL).
711
712 If a key is supplied then this will be used to secure the call instead of
713 the key bound to the socket with the RXRPC_SECURITY_KEY sockopt. Calls
714 secured in this way will still share connections if at all possible.
715
716 The user_call_ID is equivalent to that supplied to sendmsg() in the
717 control data buffer. It is entirely feasible to use this to point to a
718 kernel data structure.
719
720 If this function is successful, an opaque reference to the RxRPC call is
721 returned. The caller now holds a reference on this and it must be
722 properly ended.
723
724 (*) End a client call.
725
726 void rxrpc_kernel_end_call(struct rxrpc_call *call);
727
728 This is used to end a previously begun call. The user_call_ID is expunged
729 from AF_RXRPC's knowledge and will not be seen again in association with
730 the specified call.
731
732 (*) Send data through a call.
733
734 int rxrpc_kernel_send_data(struct rxrpc_call *call, struct msghdr *msg,
735 size_t len);
736
737 This is used to supply either the request part of a client call or the
738 reply part of a server call. msg.msg_iovlen and msg.msg_iov specify the
739 data buffers to be used. msg_iov may not be NULL and must point
740 exclusively to in-kernel virtual addresses. msg.msg_flags may be given
741 MSG_MORE if there will be subsequent data sends for this call.
742
743 The msg must not specify a destination address, control data or any flags
744 other than MSG_MORE. len is the total amount of data to transmit.
745
746 (*) Abort a call.
747
748 void rxrpc_kernel_abort_call(struct rxrpc_call *call, u32 abort_code);
749
750 This is used to abort a call if it's still in an abortable state. The
751 abort code specified will be placed in the ABORT message sent.
752
753 (*) Intercept received RxRPC messages.
754
755 typedef void (*rxrpc_interceptor_t)(struct sock *sk,
756 unsigned long user_call_ID,
757 struct sk_buff *skb);
758
759 void
760 rxrpc_kernel_intercept_rx_messages(struct socket *sock,
761 rxrpc_interceptor_t interceptor);
762
763 This installs an interceptor function on the specified AF_RXRPC socket.
764 All messages that would otherwise wind up in the socket's Rx queue are
765 then diverted to this function. Note that care must be taken to process
766 the messages in the right order to maintain DATA message sequentiality.
767
768 The interceptor function itself is provided with the address of the socket
769 and handling the incoming message, the ID assigned by the kernel utility
770 to the call and the socket buffer containing the message.
771
772 The skb->mark field indicates the type of message:
773
774 MARK MEANING
775 =============================== =======================================
776 RXRPC_SKB_MARK_DATA Data message
777 RXRPC_SKB_MARK_FINAL_ACK Final ACK received for an incoming call
778 RXRPC_SKB_MARK_BUSY Client call rejected as server busy
779 RXRPC_SKB_MARK_REMOTE_ABORT Call aborted by peer
780 RXRPC_SKB_MARK_NET_ERROR Network error detected
781 RXRPC_SKB_MARK_LOCAL_ERROR Local error encountered
782 RXRPC_SKB_MARK_NEW_CALL New incoming call awaiting acceptance
783
784 The remote abort message can be probed with rxrpc_kernel_get_abort_code().
785 The two error messages can be probed with rxrpc_kernel_get_error_number().
786 A new call can be accepted with rxrpc_kernel_accept_call().
787
788 Data messages can have their contents extracted with the usual bunch of
789 socket buffer manipulation functions. A data message can be determined to
790 be the last one in a sequence with rxrpc_kernel_is_data_last(). When a
791 data message has been used up, rxrpc_kernel_data_delivered() should be
792 called on it..
793
794 Non-data messages should be handled to rxrpc_kernel_free_skb() to dispose
795 of. It is possible to get extra refs on all types of message for later
796 freeing, but this may pin the state of a call until the message is finally
797 freed.
798
799 (*) Accept an incoming call.
800
801 struct rxrpc_call *
802 rxrpc_kernel_accept_call(struct socket *sock,
803 unsigned long user_call_ID);
804
805 This is used to accept an incoming call and to assign it a call ID. This
806 function is similar to rxrpc_kernel_begin_call() and calls accepted must
807 be ended in the same way.
808
809 If this function is successful, an opaque reference to the RxRPC call is
810 returned. The caller now holds a reference on this and it must be
811 properly ended.
812
813 (*) Reject an incoming call.
814
815 int rxrpc_kernel_reject_call(struct socket *sock);
816
817 This is used to reject the first incoming call on the socket's queue with
818 a BUSY message. -ENODATA is returned if there were no incoming calls.
819 Other errors may be returned if the call had been aborted (-ECONNABORTED)
820 or had timed out (-ETIME).
821
822 (*) Record the delivery of a data message and free it.
823
824 void rxrpc_kernel_data_delivered(struct sk_buff *skb);
825
826 This is used to record a data message as having been delivered and to
827 update the ACK state for the call. The socket buffer will be freed.
828
829 (*) Free a message.
830
831 void rxrpc_kernel_free_skb(struct sk_buff *skb);
832
833 This is used to free a non-DATA socket buffer intercepted from an AF_RXRPC
834 socket.
835
836 (*) Determine if a data message is the last one on a call.
837
838 bool rxrpc_kernel_is_data_last(struct sk_buff *skb);
839
840 This is used to determine if a socket buffer holds the last data message
841 to be received for a call (true will be returned if it does, false
842 if not).
843
844 The data message will be part of the reply on a client call and the
845 request on an incoming call. In the latter case there will be more
846 messages, but in the former case there will not.
847
848 (*) Get the abort code from an abort message.
849
850 u32 rxrpc_kernel_get_abort_code(struct sk_buff *skb);
851
852 This is used to extract the abort code from a remote abort message.
853
854 (*) Get the error number from a local or network error message.
855
856 int rxrpc_kernel_get_error_number(struct sk_buff *skb);
857
858 This is used to extract the error number from a message indicating either
859 a local error occurred or a network error occurred.
diff --git a/Documentation/networking/wan-router.txt b/Documentation/networking/wan-router.txt
index 653978dcea7f..07dd6d9930a1 100644
--- a/Documentation/networking/wan-router.txt
+++ b/Documentation/networking/wan-router.txt
@@ -250,7 +250,6 @@ PRODUCT COMPONENTS AND RELATED FILES
250 sdladrv.h SDLA support module API definitions 250 sdladrv.h SDLA support module API definitions
251 sdlasfm.h SDLA firmware module definitions 251 sdlasfm.h SDLA firmware module definitions
252 if_wanpipe.h WANPIPE Socket definitions 252 if_wanpipe.h WANPIPE Socket definitions
253 if_wanpipe_common.h WANPIPE Socket/Driver common definitions.
254 sdlapci.h WANPIPE PCI definitions 253 sdlapci.h WANPIPE PCI definitions
255 254
256 255
diff --git a/Documentation/powerpc/booting-without-of.txt b/Documentation/powerpc/booting-without-of.txt
index b41397d6430a..033a3f3b3ab7 100644
--- a/Documentation/powerpc/booting-without-of.txt
+++ b/Documentation/powerpc/booting-without-of.txt
@@ -39,7 +39,7 @@
39 and property data. The old style variable 39 and property data. The old style variable
40 alignment would make it impossible to do 40 alignment would make it impossible to do
41 "simple" insertion of properties using 41 "simple" insertion of properties using
42 memove (thanks Milton for 42 memmove (thanks Milton for
43 noticing). Updated kernel patch as well 43 noticing). Updated kernel patch as well
44 - Correct a few more alignment constraints 44 - Correct a few more alignment constraints
45 - Add a chapter about the device-tree 45 - Add a chapter about the device-tree
@@ -55,7 +55,7 @@
55 55
56 ToDo: 56 ToDo:
57 - Add some definitions of interrupt tree (simple/complex) 57 - Add some definitions of interrupt tree (simple/complex)
58 - Add some definitions for pci host bridges 58 - Add some definitions for PCI host bridges
59 - Add some common address format examples 59 - Add some common address format examples
60 - Add definitions for standard properties and "compatible" 60 - Add definitions for standard properties and "compatible"
61 names for cells that are not already defined by the existing 61 names for cells that are not already defined by the existing
@@ -114,7 +114,7 @@ it with special cases.
114 forth words isn't required), you can enter the kernel with: 114 forth words isn't required), you can enter the kernel with:
115 115
116 r5 : OF callback pointer as defined by IEEE 1275 116 r5 : OF callback pointer as defined by IEEE 1275
117 bindings to powerpc. Only the 32 bit client interface 117 bindings to powerpc. Only the 32-bit client interface
118 is currently supported 118 is currently supported
119 119
120 r3, r4 : address & length of an initrd if any or 0 120 r3, r4 : address & length of an initrd if any or 0
@@ -194,7 +194,7 @@ it with special cases.
194 for this is to keep kernels on embedded systems small and efficient; 194 for this is to keep kernels on embedded systems small and efficient;
195 part of this is due to the fact the code is already that way. In the 195 part of this is due to the fact the code is already that way. In the
196 future, a kernel may support multiple platforms, but only if the 196 future, a kernel may support multiple platforms, but only if the
197 platforms feature the same core architectire. A single kernel build 197 platforms feature the same core architecture. A single kernel build
198 cannot support both configurations with Book E and configurations 198 cannot support both configurations with Book E and configurations
199 with classic Powerpc architectures. 199 with classic Powerpc architectures.
200 200
@@ -215,7 +215,7 @@ of the boot sequences.... someone speak up if this is wrong!
215 enable another config option to select the specific board 215 enable another config option to select the specific board
216 supported. 216 supported.
217 217
218NOTE: If ben doesn't merge the setup files, may need to change this to 218NOTE: If Ben doesn't merge the setup files, may need to change this to
219point to setup_32.c 219point to setup_32.c
220 220
221 221
@@ -256,7 +256,7 @@ struct boot_param_header {
256 u32 off_dt_struct; /* offset to structure */ 256 u32 off_dt_struct; /* offset to structure */
257 u32 off_dt_strings; /* offset to strings */ 257 u32 off_dt_strings; /* offset to strings */
258 u32 off_mem_rsvmap; /* offset to memory reserve map 258 u32 off_mem_rsvmap; /* offset to memory reserve map
259*/ 259 */
260 u32 version; /* format version */ 260 u32 version; /* format version */
261 u32 last_comp_version; /* last compatible version */ 261 u32 last_comp_version; /* last compatible version */
262 262
@@ -265,6 +265,9 @@ struct boot_param_header {
265 booting on */ 265 booting on */
266 /* version 3 fields below */ 266 /* version 3 fields below */
267 u32 size_dt_strings; /* size of the strings block */ 267 u32 size_dt_strings; /* size of the strings block */
268
269 /* version 17 fields below */
270 u32 size_dt_struct; /* size of the DT structure block */
268}; 271};
269 272
270 Along with the constants: 273 Along with the constants:
@@ -273,7 +276,7 @@ struct boot_param_header {
273#define OF_DT_HEADER 0xd00dfeed /* 4: version, 276#define OF_DT_HEADER 0xd00dfeed /* 4: version,
274 4: total size */ 277 4: total size */
275#define OF_DT_BEGIN_NODE 0x1 /* Start node: full name 278#define OF_DT_BEGIN_NODE 0x1 /* Start node: full name
276*/ 279 */
277#define OF_DT_END_NODE 0x2 /* End node */ 280#define OF_DT_END_NODE 0x2 /* End node */
278#define OF_DT_PROP 0x3 /* Property: name off, 281#define OF_DT_PROP 0x3 /* Property: name off,
279 size, content */ 282 size, content */
@@ -310,9 +313,8 @@ struct boot_param_header {
310 - off_mem_rsvmap 313 - off_mem_rsvmap
311 314
312 This is an offset from the beginning of the header to the start 315 This is an offset from the beginning of the header to the start
313 of the reserved memory map. This map is a list of pairs of 64 316 of the reserved memory map. This map is a list of pairs of 64-
314 bit integers. Each pair is a physical address and a size. The 317 bit integers. Each pair is a physical address and a size. The
315
316 list is terminated by an entry of size 0. This map provides the 318 list is terminated by an entry of size 0. This map provides the
317 kernel with a list of physical memory areas that are "reserved" 319 kernel with a list of physical memory areas that are "reserved"
318 and thus not to be used for memory allocations, especially during 320 and thus not to be used for memory allocations, especially during
@@ -325,7 +327,7 @@ struct boot_param_header {
325 contain _at least_ this DT block itself (header,total_size). If 327 contain _at least_ this DT block itself (header,total_size). If
326 you are passing an initrd to the kernel, you should reserve it as 328 you are passing an initrd to the kernel, you should reserve it as
327 well. You do not need to reserve the kernel image itself. The map 329 well. You do not need to reserve the kernel image itself. The map
328 should be 64 bit aligned. 330 should be 64-bit aligned.
329 331
330 - version 332 - version
331 333
@@ -335,10 +337,13 @@ struct boot_param_header {
335 to reallocate it easily at boot and free up the unused flattened 337 to reallocate it easily at boot and free up the unused flattened
336 structure after expansion. Version 16 introduces a new more 338 structure after expansion. Version 16 introduces a new more
337 "compact" format for the tree itself that is however not backward 339 "compact" format for the tree itself that is however not backward
338 compatible. You should always generate a structure of the highest 340 compatible. Version 17 adds an additional field, size_dt_struct,
339 version defined at the time of your implementation. Currently 341 allowing it to be reallocated or moved more easily (this is
340 that is version 16, unless you explicitly aim at being backward 342 particularly useful for bootloaders which need to make
341 compatible. 343 adjustments to a device tree based on probed information). You
344 should always generate a structure of the highest version defined
345 at the time of your implementation. Currently that is version 17,
346 unless you explicitly aim at being backward compatible.
342 347
343 - last_comp_version 348 - last_comp_version
344 349
@@ -347,7 +352,7 @@ struct boot_param_header {
347 is backward compatible with version 1 (that is, a kernel build 352 is backward compatible with version 1 (that is, a kernel build
348 for version 1 will be able to boot with a version 2 format). You 353 for version 1 will be able to boot with a version 2 format). You
349 should put a 1 in this field if you generate a device tree of 354 should put a 1 in this field if you generate a device tree of
350 version 1 to 3, or 0x10 if you generate a tree of version 0x10 355 version 1 to 3, or 16 if you generate a tree of version 16 or 17
351 using the new unit name format. 356 using the new unit name format.
352 357
353 - boot_cpuid_phys 358 - boot_cpuid_phys
@@ -360,6 +365,17 @@ struct boot_param_header {
360 point (see further chapters for more informations on the required 365 point (see further chapters for more informations on the required
361 device-tree contents) 366 device-tree contents)
362 367
368 - size_dt_strings
369
370 This field only exists on version 3 and later headers. It
371 gives the size of the "strings" section of the device tree (which
372 starts at the offset given by off_dt_strings).
373
374 - size_dt_struct
375
376 This field only exists on version 17 and later headers. It gives
377 the size of the "structure" section of the device tree (which
378 starts at the offset given by off_dt_struct).
363 379
364 So the typical layout of a DT block (though the various parts don't 380 So the typical layout of a DT block (though the various parts don't
365 need to be in that order) looks like this (addresses go from top to 381 need to be in that order) looks like this (addresses go from top to
@@ -417,7 +433,7 @@ root node who has no parent.
417A node has 2 names. The actual node name is generally contained in a 433A node has 2 names. The actual node name is generally contained in a
418property of type "name" in the node property list whose value is a 434property of type "name" in the node property list whose value is a
419zero terminated string and is mandatory for version 1 to 3 of the 435zero terminated string and is mandatory for version 1 to 3 of the
420format definition (as it is in Open Firmware). Version 0x10 makes it 436format definition (as it is in Open Firmware). Version 16 makes it
421optional as it can generate it from the unit name defined below. 437optional as it can generate it from the unit name defined below.
422 438
423There is also a "unit name" that is used to differentiate nodes with 439There is also a "unit name" that is used to differentiate nodes with
@@ -461,7 +477,7 @@ referencing another node via "phandle" is when laying out the
461interrupt tree which will be described in a further version of this 477interrupt tree which will be described in a further version of this
462document. 478document.
463 479
464This "linux, phandle" property is a 32 bit value that uniquely 480This "linux, phandle" property is a 32-bit value that uniquely
465identifies a node. You are free to use whatever values or system of 481identifies a node. You are free to use whatever values or system of
466values, internal pointers, or whatever to generate these, the only 482values, internal pointers, or whatever to generate these, the only
467requirement is that every node for which you provide that property has 483requirement is that every node for which you provide that property has
@@ -471,7 +487,7 @@ Here is an example of a simple device-tree. In this example, an "o"
471designates a node followed by the node unit name. Properties are 487designates a node followed by the node unit name. Properties are
472presented with their name followed by their content. "content" 488presented with their name followed by their content. "content"
473represents an ASCII string (zero terminated) value, while <content> 489represents an ASCII string (zero terminated) value, while <content>
474represents a 32 bit hexadecimal value. The various nodes in this 490represents a 32-bit hexadecimal value. The various nodes in this
475example will be discussed in a later chapter. At this point, it is 491example will be discussed in a later chapter. At this point, it is
476only meant to give you a idea of what a device-tree looks like. I have 492only meant to give you a idea of what a device-tree looks like. I have
477purposefully kept the "name" and "linux,phandle" properties which 493purposefully kept the "name" and "linux,phandle" properties which
@@ -543,15 +559,15 @@ Here's the basic structure of a single node:
543 * [align gap to next 4 bytes boundary] 559 * [align gap to next 4 bytes boundary]
544 * for each property: 560 * for each property:
545 * token OF_DT_PROP (that is 0x00000003) 561 * token OF_DT_PROP (that is 0x00000003)
546 * 32 bit value of property value size in bytes (or 0 of no 562 * 32-bit value of property value size in bytes (or 0 if no
547 * value) 563 value)
548 * 32 bit value of offset in string block of property name 564 * 32-bit value of offset in string block of property name
549 * property value data if any 565 * property value data if any
550 * [align gap to next 4 bytes boundary] 566 * [align gap to next 4 bytes boundary]
551 * [child nodes if any] 567 * [child nodes if any]
552 * token OF_DT_END_NODE (that is 0x00000002) 568 * token OF_DT_END_NODE (that is 0x00000002)
553 569
554So the node content can be summarised as a start token, a full path, 570So the node content can be summarized as a start token, a full path,
555a list of properties, a list of child nodes, and an end token. Every 571a list of properties, a list of child nodes, and an end token. Every
556child node is a full node structure itself as defined above. 572child node is a full node structure itself as defined above.
557 573
@@ -583,7 +599,7 @@ provide those properties yourself.
583---------------------------------------------- 599----------------------------------------------
584 600
585The general rule is documented in the various Open Firmware 601The general rule is documented in the various Open Firmware
586documentations. If you chose to describe a bus with the device-tree 602documentations. If you choose to describe a bus with the device-tree
587and there exist an OF bus binding, then you should follow the 603and there exist an OF bus binding, then you should follow the
588specification. However, the kernel does not require every single 604specification. However, the kernel does not require every single
589device or bus to be described by the device tree. 605device or bus to be described by the device tree.
@@ -596,9 +612,9 @@ those properties defining addresses format for devices directly mapped
596on the processor bus. 612on the processor bus.
597 613
598Those 2 properties define 'cells' for representing an address and a 614Those 2 properties define 'cells' for representing an address and a
599size. A "cell" is a 32 bit number. For example, if both contain 2 615size. A "cell" is a 32-bit number. For example, if both contain 2
600like the example tree given above, then an address and a size are both 616like the example tree given above, then an address and a size are both
601composed of 2 cells, and each is a 64 bit number (cells are 617composed of 2 cells, and each is a 64-bit number (cells are
602concatenated and expected to be in big endian format). Another example 618concatenated and expected to be in big endian format). Another example
603is the way Apple firmware defines them, with 2 cells for an address 619is the way Apple firmware defines them, with 2 cells for an address
604and one cell for a size. Most 32-bit implementations should define 620and one cell for a size. Most 32-bit implementations should define
@@ -632,7 +648,7 @@ prom_parse.c file of the recent kernels for your bus type.
632 648
633The "reg" property only defines addresses and sizes (if #size-cells 649The "reg" property only defines addresses and sizes (if #size-cells
634is non-0) within a given bus. In order to translate addresses upward 650is non-0) within a given bus. In order to translate addresses upward
635(that is into parent bus addresses, and possibly into cpu physical 651(that is into parent bus addresses, and possibly into CPU physical
636addresses), all busses must contain a "ranges" property. If the 652addresses), all busses must contain a "ranges" property. If the
637"ranges" property is missing at a given level, it's assumed that 653"ranges" property is missing at a given level, it's assumed that
638translation isn't possible. The format of the "ranges" property for a 654translation isn't possible. The format of the "ranges" property for a
@@ -648,9 +664,9 @@ example, for a PCI host controller, that would be a CPU address. For a
648PCI<->ISA bridge, that would be a PCI address. It defines the base 664PCI<->ISA bridge, that would be a PCI address. It defines the base
649address in the parent bus where the beginning of that range is mapped. 665address in the parent bus where the beginning of that range is mapped.
650 666
651For a new 64 bit powerpc board, I recommend either the 2/2 format or 667For a new 64-bit powerpc board, I recommend either the 2/2 format or
652Apple's 2/1 format which is slightly more compact since sizes usually 668Apple's 2/1 format which is slightly more compact since sizes usually
653fit in a single 32 bit word. New 32 bit powerpc boards should use a 669fit in a single 32-bit word. New 32-bit powerpc boards should use a
6541/1 format, unless the processor supports physical addresses greater 6701/1 format, unless the processor supports physical addresses greater
655than 32-bits, in which case a 2/1 format is recommended. 671than 32-bits, in which case a 2/1 format is recommended.
656 672
@@ -764,7 +780,7 @@ address which can extend beyond that limit.
764 Required properties: 780 Required properties:
765 781
766 - device_type : has to be "cpu" 782 - device_type : has to be "cpu"
767 - reg : This is the physical cpu number, it's a single 32 bit cell 783 - reg : This is the physical CPU number, it's a single 32-bit cell
768 and is also used as-is as the unit number for constructing the 784 and is also used as-is as the unit number for constructing the
769 unit name in the full path. For example, with 2 CPUs, you would 785 unit name in the full path. For example, with 2 CPUs, you would
770 have the full path: 786 have the full path:
@@ -785,7 +801,7 @@ address which can extend beyond that limit.
785 the kernel timebase/decrementer calibration based on this 801 the kernel timebase/decrementer calibration based on this
786 value. 802 value.
787 - clock-frequency : a cell indicating the CPU core clock frequency 803 - clock-frequency : a cell indicating the CPU core clock frequency
788 in Hz. A new property will be defined for 64 bit values, but if 804 in Hz. A new property will be defined for 64-bit values, but if
789 your frequency is < 4Ghz, one cell is enough. Here as well as 805 your frequency is < 4Ghz, one cell is enough. Here as well as
790 for the above, the common code doesn't use that property, but 806 for the above, the common code doesn't use that property, but
791 you are welcome to re-use the pSeries or Maple one. A future 807 you are welcome to re-use the pSeries or Maple one. A future
@@ -832,8 +848,7 @@ address which can extend beyond that limit.
832 848
833 This node is a bit "special". Normally, that's where open firmware 849 This node is a bit "special". Normally, that's where open firmware
834 puts some variable environment information, like the arguments, or 850 puts some variable environment information, like the arguments, or
835 phandle pointers to nodes like the main interrupt controller, or the 851 the default input/output devices.
836 default input/output devices.
837 852
838 This specification makes a few of these mandatory, but also defines 853 This specification makes a few of these mandatory, but also defines
839 some linux-specific properties that would be normally constructed by 854 some linux-specific properties that would be normally constructed by
@@ -853,14 +868,14 @@ address which can extend beyond that limit.
853 that the kernel tries to find out the default console and has 868 that the kernel tries to find out the default console and has
854 knowledge of various types like 8250 serial ports. You may want 869 knowledge of various types like 8250 serial ports. You may want
855 to extend this function to add your own. 870 to extend this function to add your own.
856 - interrupt-controller : This is one cell containing a phandle
857 value that matches the "linux,phandle" property of your main
858 interrupt controller node. May be used for interrupt routing.
859
860 871
861 Note that u-boot creates and fills in the chosen node for platforms 872 Note that u-boot creates and fills in the chosen node for platforms
862 that use it. 873 that use it.
863 874
875 (Note: a practice that is now obsolete was to include a property
876 under /chosen called interrupt-controller which had a phandle value
877 that pointed to the main interrupt controller)
878
864 f) the /soc<SOCname> node 879 f) the /soc<SOCname> node
865 880
866 This node is used to represent a system-on-a-chip (SOC) and must be 881 This node is used to represent a system-on-a-chip (SOC) and must be
@@ -908,8 +923,7 @@ address which can extend beyond that limit.
908 The SOC node may contain child nodes for each SOC device that the 923 The SOC node may contain child nodes for each SOC device that the
909 platform uses. Nodes should not be created for devices which exist 924 platform uses. Nodes should not be created for devices which exist
910 on the SOC but are not used by a particular platform. See chapter VI 925 on the SOC but are not used by a particular platform. See chapter VI
911 for more information on how to specify devices that are part of an 926 for more information on how to specify devices that are part of a SOC.
912SOC.
913 927
914 Example SOC node for the MPC8540: 928 Example SOC node for the MPC8540:
915 929
@@ -972,7 +986,7 @@ The syntax of the dtc tool is
972 [-o output-filename] [-V output_version] input_filename 986 [-o output-filename] [-V output_version] input_filename
973 987
974 988
975The "output_version" defines what versio of the "blob" format will be 989The "output_version" defines what version of the "blob" format will be
976generated. Supported versions are 1,2,3 and 16. The default is 990generated. Supported versions are 1,2,3 and 16. The default is
977currently version 3 but that may change in the future to version 16. 991currently version 3 but that may change in the future to version 16.
978 992
@@ -994,12 +1008,12 @@ supported currently at the toplevel.
994 */ 1008 */
995 1009
996 property2 = <1234abcd>; /* define a property containing a 1010 property2 = <1234abcd>; /* define a property containing a
997 * numerical 32 bits value (hexadecimal) 1011 * numerical 32-bit value (hexadecimal)
998 */ 1012 */
999 1013
1000 property3 = <12345678 12345678 deadbeef>; 1014 property3 = <12345678 12345678 deadbeef>;
1001 /* define a property containing 3 1015 /* define a property containing 3
1002 * numerical 32 bits values (cells) in 1016 * numerical 32-bit values (cells) in
1003 * hexadecimal 1017 * hexadecimal
1004 */ 1018 */
1005 property4 = [0a 0b 0c 0d de ea ad be ef]; 1019 property4 = [0a 0b 0c 0d de ea ad be ef];
@@ -1068,7 +1082,7 @@ while all this has been defined and implemented.
1068 its usage in early_init_devtree(), and the corresponding various 1082 its usage in early_init_devtree(), and the corresponding various
1069 early_init_dt_scan_*() callbacks. That code can be re-used in a 1083 early_init_dt_scan_*() callbacks. That code can be re-used in a
1070 GPL bootloader, and as the author of that code, I would be happy 1084 GPL bootloader, and as the author of that code, I would be happy
1071 to discuss possible free licencing to any vendor who wishes to 1085 to discuss possible free licensing to any vendor who wishes to
1072 integrate all or part of this code into a non-GPL bootloader. 1086 integrate all or part of this code into a non-GPL bootloader.
1073 1087
1074 1088
@@ -1077,7 +1091,7 @@ VI - System-on-a-chip devices and nodes
1077======================================= 1091=======================================
1078 1092
1079Many companies are now starting to develop system-on-a-chip 1093Many companies are now starting to develop system-on-a-chip
1080processors, where the processor core (cpu) and many peripheral devices 1094processors, where the processor core (CPU) and many peripheral devices
1081exist on a single piece of silicon. For these SOCs, an SOC node 1095exist on a single piece of silicon. For these SOCs, an SOC node
1082should be used that defines child nodes for the devices that make 1096should be used that defines child nodes for the devices that make
1083up the SOC. While platforms are not required to use this model in 1097up the SOC. While platforms are not required to use this model in
@@ -1109,42 +1123,7 @@ See appendix A for an example partial SOC node definition for the
1109MPC8540. 1123MPC8540.
1110 1124
1111 1125
11122) Specifying interrupt information for SOC devices 11262) Representing devices without a current OF specification
1113---------------------------------------------------
1114
1115Each device that is part of an SOC and which generates interrupts
1116should have the following properties:
1117
1118 - interrupt-parent : contains the phandle of the interrupt
1119 controller which handles interrupts for this device
1120 - interrupts : a list of tuples representing the interrupt
1121 number and the interrupt sense and level for each interrupt
1122 for this device.
1123
1124This information is used by the kernel to build the interrupt table
1125for the interrupt controllers in the system.
1126
1127Sense and level information should be encoded as follows:
1128
1129 Devices connected to openPIC-compatible controllers should encode
1130 sense and polarity as follows:
1131
1132 0 = low to high edge sensitive type enabled
1133 1 = active low level sensitive type enabled
1134 2 = active high level sensitive type enabled
1135 3 = high to low edge sensitive type enabled
1136
1137 ISA PIC interrupt controllers should adhere to the ISA PIC
1138 encodings listed below:
1139
1140 0 = active low level sensitive type enabled
1141 1 = active high level sensitive type enabled
1142 2 = high to low edge sensitive type enabled
1143 3 = low to high edge sensitive type enabled
1144
1145
1146
11473) Representing devices without a current OF specification
1148---------------------------------------------------------- 1127----------------------------------------------------------
1149 1128
1150Currently, there are many devices on SOCs that do not have a standard 1129Currently, there are many devices on SOCs that do not have a standard
@@ -1201,6 +1180,13 @@ platforms are moved over to use the flattened-device-tree model.
1201 - phy-handle : The phandle for the PHY connected to this ethernet 1180 - phy-handle : The phandle for the PHY connected to this ethernet
1202 controller. 1181 controller.
1203 1182
1183 Recommended properties:
1184
1185 - linux,network-index : This is the intended "index" of this
1186 network device. This is used by the bootwrapper to interpret
1187 MAC addresses passed by the firmware when no information other
1188 than indices is available to associate an address with a device.
1189
1204 Example: 1190 Example:
1205 1191
1206 ethernet@24000 { 1192 ethernet@24000 {
@@ -1312,10 +1298,10 @@ platforms are moved over to use the flattened-device-tree model.
1312 and additions : 1298 and additions :
1313 1299
1314 Required properties : 1300 Required properties :
1315 - compatible : Should be "fsl-usb2-mph" for multi port host usb 1301 - compatible : Should be "fsl-usb2-mph" for multi port host USB
1316 controllers, or "fsl-usb2-dr" for dual role usb controllers 1302 controllers, or "fsl-usb2-dr" for dual role USB controllers
1317 - phy_type : For multi port host usb controllers, should be one of 1303 - phy_type : For multi port host USB controllers, should be one of
1318 "ulpi", or "serial". For dual role usb controllers, should be 1304 "ulpi", or "serial". For dual role USB controllers, should be
1319 one of "ulpi", "utmi", "utmi_wide", or "serial". 1305 one of "ulpi", "utmi", "utmi_wide", or "serial".
1320 - reg : Offset and length of the register set for the device 1306 - reg : Offset and length of the register set for the device
1321 - port0 : boolean; if defined, indicates port0 is connected for 1307 - port0 : boolean; if defined, indicates port0 is connected for
@@ -1339,7 +1325,7 @@ platforms are moved over to use the flattened-device-tree model.
1339 - interrupt-parent : the phandle for the interrupt controller that 1325 - interrupt-parent : the phandle for the interrupt controller that
1340 services interrupts for this device. 1326 services interrupts for this device.
1341 1327
1342 Example multi port host usb controller device node : 1328 Example multi port host USB controller device node :
1343 usb@22000 { 1329 usb@22000 {
1344 device_type = "usb"; 1330 device_type = "usb";
1345 compatible = "fsl-usb2-mph"; 1331 compatible = "fsl-usb2-mph";
@@ -1353,7 +1339,7 @@ platforms are moved over to use the flattened-device-tree model.
1353 port1; 1339 port1;
1354 }; 1340 };
1355 1341
1356 Example dual role usb controller device node : 1342 Example dual role USB controller device node :
1357 usb@23000 { 1343 usb@23000 {
1358 device_type = "usb"; 1344 device_type = "usb";
1359 compatible = "fsl-usb2-dr"; 1345 compatible = "fsl-usb2-dr";
@@ -1387,7 +1373,7 @@ platforms are moved over to use the flattened-device-tree model.
1387 - channel-fifo-len : An integer representing the number of 1373 - channel-fifo-len : An integer representing the number of
1388 descriptor pointers each channel fetch fifo can hold. 1374 descriptor pointers each channel fetch fifo can hold.
1389 - exec-units-mask : The bitmask representing what execution units 1375 - exec-units-mask : The bitmask representing what execution units
1390 (EUs) are available. It's a single 32 bit cell. EU information 1376 (EUs) are available. It's a single 32-bit cell. EU information
1391 should be encoded following the SEC's Descriptor Header Dword 1377 should be encoded following the SEC's Descriptor Header Dword
1392 EU_SEL0 field documentation, i.e. as follows: 1378 EU_SEL0 field documentation, i.e. as follows:
1393 1379
@@ -1403,7 +1389,7 @@ platforms are moved over to use the flattened-device-tree model.
1403 bits 8 through 31 are reserved for future SEC EUs. 1389 bits 8 through 31 are reserved for future SEC EUs.
1404 1390
1405 - descriptor-types-mask : The bitmask representing what descriptors 1391 - descriptor-types-mask : The bitmask representing what descriptors
1406 are available. It's a single 32 bit cell. Descriptor type 1392 are available. It's a single 32-bit cell. Descriptor type
1407 information should be encoded following the SEC's Descriptor 1393 information should be encoded following the SEC's Descriptor
1408 Header Dword DESC_TYPE field documentation, i.e. as follows: 1394 Header Dword DESC_TYPE field documentation, i.e. as follows:
1409 1395
@@ -1492,7 +1478,7 @@ platforms are moved over to use the flattened-device-tree model.
1492 Required properties: 1478 Required properties:
1493 - device_type : should be "spi". 1479 - device_type : should be "spi".
1494 - compatible : should be "fsl_spi". 1480 - compatible : should be "fsl_spi".
1495 - mode : the spi operation mode, it can be "cpu" or "qe". 1481 - mode : the SPI operation mode, it can be "cpu" or "qe".
1496 - reg : Offset and length of the register set for the device 1482 - reg : Offset and length of the register set for the device
1497 - interrupts : <a b> where a is the interrupt number and b is a 1483 - interrupts : <a b> where a is the interrupt number and b is a
1498 field that represents an encoding of the sense and level 1484 field that represents an encoding of the sense and level
@@ -1569,6 +1555,12 @@ platforms are moved over to use the flattened-device-tree model.
1569 - mac-address : list of bytes representing the ethernet address. 1555 - mac-address : list of bytes representing the ethernet address.
1570 - phy-handle : The phandle for the PHY connected to this controller. 1556 - phy-handle : The phandle for the PHY connected to this controller.
1571 1557
1558 Recommended properties:
1559 - linux,network-index : This is the intended "index" of this
1560 network device. This is used by the bootwrapper to interpret
1561 MAC addresses passed by the firmware when no information other
1562 than indices is available to associate an address with a device.
1563
1572 Example: 1564 Example:
1573 ucc@2000 { 1565 ucc@2000 {
1574 device_type = "network"; 1566 device_type = "network";
@@ -1712,7 +1704,7 @@ platforms are moved over to use the flattened-device-tree model.
1712 - partitions : Several pairs of 32-bit values where the first value is 1704 - partitions : Several pairs of 32-bit values where the first value is
1713 partition's offset from the start of the device and the second one is 1705 partition's offset from the start of the device and the second one is
1714 partition size in bytes with LSB used to signify a read only 1706 partition size in bytes with LSB used to signify a read only
1715 partition (so, the parition size should always be an even number). 1707 partition (so, the partition size should always be an even number).
1716 - partition-names : The list of concatenated zero terminated strings 1708 - partition-names : The list of concatenated zero terminated strings
1717 representing the partition names. 1709 representing the partition names.
1718 - probe-type : The type of probe which should be done for the chip 1710 - probe-type : The type of probe which should be done for the chip
@@ -1733,6 +1725,92 @@ platforms are moved over to use the flattened-device-tree model.
1733 1725
1734 More devices will be defined as this spec matures. 1726 More devices will be defined as this spec matures.
1735 1727
1728VII - Specifying interrupt information for devices
1729===================================================
1730
1731The device tree represents the busses and devices of a hardware
1732system in a form similar to the physical bus topology of the
1733hardware.
1734
1735In addition, a logical 'interrupt tree' exists which represents the
1736hierarchy and routing of interrupts in the hardware.
1737
1738The interrupt tree model is fully described in the
1739document "Open Firmware Recommended Practice: Interrupt
1740Mapping Version 0.9". The document is available at:
1741<http://playground.sun.com/1275/practice>.
1742
17431) interrupts property
1744----------------------
1745
1746Devices that generate interrupts to a single interrupt controller
1747should use the conventional OF representation described in the
1748OF interrupt mapping documentation.
1749
1750Each device which generates interrupts must have an 'interrupt'
1751property. The interrupt property value is an arbitrary number of
1752of 'interrupt specifier' values which describe the interrupt or
1753interrupts for the device.
1754
1755The encoding of an interrupt specifier is determined by the
1756interrupt domain in which the device is located in the
1757interrupt tree. The root of an interrupt domain specifies in
1758its #interrupt-cells property the number of 32-bit cells
1759required to encode an interrupt specifier. See the OF interrupt
1760mapping documentation for a detailed description of domains.
1761
1762For example, the binding for the OpenPIC interrupt controller
1763specifies an #interrupt-cells value of 2 to encode the interrupt
1764number and level/sense information. All interrupt children in an
1765OpenPIC interrupt domain use 2 cells per interrupt in their interrupts
1766property.
1767
1768The PCI bus binding specifies a #interrupt-cell value of 1 to encode
1769which interrupt pin (INTA,INTB,INTC,INTD) is used.
1770
17712) interrupt-parent property
1772----------------------------
1773
1774The interrupt-parent property is specified to define an explicit
1775link between a device node and its interrupt parent in
1776the interrupt tree. The value of interrupt-parent is the
1777phandle of the parent node.
1778
1779If the interrupt-parent property is not defined for a node, it's
1780interrupt parent is assumed to be an ancestor in the node's
1781_device tree_ hierarchy.
1782
17833) OpenPIC Interrupt Controllers
1784--------------------------------
1785
1786OpenPIC interrupt controllers require 2 cells to encode
1787interrupt information. The first cell defines the interrupt
1788number. The second cell defines the sense and level
1789information.
1790
1791Sense and level information should be encoded as follows:
1792
1793 0 = low to high edge sensitive type enabled
1794 1 = active low level sensitive type enabled
1795 2 = active high level sensitive type enabled
1796 3 = high to low edge sensitive type enabled
1797
17984) ISA Interrupt Controllers
1799----------------------------
1800
1801ISA PIC interrupt controllers require 2 cells to encode
1802interrupt information. The first cell defines the interrupt
1803number. The second cell defines the sense and level
1804information.
1805
1806ISA PIC interrupt controllers should adhere to the ISA PIC
1807encodings listed below:
1808
1809 0 = active low level sensitive type enabled
1810 1 = active high level sensitive type enabled
1811 2 = high to low edge sensitive type enabled
1812 3 = low to high edge sensitive type enabled
1813
1736 1814
1737Appendix A - Sample SOC node for MPC8540 1815Appendix A - Sample SOC node for MPC8540
1738======================================== 1816========================================
diff --git a/Documentation/s390/crypto/crypto-API.txt b/Documentation/s390/crypto/crypto-API.txt
deleted file mode 100644
index 71ae6ca9f2c2..000000000000
--- a/Documentation/s390/crypto/crypto-API.txt
+++ /dev/null
@@ -1,83 +0,0 @@
1crypto-API support for z990 Message Security Assist (MSA) instructions
2~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3
4AUTHOR: Thomas Spatzier (tspat@de.ibm.com)
5
6
71. Introduction crypto-API
8~~~~~~~~~~~~~~~~~~~~~~~~~~
9See Documentation/crypto/api-intro.txt for an introduction/description of the
10kernel crypto API.
11According to api-intro.txt support for z990 crypto instructions has been added
12in the algorithm api layer of the crypto API. Several files containing z990
13optimized implementations of crypto algorithms are placed in the
14arch/s390/crypto directory.
15
16
172. Probing for availability of MSA
18~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
19It should be possible to use Kernels with the z990 crypto implementations both
20on machines with MSA available and on those without MSA (pre z990 or z990
21without MSA). Therefore a simple probing mechanism has been implemented:
22In the init function of each crypto module the availability of MSA and of the
23respective crypto algorithm in particular will be tested. If the algorithm is
24available the module will load and register its algorithm with the crypto API.
25
26If the respective crypto algorithm is not available, the init function will
27return -ENOSYS. In that case a fallback to the standard software implementation
28of the crypto algorithm must be taken ( -> the standard crypto modules are
29also built when compiling the kernel).
30
31
323. Ensuring z990 crypto module preference
33~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
34If z990 crypto instructions are available the optimized modules should be
35preferred instead of standard modules.
36
373.1. compiled-in modules
38~~~~~~~~~~~~~~~~~~~~~~~~
39For compiled-in modules it has to be ensured that the z990 modules are linked
40before the standard crypto modules. Then, on system startup the init functions
41of z990 crypto modules will be called first and query for availability of z990
42crypto instructions. If instruction is available, the z990 module will register
43its crypto algorithm implementation -> the load of the standard module will fail
44since the algorithm is already registered.
45If z990 crypto instruction is not available the load of the z990 module will
46fail -> the standard module will load and register its algorithm.
47
483.2. dynamic modules
49~~~~~~~~~~~~~~~~~~~~
50A system administrator has to take care of giving preference to z990 crypto
51modules. If MSA is available appropriate lines have to be added to
52/etc/modprobe.conf.
53
54Example: z990 crypto instruction for SHA1 algorithm is available
55
56 add the following line to /etc/modprobe.conf (assuming the
57 z990 crypto modules for SHA1 is called sha1_z990):
58
59 alias sha1 sha1_z990
60
61 -> when the sha1 algorithm is requested through the crypto API
62 (which has a module autoloader) the z990 module will be loaded.
63
64TBD: a userspace module probing mechanism
65 something like 'probe sha1 sha1_z990 sha1' in modprobe.conf
66 -> try module sha1_z990, if it fails to load standard module sha1
67 the 'probe' statement is currently not supported in modprobe.conf
68
69
704. Currently implemented z990 crypto algorithms
71~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
72The following crypto algorithms with z990 MSA support are currently implemented.
73The name of each algorithm under which it is registered in crypto API and the
74name of the respective module is given in square brackets.
75
76- SHA1 Digest Algorithm [sha1 -> sha1_z990]
77- DES Encrypt/Decrypt Algorithm (64bit key) [des -> des_z990]
78- Triple DES Encrypt/Decrypt Algorithm (128bit key) [des3_ede128 -> des_z990]
79- Triple DES Encrypt/Decrypt Algorithm (192bit key) [des3_ede -> des_z990]
80
81In order to load, for example, the sha1_z990 module when the sha1 algorithm is
82requested (see 3.2.) add 'alias sha1 sha1_z990' to /etc/modprobe.conf.
83
diff --git a/Documentation/s390/zfcpdump.txt b/Documentation/s390/zfcpdump.txt
new file mode 100644
index 000000000000..cf45d27c4608
--- /dev/null
+++ b/Documentation/s390/zfcpdump.txt
@@ -0,0 +1,87 @@
1s390 SCSI dump tool (zfcpdump)
2
3System z machines (z900 or higher) provide hardware support for creating system
4dumps on SCSI disks. The dump process is initiated by booting a dump tool, which
5has to create a dump of the current (probably crashed) Linux image. In order to
6not overwrite memory of the crashed Linux with data of the dump tool, the
7hardware saves some memory plus the register sets of the boot cpu before the
8dump tool is loaded. There exists an SCLP hardware interface to obtain the saved
9memory afterwards. Currently 32 MB are saved.
10
11This zfcpdump implementation consists of a Linux dump kernel together with
12a userspace dump tool, which are loaded together into the saved memory region
13below 32 MB. zfcpdump is installed on a SCSI disk using zipl (as contained in
14the s390-tools package) to make the device bootable. The operator of a Linux
15system can then trigger a SCSI dump by booting the SCSI disk, where zfcpdump
16resides on.
17
18The kernel part of zfcpdump is implemented as a debugfs file under "zcore/mem",
19which exports memory and registers of the crashed Linux in an s390
20standalone dump format. It can be used in the same way as e.g. /dev/mem. The
21dump format defines a 4K header followed by plain uncompressed memory. The
22register sets are stored in the prefix pages of the respective cpus. To build a
23dump enabled kernel with the zcore driver, the kernel config option
24CONFIG_ZFCPDUMP has to be set. When reading from "zcore/mem", the part of
25memory, which has been saved by hardware is read by the driver via the SCLP
26hardware interface. The second part is just copied from the non overwritten real
27memory.
28
29The userspace application of zfcpdump can reside e.g. in an intitramfs or an
30initrd. It reads from zcore/mem and writes the system dump to a file on a
31SCSI disk.
32
33To build a zfcpdump kernel use the following settings in your kernel
34configuration:
35 * CONFIG_ZFCPDUMP=y
36 * Enable ZFCP driver
37 * Enable SCSI driver
38 * Enable ext2 and ext3 filesystems
39 * Disable as many features as possible to keep the kernel small.
40 E.g. network support is not needed at all.
41
42To use the zfcpdump userspace application in an initramfs you have to do the
43following:
44
45 * Copy the zfcpdump executable somewhere into your Linux tree.
46 E.g. to "arch/s390/boot/zfcpdump. If you do not want to include
47 shared libraries, compile the tool with the "-static" gcc option.
48 * If you want to include e2fsck, add it to your source tree, too. The zfcpdump
49 application attempts to start /sbin/e2fsck from the ramdisk.
50 * Use an initramfs config file like the following:
51
52 dir /dev 755 0 0
53 nod /dev/console 644 0 0 c 5 1
54 nod /dev/null 644 0 0 c 1 3
55 nod /dev/sda1 644 0 0 b 8 1
56 nod /dev/sda2 644 0 0 b 8 2
57 nod /dev/sda3 644 0 0 b 8 3
58 nod /dev/sda4 644 0 0 b 8 4
59 nod /dev/sda5 644 0 0 b 8 5
60 nod /dev/sda6 644 0 0 b 8 6
61 nod /dev/sda7 644 0 0 b 8 7
62 nod /dev/sda8 644 0 0 b 8 8
63 nod /dev/sda9 644 0 0 b 8 9
64 nod /dev/sda10 644 0 0 b 8 10
65 nod /dev/sda11 644 0 0 b 8 11
66 nod /dev/sda12 644 0 0 b 8 12
67 nod /dev/sda13 644 0 0 b 8 13
68 nod /dev/sda14 644 0 0 b 8 14
69 nod /dev/sda15 644 0 0 b 8 15
70 file /init arch/s390/boot/zfcpdump 755 0 0
71 file /sbin/e2fsck arch/s390/boot/e2fsck 755 0 0
72 dir /proc 755 0 0
73 dir /sys 755 0 0
74 dir /mnt 755 0 0
75 dir /sbin 755 0 0
76
77 * Issue "make image" to build the zfcpdump image with initramfs.
78
79In a Linux distribution the zfcpdump enabled kernel image must be copied to
80/usr/share/zfcpdump/zfcpdump.image, where the s390 zipl tool is looking for the
81dump kernel when preparing a SCSI dump disk.
82
83If you use a ramdisk copy it to "/usr/share/zfcpdump/zfcpdump.rd".
84
85For more information on how to use zfcpdump refer to the s390 'Using the Dump
86Tools book', which is available from
87http://www.ibm.com/developerworks/linux/linux390.
diff --git a/Documentation/sony-laptop.txt b/Documentation/sony-laptop.txt
index dfd26df056f4..7a5c1a81905c 100644
--- a/Documentation/sony-laptop.txt
+++ b/Documentation/sony-laptop.txt
@@ -3,12 +3,18 @@ Sony Notebook Control Driver (SNC) Readme
3 Copyright (C) 2004- 2005 Stelian Pop <stelian@popies.net> 3 Copyright (C) 2004- 2005 Stelian Pop <stelian@popies.net>
4 Copyright (C) 2007 Mattia Dongili <malattia@linux.it> 4 Copyright (C) 2007 Mattia Dongili <malattia@linux.it>
5 5
6This mini-driver drives the SNC device present in the ACPI BIOS of 6This mini-driver drives the SNC and SPIC device present in the ACPI BIOS of the
7the Sony Vaio laptops. 7Sony Vaio laptops. This driver mixes both devices functions under the same
8(hopefully consistent) interface. This also means that the sonypi driver is
9obsoleted by sony-laptop now.
8 10
9It gives access to some extra laptop functionalities. In its current 11Fn keys (hotkeys):
10form, this driver let the user set or query the screen brightness 12------------------
11through the backlight subsystem and remove/apply power to some devices. 13Some models report hotkeys through the SNC or SPIC devices, such events are
14reported both through the ACPI subsystem as acpi events and through the INPUT
15subsystem. See the logs of acpid or /proc/acpi/event and
16/proc/bus/input/devices to find out what those events are and which input
17devices are created by the driver.
12 18
13Backlight control: 19Backlight control:
14------------------ 20------------------
@@ -39,6 +45,8 @@ The files are:
39 audiopower power on/off the internal sound card 45 audiopower power on/off the internal sound card
40 lanpower power on/off the internal ethernet card 46 lanpower power on/off the internal ethernet card
41 (only in debug mode) 47 (only in debug mode)
48 bluetoothpower power on/off the internal bluetooth device
49 fanspeed get/set the fan speed
42 50
43Note that some files may be missing if they are not supported 51Note that some files may be missing if they are not supported
44by your particular laptop model. 52by your particular laptop model.
@@ -76,9 +84,9 @@ The sony-laptop driver creates, for some of those methods (the most
76current ones found on several Vaio models), an entry under 84current ones found on several Vaio models), an entry under
77/sys/devices/platform/sony-laptop, just like the 'cdpower' one. 85/sys/devices/platform/sony-laptop, just like the 'cdpower' one.
78You can create other entries corresponding to your own laptop methods by 86You can create other entries corresponding to your own laptop methods by
79further editing the source (see the 'sony_acpi_values' table, and add a new 87further editing the source (see the 'sony_nc_values' table, and add a new
80entry to this table with your get/set method names using the 88entry to this table with your get/set method names using the
81HANDLE_NAMES macro). 89SNC_HANDLE_NAMES macro).
82 90
83Your mission, should you accept it, is to try finding out what 91Your mission, should you accept it, is to try finding out what
84those entries are for, by reading/writing random values from/to those 92those entries are for, by reading/writing random values from/to those
@@ -87,6 +95,9 @@ files and find out what is the impact on your laptop.
87Should you find anything interesting, please report it back to me, 95Should you find anything interesting, please report it back to me,
88I will not disavow all knowledge of your actions :) 96I will not disavow all knowledge of your actions :)
89 97
98See also http://www.linux.it/~malattia/wiki/index.php/Sony_drivers for other
99useful info.
100
90Bugs/Limitations: 101Bugs/Limitations:
91----------------- 102-----------------
92 103
diff --git a/Documentation/ibm-acpi.txt b/Documentation/thinkpad-acpi.txt
index 0132d363feb5..2d4803359a04 100644
--- a/Documentation/ibm-acpi.txt
+++ b/Documentation/thinkpad-acpi.txt
@@ -1,16 +1,22 @@
1 IBM ThinkPad ACPI Extras Driver 1 ThinkPad ACPI Extras Driver
2 2
3 Version 0.12 3 Version 0.14
4 17 August 2005 4 April 21st, 2007
5 5
6 Borislav Deianov <borislav@users.sf.net> 6 Borislav Deianov <borislav@users.sf.net>
7 Henrique de Moraes Holschuh <hmh@hmh.eng.br>
7 http://ibm-acpi.sf.net/ 8 http://ibm-acpi.sf.net/
8 9
9 10
10This is a Linux ACPI driver for the IBM ThinkPad laptops. It supports 11This is a Linux driver for the IBM and Lenovo ThinkPad laptops. It
11various features of these laptops which are accessible through the 12supports various features of these laptops which are accessible
12ACPI framework but not otherwise supported by the generic Linux ACPI 13through the ACPI and ACPI EC framework, but not otherwise fully
13drivers. 14supported by the generic Linux ACPI drivers.
15
16This driver used to be named ibm-acpi until kernel 2.6.21 and release
170.13-20070314. It used to be in the drivers/acpi tree, but it was
18moved to the drivers/misc tree and renamed to thinkpad-acpi for kernel
192.6.22, and release 0.14.
14 20
15 21
16Status 22Status
@@ -21,7 +27,7 @@ detailed description):
21 27
22 - Fn key combinations 28 - Fn key combinations
23 - Bluetooth enable and disable 29 - Bluetooth enable and disable
24 - video output switching, expansion control 30 - video output switching, expansion control
25 - ThinkLight on and off 31 - ThinkLight on and off
26 - limited docking and undocking 32 - limited docking and undocking
27 - UltraBay eject 33 - UltraBay eject
@@ -32,7 +38,7 @@ detailed description):
32 - Experimental: embedded controller register dump 38 - Experimental: embedded controller register dump
33 - LCD brightness control 39 - LCD brightness control
34 - Volume control 40 - Volume control
35 - Experimental: fan speed, fan enable/disable 41 - Fan control and monitoring: fan speed, fan enable/disable
36 - Experimental: WAN enable and disable 42 - Experimental: WAN enable and disable
37 43
38A compatibility table by model and feature is maintained on the web 44A compatibility table by model and feature is maintained on the web
@@ -42,6 +48,8 @@ Please include the following information in your report:
42 48
43 - ThinkPad model name 49 - ThinkPad model name
44 - a copy of your DSDT, from /proc/acpi/dsdt 50 - a copy of your DSDT, from /proc/acpi/dsdt
51 - a copy of the output of dmidecode, with serial numbers
52 and UUIDs masked off
45 - which driver features work and which don't 53 - which driver features work and which don't
46 - the observed behavior of non-working features 54 - the observed behavior of non-working features
47 55
@@ -52,25 +60,85 @@ Installation
52------------ 60------------
53 61
54If you are compiling this driver as included in the Linux kernel 62If you are compiling this driver as included in the Linux kernel
55sources, simply enable the CONFIG_ACPI_IBM option (Power Management / 63sources, simply enable the CONFIG_THINKPAD_ACPI option, and optionally
56ACPI / IBM ThinkPad Laptop Extras). 64enable the CONFIG_THINKPAD_ACPI_BAY option if you want the
65thinkpad-specific bay functionality.
57 66
58Features 67Features
59-------- 68--------
60 69
61The driver creates the /proc/acpi/ibm directory. There is a file under 70The driver exports two different interfaces to userspace, which can be
62that directory for each feature described below. Note that while the 71used to access the features it provides. One is a legacy procfs-based
63driver is still in the alpha stage, the exact proc file format and 72interface, which will be removed at some time in the distant future.
64commands supported by the various features is guaranteed to change 73The other is a new sysfs-based interface which is not complete yet.
65frequently.
66 74
67Driver version -- /proc/acpi/ibm/driver 75The procfs interface creates the /proc/acpi/ibm directory. There is a
68--------------------------------------- 76file under that directory for each feature it supports. The procfs
77interface is mostly frozen, and will change very little if at all: it
78will not be extended to add any new functionality in the driver, instead
79all new functionality will be implemented on the sysfs interface.
80
81The sysfs interface tries to blend in the generic Linux sysfs subsystems
82and classes as much as possible. Since some of these subsystems are not
83yet ready or stabilized, it is expected that this interface will change,
84and any and all userspace programs must deal with it.
85
86
87Notes about the sysfs interface:
88
89Unlike what was done with the procfs interface, correctness when talking
90to the sysfs interfaces will be enforced, as will correctness in the
91thinkpad-acpi's implementation of sysfs interfaces.
92
93Also, any bugs in the thinkpad-acpi sysfs driver code or in the
94thinkpad-acpi's implementation of the sysfs interfaces will be fixed for
95maximum correctness, even if that means changing an interface in
96non-compatible ways. As these interfaces mature both in the kernel and
97in thinkpad-acpi, such changes should become quite rare.
98
99Applications interfacing to the thinkpad-acpi sysfs interfaces must
100follow all sysfs guidelines and correctly process all errors (the sysfs
101interface makes extensive use of errors). File descriptors and open /
102close operations to the sysfs inodes must also be properly implemented.
103
104The version of thinkpad-acpi's sysfs interface is exported by the driver
105as a driver attribute (see below).
106
107Sysfs driver attributes are on the driver's sysfs attribute space,
108for 2.6.20 this is /sys/bus/platform/drivers/thinkpad-acpi/.
109
110Sysfs device attributes are on the driver's sysfs attribute space,
111for 2.6.20 this is /sys/devices/platform/thinkpad-acpi/.
112
113Driver version
114--------------
115
116procfs: /proc/acpi/ibm/driver
117sysfs driver attribute: version
69 118
70The driver name and version. No commands can be written to this file. 119The driver name and version. No commands can be written to this file.
71 120
72Hot keys -- /proc/acpi/ibm/hotkey 121Sysfs interface version
73--------------------------------- 122-----------------------
123
124sysfs driver attribute: interface_version
125
126Version of the thinkpad-acpi sysfs interface, as an unsigned long
127(output in hex format: 0xAAAABBCC), where:
128 AAAA - major revision
129 BB - minor revision
130 CC - bugfix revision
131
132The sysfs interface version changelog for the driver can be found at the
133end of this document. Changes to the sysfs interface done by the kernel
134subsystems are not documented here, nor are they tracked by this
135attribute.
136
137Hot keys
138--------
139
140procfs: /proc/acpi/ibm/hotkey
141sysfs device attribute: hotkey/*
74 142
75Without this driver, only the Fn-F4 key (sleep button) generates an 143Without this driver, only the Fn-F4 key (sleep button) generates an
76ACPI event. With the driver loaded, the hotkey feature enabled and the 144ACPI event. With the driver loaded, the hotkey feature enabled and the
@@ -84,15 +152,6 @@ All labeled Fn-Fx key combinations generate distinct events. In
84addition, the lid microswitch and some docking station buttons may 152addition, the lid microswitch and some docking station buttons may
85also generate such events. 153also generate such events.
86 154
87The following commands can be written to this file:
88
89 echo enable > /proc/acpi/ibm/hotkey -- enable the hot keys feature
90 echo disable > /proc/acpi/ibm/hotkey -- disable the hot keys feature
91 echo 0xffff > /proc/acpi/ibm/hotkey -- enable all possible hot keys
92 echo 0x0000 > /proc/acpi/ibm/hotkey -- disable all possible hot keys
93 ... any other 4-hex-digit mask ...
94 echo reset > /proc/acpi/ibm/hotkey -- restore the original mask
95
96The bit mask allows some control over which hot keys generate ACPI 155The bit mask allows some control over which hot keys generate ACPI
97events. Not all bits in the mask can be modified. Not all bits that 156events. Not all bits in the mask can be modified. Not all bits that
98can be modified do anything. Not all hot keys can be individually 157can be modified do anything. Not all hot keys can be individually
@@ -124,15 +183,77 @@ buttons do not generate ACPI events even with this driver. They *can*
124be used through the "ThinkPad Buttons" utility, see 183be used through the "ThinkPad Buttons" utility, see
125http://www.nongnu.org/tpb/ 184http://www.nongnu.org/tpb/
126 185
127Bluetooth -- /proc/acpi/ibm/bluetooth 186procfs notes:
128------------------------------------- 187
188The following commands can be written to the /proc/acpi/ibm/hotkey file:
189
190 echo enable > /proc/acpi/ibm/hotkey -- enable the hot keys feature
191 echo disable > /proc/acpi/ibm/hotkey -- disable the hot keys feature
192 echo 0xffff > /proc/acpi/ibm/hotkey -- enable all possible hot keys
193 echo 0x0000 > /proc/acpi/ibm/hotkey -- disable all possible hot keys
194 ... any other 4-hex-digit mask ...
195 echo reset > /proc/acpi/ibm/hotkey -- restore the original mask
196
197sysfs notes:
198
199 The hot keys attributes are in a hotkey/ subdirectory off the
200 thinkpad device.
201
202 bios_enabled:
203 Returns the status of the hot keys feature when
204 thinkpad-acpi was loaded. Upon module unload, the hot
205 key feature status will be restored to this value.
206
207 0: hot keys were disabled
208 1: hot keys were enabled
209
210 bios_mask:
211 Returns the hot keys mask when thinkpad-acpi was loaded.
212 Upon module unload, the hot keys mask will be restored
213 to this value.
214
215 enable:
216 Enables/disables the hot keys feature, and reports
217 current status of the hot keys feature.
218
219 0: disables the hot keys feature / feature disabled
220 1: enables the hot keys feature / feature enabled
221
222 mask:
223 bit mask to enable ACPI event generation for each hot
224 key (see above). Returns the current status of the hot
225 keys mask, and allows one to modify it.
226
129 227
130This feature shows the presence and current state of a Bluetooth 228Bluetooth
131device. If Bluetooth is installed, the following commands can be used: 229---------
230
231procfs: /proc/acpi/ibm/bluetooth
232sysfs device attribute: bluetooth/enable
233
234This feature shows the presence and current state of a ThinkPad
235Bluetooth device in the internal ThinkPad CDC slot.
236
237Procfs notes:
238
239If Bluetooth is installed, the following commands can be used:
132 240
133 echo enable > /proc/acpi/ibm/bluetooth 241 echo enable > /proc/acpi/ibm/bluetooth
134 echo disable > /proc/acpi/ibm/bluetooth 242 echo disable > /proc/acpi/ibm/bluetooth
135 243
244Sysfs notes:
245
246 If the Bluetooth CDC card is installed, it can be enabled /
247 disabled through the "bluetooth/enable" thinkpad-acpi device
248 attribute, and its current status can also be queried.
249
250 enable:
251 0: disables Bluetooth / Bluetooth is disabled
252 1: enables Bluetooth / Bluetooth is enabled.
253
254 Note: this interface will be probably be superseeded by the
255 generic rfkill class.
256
136Video output control -- /proc/acpi/ibm/video 257Video output control -- /proc/acpi/ibm/video
137-------------------------------------------- 258--------------------------------------------
138 259
@@ -209,7 +330,7 @@ hot plugging of devices in the Linux ACPI framework. If the laptop was
209booted while not in the dock, the following message is shown in the 330booted while not in the dock, the following message is shown in the
210logs: 331logs:
211 332
212 Mar 17 01:42:34 aero kernel: ibm_acpi: dock device not present 333 Mar 17 01:42:34 aero kernel: thinkpad_acpi: dock device not present
213 334
214In this case, no dock-related events are generated but the dock and 335In this case, no dock-related events are generated but the dock and
215undock commands described below still work. They can be executed 336undock commands described below still work. They can be executed
@@ -269,7 +390,7 @@ This is due to the current lack of support for hot plugging of devices
269in the Linux ACPI framework. If the laptop was booted without the 390in the Linux ACPI framework. If the laptop was booted without the
270UltraBay, the following message is shown in the logs: 391UltraBay, the following message is shown in the logs:
271 392
272 Mar 17 01:42:34 aero kernel: ibm_acpi: bay device not present 393 Mar 17 01:42:34 aero kernel: thinkpad_acpi: bay device not present
273 394
274In this case, no bay-related events are generated but the eject 395In this case, no bay-related events are generated but the eject
275command described below still works. It can be executed manually or 396command described below still works. It can be executed manually or
@@ -313,23 +434,19 @@ supported. Use "eject2" instead of "eject" for the second bay.
313Note: the UltraBay eject support on the 600e/x, A22p and A3x is 434Note: the UltraBay eject support on the 600e/x, A22p and A3x is
314EXPERIMENTAL and may not work as expected. USE WITH CAUTION! 435EXPERIMENTAL and may not work as expected. USE WITH CAUTION!
315 436
316CMOS control -- /proc/acpi/ibm/cmos 437CMOS control
317----------------------------------- 438------------
439
440procfs: /proc/acpi/ibm/cmos
441sysfs device attribute: cmos_command
318 442
319This feature is used internally by the ACPI firmware to control the 443This feature is used internally by the ACPI firmware to control the
320ThinkLight on most newer ThinkPad models. It may also control LCD 444ThinkLight on most newer ThinkPad models. It may also control LCD
321brightness, sounds volume and more, but only on some models. 445brightness, sounds volume and more, but only on some models.
322 446
323The commands are non-negative integer numbers: 447The range of valid cmos command numbers is 0 to 21, but not all have an
324 448effect and the behavior varies from model to model. Here is the behavior
325 echo 0 >/proc/acpi/ibm/cmos 449on the X40 (tpb is the ThinkPad Buttons utility):
326 echo 1 >/proc/acpi/ibm/cmos
327 echo 2 >/proc/acpi/ibm/cmos
328 ...
329
330The range of valid numbers is 0 to 21, but not all have an effect and
331the behavior varies from model to model. Here is the behavior on the
332X40 (tpb is the ThinkPad Buttons utility):
333 450
334 0 - no effect but tpb reports "Volume down" 451 0 - no effect but tpb reports "Volume down"
335 1 - no effect but tpb reports "Volume up" 452 1 - no effect but tpb reports "Volume up"
@@ -342,6 +459,9 @@ X40 (tpb is the ThinkPad Buttons utility):
342 13 - ThinkLight off 459 13 - ThinkLight off
343 14 - no effect but tpb reports ThinkLight status change 460 14 - no effect but tpb reports ThinkLight status change
344 461
462The cmos command interface is prone to firmware split-brain problems, as
463in newer ThinkPads it is just a compatibility layer.
464
345LED control -- /proc/acpi/ibm/led 465LED control -- /proc/acpi/ibm/led
346--------------------------------- 466---------------------------------
347 467
@@ -393,17 +513,17 @@ X40:
393 16 - one medium-pitched beep repeating constantly, stop with 17 513 16 - one medium-pitched beep repeating constantly, stop with 17
394 17 - stop 16 514 17 - stop 16
395 515
396Temperature sensors -- /proc/acpi/ibm/thermal 516Temperature sensors
397--------------------------------------------- 517-------------------
518
519procfs: /proc/acpi/ibm/thermal
520sysfs device attributes: (hwmon) temp*_input
398 521
399Most ThinkPads include six or more separate temperature sensors but 522Most ThinkPads include six or more separate temperature sensors but
400only expose the CPU temperature through the standard ACPI methods. 523only expose the CPU temperature through the standard ACPI methods.
401This feature shows readings from up to eight different sensors on older 524This feature shows readings from up to eight different sensors on older
402ThinkPads, and it has experimental support for up to sixteen different 525ThinkPads, and it has experimental support for up to sixteen different
403sensors on newer ThinkPads. Readings from sensors that are not available 526sensors on newer ThinkPads.
404return -128.
405
406No commands can be written to this file.
407 527
408EXPERIMENTAL: The 16-sensors feature is marked EXPERIMENTAL because the 528EXPERIMENTAL: The 16-sensors feature is marked EXPERIMENTAL because the
409implementation directly accesses hardware registers and may not work as 529implementation directly accesses hardware registers and may not work as
@@ -460,6 +580,20 @@ The A31 has a very atypical layout for the thermal sensors
4608: Bay Battery: secondary sensor 5808: Bay Battery: secondary sensor
461 581
462 582
583Procfs notes:
584 Readings from sensors that are not available return -128.
585 No commands can be written to this file.
586
587Sysfs notes:
588 Sensors that are not available return the ENXIO error. This
589 status may change at runtime, as there are hotplug thermal
590 sensors, like those inside the batteries and docks.
591
592 thinkpad-acpi thermal sensors are reported through the hwmon
593 subsystem, and follow all of the hwmon guidelines at
594 Documentation/hwmon.
595
596
463EXPERIMENTAL: Embedded controller register dump -- /proc/acpi/ibm/ecdump 597EXPERIMENTAL: Embedded controller register dump -- /proc/acpi/ibm/ecdump
464------------------------------------------------------------------------ 598------------------------------------------------------------------------
465 599
@@ -472,7 +606,7 @@ This feature dumps the values of 256 embedded controller
472registers. Values which have changed since the last time the registers 606registers. Values which have changed since the last time the registers
473were dumped are marked with a star: 607were dumped are marked with a star:
474 608
475[root@x40 ibm-acpi]# cat /proc/acpi/ibm/ecdump 609[root@x40 ibm-acpi]# cat /proc/acpi/ibm/ecdump
476EC +00 +01 +02 +03 +04 +05 +06 +07 +08 +09 +0a +0b +0c +0d +0e +0f 610EC +00 +01 +02 +03 +04 +05 +06 +07 +08 +09 +0a +0b +0c +0d +0e +0f
477EC 0x00: a7 47 87 01 fe 96 00 08 01 00 cb 00 00 00 40 00 611EC 0x00: a7 47 87 01 fe 96 00 08 01 00 cb 00 00 00 40 00
478EC 0x10: 00 00 ff ff f4 3c 87 09 01 ff 42 01 ff ff 0d 00 612EC 0x10: 00 00 ff ff f4 3c 87 09 01 ff 42 01 ff ff 0d 00
@@ -503,7 +637,7 @@ vary. The second ensures that the fan-related values do vary, since
503the fan speed fluctuates a bit. The third will (hopefully) mark the 637the fan speed fluctuates a bit. The third will (hopefully) mark the
504fan register with a star: 638fan register with a star:
505 639
506[root@x40 ibm-acpi]# cat /proc/acpi/ibm/ecdump 640[root@x40 ibm-acpi]# cat /proc/acpi/ibm/ecdump
507EC +00 +01 +02 +03 +04 +05 +06 +07 +08 +09 +0a +0b +0c +0d +0e +0f 641EC +00 +01 +02 +03 +04 +05 +06 +07 +08 +09 +0a +0b +0c +0d +0e +0f
508EC 0x00: a7 47 87 01 fe 96 00 08 01 00 cb 00 00 00 40 00 642EC 0x00: a7 47 87 01 fe 96 00 08 01 00 cb 00 00 00 40 00
509EC 0x10: 00 00 ff ff f4 3c 87 09 01 ff 42 01 ff ff 0d 00 643EC 0x10: 00 00 ff ff f4 3c 87 09 01 ff 42 01 ff ff 0d 00
@@ -533,19 +667,59 @@ registers contain the current battery capacity, etc. If you experiment
533with this, do send me your results (including some complete dumps with 667with this, do send me your results (including some complete dumps with
534a description of the conditions when they were taken.) 668a description of the conditions when they were taken.)
535 669
536LCD brightness control -- /proc/acpi/ibm/brightness 670LCD brightness control
537--------------------------------------------------- 671----------------------
672
673procfs: /proc/acpi/ibm/brightness
674sysfs backlight device "thinkpad_screen"
538 675
539This feature allows software control of the LCD brightness on ThinkPad 676This feature allows software control of the LCD brightness on ThinkPad
540models which don't have a hardware brightness slider. The available 677models which don't have a hardware brightness slider.
541commands are: 678
679It has some limitations: the LCD backlight cannot be actually turned on or off
680by this interface, and in many ThinkPad models, the "dim while on battery"
681functionality will be enabled by the BIOS when this interface is used, and
682cannot be controlled.
683
684The backlight control has eight levels, ranging from 0 to 7. Some of the
685levels may not be distinct.
686
687Procfs notes:
688
689 The available commands are:
542 690
543 echo up >/proc/acpi/ibm/brightness 691 echo up >/proc/acpi/ibm/brightness
544 echo down >/proc/acpi/ibm/brightness 692 echo down >/proc/acpi/ibm/brightness
545 echo 'level <level>' >/proc/acpi/ibm/brightness 693 echo 'level <level>' >/proc/acpi/ibm/brightness
546 694
547The <level> number range is 0 to 7, although not all of them may be 695Sysfs notes:
548distinct. The current brightness level is shown in the file. 696
697The interface is implemented through the backlight sysfs class, which is poorly
698documented at this time.
699
700Locate the thinkpad_screen device under /sys/class/backlight, and inside it
701there will be the following attributes:
702
703 max_brightness:
704 Reads the maximum brightness the hardware can be set to.
705 The minimum is always zero.
706
707 actual_brightness:
708 Reads what brightness the screen is set to at this instant.
709
710 brightness:
711 Writes request the driver to change brightness to the given
712 value. Reads will tell you what brightness the driver is trying
713 to set the display to when "power" is set to zero and the display
714 has not been dimmed by a kernel power management event.
715
716 power:
717 power management mode, where 0 is "display on", and 1 to 3 will
718 dim the display backlight to brightness level 0 because
719 thinkpad-acpi cannot really turn the backlight off. Kernel
720 power management events can temporarily increase the current
721 power management level, i.e. they can dim the display.
722
549 723
550Volume control -- /proc/acpi/ibm/volume 724Volume control -- /proc/acpi/ibm/volume
551--------------------------------------- 725---------------------------------------
@@ -563,41 +737,42 @@ distinct. The unmute the volume after the mute command, use either the
563up or down command (the level command will not unmute the volume). 737up or down command (the level command will not unmute the volume).
564The current volume level and mute state is shown in the file. 738The current volume level and mute state is shown in the file.
565 739
566EXPERIMENTAL: fan speed, fan enable/disable -- /proc/acpi/ibm/fan 740Fan control and monitoring: fan speed, fan enable/disable
567----------------------------------------------------------------- 741---------------------------------------------------------
568 742
569This feature is marked EXPERIMENTAL because the implementation 743procfs: /proc/acpi/ibm/fan
570directly accesses hardware registers and may not work as expected. USE 744sysfs device attributes: (hwmon) fan_input, pwm1, pwm1_enable
571WITH CAUTION! To use this feature, you need to supply the 745
572experimental=1 parameter when loading the module. 746NOTE NOTE NOTE: fan control operations are disabled by default for
747safety reasons. To enable them, the module parameter "fan_control=1"
748must be given to thinkpad-acpi.
573 749
574This feature attempts to show the current fan speed, control mode and 750This feature attempts to show the current fan speed, control mode and
575other fan data that might be available. The speed is read directly 751other fan data that might be available. The speed is read directly
576from the hardware registers of the embedded controller. This is known 752from the hardware registers of the embedded controller. This is known
577to work on later R, T and X series ThinkPads but may show a bogus 753to work on later R, T, X and Z series ThinkPads but may show a bogus
578value on other models. 754value on other models.
579 755
580Most ThinkPad fans work in "levels". Level 0 stops the fan. The higher 756Fan levels:
581the level, the higher the fan speed, although adjacent levels often map
582to the same fan speed. 7 is the highest level, where the fan reaches
583the maximum recommended speed. Level "auto" means the EC changes the
584fan level according to some internal algorithm, usually based on
585readings from the thermal sensors. Level "disengaged" means the EC
586disables the speed-locked closed-loop fan control, and drives the fan as
587fast as it can go, which might exceed hardware limits, so use this level
588with caution.
589 757
590The fan usually ramps up or down slowly from one speed to another, 758Most ThinkPad fans work in "levels" at the firmware interface. Level 0
591and it is normal for the EC to take several seconds to react to fan 759stops the fan. The higher the level, the higher the fan speed, although
592commands. 760adjacent levels often map to the same fan speed. 7 is the highest
761level, where the fan reaches the maximum recommended speed.
593 762
594The fan may be enabled or disabled with the following commands: 763Level "auto" means the EC changes the fan level according to some
764internal algorithm, usually based on readings from the thermal sensors.
595 765
596 echo enable >/proc/acpi/ibm/fan 766There is also a "full-speed" level, also known as "disengaged" level.
597 echo disable >/proc/acpi/ibm/fan 767In this level, the EC disables the speed-locked closed-loop fan control,
768and drives the fan as fast as it can go, which might exceed hardware
769limits, so use this level with caution.
598 770
599Placing a fan on level 0 is the same as disabling it. Enabling a fan 771The fan usually ramps up or down slowly from one speed to another, and
600will try to place it in a safe level if it is too slow or disabled. 772it is normal for the EC to take several seconds to react to fan
773commands. The full-speed level may take up to two minutes to ramp up to
774maximum speed, and in some ThinkPads, the tachometer readings go stale
775while the EC is transitioning to the full-speed level.
601 776
602WARNING WARNING WARNING: do not leave the fan disabled unless you are 777WARNING WARNING WARNING: do not leave the fan disabled unless you are
603monitoring all of the temperature sensor readings and you are ready to 778monitoring all of the temperature sensor readings and you are ready to
@@ -615,46 +790,146 @@ fan is turned off when the CPU temperature drops to 49 degrees and the
615HDD temperature drops to 41 degrees. These thresholds cannot 790HDD temperature drops to 41 degrees. These thresholds cannot
616currently be controlled. 791currently be controlled.
617 792
793The ThinkPad's ACPI DSDT code will reprogram the fan on its own when
794certain conditions are met. It will override any fan programming done
795through thinkpad-acpi.
796
797The thinkpad-acpi kernel driver can be programmed to revert the fan
798level to a safe setting if userspace does not issue one of the procfs
799fan commands: "enable", "disable", "level" or "watchdog", or if there
800are no writes to pwm1_enable (or to pwm1 *if and only if* pwm1_enable is
801set to 1, manual mode) within a configurable amount of time of up to
802120 seconds. This functionality is called fan safety watchdog.
803
804Note that the watchdog timer stops after it enables the fan. It will be
805rearmed again automatically (using the same interval) when one of the
806above mentioned fan commands is received. The fan watchdog is,
807therefore, not suitable to protect against fan mode changes made through
808means other than the "enable", "disable", and "level" procfs fan
809commands, or the hwmon fan control sysfs interface.
810
811Procfs notes:
812
813The fan may be enabled or disabled with the following commands:
814
815 echo enable >/proc/acpi/ibm/fan
816 echo disable >/proc/acpi/ibm/fan
817
818Placing a fan on level 0 is the same as disabling it. Enabling a fan
819will try to place it in a safe level if it is too slow or disabled.
820
618The fan level can be controlled with the command: 821The fan level can be controlled with the command:
619 822
620 echo 'level <level>' > /proc/acpi/ibm/thermal 823 echo 'level <level>' > /proc/acpi/ibm/fan
621 824
622Where <level> is an integer from 0 to 7, or one of the words "auto" 825Where <level> is an integer from 0 to 7, or one of the words "auto" or
623or "disengaged" (without the quotes). Not all ThinkPads support the 826"full-speed" (without the quotes). Not all ThinkPads support the "auto"
624"auto" and "disengaged" levels. 827and "full-speed" levels. The driver accepts "disengaged" as an alias for
828"full-speed", and reports it as "disengaged" for backwards
829compatibility.
625 830
626On the X31 and X40 (and ONLY on those models), the fan speed can be 831On the X31 and X40 (and ONLY on those models), the fan speed can be
627controlled to a certain degree. Once the fan is running, it can be 832controlled to a certain degree. Once the fan is running, it can be
628forced to run faster or slower with the following command: 833forced to run faster or slower with the following command:
629 834
630 echo 'speed <speed>' > /proc/acpi/ibm/thermal 835 echo 'speed <speed>' > /proc/acpi/ibm/fan
631 836
632The sustainable range of fan speeds on the X40 appears to be from 837The sustainable range of fan speeds on the X40 appears to be from about
633about 3700 to about 7350. Values outside this range either do not have 8383700 to about 7350. Values outside this range either do not have any
634any effect or the fan speed eventually settles somewhere in that 839effect or the fan speed eventually settles somewhere in that range. The
635range. The fan cannot be stopped or started with this command. 840fan cannot be stopped or started with this command. This functionality
841is incomplete, and not available through the sysfs interface.
636 842
637The ThinkPad's ACPI DSDT code will reprogram the fan on its own when 843To program the safety watchdog, use the "watchdog" command.
638certain conditions are met. It will override any fan programming done
639through ibm-acpi.
640 844
641EXPERIMENTAL: WAN -- /proc/acpi/ibm/wan 845 echo 'watchdog <interval in seconds>' > /proc/acpi/ibm/fan
642--------------------------------------- 846
847If you want to disable the watchdog, use 0 as the interval.
848
849Sysfs notes:
850
851The sysfs interface follows the hwmon subsystem guidelines for the most
852part, and the exception is the fan safety watchdog.
853
854Writes to any of the sysfs attributes may return the EINVAL error if
855that operation is not supported in a given ThinkPad or if the parameter
856is out-of-bounds, and EPERM if it is forbidden. They may also return
857EINTR (interrupted system call), and EIO (I/O error while trying to talk
858to the firmware).
859
860Features not yet implemented by the driver return ENOSYS.
861
862hwmon device attribute pwm1_enable:
863 0: PWM offline (fan is set to full-speed mode)
864 1: Manual PWM control (use pwm1 to set fan level)
865 2: Hardware PWM control (EC "auto" mode)
866 3: reserved (Software PWM control, not implemented yet)
867
868 Modes 0 and 2 are not supported by all ThinkPads, and the
869 driver is not always able to detect this. If it does know a
870 mode is unsupported, it will return -EINVAL.
871
872hwmon device attribute pwm1:
873 Fan level, scaled from the firmware values of 0-7 to the hwmon
874 scale of 0-255. 0 means fan stopped, 255 means highest normal
875 speed (level 7).
876
877 This attribute only commands the fan if pmw1_enable is set to 1
878 (manual PWM control).
879
880hwmon device attribute fan1_input:
881 Fan tachometer reading, in RPM. May go stale on certain
882 ThinkPads while the EC transitions the PWM to offline mode,
883 which can take up to two minutes. May return rubbish on older
884 ThinkPads.
885
886driver attribute fan_watchdog:
887 Fan safety watchdog timer interval, in seconds. Minimum is
888 1 second, maximum is 120 seconds. 0 disables the watchdog.
889
890To stop the fan: set pwm1 to zero, and pwm1_enable to 1.
891
892To start the fan in a safe mode: set pwm1_enable to 2. If that fails
893with EINVAL, try to set pwm1_enable to 1 and pwm1 to at least 128 (255
894would be the safest choice, though).
895
896
897EXPERIMENTAL: WAN
898-----------------
899
900procfs: /proc/acpi/ibm/wan
901sysfs device attribute: wwan/enable
643 902
644This feature is marked EXPERIMENTAL because the implementation 903This feature is marked EXPERIMENTAL because the implementation
645directly accesses hardware registers and may not work as expected. USE 904directly accesses hardware registers and may not work as expected. USE
646WITH CAUTION! To use this feature, you need to supply the 905WITH CAUTION! To use this feature, you need to supply the
647experimental=1 parameter when loading the module. 906experimental=1 parameter when loading the module.
648 907
649This feature shows the presence and current state of a WAN (Sierra 908This feature shows the presence and current state of a W-WAN (Sierra
650Wireless EV-DO) device. If WAN is installed, the following commands can 909Wireless EV-DO) device.
651be used: 910
911It was tested on a Lenovo Thinkpad X60. It should probably work on other
912Thinkpad models which come with this module installed.
913
914Procfs notes:
915
916If the W-WAN card is installed, the following commands can be used:
652 917
653 echo enable > /proc/acpi/ibm/wan 918 echo enable > /proc/acpi/ibm/wan
654 echo disable > /proc/acpi/ibm/wan 919 echo disable > /proc/acpi/ibm/wan
655 920
656It was tested on a Lenovo Thinkpad X60. It should probably work on other 921Sysfs notes:
657Thinkpad models which come with this module installed. 922
923 If the W-WAN card is installed, it can be enabled /
924 disabled through the "wwan/enable" thinkpad-acpi device
925 attribute, and its current status can also be queried.
926
927 enable:
928 0: disables WWAN card / WWAN card is disabled
929 1: enables WWAN card / WWAN card is enabled.
930
931 Note: this interface will be probably be superseeded by the
932 generic rfkill class.
658 933
659Multiple Commands, Module Parameters 934Multiple Commands, Module Parameters
660------------------------------------ 935------------------------------------
@@ -665,64 +940,42 @@ separating them with commas, for example:
665 echo enable,0xffff > /proc/acpi/ibm/hotkey 940 echo enable,0xffff > /proc/acpi/ibm/hotkey
666 echo lcd_disable,crt_enable > /proc/acpi/ibm/video 941 echo lcd_disable,crt_enable > /proc/acpi/ibm/video
667 942
668Commands can also be specified when loading the ibm_acpi module, for 943Commands can also be specified when loading the thinkpad-acpi module,
669example: 944for example:
670 945
671 modprobe ibm_acpi hotkey=enable,0xffff video=auto_disable 946 modprobe thinkpad_acpi hotkey=enable,0xffff video=auto_disable
672 947
673The ibm-acpi kernel driver can be programmed to revert the fan level 948Enabling debugging output
674to a safe setting if userspace does not issue one of the fan commands: 949-------------------------
675"enable", "disable", "level" or "watchdog" within a configurable 950
676ammount of time. To do this, use the "watchdog" command. 951The module takes a debug paramater which can be used to selectively
677 952enable various classes of debugging output, for example:
678 echo 'watchdog <interval>' > /proc/acpi/ibm/fan 953
679 954 modprobe ibm_acpi debug=0xffff
680Interval is the ammount of time in seconds to wait for one of the 955
681above mentioned fan commands before reseting the fan level to a safe 956will enable all debugging output classes. It takes a bitmask, so
682one. If set to zero, the watchdog is disabled (default). When the 957to enable more than one output class, just add their values.
683watchdog timer runs out, it does the exact equivalent of the "enable" 958
684fan command. 959 Debug bitmask Description
685 960 0x0001 Initialization and probing
686Note that the watchdog timer stops after it enables the fan. It will 961 0x0002 Removal
687be rearmed again automatically (using the same interval) when one of 962
688the above mentioned fan commands is received. The fan watchdog is, 963There is also a kernel build option to enable more debugging
689therefore, not suitable to protect against fan mode changes made 964information, which may be necessary to debug driver problems.
690through means other than the "enable", "disable", and "level" fan 965
691commands. 966The level of debugging information output by the driver can be changed
692 967at runtime through sysfs, using the driver attribute debug_level. The
693 968attribute takes the same bitmask as the debug module parameter above.
694Example Configuration 969
695--------------------- 970Force loading of module
696 971-----------------------
697The ACPI support in the kernel is intended to be used in conjunction 972
698with a user-space daemon, acpid. The configuration files for this 973If thinkpad-acpi refuses to detect your ThinkPad, you can try to specify
699daemon control what actions are taken in response to various ACPI 974the module parameter force_load=1. Regardless of whether this works or
700events. An example set of configuration files are included in the 975not, please contact ibm-acpi-devel@lists.sourceforge.net with a report.
701config/ directory of the tarball package available on the web 976
702site. Note that these are provided for illustration purposes only and 977
703may need to be adapted to your particular setup. 978Sysfs interface changelog:
704 979
705The following utility scripts are used by the example action 9800x000100: Initial sysfs support, as a single platform driver and
706scripts (included with ibm-acpi for completeness): 981 device.
707
708 /usr/local/sbin/idectl -- from the hdparm source distribution,
709 see http://www.ibiblio.org/pub/Linux/system/hardware
710 /usr/local/sbin/laptop_mode -- from the Linux kernel source
711 distribution, see Documentation/laptop-mode.txt
712 /sbin/service -- comes with Redhat/Fedora distributions
713 /usr/sbin/hibernate -- from the Software Suspend 2 distribution,
714 see http://softwaresuspend.berlios.de/
715
716Toan T Nguyen <ntt@physics.ucla.edu> notes that Suse uses the
717powersave program to suspend ('powersave --suspend-to-ram') or
718hibernate ('powersave --suspend-to-disk'). This means that the
719hibernate script is not needed on that distribution.
720
721Henrik Brix Andersen <brix@gentoo.org> has written a Gentoo ACPI event
722handler script for the X31. You can get the latest version from
723http://dev.gentoo.org/~brix/files/x31.sh
724
725David Schweikert <dws@ee.eth.ch> has written an alternative blank.sh
726script which works on Debian systems. This scripts has now been
727extended to also work on Fedora systems and included as the default
728blank.sh in the distribution.
diff --git a/Documentation/usb/usbmon.txt b/Documentation/usb/usbmon.txt
index 0f6808abd612..53ae866ae37b 100644
--- a/Documentation/usb/usbmon.txt
+++ b/Documentation/usb/usbmon.txt
@@ -16,7 +16,7 @@ situation as with tcpdump.
16 16
17Unlike the packet socket, usbmon has an interface which provides traces 17Unlike the packet socket, usbmon has an interface which provides traces
18in a text format. This is used for two purposes. First, it serves as a 18in a text format. This is used for two purposes. First, it serves as a
19common trace exchange format for tools while most sophisticated formats 19common trace exchange format for tools while more sophisticated formats
20are finalized. Second, humans can read it in case tools are not available. 20are finalized. Second, humans can read it in case tools are not available.
21 21
22To collect a raw text trace, execute following steps. 22To collect a raw text trace, execute following steps.
@@ -34,7 +34,7 @@ if usbmon is built into the kernel.
34Verify that bus sockets are present. 34Verify that bus sockets are present.
35 35
36# ls /sys/kernel/debug/usbmon 36# ls /sys/kernel/debug/usbmon
371s 1t 2s 2t 3s 3t 4s 4t 371s 1t 1u 2s 2t 2u 3s 3t 3u 4s 4t 4u
38# 38#
39 39
402. Find which bus connects to the desired device 402. Find which bus connects to the desired device
@@ -54,7 +54,7 @@ Bus=03 means it's bus 3.
54 54
553. Start 'cat' 553. Start 'cat'
56 56
57# cat /sys/kernel/debug/usbmon/3t > /tmp/1.mon.out 57# cat /sys/kernel/debug/usbmon/3u > /tmp/1.mon.out
58 58
59This process will be reading until killed. Naturally, the output can be 59This process will be reading until killed. Naturally, the output can be
60redirected to a desirable location. This is preferred, because it is going 60redirected to a desirable location. This is preferred, because it is going
@@ -75,46 +75,80 @@ that the file size is not excessive for your favourite editor.
75 75
76* Raw text data format 76* Raw text data format
77 77
78The '1t' type data consists of a stream of events, such as URB submission, 78Two formats are supported currently: the original, or '1t' format, and
79the '1u' format. The '1t' format is deprecated in kernel 2.6.21. The '1u'
80format adds a few fields, such as ISO frame descriptors, interval, etc.
81It produces slightly longer lines, but otherwise is a perfect superset
82of '1t' format.
83
84If it is desired to recognize one from the other in a program, look at the
85"address" word (see below), where '1u' format adds a bus number. If 2 colons
86are present, it's the '1t' format, otherwise '1u'.
87
88Any text format data consists of a stream of events, such as URB submission,
79URB callback, submission error. Every event is a text line, which consists 89URB callback, submission error. Every event is a text line, which consists
80of whitespace separated words. The number or position of words may depend 90of whitespace separated words. The number or position of words may depend
81on the event type, but there is a set of words, common for all types. 91on the event type, but there is a set of words, common for all types.
82 92
83Here is the list of words, from left to right: 93Here is the list of words, from left to right:
94
84- URB Tag. This is used to identify URBs is normally a kernel mode address 95- URB Tag. This is used to identify URBs is normally a kernel mode address
85 of the URB structure in hexadecimal. 96 of the URB structure in hexadecimal.
97
86- Timestamp in microseconds, a decimal number. The timestamp's resolution 98- Timestamp in microseconds, a decimal number. The timestamp's resolution
87 depends on available clock, and so it can be much worse than a microsecond 99 depends on available clock, and so it can be much worse than a microsecond
88 (if the implementation uses jiffies, for example). 100 (if the implementation uses jiffies, for example).
101
89- Event Type. This type refers to the format of the event, not URB type. 102- Event Type. This type refers to the format of the event, not URB type.
90 Available types are: S - submission, C - callback, E - submission error. 103 Available types are: S - submission, C - callback, E - submission error.
91- "Pipe". The pipe concept is deprecated. This is a composite word, used to 104
92 be derived from information in pipes. It consists of three fields, separated 105- "Address" word (formerly a "pipe"). It consists of four fields, separated by
93 by colons: URB type and direction, Device address, Endpoint number. 106 colons: URB type and direction, Bus number, Device address, Endpoint number.
94 Type and direction are encoded with two bytes in the following manner: 107 Type and direction are encoded with two bytes in the following manner:
95 Ci Co Control input and output 108 Ci Co Control input and output
96 Zi Zo Isochronous input and output 109 Zi Zo Isochronous input and output
97 Ii Io Interrupt input and output 110 Ii Io Interrupt input and output
98 Bi Bo Bulk input and output 111 Bi Bo Bulk input and output
99 Device address and Endpoint number are 3-digit and 2-digit (respectively) 112 Bus number, Device address, and Endpoint are decimal numbers, but they may
100 decimal numbers, with leading zeroes. 113 have leading zeros, for the sake of human readers.
101- URB Status. In most cases, this field contains a number, sometimes negative, 114
102 which represents a "status" field of the URB. This field makes no sense for 115- URB Status word. This is either a letter, or several numbers separated
103 submissions, but is present anyway to help scripts with parsing. When an 116 by colons: URB status, interval, start frame, and error count. Unlike the
104 error occurs, the field contains the error code. In case of a submission of 117 "address" word, all fields save the status are optional. Interval is printed
105 a Control packet, this field contains a Setup Tag instead of an error code. 118 only for interrupt and isochronous URBs. Start frame is printed only for
106 It is easy to tell whether the Setup Tag is present because it is never a 119 isochronous URBs. Error count is printed only for isochronous callback
107 number. Thus if scripts find a number in this field, they proceed to read 120 events.
108 Data Length. If they find something else, like a letter, they read the setup 121
109 packet before reading the Data Length. 122 The status field is a decimal number, sometimes negative, which represents
123 a "status" field of the URB. This field makes no sense for submissions, but
124 is present anyway to help scripts with parsing. When an error occurs, the
125 field contains the error code.
126
127 In case of a submission of a Control packet, this field contains a Setup Tag
128 instead of an group of numbers. It is easy to tell whether the Setup Tag is
129 present because it is never a number. Thus if scripts find a set of numbers
130 in this word, they proceed to read Data Length (except for isochronous URBs).
131 If they find something else, like a letter, they read the setup packet before
132 reading the Data Length or isochronous descriptors.
133
110- Setup packet, if present, consists of 5 words: one of each for bmRequestType, 134- Setup packet, if present, consists of 5 words: one of each for bmRequestType,
111 bRequest, wValue, wIndex, wLength, as specified by the USB Specification 2.0. 135 bRequest, wValue, wIndex, wLength, as specified by the USB Specification 2.0.
112 These words are safe to decode if Setup Tag was 's'. Otherwise, the setup 136 These words are safe to decode if Setup Tag was 's'. Otherwise, the setup
113 packet was present, but not captured, and the fields contain filler. 137 packet was present, but not captured, and the fields contain filler.
138
139- Number of isochronous frame descriptors and descriptors themselves.
140 If an Isochronous transfer event has a set of descriptors, a total number
141 of them in an URB is printed first, then a word per descriptor, up to a
142 total of 5. The word consists of 3 colon-separated decimal numbers for
143 status, offset, and length respectively. For submissions, initial length
144 is reported. For callbacks, actual length is reported.
145
114- Data Length. For submissions, this is the requested length. For callbacks, 146- Data Length. For submissions, this is the requested length. For callbacks,
115 this is the actual length. 147 this is the actual length.
148
116- Data tag. The usbmon may not always capture data, even if length is nonzero. 149- Data tag. The usbmon may not always capture data, even if length is nonzero.
117 The data words are present only if this tag is '='. 150 The data words are present only if this tag is '='.
151
118- Data words follow, in big endian hexadecimal format. Notice that they are 152- Data words follow, in big endian hexadecimal format. Notice that they are
119 not machine words, but really just a byte stream split into words to make 153 not machine words, but really just a byte stream split into words to make
120 it easier to read. Thus, the last word may contain from one to four bytes. 154 it easier to read. Thus, the last word may contain from one to four bytes.
@@ -153,20 +187,18 @@ class ParsedLine {
153 } 187 }
154} 188}
155 189
156This format may be changed in the future.
157
158Examples: 190Examples:
159 191
160An input control transfer to get a port status. 192An input control transfer to get a port status.
161 193
162d5ea89a0 3575914555 S Ci:001:00 s a3 00 0000 0003 0004 4 < 194d5ea89a0 3575914555 S Ci:1:001:0 s a3 00 0000 0003 0004 4 <
163d5ea89a0 3575914560 C Ci:001:00 0 4 = 01050000 195d5ea89a0 3575914560 C Ci:1:001:0 0 4 = 01050000
164 196
165An output bulk transfer to send a SCSI command 0x5E in a 31-byte Bulk wrapper 197An output bulk transfer to send a SCSI command 0x5E in a 31-byte Bulk wrapper
166to a storage device at address 5: 198to a storage device at address 5:
167 199
168dd65f0e8 4128379752 S Bo:005:02 -115 31 = 55534243 5e000000 00000000 00000600 00000000 00000000 00000000 000000 200dd65f0e8 4128379752 S Bo:1:005:2 -115 31 = 55534243 5e000000 00000000 00000600 00000000 00000000 00000000 000000
169dd65f0e8 4128379808 C Bo:005:02 0 31 > 201dd65f0e8 4128379808 C Bo:1:005:2 0 31 >
170 202
171* Raw binary format and API 203* Raw binary format and API
172 204
diff --git a/Documentation/video4linux/CARDLIST.bttv b/Documentation/video4linux/CARDLIST.bttv
index fc2fe9bc6713..b60639130a51 100644
--- a/Documentation/video4linux/CARDLIST.bttv
+++ b/Documentation/video4linux/CARDLIST.bttv
@@ -143,3 +143,5 @@
143142 -> Sabrent TV-FM (bttv version) 143142 -> Sabrent TV-FM (bttv version)
144143 -> Hauppauge ImpactVCB (bt878) [0070:13eb] 144143 -> Hauppauge ImpactVCB (bt878) [0070:13eb]
145144 -> MagicTV 145144 -> MagicTV
146145 -> SSAI Security Video Interface [4149:5353]
147146 -> SSAI Ultrasound Video Interface [414a:5353]
diff --git a/Documentation/video4linux/CARDLIST.cx88 b/Documentation/video4linux/CARDLIST.cx88
index 62e32b49cec9..60f838beb9c8 100644
--- a/Documentation/video4linux/CARDLIST.cx88
+++ b/Documentation/video4linux/CARDLIST.cx88
@@ -37,7 +37,7 @@
37 36 -> AVerTV 303 (M126) [1461:000a] 37 36 -> AVerTV 303 (M126) [1461:000a]
38 37 -> Hauppauge Nova-S-Plus DVB-S [0070:9201,0070:9202] 38 37 -> Hauppauge Nova-S-Plus DVB-S [0070:9201,0070:9202]
39 38 -> Hauppauge Nova-SE2 DVB-S [0070:9200] 39 38 -> Hauppauge Nova-SE2 DVB-S [0070:9200]
40 39 -> KWorld DVB-S 100 [17de:08b2] 40 39 -> KWorld DVB-S 100 [17de:08b2,1421:0341]
41 40 -> Hauppauge WinTV-HVR1100 DVB-T/Hybrid [0070:9400,0070:9402] 41 40 -> Hauppauge WinTV-HVR1100 DVB-T/Hybrid [0070:9400,0070:9402]
42 41 -> Hauppauge WinTV-HVR1100 DVB-T/Hybrid (Low Profile) [0070:9800,0070:9802] 42 41 -> Hauppauge WinTV-HVR1100 DVB-T/Hybrid (Low Profile) [0070:9800,0070:9802]
43 42 -> digitalnow DNTV Live! DVB-T Pro [1822:0025,1822:0019] 43 42 -> digitalnow DNTV Live! DVB-T Pro [1822:0025,1822:0019]
diff --git a/Documentation/video4linux/CARDLIST.ivtv b/Documentation/video4linux/CARDLIST.ivtv
new file mode 100644
index 000000000000..ddd76a0eb100
--- /dev/null
+++ b/Documentation/video4linux/CARDLIST.ivtv
@@ -0,0 +1,18 @@
1 1 -> Hauppauge WinTV PVR-250
2 2 -> Hauppauge WinTV PVR-350
3 3 -> Hauppauge WinTV PVR-150 or PVR-500
4 4 -> AVerMedia M179 [1461:a3ce,1461:a3cf]
5 5 -> Yuan MPG600/Kuroutoshikou iTVC16-STVLP [12ab:fff3,12ab:ffff]
6 6 -> Yuan MPG160/Kuroutoshikou iTVC15-STVLP [12ab:0000,10fc:40a0]
7 7 -> Yuan PG600/DiamondMM PVR-550 [ff92:0070,ffab:0600]
8 8 -> Adaptec AVC-2410 [9005:0093]
9 9 -> Adaptec AVC-2010 [9005:0092]
1010 -> NAGASE TRANSGEAR 5000TV [1461:bfff]
1111 -> AOpen VA2000MAX-STN6 [0000:ff5f]
1212 -> YUAN MPG600GR/Kuroutoshikou CX23416GYC-STVLP [12ab:0600,fbab:0600,1154:0523]
1313 -> I/O Data GV-MVP/RX [10fc:d01e,10fc:d038,10fc:d039]
1414 -> I/O Data GV-MVP/RX2E [10fc:d025]
1515 -> GOTVIEW PCI DVD (partial support only) [12ab:0600]
1616 -> GOTVIEW PCI DVD2 Deluxe [ffac:0600]
1717 -> Yuan MPC622 [ff01:d998]
1818 -> Digital Cowboy DCT-MTVP1 [1461:bfff]
diff --git a/Documentation/video4linux/CARDLIST.saa7134 b/Documentation/video4linux/CARDLIST.saa7134
index a12246a9bf23..d7bb2e2e4d9b 100644
--- a/Documentation/video4linux/CARDLIST.saa7134
+++ b/Documentation/video4linux/CARDLIST.saa7134
@@ -53,7 +53,7 @@
53 52 -> AverMedia AverTV/305 [1461:2108] 53 52 -> AverMedia AverTV/305 [1461:2108]
54 53 -> ASUS TV-FM 7135 [1043:4845] 54 53 -> ASUS TV-FM 7135 [1043:4845]
55 54 -> LifeView FlyTV Platinum FM / Gold [5168:0214,1489:0214,5168:0304] 55 54 -> LifeView FlyTV Platinum FM / Gold [5168:0214,1489:0214,5168:0304]
56 55 -> LifeView FlyDVB-T DUO [5168:0306] 56 55 -> LifeView FlyDVB-T DUO / MSI TV@nywhere Duo [5168:0306,4E42:0306]
57 56 -> Avermedia AVerTV 307 [1461:a70a] 57 56 -> Avermedia AVerTV 307 [1461:a70a]
58 57 -> Avermedia AVerTV GO 007 FM [1461:f31f] 58 57 -> Avermedia AVerTV GO 007 FM [1461:f31f]
59 58 -> ADS Tech Instant TV (saa7135) [1421:0350,1421:0351,1421:0370,1421:1370] 59 58 -> ADS Tech Instant TV (saa7135) [1421:0350,1421:0351,1421:0370,1421:1370]
@@ -76,7 +76,7 @@
76 75 -> AVerMedia AVerTVHD MCE A180 [1461:1044] 76 75 -> AVerMedia AVerTVHD MCE A180 [1461:1044]
77 76 -> SKNet MonsterTV Mobile [1131:4ee9] 77 76 -> SKNet MonsterTV Mobile [1131:4ee9]
78 77 -> Pinnacle PCTV 40i/50i/110i (saa7133) [11bd:002e] 78 77 -> Pinnacle PCTV 40i/50i/110i (saa7133) [11bd:002e]
79 78 -> ASUSTeK P7131 Dual [1043:4862,1043:4876] 79 78 -> ASUSTeK P7131 Dual [1043:4862,1043:4857]
80 79 -> Sedna/MuchTV PC TV Cardbus TV/Radio (ITO25 Rev:2B) 80 79 -> Sedna/MuchTV PC TV Cardbus TV/Radio (ITO25 Rev:2B)
81 80 -> ASUS Digimatrix TV [1043:0210] 81 80 -> ASUS Digimatrix TV [1043:0210]
82 81 -> Philips Tiger reference design [1131:2018] 82 81 -> Philips Tiger reference design [1131:2018]
@@ -107,3 +107,7 @@
107106 -> Encore ENLTV [1131:2342,1131:2341,3016:2344] 107106 -> Encore ENLTV [1131:2342,1131:2341,3016:2344]
108107 -> Encore ENLTV-FM [1131:230f] 108107 -> Encore ENLTV-FM [1131:230f]
109108 -> Terratec Cinergy HT PCI [153b:1175] 109108 -> Terratec Cinergy HT PCI [153b:1175]
110109 -> Philips Tiger - S Reference design
111110 -> Avermedia M102 [1461:f31e]
112111 -> ASUS P7131 4871 [1043:4871]
113112 -> ASUSTeK P7131 Hybrid [1043:4876]
diff --git a/Documentation/video4linux/CARDLIST.usbvision b/Documentation/video4linux/CARDLIST.usbvision
new file mode 100644
index 000000000000..3d6850ef0245
--- /dev/null
+++ b/Documentation/video4linux/CARDLIST.usbvision
@@ -0,0 +1,64 @@
1 0 -> Xanboo [0a6f:0400]
2 1 -> Belkin USB VideoBus II Adapter [050d:0106]
3 2 -> Belkin Components USB VideoBus [050d:0207]
4 3 -> Belkin USB VideoBus II [050d:0208]
5 4 -> echoFX InterView Lite [0571:0002]
6 5 -> USBGear USBG-V1 resp. HAMA USB [0573:0003]
7 6 -> D-Link V100 [0573:0400]
8 7 -> X10 USB Camera [0573:2000]
9 8 -> Hauppauge WinTV USB Live (PAL B/G) [0573:2d00]
10 9 -> Hauppauge WinTV USB Live Pro (NTSC M/N) [0573:2d01]
11 10 -> Zoran Co. PMD (Nogatech) AV-grabber Manhattan [0573:2101]
12 11 -> Nogatech USB-TV (NTSC) FM [0573:4100]
13 12 -> PNY USB-TV (NTSC) FM [0573:4110]
14 13 -> PixelView PlayTv-USB PRO (PAL) FM [0573:4450]
15 14 -> ZTV ZT-721 2.4GHz USB A/V Receiver [0573:4550]
16 15 -> Hauppauge WinTV USB (NTSC M/N) [0573:4d00]
17 16 -> Hauppauge WinTV USB (PAL B/G) [0573:4d01]
18 17 -> Hauppauge WinTV USB (PAL I) [0573:4d02]
19 18 -> Hauppauge WinTV USB (PAL/SECAM L) [0573:4d03]
20 19 -> Hauppauge WinTV USB (PAL D/K) [0573:4d04]
21 20 -> Hauppauge WinTV USB (NTSC FM) [0573:4d10]
22 21 -> Hauppauge WinTV USB (PAL B/G FM) [0573:4d11]
23 22 -> Hauppauge WinTV USB (PAL I FM) [0573:4d12]
24 23 -> Hauppauge WinTV USB (PAL D/K FM) [0573:4d14]
25 24 -> Hauppauge WinTV USB Pro (NTSC M/N) [0573:4d2a]
26 25 -> Hauppauge WinTV USB Pro (NTSC M/N) V2 [0573:4d2b]
27 26 -> Hauppauge WinTV USB Pro (PAL/SECAM B/G/I/D/K/L) [0573:4d2c]
28 27 -> Hauppauge WinTV USB Pro (NTSC M/N) V3 [0573:4d20]
29 28 -> Hauppauge WinTV USB Pro (PAL B/G) [0573:4d21]
30 29 -> Hauppauge WinTV USB Pro (PAL I) [0573:4d22]
31 30 -> Hauppauge WinTV USB Pro (PAL/SECAM L) [0573:4d23]
32 31 -> Hauppauge WinTV USB Pro (PAL D/K) [0573:4d24]
33 32 -> Hauppauge WinTV USB Pro (PAL/SECAM BGDK/I/L) [0573:4d25]
34 33 -> Hauppauge WinTV USB Pro (PAL/SECAM BGDK/I/L) V2 [0573:4d26]
35 34 -> Hauppauge WinTV USB Pro (PAL B/G) V2 [0573:4d27]
36 35 -> Hauppauge WinTV USB Pro (PAL B/G,D/K) [0573:4d28]
37 36 -> Hauppauge WinTV USB Pro (PAL I,D/K) [0573:4d29]
38 37 -> Hauppauge WinTV USB Pro (NTSC M/N FM) [0573:4d30]
39 38 -> Hauppauge WinTV USB Pro (PAL B/G FM) [0573:4d31]
40 39 -> Hauppauge WinTV USB Pro (PAL I FM) [0573:4d32]
41 40 -> Hauppauge WinTV USB Pro (PAL D/K FM) [0573:4d34]
42 41 -> Hauppauge WinTV USB Pro (Temic PAL/SECAM B/G/I/D/K/L FM) [0573:4d35]
43 42 -> Hauppauge WinTV USB Pro (Temic PAL B/G FM) [0573:4d36]
44 43 -> Hauppauge WinTV USB Pro (PAL/SECAM B/G/I/D/K/L FM) [0573:4d37]
45 44 -> Hauppauge WinTV USB Pro (NTSC M/N FM) V2 [0573:4d38]
46 45 -> Camtel Technology USB TV Genie Pro FM Model TVB330 [0768:0006]
47 46 -> Digital Video Creator I [07d0:0001]
48 47 -> Global Village GV-007 (NTSC) [07d0:0002]
49 48 -> Dazzle Fusion Model DVC-50 Rev 1 (NTSC) [07d0:0003]
50 49 -> Dazzle Fusion Model DVC-80 Rev 1 (PAL) [07d0:0004]
51 50 -> Dazzle Fusion Model DVC-90 Rev 1 (SECAM) [07d0:0005]
52 51 -> Eskape Labs MyTV2Go [07f8:9104]
53 52 -> Pinnacle Studio PCTV USB (PAL) [2304:010d]
54 53 -> Pinnacle Studio PCTV USB (SECAM) [2304:0109]
55 54 -> Pinnacle Studio PCTV USB (PAL) FM [2304:0110]
56 55 -> Miro PCTV USB [2304:0111]
57 56 -> Pinnacle Studio PCTV USB (NTSC) FM [2304:0112]
58 57 -> Pinnacle Studio PCTV USB (PAL) FM V2 [2304:0210]
59 58 -> Pinnacle Studio PCTV USB (NTSC) FM V2 [2304:0212]
60 59 -> Pinnacle Studio PCTV USB (PAL) FM V3 [2304:0214]
61 60 -> Pinnacle Studio Linx Video input cable (NTSC) [2304:0300]
62 61 -> Pinnacle Studio Linx Video input cable (PAL) [2304:0301]
63 62 -> Pinnacle PCTV Bungee USB (PAL) FM [2304:0419]
64 63 -> Hauppauge WinTv-USB [2400:4200]
diff --git a/Documentation/video4linux/README.ivtv b/Documentation/video4linux/README.ivtv
new file mode 100644
index 000000000000..73df22c40bfe
--- /dev/null
+++ b/Documentation/video4linux/README.ivtv
@@ -0,0 +1,187 @@
1
2ivtv release notes
3==================
4
5This is a v4l2 device driver for the Conexant cx23415/6 MPEG encoder/decoder.
6The cx23415 can do both encoding and decoding, the cx23416 can only do MPEG
7encoding. Currently the only card featuring full decoding support is the
8Hauppauge PVR-350.
9
10NOTE: this driver requires the latest encoder firmware (version 2.06.039, size
11376836 bytes). Get the firmware from here:
12
13http://dl.ivtvdriver.org/ivtv/firmware/firmware.tar.gz
14
15NOTE: 'normal' TV applications do not work with this driver, you need
16an application that can handle MPEG input such as mplayer, xine, MythTV,
17etc.
18
19The primary goal of the IVTV project is to provide a "clean room" Linux
20Open Source driver implementation for video capture cards based on the
21iCompression iTVC15 or Conexant CX23415/CX23416 MPEG Codec.
22
23Features:
24 * Hardware mpeg2 capture of broadcast video (and sound) via the tuner or
25 S-Video/Composite and audio line-in.
26 * Hardware mpeg2 capture of FM radio where hardware support exists
27 * Supports NTSC, PAL, SECAM with stereo sound
28 * Supports SAP and bilingual transmissions.
29 * Supports raw VBI (closed captions and teletext).
30 * Supports sliced VBI (closed captions and teletext) and is able to insert
31 this into the captured MPEG stream.
32 * Supports raw YUV and PCM input.
33
34Additional features for the PVR-350 (CX23415 based):
35 * Provides hardware mpeg2 playback
36 * Provides comprehensive OSD (On Screen Display: ie. graphics overlaying the
37 video signal)
38 * Provides a framebuffer (allowing X applications to appear on the video
39 device) (this framebuffer is not yet part of the kernel. In the meantime it
40 is available from www.ivtvdriver.org).
41 * Supports raw YUV output.
42
43IMPORTANT: In case of problems first read this page:
44 http://www.ivtvdriver.org/index.php/Troubleshooting
45
46See also:
47
48Homepage + Wiki
49http://www.ivtvdriver.org
50
51IRC
52irc://irc.freenode.net/ivtv-dev
53
54----------------------------------------------------------
55
56Devices
57=======
58
59A maximum of 12 ivtv boards are allowed at the moment.
60
61Cards that don't have a video output capability (i.e. non PVR350 cards)
62lack the vbi8, vbi16, video16 and video48 devices. They also do not
63support the framebuffer device /dev/fbx for OSD.
64
65The radio0 device may or may not be present, depending on whether the
66card has a radio tuner or not.
67
68Here is a list of the base v4l devices:
69crw-rw---- 1 root video 81, 0 Jun 19 22:22 /dev/video0
70crw-rw---- 1 root video 81, 16 Jun 19 22:22 /dev/video16
71crw-rw---- 1 root video 81, 24 Jun 19 22:22 /dev/video24
72crw-rw---- 1 root video 81, 32 Jun 19 22:22 /dev/video32
73crw-rw---- 1 root video 81, 48 Jun 19 22:22 /dev/video48
74crw-rw---- 1 root video 81, 64 Jun 19 22:22 /dev/radio0
75crw-rw---- 1 root video 81, 224 Jun 19 22:22 /dev/vbi0
76crw-rw---- 1 root video 81, 228 Jun 19 22:22 /dev/vbi8
77crw-rw---- 1 root video 81, 232 Jun 19 22:22 /dev/vbi16
78
79Base devices
80============
81
82For every extra card you have the numbers increased by one. For example,
83/dev/video0 is listed as the 'base' encoding capture device so we have:
84
85 /dev/video0 is the encoding capture device for the first card (card 0)
86 /dev/video1 is the encoding capture device for the second card (card 1)
87 /dev/video2 is the encoding capture device for the third card (card 2)
88
89Note that if the first card doesn't have a feature (eg no decoder, so no
90video16, the second card will still use video17. The simple rule is 'add
91the card number to the base device number'. If you have other capture
92cards (e.g. WinTV PCI) that are detected first, then you have to tell
93the ivtv module about it so that it will start counting at 1 (or 2, or
94whatever). Otherwise the device numbers can get confusing. The ivtv
95'ivtv_first_minor' module option can be used for that.
96
97
98/dev/video0
99The encoding capture device(s).
100Read-only.
101
102Reading from this device gets you the MPEG1/2 program stream.
103Example:
104
105cat /dev/video0 > my.mpg (you need to hit ctrl-c to exit)
106
107
108/dev/video16
109The decoder output device(s)
110Write-only. Only present if the MPEG decoder (i.e. CX23415) exists.
111
112An mpeg2 stream sent to this device will appear on the selected video
113display, audio will appear on the line-out/audio out. It is only
114available for cards that support video out. Example:
115
116cat my.mpg >/dev/video16
117
118
119/dev/video24
120The raw audio capture device(s).
121Read-only
122
123The raw audio PCM stereo stream from the currently selected
124tuner or audio line-in. Reading from this device results in a raw
125(signed 16 bit Little Endian, 48000 Hz, stereo pcm) capture.
126This device only captures audio. This should be replaced by an ALSA
127device in the future.
128Note that there is no corresponding raw audio output device, this is
129not supported in the decoder firmware.
130
131
132/dev/video32
133The raw video capture device(s)
134Read-only
135
136The raw YUV video output from the current video input. The YUV format
137is non-standard (V4L2_PIX_FMT_HM12).
138
139Note that the YUV and PCM streams are not synchronized, so they are of
140limited use.
141
142
143/dev/video48
144The raw video display device(s)
145Write-only. Only present if the MPEG decoder (i.e. CX23415) exists.
146
147Writes a YUV stream to the decoder of the card.
148
149
150/dev/radio0
151The radio tuner device(s)
152Cannot be read or written.
153
154Used to enable the radio tuner and tune to a frequency. You cannot
155read or write audio streams with this device. Once you use this
156device to tune the radio, use /dev/video24 to read the raw pcm stream
157or /dev/video0 to get an mpeg2 stream with black video.
158
159
160/dev/vbi0
161The 'vertical blank interval' (Teletext, CC, WSS etc) capture device(s)
162Read-only
163
164Captures the raw (or sliced) video data sent during the Vertical Blank
165Interval. This data is used to encode teletext, closed captions, VPS,
166widescreen signalling, electronic program guide information, and other
167services.
168
169
170/dev/vbi8
171Processed vbi feedback device(s)
172Read-only. Only present if the MPEG decoder (i.e. CX23415) exists.
173
174The sliced VBI data embedded in an MPEG stream is reproduced on this
175device. So while playing back a recording on /dev/video16, you can
176read the embedded VBI data from /dev/vbi8.
177
178
179/dev/vbi16
180The vbi 'display' device(s)
181Write-only. Only present if the MPEG decoder (i.e. CX23415) exists.
182
183Can be used to send sliced VBI data to the video-out connector.
184
185---------------------------------
186
187Hans Verkuil <hverkuil@xs4all.nl>
diff --git a/Documentation/video4linux/cx2341x/fw-decoder-regs.txt b/Documentation/video4linux/cx2341x/fw-decoder-regs.txt
index db2366c634e8..cf52c8f20b9e 100644
--- a/Documentation/video4linux/cx2341x/fw-decoder-regs.txt
+++ b/Documentation/video4linux/cx2341x/fw-decoder-regs.txt
@@ -624,11 +624,11 @@ out what values are bad when it hangs.
6242A00 6242A00
625 bits 0:2 625 bits 0:2
626 osd colour mode 626 osd colour mode
627 000 = 8 bit indexed
627 001 = 16 bit (565) 628 001 = 16 bit (565)
628 010 = 15 bit (555) 629 010 = 15 bit (555)
629 011 = 12 bit (444) 630 011 = 12 bit (444)
630 100 = 32 bit (8888) 631 100 = 32 bit (8888)
631 101 = 8 bit indexed
632 632
633 bits 4:5 633 bits 4:5
634 osd display bpp 634 osd display bpp
@@ -676,9 +676,11 @@ out what values are bad when it hangs.
676 completely transparent. When using 565, 555 or 444 colour modes, the 676 completely transparent. When using 565, 555 or 444 colour modes, the
677 colour key is always 16 bits wide. The colour to key on is set in Reg 2A18. 677 colour key is always 16 bits wide. The colour to key on is set in Reg 2A18.
678 678
679 Local alpha is a per-pixel 256 step transparency, with 0 being transparent 679 Local alpha works differently depending on the colour mode. For 32bpp & 8
680 and 255 being solid. This is only available in 32 bit & 8 bit indexed 680 bit indexed, local alpha is a per-pixel 256 step transparency, with 0 being
681 colour modes. 681 transparent and 255 being solid. For the 16bpp modes 555 & 444, the unused
682 bit(s) act as a simple transparency switch, with 0 being solid & 1 being
683 fully transparent. There is no local alpha support for 16bit 565.
682 684
683 Global alpha is a 256 step transparency that applies to the entire osd, 685 Global alpha is a 256 step transparency that applies to the entire osd,
684 with 0 being transparent & 255 being solid. 686 with 0 being transparent & 255 being solid.
@@ -811,5 +813,5 @@ out what values are bad when it hangs.
811 813
812-------------------------------------------------------------------------------- 814--------------------------------------------------------------------------------
813 815
814v0.3 - 2 February 2007 - Ian Armstrong (ian@iarmst.demon.co.uk) 816v0.4 - 12 March 2007 - Ian Armstrong (ian@iarmst.demon.co.uk)
815 817
diff --git a/Documentation/video4linux/cx2341x/fw-encoder-api.txt b/Documentation/video4linux/cx2341x/fw-encoder-api.txt
index 242104ce5b61..5dd3109a8b3f 100644
--- a/Documentation/video4linux/cx2341x/fw-encoder-api.txt
+++ b/Documentation/video4linux/cx2341x/fw-encoder-api.txt
@@ -663,12 +663,13 @@ Param[0]
663 663
664------------------------------------------------------------------------------- 664-------------------------------------------------------------------------------
665 665
666Name CX2341X_ENC_UNKNOWN 666Name CX2341X_ENC_SET_VERT_CROP_LINE
667Enum 219/0xDB 667Enum 219/0xDB
668Description 668Description
669 Unknown API, it's used by Hauppauge though. 669 Something to do with 'Vertical Crop Line'
670Param[0] 670Param[0]
671 0 This is the value Hauppauge uses, Unknown what it means. 671 If saa7114 and raw VBI capture and 60 Hz, then set to 10001.
672 Else 0.
672 673
673------------------------------------------------------------------------------- 674-------------------------------------------------------------------------------
674 675
@@ -682,11 +683,9 @@ Param[0]
682 Command number: 683 Command number:
683 1=set initial SCR value when starting encoding (works). 684 1=set initial SCR value when starting encoding (works).
684 2=set quality mode (apparently some test setting). 685 2=set quality mode (apparently some test setting).
685 3=setup advanced VIM protection handling (supposedly only for the cx23416 686 3=setup advanced VIM protection handling.
686 for raw YUV). 687 Always 1 for the cx23416 and 0 for cx23415.
687 Actually it looks like this should be 0 for saa7114/5 based card and 1 688 4=generate DVD compatible PTS timestamps
688 for cx25840 based cards.
689 4=generate artificial PTS timestamps
690 5=USB flush mode 689 5=USB flush mode
691 6=something to do with the quantization matrix 690 6=something to do with the quantization matrix
692 7=set navigation pack insertion for DVD: adds 0xbf (private stream 2) 691 7=set navigation pack insertion for DVD: adds 0xbf (private stream 2)
@@ -698,7 +697,9 @@ Param[0]
698 9=set history parameters of the video input module 697 9=set history parameters of the video input module
699 10=set input field order of VIM 698 10=set input field order of VIM
700 11=set quantization matrix 699 11=set quantization matrix
701 12=reset audio interface 700 12=reset audio interface after channel change or input switch (has no argument).
701 Needed for the cx2584x, not needed for the mspx4xx, but it doesn't seem to
702 do any harm calling it regardless.
702 13=set audio volume delay 703 13=set audio volume delay
703 14=set audio delay 704 14=set audio delay
704 705
diff --git a/Documentation/video4linux/cx2341x/fw-osd-api.txt b/Documentation/video4linux/cx2341x/fw-osd-api.txt
index 0a602f3e601b..89c4601042c1 100644
--- a/Documentation/video4linux/cx2341x/fw-osd-api.txt
+++ b/Documentation/video4linux/cx2341x/fw-osd-api.txt
@@ -21,7 +21,11 @@ Enum 66/0x42
21Description 21Description
22 Query OSD format 22 Query OSD format
23Result[0] 23Result[0]
24 0=8bit index, 4=AlphaRGB 8:8:8:8 24 0=8bit index
25 1=16bit RGB 5:6:5
26 2=16bit ARGB 1:5:5:5
27 3=16bit ARGB 1:4:4:4
28 4=32bit ARGB 8:8:8:8
25 29
26------------------------------------------------------------------------------- 30-------------------------------------------------------------------------------
27 31
@@ -30,7 +34,11 @@ Enum 67/0x43
30Description 34Description
31 Assign pixel format 35 Assign pixel format
32Param[0] 36Param[0]
33 0=8bit index, 4=AlphaRGB 8:8:8:8 37 0=8bit index
38 1=16bit RGB 5:6:5
39 2=16bit ARGB 1:5:5:5
40 3=16bit ARGB 1:4:4:4
41 4=32bit ARGB 8:8:8:8
34 42
35------------------------------------------------------------------------------- 43-------------------------------------------------------------------------------
36 44
diff --git a/Documentation/video4linux/meye.txt b/Documentation/video4linux/meye.txt
index ecb34160e61d..5e51c59bf2b0 100644
--- a/Documentation/video4linux/meye.txt
+++ b/Documentation/video4linux/meye.txt
@@ -5,10 +5,9 @@ Vaio Picturebook Motion Eye Camera Driver Readme
5 Copyright (C) 2000 Andrew Tridgell <tridge@samba.org> 5 Copyright (C) 2000 Andrew Tridgell <tridge@samba.org>
6 6
7This driver enable the use of video4linux compatible applications with the 7This driver enable the use of video4linux compatible applications with the
8Motion Eye camera. This driver requires the "Sony Vaio Programmable I/O 8Motion Eye camera. This driver requires the "Sony Laptop Extras" driver (which
9Control Device" driver (which can be found in the "Character drivers" 9can be found in the "Misc devices" section of the kernel configuration utility)
10section of the kernel configuration utility) to be compiled and installed 10to be compiled and installed (using its "camera=1" parameter).
11(using its "camera=1" parameter).
12 11
13It can do at maximum 30 fps @ 320x240 or 15 fps @ 640x480. 12It can do at maximum 30 fps @ 320x240 or 15 fps @ 640x480.
14 13
diff --git a/Documentation/video4linux/sn9c102.txt b/Documentation/video4linux/sn9c102.txt
index 2913da3d0878..5fe0ad7dfc20 100644
--- a/Documentation/video4linux/sn9c102.txt
+++ b/Documentation/video4linux/sn9c102.txt
@@ -25,7 +25,7 @@ Index
25 25
261. Copyright 261. Copyright
27============ 27============
28Copyright (C) 2004-2006 by Luca Risolia <luca.risolia@studio.unibo.it> 28Copyright (C) 2004-2007 by Luca Risolia <luca.risolia@studio.unibo.it>
29 29
30 30
312. Disclaimer 312. Disclaimer
@@ -216,10 +216,10 @@ Description: Debugging information level, from 0 to 3:
216 1 = critical errors 216 1 = critical errors
217 2 = significant informations 217 2 = significant informations
218 3 = more verbose messages 218 3 = more verbose messages
219 Level 3 is useful for testing only, when only one device 219 Level 3 is useful for testing only. It also shows some more
220 is used. It also shows some more informations about the 220 informations about the hardware being detected.
221 hardware being detected. This parameter can be changed at 221 This parameter can be changed at runtime thanks to the /sys
222 runtime thanks to the /sys filesystem interface. 222 filesystem interface.
223Default: 2 223Default: 2
224------------------------------------------------------------------------------- 224-------------------------------------------------------------------------------
225 225
@@ -235,7 +235,7 @@ created in the /sys/class/video4linux/videoX directory. You can set the green
235channel's gain by writing the desired value to it. The value may range from 0 235channel's gain by writing the desired value to it. The value may range from 0
236to 15 for the SN9C101 or SN9C102 bridges, from 0 to 127 for the SN9C103, 236to 15 for the SN9C101 or SN9C102 bridges, from 0 to 127 for the SN9C103,
237SN9C105 and SN9C120 bridges. 237SN9C105 and SN9C120 bridges.
238Similarly, only for the SN9C103, SN9C105 and SN9120 controllers, blue and red 238Similarly, only for the SN9C103, SN9C105 and SN9C120 controllers, blue and red
239gain control files are available in the same directory, for which accepted 239gain control files are available in the same directory, for which accepted
240values may range from 0 to 127. 240values may range from 0 to 127.
241 241
@@ -402,38 +402,49 @@ Vendor ID Product ID
4020x0c45 0x60bc 4020x0c45 0x60bc
4030x0c45 0x60be 4030x0c45 0x60be
4040x0c45 0x60c0 4040x0c45 0x60c0
4050x0c45 0x60c2
4050x0c45 0x60c8 4060x0c45 0x60c8
4060x0c45 0x60cc 4070x0c45 0x60cc
4070x0c45 0x60ea 4080x0c45 0x60ea
4080x0c45 0x60ec 4090x0c45 0x60ec
4100x0c45 0x60ef
4090x0c45 0x60fa 4110x0c45 0x60fa
4100x0c45 0x60fb 4120x0c45 0x60fb
4110x0c45 0x60fc 4130x0c45 0x60fc
4120x0c45 0x60fe 4140x0c45 0x60fe
4150x0c45 0x6102
4160x0c45 0x6108
4170x0c45 0x610f
4130x0c45 0x6130 4180x0c45 0x6130
4190x0c45 0x6138
4140x0c45 0x613a 4200x0c45 0x613a
4150x0c45 0x613b 4210x0c45 0x613b
4160x0c45 0x613c 4220x0c45 0x613c
4170x0c45 0x613e 4230x0c45 0x613e
418 424
419The list above does not imply that all those devices work with this driver: up 425The list above does not imply that all those devices work with this driver: up
420until now only the ones that assemble the following image sensors are 426until now only the ones that assemble the following pairs of SN9C1xx bridges
421supported; kernel messages will always tell you whether this is the case (see 427and image sensors are supported; kernel messages will always tell you whether
422"Module loading" paragraph): 428this is the case (see "Module loading" paragraph):
423 429
424Model Manufacturer 430Image sensor / SN9C1xx bridge | SN9C10[12] SN9C103 SN9C105 SN9C120
425----- ------------ 431-------------------------------------------------------------------------------
426HV7131D Hynix Semiconductor, Inc. 432HV7131D Hynix Semiconductor | Yes No No No
427MI-0343 Micron Technology, Inc. 433HV7131R Hynix Semiconductor | No Yes Yes Yes
428OV7630 OmniVision Technologies, Inc. 434MI-0343 Micron Technology | Yes No No No
429OV7660 OmniVision Technologies, Inc. 435MI-0360 Micron Technology | No Yes No No
430PAS106B PixArt Imaging, Inc. 436OV7630 OmniVision Technologies | Yes Yes No No
431PAS202BCA PixArt Imaging, Inc. 437OV7660 OmniVision Technologies | No No Yes Yes
432PAS202BCB PixArt Imaging, Inc. 438PAS106B PixArt Imaging | Yes No No No
433TAS5110C1B Taiwan Advanced Sensor Corporation 439PAS202B PixArt Imaging | Yes Yes No No
434TAS5130D1B Taiwan Advanced Sensor Corporation 440TAS5110C1B Taiwan Advanced Sensor | Yes No No No
435 441TAS5110D Taiwan Advanced Sensor | Yes No No No
436Some of the available control settings of each image sensor are supported 442TAS5130D1B Taiwan Advanced Sensor | Yes No No No
443
444"Yes" means that the pair is supported by the driver, while "No" means that the
445pair does not exist or is not supported by the driver.
446
447Only some of the available control settings of each image sensor are supported
437through the V4L2 interface. 448through the V4L2 interface.
438 449
439Donations of new models for further testing and support would be much 450Donations of new models for further testing and support would be much
@@ -482,8 +493,8 @@ The SN9C1xx PC Camera Controllers can send images in two possible video
482formats over the USB: either native "Sequential RGB Bayer" or compressed. 493formats over the USB: either native "Sequential RGB Bayer" or compressed.
483The compression is used to achieve high frame rates. With regard to the 494The compression is used to achieve high frame rates. With regard to the
484SN9C101, SN9C102 and SN9C103, the compression is based on the Huffman encoding 495SN9C101, SN9C102 and SN9C103, the compression is based on the Huffman encoding
485algorithm described below, while the SN9C105 and SN9C120 the compression is 496algorithm described below, while with regard to the SN9C105 and SN9C120 the
486based on the JPEG standard. 497compression is based on the JPEG standard.
487The current video format may be selected or queried from the user application 498The current video format may be selected or queried from the user application
488by calling the VIDIOC_S_FMT or VIDIOC_G_FMT ioctl's, as described in the V4L2 499by calling the VIDIOC_S_FMT or VIDIOC_G_FMT ioctl's, as described in the V4L2
489API specifications. 500API specifications.
@@ -573,4 +584,5 @@ order):
573- Mizuno Takafumi for the donation of a webcam; 584- Mizuno Takafumi for the donation of a webcam;
574- an "anonymous" donator (who didn't want his name to be revealed) for the 585- an "anonymous" donator (who didn't want his name to be revealed) for the
575 donation of a webcam. 586 donation of a webcam.
576- an anonymous donator for the donation of four webcams. 587- an anonymous donator for the donation of four webcams and two boards with ten
588 image sensors.
diff --git a/Documentation/video4linux/zr364xx.txt b/Documentation/video4linux/zr364xx.txt
new file mode 100644
index 000000000000..c76992d0ff4d
--- /dev/null
+++ b/Documentation/video4linux/zr364xx.txt
@@ -0,0 +1,65 @@
1Zoran 364xx based USB webcam module version 0.72
2site: http://royale.zerezo.com/zr364xx/
3mail: royale@zerezo.com
4
5introduction:
6This brings support under Linux for the Aiptek PocketDV 3300 in webcam mode.
7If you just want to get on your PC the pictures and movies on the camera, you should use the usb-storage module instead.
8The driver works with several other cameras in webcam mode (see the list below).
9Maybe this code can work for other JPEG/USB cams based on the Coach chips from Zoran?
10Possible chipsets are : ZR36430 (ZR36430BGC) and maybe ZR36431, ZR36440, ZR36442...
11You can try the experience changing the vendor/product ID values (look at the source code).
12You can get these values by looking at /var/log/messages when you plug your camera, or by typing : cat /proc/bus/usb/devices.
13If you manage to use your cam with this code, you can send me a mail (royale@zerezo.com) with the name of your cam and a patch if needed.
14This is a beta release of the driver.
15Since version 0.70, this driver is only compatible with V4L2 API and 2.6.x kernels.
16If you need V4L1 or 2.4x kernels support, please use an older version, but the code is not maintained anymore.
17Good luck!
18
19install:
20In order to use this driver, you must compile it with your kernel.
21Location: Device Drivers -> Multimedia devices -> Video For Linux -> Video Capture Adapters -> V4L USB devices
22
23usage:
24modprobe zr364xx debug=X mode=Y
25 - debug : set to 1 to enable verbose debug messages
26 - mode : 0 = 320x240, 1 = 160x120, 2 = 640x480
27You can then use the camera with V4L2 compatible applications, for example Ekiga.
28To capture a single image, try this: dd if=/dev/video0 of=test.jpg bs=1 count=1
29
30links :
31http://mxhaard.free.fr/ (support for many others cams including some Aiptek PocketDV)
32http://www.harmwal.nl/pccam880/ (this project also supports cameras based on this chipset)
33
34supported devices:
35------ ------- ----------- -----
36Vendor Product Distributor Model
37------ ------- ----------- -----
380x08ca 0x0109 Aiptek PocketDV 3300
390x08ca 0x0109 Maxell Maxcam PRO DV3
400x041e 0x4024 Creative PC-CAM 880
410x0d64 0x0108 Aiptek Fidelity 3200
420x0d64 0x0108 Praktica DCZ 1.3 S
430x0d64 0x0108 Genius Digital Camera (?)
440x0d64 0x0108 DXG Technology Fashion Cam
450x0546 0x3187 Polaroid iON 230
460x0d64 0x3108 Praktica Exakta DC 2200
470x0d64 0x3108 Genius G-Shot D211
480x0595 0x4343 Concord Eye-Q Duo 1300
490x0595 0x4343 Concord Eye-Q Duo 2000
500x0595 0x4343 Fujifilm EX-10
510x0595 0x4343 Ricoh RDC-6000
520x0595 0x4343 Digitrex DSC 1300
530x0595 0x4343 Firstline FDC 2000
540x0bb0 0x500d Concord EyeQ Go Wireless
550x0feb 0x2004 CRS Electronic 3.3 Digital Camera
560x0feb 0x2004 Packard Bell DSC-300
570x055f 0xb500 Mustek MDC 3000
580x08ca 0x2062 Aiptek PocketDV 5700
590x052b 0x1a18 Chiphead Megapix V12
600x04c8 0x0729 Konica Revio 2
610x04f2 0xa208 Creative PC-CAM 850
620x0784 0x0040 Traveler Slimline X5
630x06d6 0x0034 Trust Powerc@m 750
640x0a17 0x0062 Pentax Optio 50L
65
diff --git a/Documentation/x86_64/boot-options.txt b/Documentation/x86_64/boot-options.txt
index 625a21db0c2a..85f51e5a749f 100644
--- a/Documentation/x86_64/boot-options.txt
+++ b/Documentation/x86_64/boot-options.txt
@@ -293,7 +293,3 @@ Debugging
293 stuck (default) 293 stuck (default)
294 294
295Miscellaneous 295Miscellaneous
296
297 noreplacement Don't replace instructions with more appropriate ones
298 for the CPU. This may be useful on asymmetric MP systems
299 where some CPUs have less capabilities than others.