aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/ABI/testing/sysfs-bus-pci43
-rw-r--r--Documentation/ABI/testing/sysfs-firmware-memmap2
-rw-r--r--Documentation/DocBook/Makefile2
-rw-r--r--Documentation/DocBook/device-drivers.tmpl418
-rw-r--r--Documentation/DocBook/kernel-api.tmpl377
-rw-r--r--Documentation/PCI/PCIEBUS-HOWTO.txt2
-rw-r--r--Documentation/cgroups/cgroups.txt6
-rw-r--r--Documentation/cgroups/cpusets.txt65
-rw-r--r--Documentation/driver-model/device.txt8
-rw-r--r--Documentation/dvb/README.flexcop205
-rw-r--r--Documentation/dvb/technisat.txt34
-rw-r--r--Documentation/filesystems/sysfs.txt50
-rw-r--r--Documentation/hwmon/hpfall.c101
-rw-r--r--Documentation/hwmon/lis3lv02d8
-rw-r--r--Documentation/kernel-parameters.txt19
-rw-r--r--Documentation/scsi/cxgb3i.txt11
-rw-r--r--Documentation/tracers/mmiotrace.txt6
-rw-r--r--Documentation/x86/boot.txt5
18 files changed, 689 insertions, 673 deletions
diff --git a/Documentation/ABI/testing/sysfs-bus-pci b/Documentation/ABI/testing/sysfs-bus-pci
index ceddcff4082a..e638e15a8895 100644
--- a/Documentation/ABI/testing/sysfs-bus-pci
+++ b/Documentation/ABI/testing/sysfs-bus-pci
@@ -1,3 +1,46 @@
1What: /sys/bus/pci/drivers/.../bind
2Date: December 2003
3Contact: linux-pci@vger.kernel.org
4Description:
5 Writing a device location to this file will cause
6 the driver to attempt to bind to the device found at
7 this location. This is useful for overriding default
8 bindings. The format for the location is: DDDD:BB:DD.F.
9 That is Domain:Bus:Device.Function and is the same as
10 found in /sys/bus/pci/devices/. For example:
11 # echo 0000:00:19.0 > /sys/bus/pci/drivers/foo/bind
12 (Note: kernels before 2.6.28 may require echo -n).
13
14What: /sys/bus/pci/drivers/.../unbind
15Date: December 2003
16Contact: linux-pci@vger.kernel.org
17Description:
18 Writing a device location to this file will cause the
19 driver to attempt to unbind from the device found at
20 this location. This may be useful when overriding default
21 bindings. The format for the location is: DDDD:BB:DD.F.
22 That is Domain:Bus:Device.Function and is the same as
23 found in /sys/bus/pci/devices/. For example:
24 # echo 0000:00:19.0 > /sys/bus/pci/drivers/foo/unbind
25 (Note: kernels before 2.6.28 may require echo -n).
26
27What: /sys/bus/pci/drivers/.../new_id
28Date: December 2003
29Contact: linux-pci@vger.kernel.org
30Description:
31 Writing a device ID to this file will attempt to
32 dynamically add a new device ID to a PCI device driver.
33 This may allow the driver to support more hardware than
34 was included in the driver's static device ID support
35 table at compile time. The format for the device ID is:
36 VVVV DDDD SVVV SDDD CCCC MMMM PPPP. That is Vendor ID,
37 Device ID, Subsystem Vendor ID, Subsystem Device ID,
38 Class, Class Mask, and Private Driver Data. The Vendor ID
39 and Device ID fields are required, the rest are optional.
40 Upon successfully adding an ID, the driver will probe
41 for the device and attempt to bind to it. For example:
42 # echo "8086 10f5" > /sys/bus/pci/drivers/foo/new_id
43
1What: /sys/bus/pci/devices/.../vpd 44What: /sys/bus/pci/devices/.../vpd
2Date: February 2008 45Date: February 2008
3Contact: Ben Hutchings <bhutchings@solarflare.com> 46Contact: Ben Hutchings <bhutchings@solarflare.com>
diff --git a/Documentation/ABI/testing/sysfs-firmware-memmap b/Documentation/ABI/testing/sysfs-firmware-memmap
index 0d99ee6ae02e..eca0d65087dc 100644
--- a/Documentation/ABI/testing/sysfs-firmware-memmap
+++ b/Documentation/ABI/testing/sysfs-firmware-memmap
@@ -1,6 +1,6 @@
1What: /sys/firmware/memmap/ 1What: /sys/firmware/memmap/
2Date: June 2008 2Date: June 2008
3Contact: Bernhard Walle <bwalle@suse.de> 3Contact: Bernhard Walle <bernhard.walle@gmx.de>
4Description: 4Description:
5 On all platforms, the firmware provides a memory map which the 5 On all platforms, the firmware provides a memory map which the
6 kernel reads. The resources from that memory map are registered 6 kernel reads. The resources from that memory map are registered
diff --git a/Documentation/DocBook/Makefile b/Documentation/DocBook/Makefile
index dc3154e49279..1462ed86d40a 100644
--- a/Documentation/DocBook/Makefile
+++ b/Documentation/DocBook/Makefile
@@ -6,7 +6,7 @@
6# To add a new book the only step required is to add the book to the 6# To add a new book the only step required is to add the book to the
7# list of DOCBOOKS. 7# list of DOCBOOKS.
8 8
9DOCBOOKS := z8530book.xml mcabook.xml \ 9DOCBOOKS := z8530book.xml mcabook.xml device-drivers.xml \
10 kernel-hacking.xml kernel-locking.xml deviceiobook.xml \ 10 kernel-hacking.xml kernel-locking.xml deviceiobook.xml \
11 procfs-guide.xml writing_usb_driver.xml networking.xml \ 11 procfs-guide.xml writing_usb_driver.xml networking.xml \
12 kernel-api.xml filesystems.xml lsm.xml usb.xml kgdb.xml \ 12 kernel-api.xml filesystems.xml lsm.xml usb.xml kgdb.xml \
diff --git a/Documentation/DocBook/device-drivers.tmpl b/Documentation/DocBook/device-drivers.tmpl
new file mode 100644
index 000000000000..94a20fe8fedf
--- /dev/null
+++ b/Documentation/DocBook/device-drivers.tmpl
@@ -0,0 +1,418 @@
1<?xml version="1.0" encoding="UTF-8"?>
2<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
3 "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
4
5<book id="LinuxDriversAPI">
6 <bookinfo>
7 <title>Linux Device Drivers</title>
8
9 <legalnotice>
10 <para>
11 This documentation is free software; you can redistribute
12 it and/or modify it under the terms of the GNU General Public
13 License as published by the Free Software Foundation; either
14 version 2 of the License, or (at your option) any later
15 version.
16 </para>
17
18 <para>
19 This program is distributed in the hope that it will be
20 useful, but WITHOUT ANY WARRANTY; without even the implied
21 warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 See the GNU General Public License for more details.
23 </para>
24
25 <para>
26 You should have received a copy of the GNU General Public
27 License along with this program; if not, write to the Free
28 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
29 MA 02111-1307 USA
30 </para>
31
32 <para>
33 For more details see the file COPYING in the source
34 distribution of Linux.
35 </para>
36 </legalnotice>
37 </bookinfo>
38
39<toc></toc>
40
41 <chapter id="Basics">
42 <title>Driver Basics</title>
43 <sect1><title>Driver Entry and Exit points</title>
44!Iinclude/linux/init.h
45 </sect1>
46
47 <sect1><title>Atomic and pointer manipulation</title>
48!Iarch/x86/include/asm/atomic_32.h
49!Iarch/x86/include/asm/unaligned.h
50 </sect1>
51
52 <sect1><title>Delaying, scheduling, and timer routines</title>
53!Iinclude/linux/sched.h
54!Ekernel/sched.c
55!Ekernel/timer.c
56 </sect1>
57 <sect1><title>High-resolution timers</title>
58!Iinclude/linux/ktime.h
59!Iinclude/linux/hrtimer.h
60!Ekernel/hrtimer.c
61 </sect1>
62 <sect1><title>Workqueues and Kevents</title>
63!Ekernel/workqueue.c
64 </sect1>
65 <sect1><title>Internal Functions</title>
66!Ikernel/exit.c
67!Ikernel/signal.c
68!Iinclude/linux/kthread.h
69!Ekernel/kthread.c
70 </sect1>
71
72 <sect1><title>Kernel objects manipulation</title>
73<!--
74X!Iinclude/linux/kobject.h
75-->
76!Elib/kobject.c
77 </sect1>
78
79 <sect1><title>Kernel utility functions</title>
80!Iinclude/linux/kernel.h
81!Ekernel/printk.c
82!Ekernel/panic.c
83!Ekernel/sys.c
84!Ekernel/rcupdate.c
85 </sect1>
86
87 <sect1><title>Device Resource Management</title>
88!Edrivers/base/devres.c
89 </sect1>
90
91 </chapter>
92
93 <chapter id="devdrivers">
94 <title>Device drivers infrastructure</title>
95 <sect1><title>Device Drivers Base</title>
96<!--
97X!Iinclude/linux/device.h
98-->
99!Edrivers/base/driver.c
100!Edrivers/base/core.c
101!Edrivers/base/class.c
102!Edrivers/base/firmware_class.c
103!Edrivers/base/transport_class.c
104<!-- Cannot be included, because
105 attribute_container_add_class_device_adapter
106 and attribute_container_classdev_to_container
107 exceed allowed 44 characters maximum
108X!Edrivers/base/attribute_container.c
109-->
110!Edrivers/base/sys.c
111<!--
112X!Edrivers/base/interface.c
113-->
114!Edrivers/base/platform.c
115!Edrivers/base/bus.c
116 </sect1>
117 <sect1><title>Device Drivers Power Management</title>
118!Edrivers/base/power/main.c
119 </sect1>
120 <sect1><title>Device Drivers ACPI Support</title>
121<!-- Internal functions only
122X!Edrivers/acpi/sleep/main.c
123X!Edrivers/acpi/sleep/wakeup.c
124X!Edrivers/acpi/motherboard.c
125X!Edrivers/acpi/bus.c
126-->
127!Edrivers/acpi/scan.c
128!Idrivers/acpi/scan.c
129<!-- No correct structured comments
130X!Edrivers/acpi/pci_bind.c
131-->
132 </sect1>
133 <sect1><title>Device drivers PnP support</title>
134!Idrivers/pnp/core.c
135<!-- No correct structured comments
136X!Edrivers/pnp/system.c
137 -->
138!Edrivers/pnp/card.c
139!Idrivers/pnp/driver.c
140!Edrivers/pnp/manager.c
141!Edrivers/pnp/support.c
142 </sect1>
143 <sect1><title>Userspace IO devices</title>
144!Edrivers/uio/uio.c
145!Iinclude/linux/uio_driver.h
146 </sect1>
147 </chapter>
148
149 <chapter id="parportdev">
150 <title>Parallel Port Devices</title>
151!Iinclude/linux/parport.h
152!Edrivers/parport/ieee1284.c
153!Edrivers/parport/share.c
154!Idrivers/parport/daisy.c
155 </chapter>
156
157 <chapter id="message_devices">
158 <title>Message-based devices</title>
159 <sect1><title>Fusion message devices</title>
160!Edrivers/message/fusion/mptbase.c
161!Idrivers/message/fusion/mptbase.c
162!Edrivers/message/fusion/mptscsih.c
163!Idrivers/message/fusion/mptscsih.c
164!Idrivers/message/fusion/mptctl.c
165!Idrivers/message/fusion/mptspi.c
166!Idrivers/message/fusion/mptfc.c
167!Idrivers/message/fusion/mptlan.c
168 </sect1>
169 <sect1><title>I2O message devices</title>
170!Iinclude/linux/i2o.h
171!Idrivers/message/i2o/core.h
172!Edrivers/message/i2o/iop.c
173!Idrivers/message/i2o/iop.c
174!Idrivers/message/i2o/config-osm.c
175!Edrivers/message/i2o/exec-osm.c
176!Idrivers/message/i2o/exec-osm.c
177!Idrivers/message/i2o/bus-osm.c
178!Edrivers/message/i2o/device.c
179!Idrivers/message/i2o/device.c
180!Idrivers/message/i2o/driver.c
181!Idrivers/message/i2o/pci.c
182!Idrivers/message/i2o/i2o_block.c
183!Idrivers/message/i2o/i2o_scsi.c
184!Idrivers/message/i2o/i2o_proc.c
185 </sect1>
186 </chapter>
187
188 <chapter id="snddev">
189 <title>Sound Devices</title>
190!Iinclude/sound/core.h
191!Esound/sound_core.c
192!Iinclude/sound/pcm.h
193!Esound/core/pcm.c
194!Esound/core/device.c
195!Esound/core/info.c
196!Esound/core/rawmidi.c
197!Esound/core/sound.c
198!Esound/core/memory.c
199!Esound/core/pcm_memory.c
200!Esound/core/init.c
201!Esound/core/isadma.c
202!Esound/core/control.c
203!Esound/core/pcm_lib.c
204!Esound/core/hwdep.c
205!Esound/core/pcm_native.c
206!Esound/core/memalloc.c
207<!-- FIXME: Removed for now since no structured comments in source
208X!Isound/sound_firmware.c
209-->
210 </chapter>
211
212 <chapter id="uart16x50">
213 <title>16x50 UART Driver</title>
214!Iinclude/linux/serial_core.h
215!Edrivers/serial/serial_core.c
216!Edrivers/serial/8250.c
217 </chapter>
218
219 <chapter id="fbdev">
220 <title>Frame Buffer Library</title>
221
222 <para>
223 The frame buffer drivers depend heavily on four data structures.
224 These structures are declared in include/linux/fb.h. They are
225 fb_info, fb_var_screeninfo, fb_fix_screeninfo and fb_monospecs.
226 The last three can be made available to and from userland.
227 </para>
228
229 <para>
230 fb_info defines the current state of a particular video card.
231 Inside fb_info, there exists a fb_ops structure which is a
232 collection of needed functions to make fbdev and fbcon work.
233 fb_info is only visible to the kernel.
234 </para>
235
236 <para>
237 fb_var_screeninfo is used to describe the features of a video card
238 that are user defined. With fb_var_screeninfo, things such as
239 depth and the resolution may be defined.
240 </para>
241
242 <para>
243 The next structure is fb_fix_screeninfo. This defines the
244 properties of a card that are created when a mode is set and can't
245 be changed otherwise. A good example of this is the start of the
246 frame buffer memory. This "locks" the address of the frame buffer
247 memory, so that it cannot be changed or moved.
248 </para>
249
250 <para>
251 The last structure is fb_monospecs. In the old API, there was
252 little importance for fb_monospecs. This allowed for forbidden things
253 such as setting a mode of 800x600 on a fix frequency monitor. With
254 the new API, fb_monospecs prevents such things, and if used
255 correctly, can prevent a monitor from being cooked. fb_monospecs
256 will not be useful until kernels 2.5.x.
257 </para>
258
259 <sect1><title>Frame Buffer Memory</title>
260!Edrivers/video/fbmem.c
261 </sect1>
262<!--
263 <sect1><title>Frame Buffer Console</title>
264X!Edrivers/video/console/fbcon.c
265 </sect1>
266-->
267 <sect1><title>Frame Buffer Colormap</title>
268!Edrivers/video/fbcmap.c
269 </sect1>
270<!-- FIXME:
271 drivers/video/fbgen.c has no docs, which stuffs up the sgml. Comment
272 out until somebody adds docs. KAO
273 <sect1><title>Frame Buffer Generic Functions</title>
274X!Idrivers/video/fbgen.c
275 </sect1>
276KAO -->
277 <sect1><title>Frame Buffer Video Mode Database</title>
278!Idrivers/video/modedb.c
279!Edrivers/video/modedb.c
280 </sect1>
281 <sect1><title>Frame Buffer Macintosh Video Mode Database</title>
282!Edrivers/video/macmodes.c
283 </sect1>
284 <sect1><title>Frame Buffer Fonts</title>
285 <para>
286 Refer to the file drivers/video/console/fonts.c for more information.
287 </para>
288<!-- FIXME: Removed for now since no structured comments in source
289X!Idrivers/video/console/fonts.c
290-->
291 </sect1>
292 </chapter>
293
294 <chapter id="input_subsystem">
295 <title>Input Subsystem</title>
296!Iinclude/linux/input.h
297!Edrivers/input/input.c
298!Edrivers/input/ff-core.c
299!Edrivers/input/ff-memless.c
300 </chapter>
301
302 <chapter id="spi">
303 <title>Serial Peripheral Interface (SPI)</title>
304 <para>
305 SPI is the "Serial Peripheral Interface", widely used with
306 embedded systems because it is a simple and efficient
307 interface: basically a multiplexed shift register.
308 Its three signal wires hold a clock (SCK, often in the range
309 of 1-20 MHz), a "Master Out, Slave In" (MOSI) data line, and
310 a "Master In, Slave Out" (MISO) data line.
311 SPI is a full duplex protocol; for each bit shifted out the
312 MOSI line (one per clock) another is shifted in on the MISO line.
313 Those bits are assembled into words of various sizes on the
314 way to and from system memory.
315 An additional chipselect line is usually active-low (nCS);
316 four signals are normally used for each peripheral, plus
317 sometimes an interrupt.
318 </para>
319 <para>
320 The SPI bus facilities listed here provide a generalized
321 interface to declare SPI busses and devices, manage them
322 according to the standard Linux driver model, and perform
323 input/output operations.
324 At this time, only "master" side interfaces are supported,
325 where Linux talks to SPI peripherals and does not implement
326 such a peripheral itself.
327 (Interfaces to support implementing SPI slaves would
328 necessarily look different.)
329 </para>
330 <para>
331 The programming interface is structured around two kinds of driver,
332 and two kinds of device.
333 A "Controller Driver" abstracts the controller hardware, which may
334 be as simple as a set of GPIO pins or as complex as a pair of FIFOs
335 connected to dual DMA engines on the other side of the SPI shift
336 register (maximizing throughput). Such drivers bridge between
337 whatever bus they sit on (often the platform bus) and SPI, and
338 expose the SPI side of their device as a
339 <structname>struct spi_master</structname>.
340 SPI devices are children of that master, represented as a
341 <structname>struct spi_device</structname> and manufactured from
342 <structname>struct spi_board_info</structname> descriptors which
343 are usually provided by board-specific initialization code.
344 A <structname>struct spi_driver</structname> is called a
345 "Protocol Driver", and is bound to a spi_device using normal
346 driver model calls.
347 </para>
348 <para>
349 The I/O model is a set of queued messages. Protocol drivers
350 submit one or more <structname>struct spi_message</structname>
351 objects, which are processed and completed asynchronously.
352 (There are synchronous wrappers, however.) Messages are
353 built from one or more <structname>struct spi_transfer</structname>
354 objects, each of which wraps a full duplex SPI transfer.
355 A variety of protocol tweaking options are needed, because
356 different chips adopt very different policies for how they
357 use the bits transferred with SPI.
358 </para>
359!Iinclude/linux/spi/spi.h
360!Fdrivers/spi/spi.c spi_register_board_info
361!Edrivers/spi/spi.c
362 </chapter>
363
364 <chapter id="i2c">
365 <title>I<superscript>2</superscript>C and SMBus Subsystem</title>
366
367 <para>
368 I<superscript>2</superscript>C (or without fancy typography, "I2C")
369 is an acronym for the "Inter-IC" bus, a simple bus protocol which is
370 widely used where low data rate communications suffice.
371 Since it's also a licensed trademark, some vendors use another
372 name (such as "Two-Wire Interface", TWI) for the same bus.
373 I2C only needs two signals (SCL for clock, SDA for data), conserving
374 board real estate and minimizing signal quality issues.
375 Most I2C devices use seven bit addresses, and bus speeds of up
376 to 400 kHz; there's a high speed extension (3.4 MHz) that's not yet
377 found wide use.
378 I2C is a multi-master bus; open drain signaling is used to
379 arbitrate between masters, as well as to handshake and to
380 synchronize clocks from slower clients.
381 </para>
382
383 <para>
384 The Linux I2C programming interfaces support only the master
385 side of bus interactions, not the slave side.
386 The programming interface is structured around two kinds of driver,
387 and two kinds of device.
388 An I2C "Adapter Driver" abstracts the controller hardware; it binds
389 to a physical device (perhaps a PCI device or platform_device) and
390 exposes a <structname>struct i2c_adapter</structname> representing
391 each I2C bus segment it manages.
392 On each I2C bus segment will be I2C devices represented by a
393 <structname>struct i2c_client</structname>. Those devices will
394 be bound to a <structname>struct i2c_driver</structname>,
395 which should follow the standard Linux driver model.
396 (At this writing, a legacy model is more widely used.)
397 There are functions to perform various I2C protocol operations; at
398 this writing all such functions are usable only from task context.
399 </para>
400
401 <para>
402 The System Management Bus (SMBus) is a sibling protocol. Most SMBus
403 systems are also I2C conformant. The electrical constraints are
404 tighter for SMBus, and it standardizes particular protocol messages
405 and idioms. Controllers that support I2C can also support most
406 SMBus operations, but SMBus controllers don't support all the protocol
407 options that an I2C controller will.
408 There are functions to perform various SMBus protocol operations,
409 either using I2C primitives or by issuing SMBus commands to
410 i2c_adapter devices which don't support those I2C operations.
411 </para>
412
413!Iinclude/linux/i2c.h
414!Fdrivers/i2c/i2c-boardinfo.c i2c_register_board_info
415!Edrivers/i2c/i2c-core.c
416 </chapter>
417
418</book>
diff --git a/Documentation/DocBook/kernel-api.tmpl b/Documentation/DocBook/kernel-api.tmpl
index 5818ff75786a..bc962cda6504 100644
--- a/Documentation/DocBook/kernel-api.tmpl
+++ b/Documentation/DocBook/kernel-api.tmpl
@@ -38,58 +38,6 @@
38 38
39<toc></toc> 39<toc></toc>
40 40
41 <chapter id="Basics">
42 <title>Driver Basics</title>
43 <sect1><title>Driver Entry and Exit points</title>
44!Iinclude/linux/init.h
45 </sect1>
46
47 <sect1><title>Atomic and pointer manipulation</title>
48!Iarch/x86/include/asm/atomic_32.h
49!Iarch/x86/include/asm/unaligned.h
50 </sect1>
51
52 <sect1><title>Delaying, scheduling, and timer routines</title>
53!Iinclude/linux/sched.h
54!Ekernel/sched.c
55!Ekernel/timer.c
56 </sect1>
57 <sect1><title>High-resolution timers</title>
58!Iinclude/linux/ktime.h
59!Iinclude/linux/hrtimer.h
60!Ekernel/hrtimer.c
61 </sect1>
62 <sect1><title>Workqueues and Kevents</title>
63!Ekernel/workqueue.c
64 </sect1>
65 <sect1><title>Internal Functions</title>
66!Ikernel/exit.c
67!Ikernel/signal.c
68!Iinclude/linux/kthread.h
69!Ekernel/kthread.c
70 </sect1>
71
72 <sect1><title>Kernel objects manipulation</title>
73<!--
74X!Iinclude/linux/kobject.h
75-->
76!Elib/kobject.c
77 </sect1>
78
79 <sect1><title>Kernel utility functions</title>
80!Iinclude/linux/kernel.h
81!Ekernel/printk.c
82!Ekernel/panic.c
83!Ekernel/sys.c
84!Ekernel/rcupdate.c
85 </sect1>
86
87 <sect1><title>Device Resource Management</title>
88!Edrivers/base/devres.c
89 </sect1>
90
91 </chapter>
92
93 <chapter id="adt"> 41 <chapter id="adt">
94 <title>Data Types</title> 42 <title>Data Types</title>
95 <sect1><title>Doubly Linked Lists</title> 43 <sect1><title>Doubly Linked Lists</title>
@@ -298,62 +246,6 @@ X!Earch/x86/kernel/mca_32.c
298!Ikernel/acct.c 246!Ikernel/acct.c
299 </chapter> 247 </chapter>
300 248
301 <chapter id="devdrivers">
302 <title>Device drivers infrastructure</title>
303 <sect1><title>Device Drivers Base</title>
304<!--
305X!Iinclude/linux/device.h
306-->
307!Edrivers/base/driver.c
308!Edrivers/base/core.c
309!Edrivers/base/class.c
310!Edrivers/base/firmware_class.c
311!Edrivers/base/transport_class.c
312<!-- Cannot be included, because
313 attribute_container_add_class_device_adapter
314 and attribute_container_classdev_to_container
315 exceed allowed 44 characters maximum
316X!Edrivers/base/attribute_container.c
317-->
318!Edrivers/base/sys.c
319<!--
320X!Edrivers/base/interface.c
321-->
322!Edrivers/base/platform.c
323!Edrivers/base/bus.c
324 </sect1>
325 <sect1><title>Device Drivers Power Management</title>
326!Edrivers/base/power/main.c
327 </sect1>
328 <sect1><title>Device Drivers ACPI Support</title>
329<!-- Internal functions only
330X!Edrivers/acpi/sleep/main.c
331X!Edrivers/acpi/sleep/wakeup.c
332X!Edrivers/acpi/motherboard.c
333X!Edrivers/acpi/bus.c
334-->
335!Edrivers/acpi/scan.c
336!Idrivers/acpi/scan.c
337<!-- No correct structured comments
338X!Edrivers/acpi/pci_bind.c
339-->
340 </sect1>
341 <sect1><title>Device drivers PnP support</title>
342!Idrivers/pnp/core.c
343<!-- No correct structured comments
344X!Edrivers/pnp/system.c
345 -->
346!Edrivers/pnp/card.c
347!Idrivers/pnp/driver.c
348!Edrivers/pnp/manager.c
349!Edrivers/pnp/support.c
350 </sect1>
351 <sect1><title>Userspace IO devices</title>
352!Edrivers/uio/uio.c
353!Iinclude/linux/uio_driver.h
354 </sect1>
355 </chapter>
356
357 <chapter id="blkdev"> 249 <chapter id="blkdev">
358 <title>Block Devices</title> 250 <title>Block Devices</title>
359!Eblock/blk-core.c 251!Eblock/blk-core.c
@@ -381,275 +273,6 @@ X!Edrivers/pnp/system.c
381!Edrivers/char/misc.c 273!Edrivers/char/misc.c
382 </chapter> 274 </chapter>
383 275
384 <chapter id="parportdev">
385 <title>Parallel Port Devices</title>
386!Iinclude/linux/parport.h
387!Edrivers/parport/ieee1284.c
388!Edrivers/parport/share.c
389!Idrivers/parport/daisy.c
390 </chapter>
391
392 <chapter id="message_devices">
393 <title>Message-based devices</title>
394 <sect1><title>Fusion message devices</title>
395!Edrivers/message/fusion/mptbase.c
396!Idrivers/message/fusion/mptbase.c
397!Edrivers/message/fusion/mptscsih.c
398!Idrivers/message/fusion/mptscsih.c
399!Idrivers/message/fusion/mptctl.c
400!Idrivers/message/fusion/mptspi.c
401!Idrivers/message/fusion/mptfc.c
402!Idrivers/message/fusion/mptlan.c
403 </sect1>
404 <sect1><title>I2O message devices</title>
405!Iinclude/linux/i2o.h
406!Idrivers/message/i2o/core.h
407!Edrivers/message/i2o/iop.c
408!Idrivers/message/i2o/iop.c
409!Idrivers/message/i2o/config-osm.c
410!Edrivers/message/i2o/exec-osm.c
411!Idrivers/message/i2o/exec-osm.c
412!Idrivers/message/i2o/bus-osm.c
413!Edrivers/message/i2o/device.c
414!Idrivers/message/i2o/device.c
415!Idrivers/message/i2o/driver.c
416!Idrivers/message/i2o/pci.c
417!Idrivers/message/i2o/i2o_block.c
418!Idrivers/message/i2o/i2o_scsi.c
419!Idrivers/message/i2o/i2o_proc.c
420 </sect1>
421 </chapter>
422
423 <chapter id="snddev">
424 <title>Sound Devices</title>
425!Iinclude/sound/core.h
426!Esound/sound_core.c
427!Iinclude/sound/pcm.h
428!Esound/core/pcm.c
429!Esound/core/device.c
430!Esound/core/info.c
431!Esound/core/rawmidi.c
432!Esound/core/sound.c
433!Esound/core/memory.c
434!Esound/core/pcm_memory.c
435!Esound/core/init.c
436!Esound/core/isadma.c
437!Esound/core/control.c
438!Esound/core/pcm_lib.c
439!Esound/core/hwdep.c
440!Esound/core/pcm_native.c
441!Esound/core/memalloc.c
442<!-- FIXME: Removed for now since no structured comments in source
443X!Isound/sound_firmware.c
444-->
445 </chapter>
446
447 <chapter id="uart16x50">
448 <title>16x50 UART Driver</title>
449!Iinclude/linux/serial_core.h
450!Edrivers/serial/serial_core.c
451!Edrivers/serial/8250.c
452 </chapter>
453
454 <chapter id="fbdev">
455 <title>Frame Buffer Library</title>
456
457 <para>
458 The frame buffer drivers depend heavily on four data structures.
459 These structures are declared in include/linux/fb.h. They are
460 fb_info, fb_var_screeninfo, fb_fix_screeninfo and fb_monospecs.
461 The last three can be made available to and from userland.
462 </para>
463
464 <para>
465 fb_info defines the current state of a particular video card.
466 Inside fb_info, there exists a fb_ops structure which is a
467 collection of needed functions to make fbdev and fbcon work.
468 fb_info is only visible to the kernel.
469 </para>
470
471 <para>
472 fb_var_screeninfo is used to describe the features of a video card
473 that are user defined. With fb_var_screeninfo, things such as
474 depth and the resolution may be defined.
475 </para>
476
477 <para>
478 The next structure is fb_fix_screeninfo. This defines the
479 properties of a card that are created when a mode is set and can't
480 be changed otherwise. A good example of this is the start of the
481 frame buffer memory. This "locks" the address of the frame buffer
482 memory, so that it cannot be changed or moved.
483 </para>
484
485 <para>
486 The last structure is fb_monospecs. In the old API, there was
487 little importance for fb_monospecs. This allowed for forbidden things
488 such as setting a mode of 800x600 on a fix frequency monitor. With
489 the new API, fb_monospecs prevents such things, and if used
490 correctly, can prevent a monitor from being cooked. fb_monospecs
491 will not be useful until kernels 2.5.x.
492 </para>
493
494 <sect1><title>Frame Buffer Memory</title>
495!Edrivers/video/fbmem.c
496 </sect1>
497<!--
498 <sect1><title>Frame Buffer Console</title>
499X!Edrivers/video/console/fbcon.c
500 </sect1>
501-->
502 <sect1><title>Frame Buffer Colormap</title>
503!Edrivers/video/fbcmap.c
504 </sect1>
505<!-- FIXME:
506 drivers/video/fbgen.c has no docs, which stuffs up the sgml. Comment
507 out until somebody adds docs. KAO
508 <sect1><title>Frame Buffer Generic Functions</title>
509X!Idrivers/video/fbgen.c
510 </sect1>
511KAO -->
512 <sect1><title>Frame Buffer Video Mode Database</title>
513!Idrivers/video/modedb.c
514!Edrivers/video/modedb.c
515 </sect1>
516 <sect1><title>Frame Buffer Macintosh Video Mode Database</title>
517!Edrivers/video/macmodes.c
518 </sect1>
519 <sect1><title>Frame Buffer Fonts</title>
520 <para>
521 Refer to the file drivers/video/console/fonts.c for more information.
522 </para>
523<!-- FIXME: Removed for now since no structured comments in source
524X!Idrivers/video/console/fonts.c
525-->
526 </sect1>
527 </chapter>
528
529 <chapter id="input_subsystem">
530 <title>Input Subsystem</title>
531!Iinclude/linux/input.h
532!Edrivers/input/input.c
533!Edrivers/input/ff-core.c
534!Edrivers/input/ff-memless.c
535 </chapter>
536
537 <chapter id="spi">
538 <title>Serial Peripheral Interface (SPI)</title>
539 <para>
540 SPI is the "Serial Peripheral Interface", widely used with
541 embedded systems because it is a simple and efficient
542 interface: basically a multiplexed shift register.
543 Its three signal wires hold a clock (SCK, often in the range
544 of 1-20 MHz), a "Master Out, Slave In" (MOSI) data line, and
545 a "Master In, Slave Out" (MISO) data line.
546 SPI is a full duplex protocol; for each bit shifted out the
547 MOSI line (one per clock) another is shifted in on the MISO line.
548 Those bits are assembled into words of various sizes on the
549 way to and from system memory.
550 An additional chipselect line is usually active-low (nCS);
551 four signals are normally used for each peripheral, plus
552 sometimes an interrupt.
553 </para>
554 <para>
555 The SPI bus facilities listed here provide a generalized
556 interface to declare SPI busses and devices, manage them
557 according to the standard Linux driver model, and perform
558 input/output operations.
559 At this time, only "master" side interfaces are supported,
560 where Linux talks to SPI peripherals and does not implement
561 such a peripheral itself.
562 (Interfaces to support implementing SPI slaves would
563 necessarily look different.)
564 </para>
565 <para>
566 The programming interface is structured around two kinds of driver,
567 and two kinds of device.
568 A "Controller Driver" abstracts the controller hardware, which may
569 be as simple as a set of GPIO pins or as complex as a pair of FIFOs
570 connected to dual DMA engines on the other side of the SPI shift
571 register (maximizing throughput). Such drivers bridge between
572 whatever bus they sit on (often the platform bus) and SPI, and
573 expose the SPI side of their device as a
574 <structname>struct spi_master</structname>.
575 SPI devices are children of that master, represented as a
576 <structname>struct spi_device</structname> and manufactured from
577 <structname>struct spi_board_info</structname> descriptors which
578 are usually provided by board-specific initialization code.
579 A <structname>struct spi_driver</structname> is called a
580 "Protocol Driver", and is bound to a spi_device using normal
581 driver model calls.
582 </para>
583 <para>
584 The I/O model is a set of queued messages. Protocol drivers
585 submit one or more <structname>struct spi_message</structname>
586 objects, which are processed and completed asynchronously.
587 (There are synchronous wrappers, however.) Messages are
588 built from one or more <structname>struct spi_transfer</structname>
589 objects, each of which wraps a full duplex SPI transfer.
590 A variety of protocol tweaking options are needed, because
591 different chips adopt very different policies for how they
592 use the bits transferred with SPI.
593 </para>
594!Iinclude/linux/spi/spi.h
595!Fdrivers/spi/spi.c spi_register_board_info
596!Edrivers/spi/spi.c
597 </chapter>
598
599 <chapter id="i2c">
600 <title>I<superscript>2</superscript>C and SMBus Subsystem</title>
601
602 <para>
603 I<superscript>2</superscript>C (or without fancy typography, "I2C")
604 is an acronym for the "Inter-IC" bus, a simple bus protocol which is
605 widely used where low data rate communications suffice.
606 Since it's also a licensed trademark, some vendors use another
607 name (such as "Two-Wire Interface", TWI) for the same bus.
608 I2C only needs two signals (SCL for clock, SDA for data), conserving
609 board real estate and minimizing signal quality issues.
610 Most I2C devices use seven bit addresses, and bus speeds of up
611 to 400 kHz; there's a high speed extension (3.4 MHz) that's not yet
612 found wide use.
613 I2C is a multi-master bus; open drain signaling is used to
614 arbitrate between masters, as well as to handshake and to
615 synchronize clocks from slower clients.
616 </para>
617
618 <para>
619 The Linux I2C programming interfaces support only the master
620 side of bus interactions, not the slave side.
621 The programming interface is structured around two kinds of driver,
622 and two kinds of device.
623 An I2C "Adapter Driver" abstracts the controller hardware; it binds
624 to a physical device (perhaps a PCI device or platform_device) and
625 exposes a <structname>struct i2c_adapter</structname> representing
626 each I2C bus segment it manages.
627 On each I2C bus segment will be I2C devices represented by a
628 <structname>struct i2c_client</structname>. Those devices will
629 be bound to a <structname>struct i2c_driver</structname>,
630 which should follow the standard Linux driver model.
631 (At this writing, a legacy model is more widely used.)
632 There are functions to perform various I2C protocol operations; at
633 this writing all such functions are usable only from task context.
634 </para>
635
636 <para>
637 The System Management Bus (SMBus) is a sibling protocol. Most SMBus
638 systems are also I2C conformant. The electrical constraints are
639 tighter for SMBus, and it standardizes particular protocol messages
640 and idioms. Controllers that support I2C can also support most
641 SMBus operations, but SMBus controllers don't support all the protocol
642 options that an I2C controller will.
643 There are functions to perform various SMBus protocol operations,
644 either using I2C primitives or by issuing SMBus commands to
645 i2c_adapter devices which don't support those I2C operations.
646 </para>
647
648!Iinclude/linux/i2c.h
649!Fdrivers/i2c/i2c-boardinfo.c i2c_register_board_info
650!Edrivers/i2c/i2c-core.c
651 </chapter>
652
653 <chapter id="clk"> 276 <chapter id="clk">
654 <title>Clock Framework</title> 277 <title>Clock Framework</title>
655 278
diff --git a/Documentation/PCI/PCIEBUS-HOWTO.txt b/Documentation/PCI/PCIEBUS-HOWTO.txt
index 9a07e38631b0..6bd5f372adec 100644
--- a/Documentation/PCI/PCIEBUS-HOWTO.txt
+++ b/Documentation/PCI/PCIEBUS-HOWTO.txt
@@ -93,7 +93,7 @@ the PCI Express Port Bus driver from loading a service driver.
93 93
94int pcie_port_service_register(struct pcie_port_service_driver *new) 94int pcie_port_service_register(struct pcie_port_service_driver *new)
95 95
96This API replaces the Linux Driver Model's pci_module_init API. A 96This API replaces the Linux Driver Model's pci_register_driver API. A
97service driver should always calls pcie_port_service_register at 97service driver should always calls pcie_port_service_register at
98module init. Note that after service driver being loaded, calls 98module init. Note that after service driver being loaded, calls
99such as pci_enable_device(dev) and pci_set_master(dev) are no longer 99such as pci_enable_device(dev) and pci_set_master(dev) are no longer
diff --git a/Documentation/cgroups/cgroups.txt b/Documentation/cgroups/cgroups.txt
index d9e5d6f41b92..93feb8444489 100644
--- a/Documentation/cgroups/cgroups.txt
+++ b/Documentation/cgroups/cgroups.txt
@@ -252,10 +252,8 @@ cgroup file system directories.
252When a task is moved from one cgroup to another, it gets a new 252When a task is moved from one cgroup to another, it gets a new
253css_set pointer - if there's an already existing css_set with the 253css_set pointer - if there's an already existing css_set with the
254desired collection of cgroups then that group is reused, else a new 254desired collection of cgroups then that group is reused, else a new
255css_set is allocated. Note that the current implementation uses a 255css_set is allocated. The appropriate existing css_set is located by
256linear search to locate an appropriate existing css_set, so isn't 256looking into a hash table.
257very efficient. A future version will use a hash table for better
258performance.
259 257
260To allow access from a cgroup to the css_sets (and hence tasks) 258To allow access from a cgroup to the css_sets (and hence tasks)
261that comprise it, a set of cg_cgroup_link objects form a lattice; 259that comprise it, a set of cg_cgroup_link objects form a lattice;
diff --git a/Documentation/cgroups/cpusets.txt b/Documentation/cgroups/cpusets.txt
index 5c86c258c791..0611e9528c7c 100644
--- a/Documentation/cgroups/cpusets.txt
+++ b/Documentation/cgroups/cpusets.txt
@@ -142,7 +142,7 @@ into the rest of the kernel, none in performance critical paths:
142 - in fork and exit, to attach and detach a task from its cpuset. 142 - in fork and exit, to attach and detach a task from its cpuset.
143 - in sched_setaffinity, to mask the requested CPUs by what's 143 - in sched_setaffinity, to mask the requested CPUs by what's
144 allowed in that tasks cpuset. 144 allowed in that tasks cpuset.
145 - in sched.c migrate_all_tasks(), to keep migrating tasks within 145 - in sched.c migrate_live_tasks(), to keep migrating tasks within
146 the CPUs allowed by their cpuset, if possible. 146 the CPUs allowed by their cpuset, if possible.
147 - in the mbind and set_mempolicy system calls, to mask the requested 147 - in the mbind and set_mempolicy system calls, to mask the requested
148 Memory Nodes by what's allowed in that tasks cpuset. 148 Memory Nodes by what's allowed in that tasks cpuset.
@@ -175,6 +175,10 @@ files describing that cpuset:
175 - mem_exclusive flag: is memory placement exclusive? 175 - mem_exclusive flag: is memory placement exclusive?
176 - mem_hardwall flag: is memory allocation hardwalled 176 - mem_hardwall flag: is memory allocation hardwalled
177 - memory_pressure: measure of how much paging pressure in cpuset 177 - memory_pressure: measure of how much paging pressure in cpuset
178 - memory_spread_page flag: if set, spread page cache evenly on allowed nodes
179 - memory_spread_slab flag: if set, spread slab cache evenly on allowed nodes
180 - sched_load_balance flag: if set, load balance within CPUs on that cpuset
181 - sched_relax_domain_level: the searching range when migrating tasks
178 182
179In addition, the root cpuset only has the following file: 183In addition, the root cpuset only has the following file:
180 - memory_pressure_enabled flag: compute memory_pressure? 184 - memory_pressure_enabled flag: compute memory_pressure?
@@ -252,7 +256,7 @@ is causing.
252 256
253This is useful both on tightly managed systems running a wide mix of 257This is useful both on tightly managed systems running a wide mix of
254submitted jobs, which may choose to terminate or re-prioritize jobs that 258submitted jobs, which may choose to terminate or re-prioritize jobs that
255are trying to use more memory than allowed on the nodes assigned them, 259are trying to use more memory than allowed on the nodes assigned to them,
256and with tightly coupled, long running, massively parallel scientific 260and with tightly coupled, long running, massively parallel scientific
257computing jobs that will dramatically fail to meet required performance 261computing jobs that will dramatically fail to meet required performance
258goals if they start to use more memory than allowed to them. 262goals if they start to use more memory than allowed to them.
@@ -378,7 +382,7 @@ as cpusets and sched_setaffinity.
378The algorithmic cost of load balancing and its impact on key shared 382The algorithmic cost of load balancing and its impact on key shared
379kernel data structures such as the task list increases more than 383kernel data structures such as the task list increases more than
380linearly with the number of CPUs being balanced. So the scheduler 384linearly with the number of CPUs being balanced. So the scheduler
381has support to partition the systems CPUs into a number of sched 385has support to partition the systems CPUs into a number of sched
382domains such that it only load balances within each sched domain. 386domains such that it only load balances within each sched domain.
383Each sched domain covers some subset of the CPUs in the system; 387Each sched domain covers some subset of the CPUs in the system;
384no two sched domains overlap; some CPUs might not be in any sched 388no two sched domains overlap; some CPUs might not be in any sched
@@ -485,17 +489,22 @@ of CPUs allowed to a cpuset having 'sched_load_balance' enabled.
485The internal kernel cpuset to scheduler interface passes from the 489The internal kernel cpuset to scheduler interface passes from the
486cpuset code to the scheduler code a partition of the load balanced 490cpuset code to the scheduler code a partition of the load balanced
487CPUs in the system. This partition is a set of subsets (represented 491CPUs in the system. This partition is a set of subsets (represented
488as an array of cpumask_t) of CPUs, pairwise disjoint, that cover all 492as an array of struct cpumask) of CPUs, pairwise disjoint, that cover
489the CPUs that must be load balanced. 493all the CPUs that must be load balanced.
490 494
491Whenever the 'sched_load_balance' flag changes, or CPUs come or go 495The cpuset code builds a new such partition and passes it to the
492from a cpuset with this flag enabled, or a cpuset with this flag 496scheduler sched domain setup code, to have the sched domains rebuilt
493enabled is removed, the cpuset code builds a new such partition and 497as necessary, whenever:
494passes it to the scheduler sched domain setup code, to have the sched 498 - the 'sched_load_balance' flag of a cpuset with non-empty CPUs changes,
495domains rebuilt as necessary. 499 - or CPUs come or go from a cpuset with this flag enabled,
500 - or 'sched_relax_domain_level' value of a cpuset with non-empty CPUs
501 and with this flag enabled changes,
502 - or a cpuset with non-empty CPUs and with this flag enabled is removed,
503 - or a cpu is offlined/onlined.
496 504
497This partition exactly defines what sched domains the scheduler should 505This partition exactly defines what sched domains the scheduler should
498setup - one sched domain for each element (cpumask_t) in the partition. 506setup - one sched domain for each element (struct cpumask) in the
507partition.
499 508
500The scheduler remembers the currently active sched domain partitions. 509The scheduler remembers the currently active sched domain partitions.
501When the scheduler routine partition_sched_domains() is invoked from 510When the scheduler routine partition_sched_domains() is invoked from
@@ -559,7 +568,7 @@ domain, the largest value among those is used. Be careful, if one
559requests 0 and others are -1 then 0 is used. 568requests 0 and others are -1 then 0 is used.
560 569
561Note that modifying this file will have both good and bad effects, 570Note that modifying this file will have both good and bad effects,
562and whether it is acceptable or not will be depend on your situation. 571and whether it is acceptable or not depends on your situation.
563Don't modify this file if you are not sure. 572Don't modify this file if you are not sure.
564 573
565If your situation is: 574If your situation is:
@@ -600,19 +609,15 @@ to allocate a page of memory for that task.
600 609
601If a cpuset has its 'cpus' modified, then each task in that cpuset 610If a cpuset has its 'cpus' modified, then each task in that cpuset
602will have its allowed CPU placement changed immediately. Similarly, 611will have its allowed CPU placement changed immediately. Similarly,
603if a tasks pid is written to a cpusets 'tasks' file, in either its 612if a tasks pid is written to another cpusets 'tasks' file, then its
604current cpuset or another cpuset, then its allowed CPU placement is 613allowed CPU placement is changed immediately. If such a task had been
605changed immediately. If such a task had been bound to some subset 614bound to some subset of its cpuset using the sched_setaffinity() call,
606of its cpuset using the sched_setaffinity() call, the task will be 615the task will be allowed to run on any CPU allowed in its new cpuset,
607allowed to run on any CPU allowed in its new cpuset, negating the 616negating the effect of the prior sched_setaffinity() call.
608affect of the prior sched_setaffinity() call.
609 617
610In summary, the memory placement of a task whose cpuset is changed is 618In summary, the memory placement of a task whose cpuset is changed is
611updated by the kernel, on the next allocation of a page for that task, 619updated by the kernel, on the next allocation of a page for that task,
612but the processor placement is not updated, until that tasks pid is 620and the processor placement is updated immediately.
613rewritten to the 'tasks' file of its cpuset. This is done to avoid
614impacting the scheduler code in the kernel with a check for changes
615in a tasks processor placement.
616 621
617Normally, once a page is allocated (given a physical page 622Normally, once a page is allocated (given a physical page
618of main memory) then that page stays on whatever node it 623of main memory) then that page stays on whatever node it
@@ -681,10 +686,14 @@ and then start a subshell 'sh' in that cpuset:
681 # The next line should display '/Charlie' 686 # The next line should display '/Charlie'
682 cat /proc/self/cpuset 687 cat /proc/self/cpuset
683 688
684In the future, a C library interface to cpusets will likely be 689There are ways to query or modify cpusets:
685available. For now, the only way to query or modify cpusets is 690 - via the cpuset file system directly, using the various cd, mkdir, echo,
686via the cpuset file system, using the various cd, mkdir, echo, cat, 691 cat, rmdir commands from the shell, or their equivalent from C.
687rmdir commands from the shell, or their equivalent from C. 692 - via the C library libcpuset.
693 - via the C library libcgroup.
694 (http://sourceforge.net/proects/libcg/)
695 - via the python application cset.
696 (http://developer.novell.com/wiki/index.php/Cpuset)
688 697
689The sched_setaffinity calls can also be done at the shell prompt using 698The sched_setaffinity calls can also be done at the shell prompt using
690SGI's runon or Robert Love's taskset. The mbind and set_mempolicy 699SGI's runon or Robert Love's taskset. The mbind and set_mempolicy
@@ -756,7 +765,7 @@ mount -t cpuset X /dev/cpuset
756 765
757is equivalent to 766is equivalent to
758 767
759mount -t cgroup -ocpuset X /dev/cpuset 768mount -t cgroup -ocpuset,noprefix X /dev/cpuset
760echo "/sbin/cpuset_release_agent" > /dev/cpuset/release_agent 769echo "/sbin/cpuset_release_agent" > /dev/cpuset/release_agent
761 770
7622.2 Adding/removing cpus 7712.2 Adding/removing cpus
diff --git a/Documentation/driver-model/device.txt b/Documentation/driver-model/device.txt
index a05ec50f8004..a7cbfff40d07 100644
--- a/Documentation/driver-model/device.txt
+++ b/Documentation/driver-model/device.txt
@@ -127,9 +127,11 @@ void unlock_device(struct device * dev);
127Attributes 127Attributes
128~~~~~~~~~~ 128~~~~~~~~~~
129struct device_attribute { 129struct device_attribute {
130 struct attribute attr; 130 struct attribute attr;
131 ssize_t (*show)(struct device * dev, char * buf, size_t count, loff_t off); 131 ssize_t (*show)(struct device *dev, struct device_attribute *attr,
132 ssize_t (*store)(struct device * dev, const char * buf, size_t count, loff_t off); 132 char *buf);
133 ssize_t (*store)(struct device *dev, struct device_attribute *attr,
134 const char *buf, size_t count);
133}; 135};
134 136
135Attributes of devices can be exported via drivers using a simple 137Attributes of devices can be exported via drivers using a simple
diff --git a/Documentation/dvb/README.flexcop b/Documentation/dvb/README.flexcop
deleted file mode 100644
index 5515469de7cf..000000000000
--- a/Documentation/dvb/README.flexcop
+++ /dev/null
@@ -1,205 +0,0 @@
1This README escorted the skystar2-driver rewriting procedure. It describes the
2state of the new flexcop-driver set and some internals are written down here
3too.
4
5This document hopefully describes things about the flexcop and its
6device-offsprings. Goal was to write an easy-to-write and easy-to-read set of
7drivers based on the skystar2.c and other information.
8
9Remark: flexcop-pci.c was a copy of skystar2.c, but every line has been
10touched and rewritten.
11
12History & News
13==============
14 2005-04-01 - correct USB ISOC transfers (thanks to Vadim Catana)
15
16
17
18
19General coding processing
20=========================
21
22We should proceed as follows (as long as no one complains):
23
240) Think before start writing code!
25
261) rewriting the skystar2.c with the help of the flexcop register descriptions
27and splitting up the files to a pci-bus-part and a flexcop-part.
28The new driver will be called b2c2-flexcop-pci.ko/b2c2-flexcop-usb.ko for the
29device-specific part and b2c2-flexcop.ko for the common flexcop-functions.
30
312) Search for errors in the leftover of flexcop-pci.c (compare with pluto2.c
32and other pci drivers)
33
343) make some beautification (see 'Improvements when rewriting (refactoring) is
35done')
36
374) Testing the new driver and maybe substitute the skystar2.c with it, to reach
38a wider tester audience.
39
405) creating an usb-bus-part using the already written flexcop code for the pci
41card.
42
43Idea: create a kernel-object for the flexcop and export all important
44functions. This option saves kernel-memory, but maybe a lot of functions have
45to be exported to kernel namespace.
46
47
48Current situation
49=================
50
510) Done :)
521) Done (some minor issues left)
532) Done
543) Not ready yet, more information is necessary
554) next to be done (see the table below)
565) USB driver is working (yes, there are some minor issues)
57
58What seems to be ready?
59-----------------------
60
611) Rewriting
621a) i2c is cut off from the flexcop-pci.c and seems to work
631b) moved tuner and demod stuff from flexcop-pci.c to flexcop-tuner-fe.c
641c) moved lnb and diseqc stuff from flexcop-pci.c to flexcop-tuner-fe.c
651e) eeprom (reading MAC address)
661d) sram (no dynamic sll size detection (commented out) (using default as JJ told me))
671f) misc. register accesses for reading parameters (e.g. resetting, revision)
681g) pid/mac filter (flexcop-hw-filter.c)
691i) dvb-stuff initialization in flexcop.c (done)
701h) dma stuff (now just using the size-irq, instead of all-together, to be done)
711j) remove flexcop initialization from flexcop-pci.c completely (done)
721l) use a well working dma IRQ method (done, see 'Known bugs and problems and TODO')
731k) cleanup flexcop-files (remove unused EXPORT_SYMBOLs, make static from
74non-static where possible, moved code to proper places)
75
762) Search for errors in the leftover of flexcop-pci.c (partially done)
775a) add MAC address reading
785c) feeding of ISOC data to the software demux (format of the isochronous data
79and speed optimization, no real error) (thanks to Vadim Catana)
80
81What to do in the near future?
82--------------------------------------
83(no special order here)
84
855) USB driver
865b) optimize isoc-transfer (submitting/killing isoc URBs when transfer is starting)
87
88Testing changes
89---------------
90
91O = item is working
92P = item is partially working
93X = item is not working
94N = item does not apply here
95<empty field> = item need to be examined
96
97 | PCI | USB
98item | mt352 | nxt2002 | stv0299 | mt312 | mt352 | nxt2002 | stv0299 | mt312
99-------+-------+---------+---------+-------+-------+---------+---------+-------
1001a) | O | | | | N | N | N | N
1011b) | O | | | | | | O |
1021c) | N | N | | | N | N | O |
1031d) | O | O
1041e) | O | O
1051f) | P
1061g) | O
1071h) | P |
1081i) | O | N
1091j) | O | N
1101l) | O | N
1112) | O | N
1125a) | N | O
1135b)* | N |
1145c) | N | O
115
116* - not done yet
117
118Known bugs and problems and TODO
119--------------------------------
120
1211g/h/l) when pid filtering is enabled on the pci card
122
123DMA usage currently:
124 The DMA is splitted in 2 equal-sized subbuffers. The Flexcop writes to first
125 address and triggers an IRQ when it's full and starts writing to the second
126 address. When the second address is full, the IRQ is triggered again, and
127 the flexcop writes to first address again, and so on.
128 The buffersize of each address is currently 640*188 bytes.
129
130 Problem is, when using hw-pid-filtering and doing some low-bandwidth
131 operation (like scanning) the buffers won't be filled enough to trigger
132 the IRQ. That's why:
133
134 When PID filtering is activated, the timer IRQ is used. Every 1.97 ms the IRQ
135 is triggered. Is the current write address of DMA1 different to the one
136 during the last IRQ, then the data is passed to the demuxer.
137
138 There is an additional DMA-IRQ-method: packet count IRQ. This isn't
139 implemented correctly yet.
140
141 The solution is to disable HW PID filtering, but I don't know how the DVB
142 API software demux behaves on slow systems with 45MBit/s TS.
143
144Solved bugs :)
145--------------
1461g) pid-filtering (somehow pid index 4 and 5 (EMM_PID and ECM_PID) aren't
147working)
148SOLUTION: also index 0 was affected, because net_translation is done for
149these indexes by default
150
1515b) isochronous transfer does only work in the first attempt (for the Sky2PC
152USB, Air2PC is working) SOLUTION: the flexcop was going asleep and never really
153woke up again (don't know if this need fixes, see
154flexcop-fe-tuner.c:flexcop_sleep)
155
156NEWS: when the driver is loaded and unloaded and loaded again (w/o doing
157anything in the while the driver is loaded the first time), no transfers take
158place anymore.
159
160Improvements when rewriting (refactoring) is done
161=================================================
162
163- split sleeping of the flexcop (misc_204.ACPI3_sig = 1;) from lnb_control
164 (enable sleeping for other demods than dvb-s)
165- add support for CableStar (stv0297 Microtune 203x/ALPS) (almost done, incompatibilities with the Nexus-CA)
166
167Debugging
168---------
169- add verbose debugging to skystar2.c (dump the reg_dw_data) and compare it
170 with this flexcop, this is important, because i2c is now using the
171 flexcop_ibi_value union from flexcop-reg.h (do you have a better idea for
172 that, please tell us so).
173
174Everything which is identical in the following table, can be put into a common
175flexcop-module.
176
177 PCI USB
178-------------------------------------------------------------------------------
179Different:
180Register access: accessing IO memory USB control message
181I2C bus: I2C bus of the FC USB control message
182Data transfer: DMA isochronous transfer
183EEPROM transfer: through i2c bus not clear yet
184
185Identical:
186Streaming: accessing registers
187PID Filtering: accessing registers
188Sram destinations: accessing registers
189Tuner/Demod: I2C bus
190DVB-stuff: can be written for common use
191
192Acknowledgements (just for the rewriting part)
193================
194
195Bjarne Steinsbo thought a lot in the first place of the pci part for this code
196sharing idea.
197
198Andreas Oberritter for providing a recent PCI initialization template
199(pluto2.c).
200
201Boleslaw Ciesielski for pointing out a problem with firmware loader.
202
203Vadim Catana for correcting the USB transfer.
204
205comments, critics and ideas to linux-dvb@linuxtv.org.
diff --git a/Documentation/dvb/technisat.txt b/Documentation/dvb/technisat.txt
index cdf6ee4b2da1..3f435ffb289c 100644
--- a/Documentation/dvb/technisat.txt
+++ b/Documentation/dvb/technisat.txt
@@ -1,5 +1,5 @@
1How to set up the Technisat devices 1How to set up the Technisat/B2C2 Flexcop devices
2=================================== 2================================================
3 3
41) Find out what device you have 41) Find out what device you have
5================================ 5================================
@@ -16,54 +16,60 @@ DVB: registering frontend 0 (Conexant CX24123/CX24109)...
16 16
17If the Technisat is the only TV device in your box get rid of unnecessary modules and check this one: 17If the Technisat is the only TV device in your box get rid of unnecessary modules and check this one:
18"Multimedia devices" => "Customise analog and hybrid tuner modules to build" 18"Multimedia devices" => "Customise analog and hybrid tuner modules to build"
19In this directory uncheck every driver which is activated there. 19In this directory uncheck every driver which is activated there (except "Simple tuner support" for case 9 only).
20 20
21Then please activate: 21Then please activate:
222a) Main module part: 222a) Main module part:
23 23
24a.)"Multimedia devices" => "DVB/ATSC adapters" => "Technisat/B2C2 FlexcopII(b) and FlexCopIII adapters" 24a.)"Multimedia devices" => "DVB/ATSC adapters" => "Technisat/B2C2 FlexcopII(b) and FlexCopIII adapters"
25b.)"Multimedia devices" => "DVB/ATSC adapters" => "Technisat/B2C2 FlexcopII(b) and FlexCopIII adapters" => "Technisat/B2C2 Air/Sky/Cable2PC PCI" in case of a PCI card OR 25b.)"Multimedia devices" => "DVB/ATSC adapters" => "Technisat/B2C2 FlexcopII(b) and FlexCopIII adapters" => "Technisat/B2C2 Air/Sky/Cable2PC PCI" in case of a PCI card
26OR
26c.)"Multimedia devices" => "DVB/ATSC adapters" => "Technisat/B2C2 FlexcopII(b) and FlexCopIII adapters" => "Technisat/B2C2 Air/Sky/Cable2PC USB" in case of an USB 1.1 adapter 27c.)"Multimedia devices" => "DVB/ATSC adapters" => "Technisat/B2C2 FlexcopII(b) and FlexCopIII adapters" => "Technisat/B2C2 Air/Sky/Cable2PC USB" in case of an USB 1.1 adapter
27d.)"Multimedia devices" => "DVB/ATSC adapters" => "Technisat/B2C2 FlexcopII(b) and FlexCopIII adapters" => "Enable debug for the B2C2 FlexCop drivers" 28d.)"Multimedia devices" => "DVB/ATSC adapters" => "Technisat/B2C2 FlexcopII(b) and FlexCopIII adapters" => "Enable debug for the B2C2 FlexCop drivers"
28Notice: d.) is helpful for troubleshooting 29Notice: d.) is helpful for troubleshooting
29 30
302b) Frontend module part: 312b) Frontend module part:
31 32
321.) Revision 2.3: 331.) SkyStar DVB-S Revision 2.3:
33a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build" 34a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build"
34b.)"Multimedia devices" => "Customise DVB frontends" => "Zarlink VP310/MT312/ZL10313 based" 35b.)"Multimedia devices" => "Customise DVB frontends" => "Zarlink VP310/MT312/ZL10313 based"
35 36
362.) Revision 2.6: 372.) SkyStar DVB-S Revision 2.6:
37a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build" 38a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build"
38b.)"Multimedia devices" => "Customise DVB frontends" => "ST STV0299 based" 39b.)"Multimedia devices" => "Customise DVB frontends" => "ST STV0299 based"
39 40
403.) Revision 2.7: 413.) SkyStar DVB-S Revision 2.7:
41a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build" 42a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build"
42b.)"Multimedia devices" => "Customise DVB frontends" => "Samsung S5H1420 based" 43b.)"Multimedia devices" => "Customise DVB frontends" => "Samsung S5H1420 based"
43c.)"Multimedia devices" => "Customise DVB frontends" => "Integrant ITD1000 Zero IF tuner for DVB-S/DSS" 44c.)"Multimedia devices" => "Customise DVB frontends" => "Integrant ITD1000 Zero IF tuner for DVB-S/DSS"
44d.)"Multimedia devices" => "Customise DVB frontends" => "ISL6421 SEC controller" 45d.)"Multimedia devices" => "Customise DVB frontends" => "ISL6421 SEC controller"
45 46
464.) Revision 2.8: 474.) SkyStar DVB-S Revision 2.8:
47a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build" 48a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build"
48b.)"Multimedia devices" => "Customise DVB frontends" => "Conexant CX24113/CX24128 tuner for DVB-S/DSS" 49b.)"Multimedia devices" => "Customise DVB frontends" => "Conexant CX24113/CX24128 tuner for DVB-S/DSS"
49c.)"Multimedia devices" => "Customise DVB frontends" => "Conexant CX24123 based" 50c.)"Multimedia devices" => "Customise DVB frontends" => "Conexant CX24123 based"
50d.)"Multimedia devices" => "Customise DVB frontends" => "ISL6421 SEC controller" 51d.)"Multimedia devices" => "Customise DVB frontends" => "ISL6421 SEC controller"
51 52
525.) DVB-T card: 535.) AirStar DVB-T card:
53a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build" 54a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build"
54b.)"Multimedia devices" => "Customise DVB frontends" => "Zarlink MT352 based" 55b.)"Multimedia devices" => "Customise DVB frontends" => "Zarlink MT352 based"
55 56
566.) DVB-C card: 576.) CableStar DVB-C card:
57a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build" 58a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build"
58b.)"Multimedia devices" => "Customise DVB frontends" => "ST STV0297 based" 59b.)"Multimedia devices" => "Customise DVB frontends" => "ST STV0297 based"
59 60
607.) ATSC card 1st generation: 617.) AirStar ATSC card 1st generation:
61a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build" 62a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build"
62b.)"Multimedia devices" => "Customise DVB frontends" => "Broadcom BCM3510" 63b.)"Multimedia devices" => "Customise DVB frontends" => "Broadcom BCM3510"
63 64
648.) ATSC card 2nd generation: 658.) AirStar ATSC card 2nd generation:
65a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build" 66a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build"
66b.)"Multimedia devices" => "Customise DVB frontends" => "NxtWave Communications NXT2002/NXT2004 based" 67b.)"Multimedia devices" => "Customise DVB frontends" => "NxtWave Communications NXT2002/NXT2004 based"
67c.)"Multimedia devices" => "Customise DVB frontends" => "LG Electronics LGDT3302/LGDT3303 based" 68c.)"Multimedia devices" => "Customise DVB frontends" => "Generic I2C PLL based tuners"
68 69
69Author: Uwe Bugla <uwe.bugla@gmx.de> December 2008 709.) AirStar ATSC card 3rd generation:
71a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build"
72b.)"Multimedia devices" => "Customise DVB frontends" => "LG Electronics LGDT3302/LGDT3303 based"
73c.)"Multimedia devices" => "Customise analog and hybrid tuner modules to build" => "Simple tuner support"
74
75Author: Uwe Bugla <uwe.bugla@gmx.de> February 2009
diff --git a/Documentation/filesystems/sysfs.txt b/Documentation/filesystems/sysfs.txt
index 9e9c348275a9..7e81e37c0b1e 100644
--- a/Documentation/filesystems/sysfs.txt
+++ b/Documentation/filesystems/sysfs.txt
@@ -2,8 +2,10 @@
2sysfs - _The_ filesystem for exporting kernel objects. 2sysfs - _The_ filesystem for exporting kernel objects.
3 3
4Patrick Mochel <mochel@osdl.org> 4Patrick Mochel <mochel@osdl.org>
5Mike Murphy <mamurph@cs.clemson.edu>
5 6
610 January 2003 7Revised: 22 February 2009
8Original: 10 January 2003
7 9
8 10
9What it is: 11What it is:
@@ -64,12 +66,13 @@ An attribute definition is simply:
64 66
65struct attribute { 67struct attribute {
66 char * name; 68 char * name;
69 struct module *owner;
67 mode_t mode; 70 mode_t mode;
68}; 71};
69 72
70 73
71int sysfs_create_file(struct kobject * kobj, struct attribute * attr); 74int sysfs_create_file(struct kobject * kobj, const struct attribute * attr);
72void sysfs_remove_file(struct kobject * kobj, struct attribute * attr); 75void sysfs_remove_file(struct kobject * kobj, const struct attribute * attr);
73 76
74 77
75A bare attribute contains no means to read or write the value of the 78A bare attribute contains no means to read or write the value of the
@@ -80,9 +83,11 @@ a specific object type.
80For example, the driver model defines struct device_attribute like: 83For example, the driver model defines struct device_attribute like:
81 84
82struct device_attribute { 85struct device_attribute {
83 struct attribute attr; 86 struct attribute attr;
84 ssize_t (*show)(struct device * dev, char * buf); 87 ssize_t (*show)(struct device *dev, struct device_attribute *attr,
85 ssize_t (*store)(struct device * dev, const char * buf); 88 char *buf);
89 ssize_t (*store)(struct device *dev, struct device_attribute *attr,
90 const char *buf, size_t count);
86}; 91};
87 92
88int device_create_file(struct device *, struct device_attribute *); 93int device_create_file(struct device *, struct device_attribute *);
@@ -90,12 +95,8 @@ void device_remove_file(struct device *, struct device_attribute *);
90 95
91It also defines this helper for defining device attributes: 96It also defines this helper for defining device attributes:
92 97
93#define DEVICE_ATTR(_name, _mode, _show, _store) \ 98#define DEVICE_ATTR(_name, _mode, _show, _store) \
94struct device_attribute dev_attr_##_name = { \ 99struct device_attribute dev_attr_##_name = __ATTR(_name, _mode, _show, _store)
95 .attr = {.name = __stringify(_name) , .mode = _mode }, \
96 .show = _show, \
97 .store = _store, \
98};
99 100
100For example, declaring 101For example, declaring
101 102
@@ -107,9 +108,9 @@ static struct device_attribute dev_attr_foo = {
107 .attr = { 108 .attr = {
108 .name = "foo", 109 .name = "foo",
109 .mode = S_IWUSR | S_IRUGO, 110 .mode = S_IWUSR | S_IRUGO,
111 .show = show_foo,
112 .store = store_foo,
110 }, 113 },
111 .show = show_foo,
112 .store = store_foo,
113}; 114};
114 115
115 116
@@ -161,10 +162,12 @@ To read or write attributes, show() or store() methods must be
161specified when declaring the attribute. The method types should be as 162specified when declaring the attribute. The method types should be as
162simple as those defined for device attributes: 163simple as those defined for device attributes:
163 164
164 ssize_t (*show)(struct device * dev, char * buf); 165ssize_t (*show)(struct device * dev, struct device_attribute * attr,
165 ssize_t (*store)(struct device * dev, const char * buf); 166 char * buf);
167ssize_t (*store)(struct device * dev, struct device_attribute * attr,
168 const char * buf);
166 169
167IOW, they should take only an object and a buffer as parameters. 170IOW, they should take only an object, an attribute, and a buffer as parameters.
168 171
169 172
170sysfs allocates a buffer of size (PAGE_SIZE) and passes it to the 173sysfs allocates a buffer of size (PAGE_SIZE) and passes it to the
@@ -299,14 +302,16 @@ The following interface layers currently exist in sysfs:
299Structure: 302Structure:
300 303
301struct device_attribute { 304struct device_attribute {
302 struct attribute attr; 305 struct attribute attr;
303 ssize_t (*show)(struct device * dev, char * buf); 306 ssize_t (*show)(struct device *dev, struct device_attribute *attr,
304 ssize_t (*store)(struct device * dev, const char * buf); 307 char *buf);
308 ssize_t (*store)(struct device *dev, struct device_attribute *attr,
309 const char *buf, size_t count);
305}; 310};
306 311
307Declaring: 312Declaring:
308 313
309DEVICE_ATTR(_name, _str, _mode, _show, _store); 314DEVICE_ATTR(_name, _mode, _show, _store);
310 315
311Creation/Removal: 316Creation/Removal:
312 317
@@ -342,7 +347,8 @@ Structure:
342struct driver_attribute { 347struct driver_attribute {
343 struct attribute attr; 348 struct attribute attr;
344 ssize_t (*show)(struct device_driver *, char * buf); 349 ssize_t (*show)(struct device_driver *, char * buf);
345 ssize_t (*store)(struct device_driver *, const char * buf); 350 ssize_t (*store)(struct device_driver *, const char * buf,
351 size_t count);
346}; 352};
347 353
348Declaring: 354Declaring:
diff --git a/Documentation/hwmon/hpfall.c b/Documentation/hwmon/hpfall.c
new file mode 100644
index 000000000000..bbea1ccfd46a
--- /dev/null
+++ b/Documentation/hwmon/hpfall.c
@@ -0,0 +1,101 @@
1/* Disk protection for HP machines.
2 *
3 * Copyright 2008 Eric Piel
4 * Copyright 2009 Pavel Machek <pavel@suse.cz>
5 *
6 * GPLv2.
7 */
8
9#include <stdio.h>
10#include <stdlib.h>
11#include <unistd.h>
12#include <fcntl.h>
13#include <sys/stat.h>
14#include <sys/types.h>
15#include <string.h>
16#include <stdint.h>
17#include <errno.h>
18#include <signal.h>
19
20void write_int(char *path, int i)
21{
22 char buf[1024];
23 int fd = open(path, O_RDWR);
24 if (fd < 0) {
25 perror("open");
26 exit(1);
27 }
28 sprintf(buf, "%d", i);
29 if (write(fd, buf, strlen(buf)) != strlen(buf)) {
30 perror("write");
31 exit(1);
32 }
33 close(fd);
34}
35
36void set_led(int on)
37{
38 write_int("/sys/class/leds/hp::hddprotect/brightness", on);
39}
40
41void protect(int seconds)
42{
43 write_int("/sys/block/sda/device/unload_heads", seconds*1000);
44}
45
46int on_ac(void)
47{
48// /sys/class/power_supply/AC0/online
49}
50
51int lid_open(void)
52{
53// /proc/acpi/button/lid/LID/state
54}
55
56void ignore_me(void)
57{
58 protect(0);
59 set_led(0);
60
61}
62
63int main(int argc, char* argv[])
64{
65 int fd, ret;
66
67 fd = open("/dev/freefall", O_RDONLY);
68 if (fd < 0) {
69 perror("open");
70 return EXIT_FAILURE;
71 }
72
73 signal(SIGALRM, ignore_me);
74
75 for (;;) {
76 unsigned char count;
77
78 ret = read(fd, &count, sizeof(count));
79 alarm(0);
80 if ((ret == -1) && (errno == EINTR)) {
81 /* Alarm expired, time to unpark the heads */
82 continue;
83 }
84
85 if (ret != sizeof(count)) {
86 perror("read");
87 break;
88 }
89
90 protect(21);
91 set_led(1);
92 if (1 || on_ac() || lid_open()) {
93 alarm(2);
94 } else {
95 alarm(20);
96 }
97 }
98
99 close(fd);
100 return EXIT_SUCCESS;
101}
diff --git a/Documentation/hwmon/lis3lv02d b/Documentation/hwmon/lis3lv02d
index 0fcfc4a7ccdc..287f8c902656 100644
--- a/Documentation/hwmon/lis3lv02d
+++ b/Documentation/hwmon/lis3lv02d
@@ -33,6 +33,14 @@ rate - reports the sampling rate of the accelerometer device in HZ
33This driver also provides an absolute input class device, allowing 33This driver also provides an absolute input class device, allowing
34the laptop to act as a pinball machine-esque joystick. 34the laptop to act as a pinball machine-esque joystick.
35 35
36Another feature of the driver is misc device called "freefall" that
37acts similar to /dev/rtc and reacts on free-fall interrupts received
38from the device. It supports blocking operations, poll/select and
39fasync operation modes. You must read 1 bytes from the device. The
40result is number of free-fall interrupts since the last successful
41read (or 255 if number of interrupts would not fit).
42
43
36Axes orientation 44Axes orientation
37---------------- 45----------------
38 46
diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt
index b182626739ea..28de395fa096 100644
--- a/Documentation/kernel-parameters.txt
+++ b/Documentation/kernel-parameters.txt
@@ -114,7 +114,7 @@ In addition, the following text indicates that the option:
114Parameters denoted with BOOT are actually interpreted by the boot 114Parameters denoted with BOOT are actually interpreted by the boot
115loader, and have no meaning to the kernel directly. 115loader, and have no meaning to the kernel directly.
116Do not modify the syntax of boot loader parameters without extreme 116Do not modify the syntax of boot loader parameters without extreme
117need or coordination with <Documentation/x86/i386/boot.txt>. 117need or coordination with <Documentation/x86/boot.txt>.
118 118
119There are also arch-specific kernel-parameters not documented here. 119There are also arch-specific kernel-parameters not documented here.
120See for example <Documentation/x86/x86_64/boot-options.txt>. 120See for example <Documentation/x86/x86_64/boot-options.txt>.
@@ -134,7 +134,7 @@ and is between 256 and 4096 characters. It is defined in the file
134 134
135 acpi= [HW,ACPI,X86-64,i386] 135 acpi= [HW,ACPI,X86-64,i386]
136 Advanced Configuration and Power Interface 136 Advanced Configuration and Power Interface
137 Format: { force | off | ht | strict | noirq } 137 Format: { force | off | ht | strict | noirq | rsdt }
138 force -- enable ACPI if default was off 138 force -- enable ACPI if default was off
139 off -- disable ACPI if default was on 139 off -- disable ACPI if default was on
140 noirq -- do not use ACPI for IRQ routing 140 noirq -- do not use ACPI for IRQ routing
@@ -868,8 +868,10 @@ and is between 256 and 4096 characters. It is defined in the file
868 icn= [HW,ISDN] 868 icn= [HW,ISDN]
869 Format: <io>[,<membase>[,<icn_id>[,<icn_id2>]]] 869 Format: <io>[,<membase>[,<icn_id>[,<icn_id2>]]]
870 870
871 ide= [HW] (E)IDE subsystem 871 ide-core.nodma= [HW] (E)IDE subsystem
872 Format: ide=nodma or ide=doubler 872 Format: =0.0 to prevent dma on hda, =0.1 hdb =1.0 hdc
873 .vlb_clock .pci_clock .noflush .noprobe .nowerr .cdrom
874 .chs .ignore_cable are additional options
873 See Documentation/ide/ide.txt. 875 See Documentation/ide/ide.txt.
874 876
875 idebus= [HW] (E)IDE subsystem - VLB/PCI bus speed 877 idebus= [HW] (E)IDE subsystem - VLB/PCI bus speed
@@ -1308,8 +1310,13 @@ and is between 256 and 4096 characters. It is defined in the file
1308 1310
1309 memtest= [KNL,X86] Enable memtest 1311 memtest= [KNL,X86] Enable memtest
1310 Format: <integer> 1312 Format: <integer>
1311 range: 0,4 : pattern number
1312 default : 0 <disable> 1313 default : 0 <disable>
1314 Specifies the number of memtest passes to be
1315 performed. Each pass selects another test
1316 pattern from a given set of patterns. Memtest
1317 fills the memory with this pattern, validates
1318 memory contents and reserves bad memory
1319 regions that are detected.
1313 1320
1314 meye.*= [HW] Set MotionEye Camera parameters 1321 meye.*= [HW] Set MotionEye Camera parameters
1315 See Documentation/video4linux/meye.txt. 1322 See Documentation/video4linux/meye.txt.
@@ -2449,7 +2456,7 @@ and is between 256 and 4096 characters. It is defined in the file
2449 See Documentation/fb/modedb.txt. 2456 See Documentation/fb/modedb.txt.
2450 2457
2451 vga= [BOOT,X86-32] Select a particular video mode 2458 vga= [BOOT,X86-32] Select a particular video mode
2452 See Documentation/x86/i386/boot.txt and 2459 See Documentation/x86/boot.txt and
2453 Documentation/svga.txt. 2460 Documentation/svga.txt.
2454 Use vga=ask for menu. 2461 Use vga=ask for menu.
2455 This is actually a boot loader parameter; the value is 2462 This is actually a boot loader parameter; the value is
diff --git a/Documentation/scsi/cxgb3i.txt b/Documentation/scsi/cxgb3i.txt
index 8141fa01978e..7ac8032ee9b2 100644
--- a/Documentation/scsi/cxgb3i.txt
+++ b/Documentation/scsi/cxgb3i.txt
@@ -4,7 +4,7 @@ Introduction
4============ 4============
5 5
6The Chelsio T3 ASIC based Adapters (S310, S320, S302, S304, Mezz cards, etc. 6The Chelsio T3 ASIC based Adapters (S310, S320, S302, S304, Mezz cards, etc.
7series of products) supports iSCSI acceleration and iSCSI Direct Data Placement 7series of products) support iSCSI acceleration and iSCSI Direct Data Placement
8(DDP) where the hardware handles the expensive byte touching operations, such 8(DDP) where the hardware handles the expensive byte touching operations, such
9as CRC computation and verification, and direct DMA to the final host memory 9as CRC computation and verification, and direct DMA to the final host memory
10destination: 10destination:
@@ -31,9 +31,9 @@ destination:
31 the TCP segments onto the wire. It handles TCP retransmission if 31 the TCP segments onto the wire. It handles TCP retransmission if
32 needed. 32 needed.
33 33
34 On receving, S3 h/w recovers the iSCSI PDU by reassembling TCP 34 On receiving, S3 h/w recovers the iSCSI PDU by reassembling TCP
35 segments, separating the header and data, calculating and verifying 35 segments, separating the header and data, calculating and verifying
36 the digests, then forwards the header to the host. The payload data, 36 the digests, then forwarding the header to the host. The payload data,
37 if possible, will be directly placed into the pre-posted host DDP 37 if possible, will be directly placed into the pre-posted host DDP
38 buffer. Otherwise, the payload data will be sent to the host too. 38 buffer. Otherwise, the payload data will be sent to the host too.
39 39
@@ -68,9 +68,8 @@ The following steps need to be taken to accelerates the open-iscsi initiator:
68 sure the ip address is unique in the network. 68 sure the ip address is unique in the network.
69 69
703. edit /etc/iscsi/iscsid.conf 703. edit /etc/iscsi/iscsid.conf
71 The default setting for MaxRecvDataSegmentLength (131072) is too big, 71 The default setting for MaxRecvDataSegmentLength (131072) is too big;
72 replace "node.conn[0].iscsi.MaxRecvDataSegmentLength" to be a value no 72 replace with a value no bigger than 15360 (for example 8192):
73 bigger than 15360 (for example 8192):
74 73
75 node.conn[0].iscsi.MaxRecvDataSegmentLength = 8192 74 node.conn[0].iscsi.MaxRecvDataSegmentLength = 8192
76 75
diff --git a/Documentation/tracers/mmiotrace.txt b/Documentation/tracers/mmiotrace.txt
index cde23b4a12a1..5731c67abc55 100644
--- a/Documentation/tracers/mmiotrace.txt
+++ b/Documentation/tracers/mmiotrace.txt
@@ -78,12 +78,10 @@ to view your kernel log and look for "mmiotrace has lost events" warning. If
78events were lost, the trace is incomplete. You should enlarge the buffers and 78events were lost, the trace is incomplete. You should enlarge the buffers and
79try again. Buffers are enlarged by first seeing how large the current buffers 79try again. Buffers are enlarged by first seeing how large the current buffers
80are: 80are:
81$ cat /debug/tracing/trace_entries 81$ cat /debug/tracing/buffer_size_kb
82gives you a number. Approximately double this number and write it back, for 82gives you a number. Approximately double this number and write it back, for
83instance: 83instance:
84$ echo 0 > /debug/tracing/tracing_enabled 84$ echo 128000 > /debug/tracing/buffer_size_kb
85$ echo 128000 > /debug/tracing/trace_entries
86$ echo 1 > /debug/tracing/tracing_enabled
87Then start again from the top. 85Then start again from the top.
88 86
89If you are doing a trace for a driver project, e.g. Nouveau, you should also 87If you are doing a trace for a driver project, e.g. Nouveau, you should also
diff --git a/Documentation/x86/boot.txt b/Documentation/x86/boot.txt
index 12299697b7cd..e0203662f9e9 100644
--- a/Documentation/x86/boot.txt
+++ b/Documentation/x86/boot.txt
@@ -543,7 +543,10 @@ Protocol: 2.08+
543 543
544 The payload may be compressed. The format of both the compressed and 544 The payload may be compressed. The format of both the compressed and
545 uncompressed data should be determined using the standard magic 545 uncompressed data should be determined using the standard magic
546 numbers. Currently only gzip compressed ELF is used. 546 numbers. The currently supported compression formats are gzip
547 (magic numbers 1F 8B or 1F 9E), bzip2 (magic number 42 5A) and LZMA
548 (magic number 5D 00). The uncompressed payload is currently always ELF
549 (magic number 7F 45 4C 46).
547 550
548Field name: payload_length 551Field name: payload_length
549Type: read 552Type: read