aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/ABI/testing/sysfs-firmware-memmap2
-rw-r--r--Documentation/DocBook/Makefile2
-rw-r--r--Documentation/DocBook/device-drivers.tmpl418
-rw-r--r--Documentation/DocBook/kernel-api.tmpl377
-rw-r--r--Documentation/cgroups/cgroups.txt6
-rw-r--r--Documentation/cgroups/cpusets.txt65
-rw-r--r--Documentation/driver-model/device.txt8
-rw-r--r--Documentation/filesystems/sysfs.txt50
-rw-r--r--Documentation/hwmon/hpfall.c101
-rw-r--r--Documentation/hwmon/lis3lv02d8
-rw-r--r--Documentation/kernel-parameters.txt8
-rw-r--r--Documentation/tracers/mmiotrace.txt6
12 files changed, 608 insertions, 443 deletions
diff --git a/Documentation/ABI/testing/sysfs-firmware-memmap b/Documentation/ABI/testing/sysfs-firmware-memmap
index 0d99ee6ae02e..eca0d65087dc 100644
--- a/Documentation/ABI/testing/sysfs-firmware-memmap
+++ b/Documentation/ABI/testing/sysfs-firmware-memmap
@@ -1,6 +1,6 @@
1What: /sys/firmware/memmap/ 1What: /sys/firmware/memmap/
2Date: June 2008 2Date: June 2008
3Contact: Bernhard Walle <bwalle@suse.de> 3Contact: Bernhard Walle <bernhard.walle@gmx.de>
4Description: 4Description:
5 On all platforms, the firmware provides a memory map which the 5 On all platforms, the firmware provides a memory map which the
6 kernel reads. The resources from that memory map are registered 6 kernel reads. The resources from that memory map are registered
diff --git a/Documentation/DocBook/Makefile b/Documentation/DocBook/Makefile
index dc3154e49279..1462ed86d40a 100644
--- a/Documentation/DocBook/Makefile
+++ b/Documentation/DocBook/Makefile
@@ -6,7 +6,7 @@
6# To add a new book the only step required is to add the book to the 6# To add a new book the only step required is to add the book to the
7# list of DOCBOOKS. 7# list of DOCBOOKS.
8 8
9DOCBOOKS := z8530book.xml mcabook.xml \ 9DOCBOOKS := z8530book.xml mcabook.xml device-drivers.xml \
10 kernel-hacking.xml kernel-locking.xml deviceiobook.xml \ 10 kernel-hacking.xml kernel-locking.xml deviceiobook.xml \
11 procfs-guide.xml writing_usb_driver.xml networking.xml \ 11 procfs-guide.xml writing_usb_driver.xml networking.xml \
12 kernel-api.xml filesystems.xml lsm.xml usb.xml kgdb.xml \ 12 kernel-api.xml filesystems.xml lsm.xml usb.xml kgdb.xml \
diff --git a/Documentation/DocBook/device-drivers.tmpl b/Documentation/DocBook/device-drivers.tmpl
new file mode 100644
index 000000000000..94a20fe8fedf
--- /dev/null
+++ b/Documentation/DocBook/device-drivers.tmpl
@@ -0,0 +1,418 @@
1<?xml version="1.0" encoding="UTF-8"?>
2<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
3 "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
4
5<book id="LinuxDriversAPI">
6 <bookinfo>
7 <title>Linux Device Drivers</title>
8
9 <legalnotice>
10 <para>
11 This documentation is free software; you can redistribute
12 it and/or modify it under the terms of the GNU General Public
13 License as published by the Free Software Foundation; either
14 version 2 of the License, or (at your option) any later
15 version.
16 </para>
17
18 <para>
19 This program is distributed in the hope that it will be
20 useful, but WITHOUT ANY WARRANTY; without even the implied
21 warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 See the GNU General Public License for more details.
23 </para>
24
25 <para>
26 You should have received a copy of the GNU General Public
27 License along with this program; if not, write to the Free
28 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
29 MA 02111-1307 USA
30 </para>
31
32 <para>
33 For more details see the file COPYING in the source
34 distribution of Linux.
35 </para>
36 </legalnotice>
37 </bookinfo>
38
39<toc></toc>
40
41 <chapter id="Basics">
42 <title>Driver Basics</title>
43 <sect1><title>Driver Entry and Exit points</title>
44!Iinclude/linux/init.h
45 </sect1>
46
47 <sect1><title>Atomic and pointer manipulation</title>
48!Iarch/x86/include/asm/atomic_32.h
49!Iarch/x86/include/asm/unaligned.h
50 </sect1>
51
52 <sect1><title>Delaying, scheduling, and timer routines</title>
53!Iinclude/linux/sched.h
54!Ekernel/sched.c
55!Ekernel/timer.c
56 </sect1>
57 <sect1><title>High-resolution timers</title>
58!Iinclude/linux/ktime.h
59!Iinclude/linux/hrtimer.h
60!Ekernel/hrtimer.c
61 </sect1>
62 <sect1><title>Workqueues and Kevents</title>
63!Ekernel/workqueue.c
64 </sect1>
65 <sect1><title>Internal Functions</title>
66!Ikernel/exit.c
67!Ikernel/signal.c
68!Iinclude/linux/kthread.h
69!Ekernel/kthread.c
70 </sect1>
71
72 <sect1><title>Kernel objects manipulation</title>
73<!--
74X!Iinclude/linux/kobject.h
75-->
76!Elib/kobject.c
77 </sect1>
78
79 <sect1><title>Kernel utility functions</title>
80!Iinclude/linux/kernel.h
81!Ekernel/printk.c
82!Ekernel/panic.c
83!Ekernel/sys.c
84!Ekernel/rcupdate.c
85 </sect1>
86
87 <sect1><title>Device Resource Management</title>
88!Edrivers/base/devres.c
89 </sect1>
90
91 </chapter>
92
93 <chapter id="devdrivers">
94 <title>Device drivers infrastructure</title>
95 <sect1><title>Device Drivers Base</title>
96<!--
97X!Iinclude/linux/device.h
98-->
99!Edrivers/base/driver.c
100!Edrivers/base/core.c
101!Edrivers/base/class.c
102!Edrivers/base/firmware_class.c
103!Edrivers/base/transport_class.c
104<!-- Cannot be included, because
105 attribute_container_add_class_device_adapter
106 and attribute_container_classdev_to_container
107 exceed allowed 44 characters maximum
108X!Edrivers/base/attribute_container.c
109-->
110!Edrivers/base/sys.c
111<!--
112X!Edrivers/base/interface.c
113-->
114!Edrivers/base/platform.c
115!Edrivers/base/bus.c
116 </sect1>
117 <sect1><title>Device Drivers Power Management</title>
118!Edrivers/base/power/main.c
119 </sect1>
120 <sect1><title>Device Drivers ACPI Support</title>
121<!-- Internal functions only
122X!Edrivers/acpi/sleep/main.c
123X!Edrivers/acpi/sleep/wakeup.c
124X!Edrivers/acpi/motherboard.c
125X!Edrivers/acpi/bus.c
126-->
127!Edrivers/acpi/scan.c
128!Idrivers/acpi/scan.c
129<!-- No correct structured comments
130X!Edrivers/acpi/pci_bind.c
131-->
132 </sect1>
133 <sect1><title>Device drivers PnP support</title>
134!Idrivers/pnp/core.c
135<!-- No correct structured comments
136X!Edrivers/pnp/system.c
137 -->
138!Edrivers/pnp/card.c
139!Idrivers/pnp/driver.c
140!Edrivers/pnp/manager.c
141!Edrivers/pnp/support.c
142 </sect1>
143 <sect1><title>Userspace IO devices</title>
144!Edrivers/uio/uio.c
145!Iinclude/linux/uio_driver.h
146 </sect1>
147 </chapter>
148
149 <chapter id="parportdev">
150 <title>Parallel Port Devices</title>
151!Iinclude/linux/parport.h
152!Edrivers/parport/ieee1284.c
153!Edrivers/parport/share.c
154!Idrivers/parport/daisy.c
155 </chapter>
156
157 <chapter id="message_devices">
158 <title>Message-based devices</title>
159 <sect1><title>Fusion message devices</title>
160!Edrivers/message/fusion/mptbase.c
161!Idrivers/message/fusion/mptbase.c
162!Edrivers/message/fusion/mptscsih.c
163!Idrivers/message/fusion/mptscsih.c
164!Idrivers/message/fusion/mptctl.c
165!Idrivers/message/fusion/mptspi.c
166!Idrivers/message/fusion/mptfc.c
167!Idrivers/message/fusion/mptlan.c
168 </sect1>
169 <sect1><title>I2O message devices</title>
170!Iinclude/linux/i2o.h
171!Idrivers/message/i2o/core.h
172!Edrivers/message/i2o/iop.c
173!Idrivers/message/i2o/iop.c
174!Idrivers/message/i2o/config-osm.c
175!Edrivers/message/i2o/exec-osm.c
176!Idrivers/message/i2o/exec-osm.c
177!Idrivers/message/i2o/bus-osm.c
178!Edrivers/message/i2o/device.c
179!Idrivers/message/i2o/device.c
180!Idrivers/message/i2o/driver.c
181!Idrivers/message/i2o/pci.c
182!Idrivers/message/i2o/i2o_block.c
183!Idrivers/message/i2o/i2o_scsi.c
184!Idrivers/message/i2o/i2o_proc.c
185 </sect1>
186 </chapter>
187
188 <chapter id="snddev">
189 <title>Sound Devices</title>
190!Iinclude/sound/core.h
191!Esound/sound_core.c
192!Iinclude/sound/pcm.h
193!Esound/core/pcm.c
194!Esound/core/device.c
195!Esound/core/info.c
196!Esound/core/rawmidi.c
197!Esound/core/sound.c
198!Esound/core/memory.c
199!Esound/core/pcm_memory.c
200!Esound/core/init.c
201!Esound/core/isadma.c
202!Esound/core/control.c
203!Esound/core/pcm_lib.c
204!Esound/core/hwdep.c
205!Esound/core/pcm_native.c
206!Esound/core/memalloc.c
207<!-- FIXME: Removed for now since no structured comments in source
208X!Isound/sound_firmware.c
209-->
210 </chapter>
211
212 <chapter id="uart16x50">
213 <title>16x50 UART Driver</title>
214!Iinclude/linux/serial_core.h
215!Edrivers/serial/serial_core.c
216!Edrivers/serial/8250.c
217 </chapter>
218
219 <chapter id="fbdev">
220 <title>Frame Buffer Library</title>
221
222 <para>
223 The frame buffer drivers depend heavily on four data structures.
224 These structures are declared in include/linux/fb.h. They are
225 fb_info, fb_var_screeninfo, fb_fix_screeninfo and fb_monospecs.
226 The last three can be made available to and from userland.
227 </para>
228
229 <para>
230 fb_info defines the current state of a particular video card.
231 Inside fb_info, there exists a fb_ops structure which is a
232 collection of needed functions to make fbdev and fbcon work.
233 fb_info is only visible to the kernel.
234 </para>
235
236 <para>
237 fb_var_screeninfo is used to describe the features of a video card
238 that are user defined. With fb_var_screeninfo, things such as
239 depth and the resolution may be defined.
240 </para>
241
242 <para>
243 The next structure is fb_fix_screeninfo. This defines the
244 properties of a card that are created when a mode is set and can't
245 be changed otherwise. A good example of this is the start of the
246 frame buffer memory. This "locks" the address of the frame buffer
247 memory, so that it cannot be changed or moved.
248 </para>
249
250 <para>
251 The last structure is fb_monospecs. In the old API, there was
252 little importance for fb_monospecs. This allowed for forbidden things
253 such as setting a mode of 800x600 on a fix frequency monitor. With
254 the new API, fb_monospecs prevents such things, and if used
255 correctly, can prevent a monitor from being cooked. fb_monospecs
256 will not be useful until kernels 2.5.x.
257 </para>
258
259 <sect1><title>Frame Buffer Memory</title>
260!Edrivers/video/fbmem.c
261 </sect1>
262<!--
263 <sect1><title>Frame Buffer Console</title>
264X!Edrivers/video/console/fbcon.c
265 </sect1>
266-->
267 <sect1><title>Frame Buffer Colormap</title>
268!Edrivers/video/fbcmap.c
269 </sect1>
270<!-- FIXME:
271 drivers/video/fbgen.c has no docs, which stuffs up the sgml. Comment
272 out until somebody adds docs. KAO
273 <sect1><title>Frame Buffer Generic Functions</title>
274X!Idrivers/video/fbgen.c
275 </sect1>
276KAO -->
277 <sect1><title>Frame Buffer Video Mode Database</title>
278!Idrivers/video/modedb.c
279!Edrivers/video/modedb.c
280 </sect1>
281 <sect1><title>Frame Buffer Macintosh Video Mode Database</title>
282!Edrivers/video/macmodes.c
283 </sect1>
284 <sect1><title>Frame Buffer Fonts</title>
285 <para>
286 Refer to the file drivers/video/console/fonts.c for more information.
287 </para>
288<!-- FIXME: Removed for now since no structured comments in source
289X!Idrivers/video/console/fonts.c
290-->
291 </sect1>
292 </chapter>
293
294 <chapter id="input_subsystem">
295 <title>Input Subsystem</title>
296!Iinclude/linux/input.h
297!Edrivers/input/input.c
298!Edrivers/input/ff-core.c
299!Edrivers/input/ff-memless.c
300 </chapter>
301
302 <chapter id="spi">
303 <title>Serial Peripheral Interface (SPI)</title>
304 <para>
305 SPI is the "Serial Peripheral Interface", widely used with
306 embedded systems because it is a simple and efficient
307 interface: basically a multiplexed shift register.
308 Its three signal wires hold a clock (SCK, often in the range
309 of 1-20 MHz), a "Master Out, Slave In" (MOSI) data line, and
310 a "Master In, Slave Out" (MISO) data line.
311 SPI is a full duplex protocol; for each bit shifted out the
312 MOSI line (one per clock) another is shifted in on the MISO line.
313 Those bits are assembled into words of various sizes on the
314 way to and from system memory.
315 An additional chipselect line is usually active-low (nCS);
316 four signals are normally used for each peripheral, plus
317 sometimes an interrupt.
318 </para>
319 <para>
320 The SPI bus facilities listed here provide a generalized
321 interface to declare SPI busses and devices, manage them
322 according to the standard Linux driver model, and perform
323 input/output operations.
324 At this time, only "master" side interfaces are supported,
325 where Linux talks to SPI peripherals and does not implement
326 such a peripheral itself.
327 (Interfaces to support implementing SPI slaves would
328 necessarily look different.)
329 </para>
330 <para>
331 The programming interface is structured around two kinds of driver,
332 and two kinds of device.
333 A "Controller Driver" abstracts the controller hardware, which may
334 be as simple as a set of GPIO pins or as complex as a pair of FIFOs
335 connected to dual DMA engines on the other side of the SPI shift
336 register (maximizing throughput). Such drivers bridge between
337 whatever bus they sit on (often the platform bus) and SPI, and
338 expose the SPI side of their device as a
339 <structname>struct spi_master</structname>.
340 SPI devices are children of that master, represented as a
341 <structname>struct spi_device</structname> and manufactured from
342 <structname>struct spi_board_info</structname> descriptors which
343 are usually provided by board-specific initialization code.
344 A <structname>struct spi_driver</structname> is called a
345 "Protocol Driver", and is bound to a spi_device using normal
346 driver model calls.
347 </para>
348 <para>
349 The I/O model is a set of queued messages. Protocol drivers
350 submit one or more <structname>struct spi_message</structname>
351 objects, which are processed and completed asynchronously.
352 (There are synchronous wrappers, however.) Messages are
353 built from one or more <structname>struct spi_transfer</structname>
354 objects, each of which wraps a full duplex SPI transfer.
355 A variety of protocol tweaking options are needed, because
356 different chips adopt very different policies for how they
357 use the bits transferred with SPI.
358 </para>
359!Iinclude/linux/spi/spi.h
360!Fdrivers/spi/spi.c spi_register_board_info
361!Edrivers/spi/spi.c
362 </chapter>
363
364 <chapter id="i2c">
365 <title>I<superscript>2</superscript>C and SMBus Subsystem</title>
366
367 <para>
368 I<superscript>2</superscript>C (or without fancy typography, "I2C")
369 is an acronym for the "Inter-IC" bus, a simple bus protocol which is
370 widely used where low data rate communications suffice.
371 Since it's also a licensed trademark, some vendors use another
372 name (such as "Two-Wire Interface", TWI) for the same bus.
373 I2C only needs two signals (SCL for clock, SDA for data), conserving
374 board real estate and minimizing signal quality issues.
375 Most I2C devices use seven bit addresses, and bus speeds of up
376 to 400 kHz; there's a high speed extension (3.4 MHz) that's not yet
377 found wide use.
378 I2C is a multi-master bus; open drain signaling is used to
379 arbitrate between masters, as well as to handshake and to
380 synchronize clocks from slower clients.
381 </para>
382
383 <para>
384 The Linux I2C programming interfaces support only the master
385 side of bus interactions, not the slave side.
386 The programming interface is structured around two kinds of driver,
387 and two kinds of device.
388 An I2C "Adapter Driver" abstracts the controller hardware; it binds
389 to a physical device (perhaps a PCI device or platform_device) and
390 exposes a <structname>struct i2c_adapter</structname> representing
391 each I2C bus segment it manages.
392 On each I2C bus segment will be I2C devices represented by a
393 <structname>struct i2c_client</structname>. Those devices will
394 be bound to a <structname>struct i2c_driver</structname>,
395 which should follow the standard Linux driver model.
396 (At this writing, a legacy model is more widely used.)
397 There are functions to perform various I2C protocol operations; at
398 this writing all such functions are usable only from task context.
399 </para>
400
401 <para>
402 The System Management Bus (SMBus) is a sibling protocol. Most SMBus
403 systems are also I2C conformant. The electrical constraints are
404 tighter for SMBus, and it standardizes particular protocol messages
405 and idioms. Controllers that support I2C can also support most
406 SMBus operations, but SMBus controllers don't support all the protocol
407 options that an I2C controller will.
408 There are functions to perform various SMBus protocol operations,
409 either using I2C primitives or by issuing SMBus commands to
410 i2c_adapter devices which don't support those I2C operations.
411 </para>
412
413!Iinclude/linux/i2c.h
414!Fdrivers/i2c/i2c-boardinfo.c i2c_register_board_info
415!Edrivers/i2c/i2c-core.c
416 </chapter>
417
418</book>
diff --git a/Documentation/DocBook/kernel-api.tmpl b/Documentation/DocBook/kernel-api.tmpl
index 5818ff75786a..bc962cda6504 100644
--- a/Documentation/DocBook/kernel-api.tmpl
+++ b/Documentation/DocBook/kernel-api.tmpl
@@ -38,58 +38,6 @@
38 38
39<toc></toc> 39<toc></toc>
40 40
41 <chapter id="Basics">
42 <title>Driver Basics</title>
43 <sect1><title>Driver Entry and Exit points</title>
44!Iinclude/linux/init.h
45 </sect1>
46
47 <sect1><title>Atomic and pointer manipulation</title>
48!Iarch/x86/include/asm/atomic_32.h
49!Iarch/x86/include/asm/unaligned.h
50 </sect1>
51
52 <sect1><title>Delaying, scheduling, and timer routines</title>
53!Iinclude/linux/sched.h
54!Ekernel/sched.c
55!Ekernel/timer.c
56 </sect1>
57 <sect1><title>High-resolution timers</title>
58!Iinclude/linux/ktime.h
59!Iinclude/linux/hrtimer.h
60!Ekernel/hrtimer.c
61 </sect1>
62 <sect1><title>Workqueues and Kevents</title>
63!Ekernel/workqueue.c
64 </sect1>
65 <sect1><title>Internal Functions</title>
66!Ikernel/exit.c
67!Ikernel/signal.c
68!Iinclude/linux/kthread.h
69!Ekernel/kthread.c
70 </sect1>
71
72 <sect1><title>Kernel objects manipulation</title>
73<!--
74X!Iinclude/linux/kobject.h
75-->
76!Elib/kobject.c
77 </sect1>
78
79 <sect1><title>Kernel utility functions</title>
80!Iinclude/linux/kernel.h
81!Ekernel/printk.c
82!Ekernel/panic.c
83!Ekernel/sys.c
84!Ekernel/rcupdate.c
85 </sect1>
86
87 <sect1><title>Device Resource Management</title>
88!Edrivers/base/devres.c
89 </sect1>
90
91 </chapter>
92
93 <chapter id="adt"> 41 <chapter id="adt">
94 <title>Data Types</title> 42 <title>Data Types</title>
95 <sect1><title>Doubly Linked Lists</title> 43 <sect1><title>Doubly Linked Lists</title>
@@ -298,62 +246,6 @@ X!Earch/x86/kernel/mca_32.c
298!Ikernel/acct.c 246!Ikernel/acct.c
299 </chapter> 247 </chapter>
300 248
301 <chapter id="devdrivers">
302 <title>Device drivers infrastructure</title>
303 <sect1><title>Device Drivers Base</title>
304<!--
305X!Iinclude/linux/device.h
306-->
307!Edrivers/base/driver.c
308!Edrivers/base/core.c
309!Edrivers/base/class.c
310!Edrivers/base/firmware_class.c
311!Edrivers/base/transport_class.c
312<!-- Cannot be included, because
313 attribute_container_add_class_device_adapter
314 and attribute_container_classdev_to_container
315 exceed allowed 44 characters maximum
316X!Edrivers/base/attribute_container.c
317-->
318!Edrivers/base/sys.c
319<!--
320X!Edrivers/base/interface.c
321-->
322!Edrivers/base/platform.c
323!Edrivers/base/bus.c
324 </sect1>
325 <sect1><title>Device Drivers Power Management</title>
326!Edrivers/base/power/main.c
327 </sect1>
328 <sect1><title>Device Drivers ACPI Support</title>
329<!-- Internal functions only
330X!Edrivers/acpi/sleep/main.c
331X!Edrivers/acpi/sleep/wakeup.c
332X!Edrivers/acpi/motherboard.c
333X!Edrivers/acpi/bus.c
334-->
335!Edrivers/acpi/scan.c
336!Idrivers/acpi/scan.c
337<!-- No correct structured comments
338X!Edrivers/acpi/pci_bind.c
339-->
340 </sect1>
341 <sect1><title>Device drivers PnP support</title>
342!Idrivers/pnp/core.c
343<!-- No correct structured comments
344X!Edrivers/pnp/system.c
345 -->
346!Edrivers/pnp/card.c
347!Idrivers/pnp/driver.c
348!Edrivers/pnp/manager.c
349!Edrivers/pnp/support.c
350 </sect1>
351 <sect1><title>Userspace IO devices</title>
352!Edrivers/uio/uio.c
353!Iinclude/linux/uio_driver.h
354 </sect1>
355 </chapter>
356
357 <chapter id="blkdev"> 249 <chapter id="blkdev">
358 <title>Block Devices</title> 250 <title>Block Devices</title>
359!Eblock/blk-core.c 251!Eblock/blk-core.c
@@ -381,275 +273,6 @@ X!Edrivers/pnp/system.c
381!Edrivers/char/misc.c 273!Edrivers/char/misc.c
382 </chapter> 274 </chapter>
383 275
384 <chapter id="parportdev">
385 <title>Parallel Port Devices</title>
386!Iinclude/linux/parport.h
387!Edrivers/parport/ieee1284.c
388!Edrivers/parport/share.c
389!Idrivers/parport/daisy.c
390 </chapter>
391
392 <chapter id="message_devices">
393 <title>Message-based devices</title>
394 <sect1><title>Fusion message devices</title>
395!Edrivers/message/fusion/mptbase.c
396!Idrivers/message/fusion/mptbase.c
397!Edrivers/message/fusion/mptscsih.c
398!Idrivers/message/fusion/mptscsih.c
399!Idrivers/message/fusion/mptctl.c
400!Idrivers/message/fusion/mptspi.c
401!Idrivers/message/fusion/mptfc.c
402!Idrivers/message/fusion/mptlan.c
403 </sect1>
404 <sect1><title>I2O message devices</title>
405!Iinclude/linux/i2o.h
406!Idrivers/message/i2o/core.h
407!Edrivers/message/i2o/iop.c
408!Idrivers/message/i2o/iop.c
409!Idrivers/message/i2o/config-osm.c
410!Edrivers/message/i2o/exec-osm.c
411!Idrivers/message/i2o/exec-osm.c
412!Idrivers/message/i2o/bus-osm.c
413!Edrivers/message/i2o/device.c
414!Idrivers/message/i2o/device.c
415!Idrivers/message/i2o/driver.c
416!Idrivers/message/i2o/pci.c
417!Idrivers/message/i2o/i2o_block.c
418!Idrivers/message/i2o/i2o_scsi.c
419!Idrivers/message/i2o/i2o_proc.c
420 </sect1>
421 </chapter>
422
423 <chapter id="snddev">
424 <title>Sound Devices</title>
425!Iinclude/sound/core.h
426!Esound/sound_core.c
427!Iinclude/sound/pcm.h
428!Esound/core/pcm.c
429!Esound/core/device.c
430!Esound/core/info.c
431!Esound/core/rawmidi.c
432!Esound/core/sound.c
433!Esound/core/memory.c
434!Esound/core/pcm_memory.c
435!Esound/core/init.c
436!Esound/core/isadma.c
437!Esound/core/control.c
438!Esound/core/pcm_lib.c
439!Esound/core/hwdep.c
440!Esound/core/pcm_native.c
441!Esound/core/memalloc.c
442<!-- FIXME: Removed for now since no structured comments in source
443X!Isound/sound_firmware.c
444-->
445 </chapter>
446
447 <chapter id="uart16x50">
448 <title>16x50 UART Driver</title>
449!Iinclude/linux/serial_core.h
450!Edrivers/serial/serial_core.c
451!Edrivers/serial/8250.c
452 </chapter>
453
454 <chapter id="fbdev">
455 <title>Frame Buffer Library</title>
456
457 <para>
458 The frame buffer drivers depend heavily on four data structures.
459 These structures are declared in include/linux/fb.h. They are
460 fb_info, fb_var_screeninfo, fb_fix_screeninfo and fb_monospecs.
461 The last three can be made available to and from userland.
462 </para>
463
464 <para>
465 fb_info defines the current state of a particular video card.
466 Inside fb_info, there exists a fb_ops structure which is a
467 collection of needed functions to make fbdev and fbcon work.
468 fb_info is only visible to the kernel.
469 </para>
470
471 <para>
472 fb_var_screeninfo is used to describe the features of a video card
473 that are user defined. With fb_var_screeninfo, things such as
474 depth and the resolution may be defined.
475 </para>
476
477 <para>
478 The next structure is fb_fix_screeninfo. This defines the
479 properties of a card that are created when a mode is set and can't
480 be changed otherwise. A good example of this is the start of the
481 frame buffer memory. This "locks" the address of the frame buffer
482 memory, so that it cannot be changed or moved.
483 </para>
484
485 <para>
486 The last structure is fb_monospecs. In the old API, there was
487 little importance for fb_monospecs. This allowed for forbidden things
488 such as setting a mode of 800x600 on a fix frequency monitor. With
489 the new API, fb_monospecs prevents such things, and if used
490 correctly, can prevent a monitor from being cooked. fb_monospecs
491 will not be useful until kernels 2.5.x.
492 </para>
493
494 <sect1><title>Frame Buffer Memory</title>
495!Edrivers/video/fbmem.c
496 </sect1>
497<!--
498 <sect1><title>Frame Buffer Console</title>
499X!Edrivers/video/console/fbcon.c
500 </sect1>
501-->
502 <sect1><title>Frame Buffer Colormap</title>
503!Edrivers/video/fbcmap.c
504 </sect1>
505<!-- FIXME:
506 drivers/video/fbgen.c has no docs, which stuffs up the sgml. Comment
507 out until somebody adds docs. KAO
508 <sect1><title>Frame Buffer Generic Functions</title>
509X!Idrivers/video/fbgen.c
510 </sect1>
511KAO -->
512 <sect1><title>Frame Buffer Video Mode Database</title>
513!Idrivers/video/modedb.c
514!Edrivers/video/modedb.c
515 </sect1>
516 <sect1><title>Frame Buffer Macintosh Video Mode Database</title>
517!Edrivers/video/macmodes.c
518 </sect1>
519 <sect1><title>Frame Buffer Fonts</title>
520 <para>
521 Refer to the file drivers/video/console/fonts.c for more information.
522 </para>
523<!-- FIXME: Removed for now since no structured comments in source
524X!Idrivers/video/console/fonts.c
525-->
526 </sect1>
527 </chapter>
528
529 <chapter id="input_subsystem">
530 <title>Input Subsystem</title>
531!Iinclude/linux/input.h
532!Edrivers/input/input.c
533!Edrivers/input/ff-core.c
534!Edrivers/input/ff-memless.c
535 </chapter>
536
537 <chapter id="spi">
538 <title>Serial Peripheral Interface (SPI)</title>
539 <para>
540 SPI is the "Serial Peripheral Interface", widely used with
541 embedded systems because it is a simple and efficient
542 interface: basically a multiplexed shift register.
543 Its three signal wires hold a clock (SCK, often in the range
544 of 1-20 MHz), a "Master Out, Slave In" (MOSI) data line, and
545 a "Master In, Slave Out" (MISO) data line.
546 SPI is a full duplex protocol; for each bit shifted out the
547 MOSI line (one per clock) another is shifted in on the MISO line.
548 Those bits are assembled into words of various sizes on the
549 way to and from system memory.
550 An additional chipselect line is usually active-low (nCS);
551 four signals are normally used for each peripheral, plus
552 sometimes an interrupt.
553 </para>
554 <para>
555 The SPI bus facilities listed here provide a generalized
556 interface to declare SPI busses and devices, manage them
557 according to the standard Linux driver model, and perform
558 input/output operations.
559 At this time, only "master" side interfaces are supported,
560 where Linux talks to SPI peripherals and does not implement
561 such a peripheral itself.
562 (Interfaces to support implementing SPI slaves would
563 necessarily look different.)
564 </para>
565 <para>
566 The programming interface is structured around two kinds of driver,
567 and two kinds of device.
568 A "Controller Driver" abstracts the controller hardware, which may
569 be as simple as a set of GPIO pins or as complex as a pair of FIFOs
570 connected to dual DMA engines on the other side of the SPI shift
571 register (maximizing throughput). Such drivers bridge between
572 whatever bus they sit on (often the platform bus) and SPI, and
573 expose the SPI side of their device as a
574 <structname>struct spi_master</structname>.
575 SPI devices are children of that master, represented as a
576 <structname>struct spi_device</structname> and manufactured from
577 <structname>struct spi_board_info</structname> descriptors which
578 are usually provided by board-specific initialization code.
579 A <structname>struct spi_driver</structname> is called a
580 "Protocol Driver", and is bound to a spi_device using normal
581 driver model calls.
582 </para>
583 <para>
584 The I/O model is a set of queued messages. Protocol drivers
585 submit one or more <structname>struct spi_message</structname>
586 objects, which are processed and completed asynchronously.
587 (There are synchronous wrappers, however.) Messages are
588 built from one or more <structname>struct spi_transfer</structname>
589 objects, each of which wraps a full duplex SPI transfer.
590 A variety of protocol tweaking options are needed, because
591 different chips adopt very different policies for how they
592 use the bits transferred with SPI.
593 </para>
594!Iinclude/linux/spi/spi.h
595!Fdrivers/spi/spi.c spi_register_board_info
596!Edrivers/spi/spi.c
597 </chapter>
598
599 <chapter id="i2c">
600 <title>I<superscript>2</superscript>C and SMBus Subsystem</title>
601
602 <para>
603 I<superscript>2</superscript>C (or without fancy typography, "I2C")
604 is an acronym for the "Inter-IC" bus, a simple bus protocol which is
605 widely used where low data rate communications suffice.
606 Since it's also a licensed trademark, some vendors use another
607 name (such as "Two-Wire Interface", TWI) for the same bus.
608 I2C only needs two signals (SCL for clock, SDA for data), conserving
609 board real estate and minimizing signal quality issues.
610 Most I2C devices use seven bit addresses, and bus speeds of up
611 to 400 kHz; there's a high speed extension (3.4 MHz) that's not yet
612 found wide use.
613 I2C is a multi-master bus; open drain signaling is used to
614 arbitrate between masters, as well as to handshake and to
615 synchronize clocks from slower clients.
616 </para>
617
618 <para>
619 The Linux I2C programming interfaces support only the master
620 side of bus interactions, not the slave side.
621 The programming interface is structured around two kinds of driver,
622 and two kinds of device.
623 An I2C "Adapter Driver" abstracts the controller hardware; it binds
624 to a physical device (perhaps a PCI device or platform_device) and
625 exposes a <structname>struct i2c_adapter</structname> representing
626 each I2C bus segment it manages.
627 On each I2C bus segment will be I2C devices represented by a
628 <structname>struct i2c_client</structname>. Those devices will
629 be bound to a <structname>struct i2c_driver</structname>,
630 which should follow the standard Linux driver model.
631 (At this writing, a legacy model is more widely used.)
632 There are functions to perform various I2C protocol operations; at
633 this writing all such functions are usable only from task context.
634 </para>
635
636 <para>
637 The System Management Bus (SMBus) is a sibling protocol. Most SMBus
638 systems are also I2C conformant. The electrical constraints are
639 tighter for SMBus, and it standardizes particular protocol messages
640 and idioms. Controllers that support I2C can also support most
641 SMBus operations, but SMBus controllers don't support all the protocol
642 options that an I2C controller will.
643 There are functions to perform various SMBus protocol operations,
644 either using I2C primitives or by issuing SMBus commands to
645 i2c_adapter devices which don't support those I2C operations.
646 </para>
647
648!Iinclude/linux/i2c.h
649!Fdrivers/i2c/i2c-boardinfo.c i2c_register_board_info
650!Edrivers/i2c/i2c-core.c
651 </chapter>
652
653 <chapter id="clk"> 276 <chapter id="clk">
654 <title>Clock Framework</title> 277 <title>Clock Framework</title>
655 278
diff --git a/Documentation/cgroups/cgroups.txt b/Documentation/cgroups/cgroups.txt
index d9e5d6f41b92..93feb8444489 100644
--- a/Documentation/cgroups/cgroups.txt
+++ b/Documentation/cgroups/cgroups.txt
@@ -252,10 +252,8 @@ cgroup file system directories.
252When a task is moved from one cgroup to another, it gets a new 252When a task is moved from one cgroup to another, it gets a new
253css_set pointer - if there's an already existing css_set with the 253css_set pointer - if there's an already existing css_set with the
254desired collection of cgroups then that group is reused, else a new 254desired collection of cgroups then that group is reused, else a new
255css_set is allocated. Note that the current implementation uses a 255css_set is allocated. The appropriate existing css_set is located by
256linear search to locate an appropriate existing css_set, so isn't 256looking into a hash table.
257very efficient. A future version will use a hash table for better
258performance.
259 257
260To allow access from a cgroup to the css_sets (and hence tasks) 258To allow access from a cgroup to the css_sets (and hence tasks)
261that comprise it, a set of cg_cgroup_link objects form a lattice; 259that comprise it, a set of cg_cgroup_link objects form a lattice;
diff --git a/Documentation/cgroups/cpusets.txt b/Documentation/cgroups/cpusets.txt
index 5c86c258c791..0611e9528c7c 100644
--- a/Documentation/cgroups/cpusets.txt
+++ b/Documentation/cgroups/cpusets.txt
@@ -142,7 +142,7 @@ into the rest of the kernel, none in performance critical paths:
142 - in fork and exit, to attach and detach a task from its cpuset. 142 - in fork and exit, to attach and detach a task from its cpuset.
143 - in sched_setaffinity, to mask the requested CPUs by what's 143 - in sched_setaffinity, to mask the requested CPUs by what's
144 allowed in that tasks cpuset. 144 allowed in that tasks cpuset.
145 - in sched.c migrate_all_tasks(), to keep migrating tasks within 145 - in sched.c migrate_live_tasks(), to keep migrating tasks within
146 the CPUs allowed by their cpuset, if possible. 146 the CPUs allowed by their cpuset, if possible.
147 - in the mbind and set_mempolicy system calls, to mask the requested 147 - in the mbind and set_mempolicy system calls, to mask the requested
148 Memory Nodes by what's allowed in that tasks cpuset. 148 Memory Nodes by what's allowed in that tasks cpuset.
@@ -175,6 +175,10 @@ files describing that cpuset:
175 - mem_exclusive flag: is memory placement exclusive? 175 - mem_exclusive flag: is memory placement exclusive?
176 - mem_hardwall flag: is memory allocation hardwalled 176 - mem_hardwall flag: is memory allocation hardwalled
177 - memory_pressure: measure of how much paging pressure in cpuset 177 - memory_pressure: measure of how much paging pressure in cpuset
178 - memory_spread_page flag: if set, spread page cache evenly on allowed nodes
179 - memory_spread_slab flag: if set, spread slab cache evenly on allowed nodes
180 - sched_load_balance flag: if set, load balance within CPUs on that cpuset
181 - sched_relax_domain_level: the searching range when migrating tasks
178 182
179In addition, the root cpuset only has the following file: 183In addition, the root cpuset only has the following file:
180 - memory_pressure_enabled flag: compute memory_pressure? 184 - memory_pressure_enabled flag: compute memory_pressure?
@@ -252,7 +256,7 @@ is causing.
252 256
253This is useful both on tightly managed systems running a wide mix of 257This is useful both on tightly managed systems running a wide mix of
254submitted jobs, which may choose to terminate or re-prioritize jobs that 258submitted jobs, which may choose to terminate or re-prioritize jobs that
255are trying to use more memory than allowed on the nodes assigned them, 259are trying to use more memory than allowed on the nodes assigned to them,
256and with tightly coupled, long running, massively parallel scientific 260and with tightly coupled, long running, massively parallel scientific
257computing jobs that will dramatically fail to meet required performance 261computing jobs that will dramatically fail to meet required performance
258goals if they start to use more memory than allowed to them. 262goals if they start to use more memory than allowed to them.
@@ -378,7 +382,7 @@ as cpusets and sched_setaffinity.
378The algorithmic cost of load balancing and its impact on key shared 382The algorithmic cost of load balancing and its impact on key shared
379kernel data structures such as the task list increases more than 383kernel data structures such as the task list increases more than
380linearly with the number of CPUs being balanced. So the scheduler 384linearly with the number of CPUs being balanced. So the scheduler
381has support to partition the systems CPUs into a number of sched 385has support to partition the systems CPUs into a number of sched
382domains such that it only load balances within each sched domain. 386domains such that it only load balances within each sched domain.
383Each sched domain covers some subset of the CPUs in the system; 387Each sched domain covers some subset of the CPUs in the system;
384no two sched domains overlap; some CPUs might not be in any sched 388no two sched domains overlap; some CPUs might not be in any sched
@@ -485,17 +489,22 @@ of CPUs allowed to a cpuset having 'sched_load_balance' enabled.
485The internal kernel cpuset to scheduler interface passes from the 489The internal kernel cpuset to scheduler interface passes from the
486cpuset code to the scheduler code a partition of the load balanced 490cpuset code to the scheduler code a partition of the load balanced
487CPUs in the system. This partition is a set of subsets (represented 491CPUs in the system. This partition is a set of subsets (represented
488as an array of cpumask_t) of CPUs, pairwise disjoint, that cover all 492as an array of struct cpumask) of CPUs, pairwise disjoint, that cover
489the CPUs that must be load balanced. 493all the CPUs that must be load balanced.
490 494
491Whenever the 'sched_load_balance' flag changes, or CPUs come or go 495The cpuset code builds a new such partition and passes it to the
492from a cpuset with this flag enabled, or a cpuset with this flag 496scheduler sched domain setup code, to have the sched domains rebuilt
493enabled is removed, the cpuset code builds a new such partition and 497as necessary, whenever:
494passes it to the scheduler sched domain setup code, to have the sched 498 - the 'sched_load_balance' flag of a cpuset with non-empty CPUs changes,
495domains rebuilt as necessary. 499 - or CPUs come or go from a cpuset with this flag enabled,
500 - or 'sched_relax_domain_level' value of a cpuset with non-empty CPUs
501 and with this flag enabled changes,
502 - or a cpuset with non-empty CPUs and with this flag enabled is removed,
503 - or a cpu is offlined/onlined.
496 504
497This partition exactly defines what sched domains the scheduler should 505This partition exactly defines what sched domains the scheduler should
498setup - one sched domain for each element (cpumask_t) in the partition. 506setup - one sched domain for each element (struct cpumask) in the
507partition.
499 508
500The scheduler remembers the currently active sched domain partitions. 509The scheduler remembers the currently active sched domain partitions.
501When the scheduler routine partition_sched_domains() is invoked from 510When the scheduler routine partition_sched_domains() is invoked from
@@ -559,7 +568,7 @@ domain, the largest value among those is used. Be careful, if one
559requests 0 and others are -1 then 0 is used. 568requests 0 and others are -1 then 0 is used.
560 569
561Note that modifying this file will have both good and bad effects, 570Note that modifying this file will have both good and bad effects,
562and whether it is acceptable or not will be depend on your situation. 571and whether it is acceptable or not depends on your situation.
563Don't modify this file if you are not sure. 572Don't modify this file if you are not sure.
564 573
565If your situation is: 574If your situation is:
@@ -600,19 +609,15 @@ to allocate a page of memory for that task.
600 609
601If a cpuset has its 'cpus' modified, then each task in that cpuset 610If a cpuset has its 'cpus' modified, then each task in that cpuset
602will have its allowed CPU placement changed immediately. Similarly, 611will have its allowed CPU placement changed immediately. Similarly,
603if a tasks pid is written to a cpusets 'tasks' file, in either its 612if a tasks pid is written to another cpusets 'tasks' file, then its
604current cpuset or another cpuset, then its allowed CPU placement is 613allowed CPU placement is changed immediately. If such a task had been
605changed immediately. If such a task had been bound to some subset 614bound to some subset of its cpuset using the sched_setaffinity() call,
606of its cpuset using the sched_setaffinity() call, the task will be 615the task will be allowed to run on any CPU allowed in its new cpuset,
607allowed to run on any CPU allowed in its new cpuset, negating the 616negating the effect of the prior sched_setaffinity() call.
608affect of the prior sched_setaffinity() call.
609 617
610In summary, the memory placement of a task whose cpuset is changed is 618In summary, the memory placement of a task whose cpuset is changed is
611updated by the kernel, on the next allocation of a page for that task, 619updated by the kernel, on the next allocation of a page for that task,
612but the processor placement is not updated, until that tasks pid is 620and the processor placement is updated immediately.
613rewritten to the 'tasks' file of its cpuset. This is done to avoid
614impacting the scheduler code in the kernel with a check for changes
615in a tasks processor placement.
616 621
617Normally, once a page is allocated (given a physical page 622Normally, once a page is allocated (given a physical page
618of main memory) then that page stays on whatever node it 623of main memory) then that page stays on whatever node it
@@ -681,10 +686,14 @@ and then start a subshell 'sh' in that cpuset:
681 # The next line should display '/Charlie' 686 # The next line should display '/Charlie'
682 cat /proc/self/cpuset 687 cat /proc/self/cpuset
683 688
684In the future, a C library interface to cpusets will likely be 689There are ways to query or modify cpusets:
685available. For now, the only way to query or modify cpusets is 690 - via the cpuset file system directly, using the various cd, mkdir, echo,
686via the cpuset file system, using the various cd, mkdir, echo, cat, 691 cat, rmdir commands from the shell, or their equivalent from C.
687rmdir commands from the shell, or their equivalent from C. 692 - via the C library libcpuset.
693 - via the C library libcgroup.
694 (http://sourceforge.net/proects/libcg/)
695 - via the python application cset.
696 (http://developer.novell.com/wiki/index.php/Cpuset)
688 697
689The sched_setaffinity calls can also be done at the shell prompt using 698The sched_setaffinity calls can also be done at the shell prompt using
690SGI's runon or Robert Love's taskset. The mbind and set_mempolicy 699SGI's runon or Robert Love's taskset. The mbind and set_mempolicy
@@ -756,7 +765,7 @@ mount -t cpuset X /dev/cpuset
756 765
757is equivalent to 766is equivalent to
758 767
759mount -t cgroup -ocpuset X /dev/cpuset 768mount -t cgroup -ocpuset,noprefix X /dev/cpuset
760echo "/sbin/cpuset_release_agent" > /dev/cpuset/release_agent 769echo "/sbin/cpuset_release_agent" > /dev/cpuset/release_agent
761 770
7622.2 Adding/removing cpus 7712.2 Adding/removing cpus
diff --git a/Documentation/driver-model/device.txt b/Documentation/driver-model/device.txt
index a05ec50f8004..a7cbfff40d07 100644
--- a/Documentation/driver-model/device.txt
+++ b/Documentation/driver-model/device.txt
@@ -127,9 +127,11 @@ void unlock_device(struct device * dev);
127Attributes 127Attributes
128~~~~~~~~~~ 128~~~~~~~~~~
129struct device_attribute { 129struct device_attribute {
130 struct attribute attr; 130 struct attribute attr;
131 ssize_t (*show)(struct device * dev, char * buf, size_t count, loff_t off); 131 ssize_t (*show)(struct device *dev, struct device_attribute *attr,
132 ssize_t (*store)(struct device * dev, const char * buf, size_t count, loff_t off); 132 char *buf);
133 ssize_t (*store)(struct device *dev, struct device_attribute *attr,
134 const char *buf, size_t count);
133}; 135};
134 136
135Attributes of devices can be exported via drivers using a simple 137Attributes of devices can be exported via drivers using a simple
diff --git a/Documentation/filesystems/sysfs.txt b/Documentation/filesystems/sysfs.txt
index 9e9c348275a9..7e81e37c0b1e 100644
--- a/Documentation/filesystems/sysfs.txt
+++ b/Documentation/filesystems/sysfs.txt
@@ -2,8 +2,10 @@
2sysfs - _The_ filesystem for exporting kernel objects. 2sysfs - _The_ filesystem for exporting kernel objects.
3 3
4Patrick Mochel <mochel@osdl.org> 4Patrick Mochel <mochel@osdl.org>
5Mike Murphy <mamurph@cs.clemson.edu>
5 6
610 January 2003 7Revised: 22 February 2009
8Original: 10 January 2003
7 9
8 10
9What it is: 11What it is:
@@ -64,12 +66,13 @@ An attribute definition is simply:
64 66
65struct attribute { 67struct attribute {
66 char * name; 68 char * name;
69 struct module *owner;
67 mode_t mode; 70 mode_t mode;
68}; 71};
69 72
70 73
71int sysfs_create_file(struct kobject * kobj, struct attribute * attr); 74int sysfs_create_file(struct kobject * kobj, const struct attribute * attr);
72void sysfs_remove_file(struct kobject * kobj, struct attribute * attr); 75void sysfs_remove_file(struct kobject * kobj, const struct attribute * attr);
73 76
74 77
75A bare attribute contains no means to read or write the value of the 78A bare attribute contains no means to read or write the value of the
@@ -80,9 +83,11 @@ a specific object type.
80For example, the driver model defines struct device_attribute like: 83For example, the driver model defines struct device_attribute like:
81 84
82struct device_attribute { 85struct device_attribute {
83 struct attribute attr; 86 struct attribute attr;
84 ssize_t (*show)(struct device * dev, char * buf); 87 ssize_t (*show)(struct device *dev, struct device_attribute *attr,
85 ssize_t (*store)(struct device * dev, const char * buf); 88 char *buf);
89 ssize_t (*store)(struct device *dev, struct device_attribute *attr,
90 const char *buf, size_t count);
86}; 91};
87 92
88int device_create_file(struct device *, struct device_attribute *); 93int device_create_file(struct device *, struct device_attribute *);
@@ -90,12 +95,8 @@ void device_remove_file(struct device *, struct device_attribute *);
90 95
91It also defines this helper for defining device attributes: 96It also defines this helper for defining device attributes:
92 97
93#define DEVICE_ATTR(_name, _mode, _show, _store) \ 98#define DEVICE_ATTR(_name, _mode, _show, _store) \
94struct device_attribute dev_attr_##_name = { \ 99struct device_attribute dev_attr_##_name = __ATTR(_name, _mode, _show, _store)
95 .attr = {.name = __stringify(_name) , .mode = _mode }, \
96 .show = _show, \
97 .store = _store, \
98};
99 100
100For example, declaring 101For example, declaring
101 102
@@ -107,9 +108,9 @@ static struct device_attribute dev_attr_foo = {
107 .attr = { 108 .attr = {
108 .name = "foo", 109 .name = "foo",
109 .mode = S_IWUSR | S_IRUGO, 110 .mode = S_IWUSR | S_IRUGO,
111 .show = show_foo,
112 .store = store_foo,
110 }, 113 },
111 .show = show_foo,
112 .store = store_foo,
113}; 114};
114 115
115 116
@@ -161,10 +162,12 @@ To read or write attributes, show() or store() methods must be
161specified when declaring the attribute. The method types should be as 162specified when declaring the attribute. The method types should be as
162simple as those defined for device attributes: 163simple as those defined for device attributes:
163 164
164 ssize_t (*show)(struct device * dev, char * buf); 165ssize_t (*show)(struct device * dev, struct device_attribute * attr,
165 ssize_t (*store)(struct device * dev, const char * buf); 166 char * buf);
167ssize_t (*store)(struct device * dev, struct device_attribute * attr,
168 const char * buf);
166 169
167IOW, they should take only an object and a buffer as parameters. 170IOW, they should take only an object, an attribute, and a buffer as parameters.
168 171
169 172
170sysfs allocates a buffer of size (PAGE_SIZE) and passes it to the 173sysfs allocates a buffer of size (PAGE_SIZE) and passes it to the
@@ -299,14 +302,16 @@ The following interface layers currently exist in sysfs:
299Structure: 302Structure:
300 303
301struct device_attribute { 304struct device_attribute {
302 struct attribute attr; 305 struct attribute attr;
303 ssize_t (*show)(struct device * dev, char * buf); 306 ssize_t (*show)(struct device *dev, struct device_attribute *attr,
304 ssize_t (*store)(struct device * dev, const char * buf); 307 char *buf);
308 ssize_t (*store)(struct device *dev, struct device_attribute *attr,
309 const char *buf, size_t count);
305}; 310};
306 311
307Declaring: 312Declaring:
308 313
309DEVICE_ATTR(_name, _str, _mode, _show, _store); 314DEVICE_ATTR(_name, _mode, _show, _store);
310 315
311Creation/Removal: 316Creation/Removal:
312 317
@@ -342,7 +347,8 @@ Structure:
342struct driver_attribute { 347struct driver_attribute {
343 struct attribute attr; 348 struct attribute attr;
344 ssize_t (*show)(struct device_driver *, char * buf); 349 ssize_t (*show)(struct device_driver *, char * buf);
345 ssize_t (*store)(struct device_driver *, const char * buf); 350 ssize_t (*store)(struct device_driver *, const char * buf,
351 size_t count);
346}; 352};
347 353
348Declaring: 354Declaring:
diff --git a/Documentation/hwmon/hpfall.c b/Documentation/hwmon/hpfall.c
new file mode 100644
index 000000000000..bbea1ccfd46a
--- /dev/null
+++ b/Documentation/hwmon/hpfall.c
@@ -0,0 +1,101 @@
1/* Disk protection for HP machines.
2 *
3 * Copyright 2008 Eric Piel
4 * Copyright 2009 Pavel Machek <pavel@suse.cz>
5 *
6 * GPLv2.
7 */
8
9#include <stdio.h>
10#include <stdlib.h>
11#include <unistd.h>
12#include <fcntl.h>
13#include <sys/stat.h>
14#include <sys/types.h>
15#include <string.h>
16#include <stdint.h>
17#include <errno.h>
18#include <signal.h>
19
20void write_int(char *path, int i)
21{
22 char buf[1024];
23 int fd = open(path, O_RDWR);
24 if (fd < 0) {
25 perror("open");
26 exit(1);
27 }
28 sprintf(buf, "%d", i);
29 if (write(fd, buf, strlen(buf)) != strlen(buf)) {
30 perror("write");
31 exit(1);
32 }
33 close(fd);
34}
35
36void set_led(int on)
37{
38 write_int("/sys/class/leds/hp::hddprotect/brightness", on);
39}
40
41void protect(int seconds)
42{
43 write_int("/sys/block/sda/device/unload_heads", seconds*1000);
44}
45
46int on_ac(void)
47{
48// /sys/class/power_supply/AC0/online
49}
50
51int lid_open(void)
52{
53// /proc/acpi/button/lid/LID/state
54}
55
56void ignore_me(void)
57{
58 protect(0);
59 set_led(0);
60
61}
62
63int main(int argc, char* argv[])
64{
65 int fd, ret;
66
67 fd = open("/dev/freefall", O_RDONLY);
68 if (fd < 0) {
69 perror("open");
70 return EXIT_FAILURE;
71 }
72
73 signal(SIGALRM, ignore_me);
74
75 for (;;) {
76 unsigned char count;
77
78 ret = read(fd, &count, sizeof(count));
79 alarm(0);
80 if ((ret == -1) && (errno == EINTR)) {
81 /* Alarm expired, time to unpark the heads */
82 continue;
83 }
84
85 if (ret != sizeof(count)) {
86 perror("read");
87 break;
88 }
89
90 protect(21);
91 set_led(1);
92 if (1 || on_ac() || lid_open()) {
93 alarm(2);
94 } else {
95 alarm(20);
96 }
97 }
98
99 close(fd);
100 return EXIT_SUCCESS;
101}
diff --git a/Documentation/hwmon/lis3lv02d b/Documentation/hwmon/lis3lv02d
index 0fcfc4a7ccdc..287f8c902656 100644
--- a/Documentation/hwmon/lis3lv02d
+++ b/Documentation/hwmon/lis3lv02d
@@ -33,6 +33,14 @@ rate - reports the sampling rate of the accelerometer device in HZ
33This driver also provides an absolute input class device, allowing 33This driver also provides an absolute input class device, allowing
34the laptop to act as a pinball machine-esque joystick. 34the laptop to act as a pinball machine-esque joystick.
35 35
36Another feature of the driver is misc device called "freefall" that
37acts similar to /dev/rtc and reacts on free-fall interrupts received
38from the device. It supports blocking operations, poll/select and
39fasync operation modes. You must read 1 bytes from the device. The
40result is number of free-fall interrupts since the last successful
41read (or 255 if number of interrupts would not fit).
42
43
36Axes orientation 44Axes orientation
37---------------- 45----------------
38 46
diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt
index b182626739ea..0ed3234125e3 100644
--- a/Documentation/kernel-parameters.txt
+++ b/Documentation/kernel-parameters.txt
@@ -134,7 +134,7 @@ and is between 256 and 4096 characters. It is defined in the file
134 134
135 acpi= [HW,ACPI,X86-64,i386] 135 acpi= [HW,ACPI,X86-64,i386]
136 Advanced Configuration and Power Interface 136 Advanced Configuration and Power Interface
137 Format: { force | off | ht | strict | noirq } 137 Format: { force | off | ht | strict | noirq | rsdt }
138 force -- enable ACPI if default was off 138 force -- enable ACPI if default was off
139 off -- disable ACPI if default was on 139 off -- disable ACPI if default was on
140 noirq -- do not use ACPI for IRQ routing 140 noirq -- do not use ACPI for IRQ routing
@@ -868,8 +868,10 @@ and is between 256 and 4096 characters. It is defined in the file
868 icn= [HW,ISDN] 868 icn= [HW,ISDN]
869 Format: <io>[,<membase>[,<icn_id>[,<icn_id2>]]] 869 Format: <io>[,<membase>[,<icn_id>[,<icn_id2>]]]
870 870
871 ide= [HW] (E)IDE subsystem 871 ide-core.nodma= [HW] (E)IDE subsystem
872 Format: ide=nodma or ide=doubler 872 Format: =0.0 to prevent dma on hda, =0.1 hdb =1.0 hdc
873 .vlb_clock .pci_clock .noflush .noprobe .nowerr .cdrom
874 .chs .ignore_cable are additional options
873 See Documentation/ide/ide.txt. 875 See Documentation/ide/ide.txt.
874 876
875 idebus= [HW] (E)IDE subsystem - VLB/PCI bus speed 877 idebus= [HW] (E)IDE subsystem - VLB/PCI bus speed
diff --git a/Documentation/tracers/mmiotrace.txt b/Documentation/tracers/mmiotrace.txt
index cde23b4a12a1..5731c67abc55 100644
--- a/Documentation/tracers/mmiotrace.txt
+++ b/Documentation/tracers/mmiotrace.txt
@@ -78,12 +78,10 @@ to view your kernel log and look for "mmiotrace has lost events" warning. If
78events were lost, the trace is incomplete. You should enlarge the buffers and 78events were lost, the trace is incomplete. You should enlarge the buffers and
79try again. Buffers are enlarged by first seeing how large the current buffers 79try again. Buffers are enlarged by first seeing how large the current buffers
80are: 80are:
81$ cat /debug/tracing/trace_entries 81$ cat /debug/tracing/buffer_size_kb
82gives you a number. Approximately double this number and write it back, for 82gives you a number. Approximately double this number and write it back, for
83instance: 83instance:
84$ echo 0 > /debug/tracing/tracing_enabled 84$ echo 128000 > /debug/tracing/buffer_size_kb
85$ echo 128000 > /debug/tracing/trace_entries
86$ echo 1 > /debug/tracing/tracing_enabled
87Then start again from the top. 85Then start again from the top.
88 86
89If you are doing a trace for a driver project, e.g. Nouveau, you should also 87If you are doing a trace for a driver project, e.g. Nouveau, you should also