aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/cgroups/cgroups.txt (renamed from Documentation/cgroups.txt)0
-rw-r--r--Documentation/cgroups/freezer-subsystem.txt99
-rw-r--r--Documentation/controllers/memory.txt24
-rw-r--r--Documentation/cpusets.txt2
-rw-r--r--Documentation/filesystems/ext3.txt5
-rw-r--r--Documentation/filesystems/proc.txt28
-rw-r--r--Documentation/filesystems/ubifs.txt9
-rw-r--r--Documentation/kernel-parameters.txt14
-rw-r--r--Documentation/mtd/nand_ecc.txt714
-rw-r--r--Documentation/sysrq.txt5
-rw-r--r--Documentation/vm/unevictable-lru.txt615
11 files changed, 1492 insertions, 23 deletions
diff --git a/Documentation/cgroups.txt b/Documentation/cgroups/cgroups.txt
index d9014aa0eb68..d9014aa0eb68 100644
--- a/Documentation/cgroups.txt
+++ b/Documentation/cgroups/cgroups.txt
diff --git a/Documentation/cgroups/freezer-subsystem.txt b/Documentation/cgroups/freezer-subsystem.txt
new file mode 100644
index 000000000000..c50ab58b72eb
--- /dev/null
+++ b/Documentation/cgroups/freezer-subsystem.txt
@@ -0,0 +1,99 @@
1 The cgroup freezer is useful to batch job management system which start
2and stop sets of tasks in order to schedule the resources of a machine
3according to the desires of a system administrator. This sort of program
4is often used on HPC clusters to schedule access to the cluster as a
5whole. The cgroup freezer uses cgroups to describe the set of tasks to
6be started/stopped by the batch job management system. It also provides
7a means to start and stop the tasks composing the job.
8
9 The cgroup freezer will also be useful for checkpointing running groups
10of tasks. The freezer allows the checkpoint code to obtain a consistent
11image of the tasks by attempting to force the tasks in a cgroup into a
12quiescent state. Once the tasks are quiescent another task can
13walk /proc or invoke a kernel interface to gather information about the
14quiesced tasks. Checkpointed tasks can be restarted later should a
15recoverable error occur. This also allows the checkpointed tasks to be
16migrated between nodes in a cluster by copying the gathered information
17to another node and restarting the tasks there.
18
19 Sequences of SIGSTOP and SIGCONT are not always sufficient for stopping
20and resuming tasks in userspace. Both of these signals are observable
21from within the tasks we wish to freeze. While SIGSTOP cannot be caught,
22blocked, or ignored it can be seen by waiting or ptracing parent tasks.
23SIGCONT is especially unsuitable since it can be caught by the task. Any
24programs designed to watch for SIGSTOP and SIGCONT could be broken by
25attempting to use SIGSTOP and SIGCONT to stop and resume tasks. We can
26demonstrate this problem using nested bash shells:
27
28 $ echo $$
29 16644
30 $ bash
31 $ echo $$
32 16690
33
34 From a second, unrelated bash shell:
35 $ kill -SIGSTOP 16690
36 $ kill -SIGCONT 16990
37
38 <at this point 16990 exits and causes 16644 to exit too>
39
40 This happens because bash can observe both signals and choose how it
41responds to them.
42
43 Another example of a program which catches and responds to these
44signals is gdb. In fact any program designed to use ptrace is likely to
45have a problem with this method of stopping and resuming tasks.
46
47 In contrast, the cgroup freezer uses the kernel freezer code to
48prevent the freeze/unfreeze cycle from becoming visible to the tasks
49being frozen. This allows the bash example above and gdb to run as
50expected.
51
52 The freezer subsystem in the container filesystem defines a file named
53freezer.state. Writing "FROZEN" to the state file will freeze all tasks in the
54cgroup. Subsequently writing "THAWED" will unfreeze the tasks in the cgroup.
55Reading will return the current state.
56
57* Examples of usage :
58
59 # mkdir /containers/freezer
60 # mount -t cgroup -ofreezer freezer /containers
61 # mkdir /containers/0
62 # echo $some_pid > /containers/0/tasks
63
64to get status of the freezer subsystem :
65
66 # cat /containers/0/freezer.state
67 THAWED
68
69to freeze all tasks in the container :
70
71 # echo FROZEN > /containers/0/freezer.state
72 # cat /containers/0/freezer.state
73 FREEZING
74 # cat /containers/0/freezer.state
75 FROZEN
76
77to unfreeze all tasks in the container :
78
79 # echo THAWED > /containers/0/freezer.state
80 # cat /containers/0/freezer.state
81 THAWED
82
83This is the basic mechanism which should do the right thing for user space task
84in a simple scenario.
85
86It's important to note that freezing can be incomplete. In that case we return
87EBUSY. This means that some tasks in the cgroup are busy doing something that
88prevents us from completely freezing the cgroup at this time. After EBUSY,
89the cgroup will remain partially frozen -- reflected by freezer.state reporting
90"FREEZING" when read. The state will remain "FREEZING" until one of these
91things happens:
92
93 1) Userspace cancels the freezing operation by writing "THAWED" to
94 the freezer.state file
95 2) Userspace retries the freezing operation by writing "FROZEN" to
96 the freezer.state file (writing "FREEZING" is not legal
97 and returns EIO)
98 3) The tasks that blocked the cgroup from entering the "FROZEN"
99 state disappear from the cgroup's set of tasks.
diff --git a/Documentation/controllers/memory.txt b/Documentation/controllers/memory.txt
index 9b53d5827361..1c07547d3f81 100644
--- a/Documentation/controllers/memory.txt
+++ b/Documentation/controllers/memory.txt
@@ -112,14 +112,22 @@ the per cgroup LRU.
112 112
1132.2.1 Accounting details 1132.2.1 Accounting details
114 114
115All mapped pages (RSS) and unmapped user pages (Page Cache) are accounted. 115All mapped anon pages (RSS) and cache pages (Page Cache) are accounted.
116RSS pages are accounted at the time of page_add_*_rmap() unless they've already 116(some pages which never be reclaimable and will not be on global LRU
117been accounted for earlier. A file page will be accounted for as Page Cache; 117 are not accounted. we just accounts pages under usual vm management.)
118it's mapped into the page tables of a process, duplicate accounting is carefully 118
119avoided. Page Cache pages are accounted at the time of add_to_page_cache(). 119RSS pages are accounted at page_fault unless they've already been accounted
120The corresponding routines that remove a page from the page tables or removes 120for earlier. A file page will be accounted for as Page Cache when it's
121a page from Page Cache is used to decrement the accounting counters of the 121inserted into inode (radix-tree). While it's mapped into the page tables of
122cgroup. 122processes, duplicate accounting is carefully avoided.
123
124A RSS page is unaccounted when it's fully unmapped. A PageCache page is
125unaccounted when it's removed from radix-tree.
126
127At page migration, accounting information is kept.
128
129Note: we just account pages-on-lru because our purpose is to control amount
130of used pages. not-on-lru pages are tend to be out-of-control from vm view.
123 131
1242.3 Shared Page Accounting 1322.3 Shared Page Accounting
125 133
diff --git a/Documentation/cpusets.txt b/Documentation/cpusets.txt
index 47e568a9370a..5c86c258c791 100644
--- a/Documentation/cpusets.txt
+++ b/Documentation/cpusets.txt
@@ -48,7 +48,7 @@ hooks, beyond what is already present, required to manage dynamic
48job placement on large systems. 48job placement on large systems.
49 49
50Cpusets use the generic cgroup subsystem described in 50Cpusets use the generic cgroup subsystem described in
51Documentation/cgroup.txt. 51Documentation/cgroups/cgroups.txt.
52 52
53Requests by a task, using the sched_setaffinity(2) system call to 53Requests by a task, using the sched_setaffinity(2) system call to
54include CPUs in its CPU affinity mask, and using the mbind(2) and 54include CPUs in its CPU affinity mask, and using the mbind(2) and
diff --git a/Documentation/filesystems/ext3.txt b/Documentation/filesystems/ext3.txt
index 295f26cd895a..9dd2a3bb2acc 100644
--- a/Documentation/filesystems/ext3.txt
+++ b/Documentation/filesystems/ext3.txt
@@ -96,6 +96,11 @@ errors=remount-ro(*) Remount the filesystem read-only on an error.
96errors=continue Keep going on a filesystem error. 96errors=continue Keep going on a filesystem error.
97errors=panic Panic and halt the machine if an error occurs. 97errors=panic Panic and halt the machine if an error occurs.
98 98
99data_err=ignore(*) Just print an error message if an error occurs
100 in a file data buffer in ordered mode.
101data_err=abort Abort the journal if an error occurs in a file
102 data buffer in ordered mode.
103
99grpid Give objects the same group ID as their creator. 104grpid Give objects the same group ID as their creator.
100bsdgroups 105bsdgroups
101 106
diff --git a/Documentation/filesystems/proc.txt b/Documentation/filesystems/proc.txt
index c032bf39e8b9..bcceb99b81dd 100644
--- a/Documentation/filesystems/proc.txt
+++ b/Documentation/filesystems/proc.txt
@@ -1384,15 +1384,18 @@ causes the kernel to prefer to reclaim dentries and inodes.
1384dirty_background_ratio 1384dirty_background_ratio
1385---------------------- 1385----------------------
1386 1386
1387Contains, as a percentage of total system memory, the number of pages at which 1387Contains, as a percentage of the dirtyable system memory (free pages + mapped
1388the pdflush background writeback daemon will start writing out dirty data. 1388pages + file cache, not including locked pages and HugePages), the number of
1389pages at which the pdflush background writeback daemon will start writing out
1390dirty data.
1389 1391
1390dirty_ratio 1392dirty_ratio
1391----------------- 1393-----------------
1392 1394
1393Contains, as a percentage of total system memory, the number of pages at which 1395Contains, as a percentage of the dirtyable system memory (free pages + mapped
1394a process which is generating disk writes will itself start writing out dirty 1396pages + file cache, not including locked pages and HugePages), the number of
1395data. 1397pages at which a process which is generating disk writes will itself start
1398writing out dirty data.
1396 1399
1397dirty_writeback_centisecs 1400dirty_writeback_centisecs
1398------------------------- 1401-------------------------
@@ -2412,24 +2415,29 @@ will be dumped when the <pid> process is dumped. coredump_filter is a bitmask
2412of memory types. If a bit of the bitmask is set, memory segments of the 2415of memory types. If a bit of the bitmask is set, memory segments of the
2413corresponding memory type are dumped, otherwise they are not dumped. 2416corresponding memory type are dumped, otherwise they are not dumped.
2414 2417
2415The following 4 memory types are supported: 2418The following 7 memory types are supported:
2416 - (bit 0) anonymous private memory 2419 - (bit 0) anonymous private memory
2417 - (bit 1) anonymous shared memory 2420 - (bit 1) anonymous shared memory
2418 - (bit 2) file-backed private memory 2421 - (bit 2) file-backed private memory
2419 - (bit 3) file-backed shared memory 2422 - (bit 3) file-backed shared memory
2420 - (bit 4) ELF header pages in file-backed private memory areas (it is 2423 - (bit 4) ELF header pages in file-backed private memory areas (it is
2421 effective only if the bit 2 is cleared) 2424 effective only if the bit 2 is cleared)
2425 - (bit 5) hugetlb private memory
2426 - (bit 6) hugetlb shared memory
2422 2427
2423 Note that MMIO pages such as frame buffer are never dumped and vDSO pages 2428 Note that MMIO pages such as frame buffer are never dumped and vDSO pages
2424 are always dumped regardless of the bitmask status. 2429 are always dumped regardless of the bitmask status.
2425 2430
2426Default value of coredump_filter is 0x3; this means all anonymous memory 2431 Note bit 0-4 doesn't effect any hugetlb memory. hugetlb memory are only
2427segments are dumped. 2432 effected by bit 5-6.
2433
2434Default value of coredump_filter is 0x23; this means all anonymous memory
2435segments and hugetlb private memory are dumped.
2428 2436
2429If you don't want to dump all shared memory segments attached to pid 1234, 2437If you don't want to dump all shared memory segments attached to pid 1234,
2430write 1 to the process's proc file. 2438write 0x21 to the process's proc file.
2431 2439
2432 $ echo 0x1 > /proc/1234/coredump_filter 2440 $ echo 0x21 > /proc/1234/coredump_filter
2433 2441
2434When a new process is created, the process inherits the bitmask status from its 2442When a new process is created, the process inherits the bitmask status from its
2435parent. It is useful to set up coredump_filter before the program runs. 2443parent. It is useful to set up coredump_filter before the program runs.
diff --git a/Documentation/filesystems/ubifs.txt b/Documentation/filesystems/ubifs.txt
index 6a0d70a22f05..dd84ea3c10da 100644
--- a/Documentation/filesystems/ubifs.txt
+++ b/Documentation/filesystems/ubifs.txt
@@ -86,6 +86,15 @@ norm_unmount (*) commit on unmount; the journal is committed
86fast_unmount do not commit on unmount; this option makes 86fast_unmount do not commit on unmount; this option makes
87 unmount faster, but the next mount slower 87 unmount faster, but the next mount slower
88 because of the need to replay the journal. 88 because of the need to replay the journal.
89bulk_read read more in one go to take advantage of flash
90 media that read faster sequentially
91no_bulk_read (*) do not bulk-read
92no_chk_data_crc skip checking of CRCs on data nodes in order to
93 improve read performance. Use this option only
94 if the flash media is highly reliable. The effect
95 of this option is that corruption of the contents
96 of a file can go unnoticed.
97chk_data_crc (*) do not skip checking CRCs on data nodes
89 98
90 99
91Quick usage instructions 100Quick usage instructions
diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt
index d4f4875fc7c6..0f1544f67400 100644
--- a/Documentation/kernel-parameters.txt
+++ b/Documentation/kernel-parameters.txt
@@ -690,7 +690,7 @@ and is between 256 and 4096 characters. It is defined in the file
690 See Documentation/block/as-iosched.txt and 690 See Documentation/block/as-iosched.txt and
691 Documentation/block/deadline-iosched.txt for details. 691 Documentation/block/deadline-iosched.txt for details.
692 692
693 elfcorehdr= [X86-32, X86_64] 693 elfcorehdr= [IA64,PPC,SH,X86-32,X86_64]
694 Specifies physical address of start of kernel core 694 Specifies physical address of start of kernel core
695 image elf header. Generally kexec loader will 695 image elf header. Generally kexec loader will
696 pass this option to capture kernel. 696 pass this option to capture kernel.
@@ -796,6 +796,8 @@ and is between 256 and 4096 characters. It is defined in the file
796 Defaults to the default architecture's huge page size 796 Defaults to the default architecture's huge page size
797 if not specified. 797 if not specified.
798 798
799 hlt [BUGS=ARM,SH]
800
799 i8042.debug [HW] Toggle i8042 debug mode 801 i8042.debug [HW] Toggle i8042 debug mode
800 i8042.direct [HW] Put keyboard port into non-translated mode 802 i8042.direct [HW] Put keyboard port into non-translated mode
801 i8042.dumbkbd [HW] Pretend that controller can only read data from 803 i8042.dumbkbd [HW] Pretend that controller can only read data from
@@ -1211,6 +1213,10 @@ and is between 256 and 4096 characters. It is defined in the file
1211 mem=nopentium [BUGS=X86-32] Disable usage of 4MB pages for kernel 1213 mem=nopentium [BUGS=X86-32] Disable usage of 4MB pages for kernel
1212 memory. 1214 memory.
1213 1215
1216 memchunk=nn[KMG]
1217 [KNL,SH] Allow user to override the default size for
1218 per-device physically contiguous DMA buffers.
1219
1214 memmap=exactmap [KNL,X86-32,X86_64] Enable setting of an exact 1220 memmap=exactmap [KNL,X86-32,X86_64] Enable setting of an exact
1215 E820 memory map, as specified by the user. 1221 E820 memory map, as specified by the user.
1216 Such memmap=exactmap lines can be constructed based on 1222 Such memmap=exactmap lines can be constructed based on
@@ -1393,6 +1399,8 @@ and is between 256 and 4096 characters. It is defined in the file
1393 1399
1394 nodisconnect [HW,SCSI,M68K] Disables SCSI disconnects. 1400 nodisconnect [HW,SCSI,M68K] Disables SCSI disconnects.
1395 1401
1402 nodsp [SH] Disable hardware DSP at boot time.
1403
1396 noefi [X86-32,X86-64] Disable EFI runtime services support. 1404 noefi [X86-32,X86-64] Disable EFI runtime services support.
1397 1405
1398 noexec [IA-64] 1406 noexec [IA-64]
@@ -1409,13 +1417,15 @@ and is between 256 and 4096 characters. It is defined in the file
1409 noexec32=off: disable non-executable mappings 1417 noexec32=off: disable non-executable mappings
1410 read implies executable mappings 1418 read implies executable mappings
1411 1419
1420 nofpu [SH] Disable hardware FPU at boot time.
1421
1412 nofxsr [BUGS=X86-32] Disables x86 floating point extended 1422 nofxsr [BUGS=X86-32] Disables x86 floating point extended
1413 register save and restore. The kernel will only save 1423 register save and restore. The kernel will only save
1414 legacy floating-point registers on task switch. 1424 legacy floating-point registers on task switch.
1415 1425
1416 noclflush [BUGS=X86] Don't use the CLFLUSH instruction 1426 noclflush [BUGS=X86] Don't use the CLFLUSH instruction
1417 1427
1418 nohlt [BUGS=ARM] 1428 nohlt [BUGS=ARM,SH]
1419 1429
1420 no-hlt [BUGS=X86-32] Tells the kernel that the hlt 1430 no-hlt [BUGS=X86-32] Tells the kernel that the hlt
1421 instruction doesn't work correctly and not to 1431 instruction doesn't work correctly and not to
diff --git a/Documentation/mtd/nand_ecc.txt b/Documentation/mtd/nand_ecc.txt
new file mode 100644
index 000000000000..bdf93b7f0f24
--- /dev/null
+++ b/Documentation/mtd/nand_ecc.txt
@@ -0,0 +1,714 @@
1Introduction
2============
3
4Having looked at the linux mtd/nand driver and more specific at nand_ecc.c
5I felt there was room for optimisation. I bashed the code for a few hours
6performing tricks like table lookup removing superfluous code etc.
7After that the speed was increased by 35-40%.
8Still I was not too happy as I felt there was additional room for improvement.
9
10Bad! I was hooked.
11I decided to annotate my steps in this file. Perhaps it is useful to someone
12or someone learns something from it.
13
14
15The problem
16===========
17
18NAND flash (at least SLC one) typically has sectors of 256 bytes.
19However NAND flash is not extremely reliable so some error detection
20(and sometimes correction) is needed.
21
22This is done by means of a Hamming code. I'll try to explain it in
23laymans terms (and apologies to all the pro's in the field in case I do
24not use the right terminology, my coding theory class was almost 30
25years ago, and I must admit it was not one of my favourites).
26
27As I said before the ecc calculation is performed on sectors of 256
28bytes. This is done by calculating several parity bits over the rows and
29columns. The parity used is even parity which means that the parity bit = 1
30if the data over which the parity is calculated is 1 and the parity bit = 0
31if the data over which the parity is calculated is 0. So the total
32number of bits over the data over which the parity is calculated + the
33parity bit is even. (see wikipedia if you can't follow this).
34Parity is often calculated by means of an exclusive or operation,
35sometimes also referred to as xor. In C the operator for xor is ^
36
37Back to ecc.
38Let's give a small figure:
39
40byte 0: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp2 rp4 ... rp14
41byte 1: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp1 rp2 rp4 ... rp14
42byte 2: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp3 rp4 ... rp14
43byte 3: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp1 rp3 rp4 ... rp14
44byte 4: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp2 rp5 ... rp14
45....
46byte 254: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp3 rp5 ... rp15
47byte 255: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp1 rp3 rp5 ... rp15
48 cp1 cp0 cp1 cp0 cp1 cp0 cp1 cp0
49 cp3 cp3 cp2 cp2 cp3 cp3 cp2 cp2
50 cp5 cp5 cp5 cp5 cp4 cp4 cp4 cp4
51
52This figure represents a sector of 256 bytes.
53cp is my abbreviaton for column parity, rp for row parity.
54
55Let's start to explain column parity.
56cp0 is the parity that belongs to all bit0, bit2, bit4, bit6.
57so the sum of all bit0, bit2, bit4 and bit6 values + cp0 itself is even.
58Similarly cp1 is the sum of all bit1, bit3, bit5 and bit7.
59cp2 is the parity over bit0, bit1, bit4 and bit5
60cp3 is the parity over bit2, bit3, bit6 and bit7.
61cp4 is the parity over bit0, bit1, bit2 and bit3.
62cp5 is the parity over bit4, bit5, bit6 and bit7.
63Note that each of cp0 .. cp5 is exactly one bit.
64
65Row parity actually works almost the same.
66rp0 is the parity of all even bytes (0, 2, 4, 6, ... 252, 254)
67rp1 is the parity of all odd bytes (1, 3, 5, 7, ..., 253, 255)
68rp2 is the parity of all bytes 0, 1, 4, 5, 8, 9, ...
69(so handle two bytes, then skip 2 bytes).
70rp3 is covers the half rp2 does not cover (bytes 2, 3, 6, 7, 10, 11, ...)
71for rp4 the rule is cover 4 bytes, skip 4 bytes, cover 4 bytes, skip 4 etc.
72so rp4 calculates parity over bytes 0, 1, 2, 3, 8, 9, 10, 11, 16, ...)
73and rp5 covers the other half, so bytes 4, 5, 6, 7, 12, 13, 14, 15, 20, ..
74The story now becomes quite boring. I guess you get the idea.
75rp6 covers 8 bytes then skips 8 etc
76rp7 skips 8 bytes then covers 8 etc
77rp8 covers 16 bytes then skips 16 etc
78rp9 skips 16 bytes then covers 16 etc
79rp10 covers 32 bytes then skips 32 etc
80rp11 skips 32 bytes then covers 32 etc
81rp12 covers 64 bytes then skips 64 etc
82rp13 skips 64 bytes then covers 64 etc
83rp14 covers 128 bytes then skips 128
84rp15 skips 128 bytes then covers 128
85
86In the end the parity bits are grouped together in three bytes as
87follows:
88ECC Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
89ECC 0 rp07 rp06 rp05 rp04 rp03 rp02 rp01 rp00
90ECC 1 rp15 rp14 rp13 rp12 rp11 rp10 rp09 rp08
91ECC 2 cp5 cp4 cp3 cp2 cp1 cp0 1 1
92
93I detected after writing this that ST application note AN1823
94(http://www.st.com/stonline/books/pdf/docs/10123.pdf) gives a much
95nicer picture.(but they use line parity as term where I use row parity)
96Oh well, I'm graphically challenged, so suffer with me for a moment :-)
97And I could not reuse the ST picture anyway for copyright reasons.
98
99
100Attempt 0
101=========
102
103Implementing the parity calculation is pretty simple.
104In C pseudocode:
105for (i = 0; i < 256; i++)
106{
107 if (i & 0x01)
108 rp1 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp1;
109 else
110 rp0 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp1;
111 if (i & 0x02)
112 rp3 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp3;
113 else
114 rp2 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp2;
115 if (i & 0x04)
116 rp5 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp5;
117 else
118 rp4 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp4;
119 if (i & 0x08)
120 rp7 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp7;
121 else
122 rp6 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp6;
123 if (i & 0x10)
124 rp9 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp9;
125 else
126 rp8 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp8;
127 if (i & 0x20)
128 rp11 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp11;
129 else
130 rp10 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp10;
131 if (i & 0x40)
132 rp13 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp13;
133 else
134 rp12 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp12;
135 if (i & 0x80)
136 rp15 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp15;
137 else
138 rp14 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp14;
139 cp0 = bit6 ^ bit4 ^ bit2 ^ bit0 ^ cp0;
140 cp1 = bit7 ^ bit5 ^ bit3 ^ bit1 ^ cp1;
141 cp2 = bit5 ^ bit4 ^ bit1 ^ bit0 ^ cp2;
142 cp3 = bit7 ^ bit6 ^ bit3 ^ bit2 ^ cp3
143 cp4 = bit3 ^ bit2 ^ bit1 ^ bit0 ^ cp4
144 cp5 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ cp5
145}
146
147
148Analysis 0
149==========
150
151C does have bitwise operators but not really operators to do the above
152efficiently (and most hardware has no such instructions either).
153Therefore without implementing this it was clear that the code above was
154not going to bring me a Nobel prize :-)
155
156Fortunately the exclusive or operation is commutative, so we can combine
157the values in any order. So instead of calculating all the bits
158individually, let us try to rearrange things.
159For the column parity this is easy. We can just xor the bytes and in the
160end filter out the relevant bits. This is pretty nice as it will bring
161all cp calculation out of the if loop.
162
163Similarly we can first xor the bytes for the various rows.
164This leads to:
165
166
167Attempt 1
168=========
169
170const char parity[256] = {
171 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
172 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
173 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
174 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
175 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
176 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
177 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
178 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
179 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
180 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
181 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
182 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
183 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
184 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
185 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
186 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0
187};
188
189void ecc1(const unsigned char *buf, unsigned char *code)
190{
191 int i;
192 const unsigned char *bp = buf;
193 unsigned char cur;
194 unsigned char rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;
195 unsigned char rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15;
196 unsigned char par;
197
198 par = 0;
199 rp0 = 0; rp1 = 0; rp2 = 0; rp3 = 0;
200 rp4 = 0; rp5 = 0; rp6 = 0; rp7 = 0;
201 rp8 = 0; rp9 = 0; rp10 = 0; rp11 = 0;
202 rp12 = 0; rp13 = 0; rp14 = 0; rp15 = 0;
203
204 for (i = 0; i < 256; i++)
205 {
206 cur = *bp++;
207 par ^= cur;
208 if (i & 0x01) rp1 ^= cur; else rp0 ^= cur;
209 if (i & 0x02) rp3 ^= cur; else rp2 ^= cur;
210 if (i & 0x04) rp5 ^= cur; else rp4 ^= cur;
211 if (i & 0x08) rp7 ^= cur; else rp6 ^= cur;
212 if (i & 0x10) rp9 ^= cur; else rp8 ^= cur;
213 if (i & 0x20) rp11 ^= cur; else rp10 ^= cur;
214 if (i & 0x40) rp13 ^= cur; else rp12 ^= cur;
215 if (i & 0x80) rp15 ^= cur; else rp14 ^= cur;
216 }
217 code[0] =
218 (parity[rp7] << 7) |
219 (parity[rp6] << 6) |
220 (parity[rp5] << 5) |
221 (parity[rp4] << 4) |
222 (parity[rp3] << 3) |
223 (parity[rp2] << 2) |
224 (parity[rp1] << 1) |
225 (parity[rp0]);
226 code[1] =
227 (parity[rp15] << 7) |
228 (parity[rp14] << 6) |
229 (parity[rp13] << 5) |
230 (parity[rp12] << 4) |
231 (parity[rp11] << 3) |
232 (parity[rp10] << 2) |
233 (parity[rp9] << 1) |
234 (parity[rp8]);
235 code[2] =
236 (parity[par & 0xf0] << 7) |
237 (parity[par & 0x0f] << 6) |
238 (parity[par & 0xcc] << 5) |
239 (parity[par & 0x33] << 4) |
240 (parity[par & 0xaa] << 3) |
241 (parity[par & 0x55] << 2);
242 code[0] = ~code[0];
243 code[1] = ~code[1];
244 code[2] = ~code[2];
245}
246
247Still pretty straightforward. The last three invert statements are there to
248give a checksum of 0xff 0xff 0xff for an empty flash. In an empty flash
249all data is 0xff, so the checksum then matches.
250
251I also introduced the parity lookup. I expected this to be the fastest
252way to calculate the parity, but I will investigate alternatives later
253on.
254
255
256Analysis 1
257==========
258
259The code works, but is not terribly efficient. On my system it took
260almost 4 times as much time as the linux driver code. But hey, if it was
261*that* easy this would have been done long before.
262No pain. no gain.
263
264Fortunately there is plenty of room for improvement.
265
266In step 1 we moved from bit-wise calculation to byte-wise calculation.
267However in C we can also use the unsigned long data type and virtually
268every modern microprocessor supports 32 bit operations, so why not try
269to write our code in such a way that we process data in 32 bit chunks.
270
271Of course this means some modification as the row parity is byte by
272byte. A quick analysis:
273for the column parity we use the par variable. When extending to 32 bits
274we can in the end easily calculate p0 and p1 from it.
275(because par now consists of 4 bytes, contributing to rp1, rp0, rp1, rp0
276respectively)
277also rp2 and rp3 can be easily retrieved from par as rp3 covers the
278first two bytes and rp2 the last two bytes.
279
280Note that of course now the loop is executed only 64 times (256/4).
281And note that care must taken wrt byte ordering. The way bytes are
282ordered in a long is machine dependent, and might affect us.
283Anyway, if there is an issue: this code is developed on x86 (to be
284precise: a DELL PC with a D920 Intel CPU)
285
286And of course the performance might depend on alignment, but I expect
287that the I/O buffers in the nand driver are aligned properly (and
288otherwise that should be fixed to get maximum performance).
289
290Let's give it a try...
291
292
293Attempt 2
294=========
295
296extern const char parity[256];
297
298void ecc2(const unsigned char *buf, unsigned char *code)
299{
300 int i;
301 const unsigned long *bp = (unsigned long *)buf;
302 unsigned long cur;
303 unsigned long rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;
304 unsigned long rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15;
305 unsigned long par;
306
307 par = 0;
308 rp0 = 0; rp1 = 0; rp2 = 0; rp3 = 0;
309 rp4 = 0; rp5 = 0; rp6 = 0; rp7 = 0;
310 rp8 = 0; rp9 = 0; rp10 = 0; rp11 = 0;
311 rp12 = 0; rp13 = 0; rp14 = 0; rp15 = 0;
312
313 for (i = 0; i < 64; i++)
314 {
315 cur = *bp++;
316 par ^= cur;
317 if (i & 0x01) rp5 ^= cur; else rp4 ^= cur;
318 if (i & 0x02) rp7 ^= cur; else rp6 ^= cur;
319 if (i & 0x04) rp9 ^= cur; else rp8 ^= cur;
320 if (i & 0x08) rp11 ^= cur; else rp10 ^= cur;
321 if (i & 0x10) rp13 ^= cur; else rp12 ^= cur;
322 if (i & 0x20) rp15 ^= cur; else rp14 ^= cur;
323 }
324 /*
325 we need to adapt the code generation for the fact that rp vars are now
326 long; also the column parity calculation needs to be changed.
327 we'll bring rp4 to 15 back to single byte entities by shifting and
328 xoring
329 */
330 rp4 ^= (rp4 >> 16); rp4 ^= (rp4 >> 8); rp4 &= 0xff;
331 rp5 ^= (rp5 >> 16); rp5 ^= (rp5 >> 8); rp5 &= 0xff;
332 rp6 ^= (rp6 >> 16); rp6 ^= (rp6 >> 8); rp6 &= 0xff;
333 rp7 ^= (rp7 >> 16); rp7 ^= (rp7 >> 8); rp7 &= 0xff;
334 rp8 ^= (rp8 >> 16); rp8 ^= (rp8 >> 8); rp8 &= 0xff;
335 rp9 ^= (rp9 >> 16); rp9 ^= (rp9 >> 8); rp9 &= 0xff;
336 rp10 ^= (rp10 >> 16); rp10 ^= (rp10 >> 8); rp10 &= 0xff;
337 rp11 ^= (rp11 >> 16); rp11 ^= (rp11 >> 8); rp11 &= 0xff;
338 rp12 ^= (rp12 >> 16); rp12 ^= (rp12 >> 8); rp12 &= 0xff;
339 rp13 ^= (rp13 >> 16); rp13 ^= (rp13 >> 8); rp13 &= 0xff;
340 rp14 ^= (rp14 >> 16); rp14 ^= (rp14 >> 8); rp14 &= 0xff;
341 rp15 ^= (rp15 >> 16); rp15 ^= (rp15 >> 8); rp15 &= 0xff;
342 rp3 = (par >> 16); rp3 ^= (rp3 >> 8); rp3 &= 0xff;
343 rp2 = par & 0xffff; rp2 ^= (rp2 >> 8); rp2 &= 0xff;
344 par ^= (par >> 16);
345 rp1 = (par >> 8); rp1 &= 0xff;
346 rp0 = (par & 0xff);
347 par ^= (par >> 8); par &= 0xff;
348
349 code[0] =
350 (parity[rp7] << 7) |
351 (parity[rp6] << 6) |
352 (parity[rp5] << 5) |
353 (parity[rp4] << 4) |
354 (parity[rp3] << 3) |
355 (parity[rp2] << 2) |
356 (parity[rp1] << 1) |
357 (parity[rp0]);
358 code[1] =
359 (parity[rp15] << 7) |
360 (parity[rp14] << 6) |
361 (parity[rp13] << 5) |
362 (parity[rp12] << 4) |
363 (parity[rp11] << 3) |
364 (parity[rp10] << 2) |
365 (parity[rp9] << 1) |
366 (parity[rp8]);
367 code[2] =
368 (parity[par & 0xf0] << 7) |
369 (parity[par & 0x0f] << 6) |
370 (parity[par & 0xcc] << 5) |
371 (parity[par & 0x33] << 4) |
372 (parity[par & 0xaa] << 3) |
373 (parity[par & 0x55] << 2);
374 code[0] = ~code[0];
375 code[1] = ~code[1];
376 code[2] = ~code[2];
377}
378
379The parity array is not shown any more. Note also that for these
380examples I kinda deviated from my regular programming style by allowing
381multiple statements on a line, not using { } in then and else blocks
382with only a single statement and by using operators like ^=
383
384
385Analysis 2
386==========
387
388The code (of course) works, and hurray: we are a little bit faster than
389the linux driver code (about 15%). But wait, don't cheer too quickly.
390THere is more to be gained.
391If we look at e.g. rp14 and rp15 we see that we either xor our data with
392rp14 or with rp15. However we also have par which goes over all data.
393This means there is no need to calculate rp14 as it can be calculated from
394rp15 through rp14 = par ^ rp15;
395(or if desired we can avoid calculating rp15 and calculate it from
396rp14). That is why some places refer to inverse parity.
397Of course the same thing holds for rp4/5, rp6/7, rp8/9, rp10/11 and rp12/13.
398Effectively this means we can eliminate the else clause from the if
399statements. Also we can optimise the calculation in the end a little bit
400by going from long to byte first. Actually we can even avoid the table
401lookups
402
403Attempt 3
404=========
405
406Odd replaced:
407 if (i & 0x01) rp5 ^= cur; else rp4 ^= cur;
408 if (i & 0x02) rp7 ^= cur; else rp6 ^= cur;
409 if (i & 0x04) rp9 ^= cur; else rp8 ^= cur;
410 if (i & 0x08) rp11 ^= cur; else rp10 ^= cur;
411 if (i & 0x10) rp13 ^= cur; else rp12 ^= cur;
412 if (i & 0x20) rp15 ^= cur; else rp14 ^= cur;
413with
414 if (i & 0x01) rp5 ^= cur;
415 if (i & 0x02) rp7 ^= cur;
416 if (i & 0x04) rp9 ^= cur;
417 if (i & 0x08) rp11 ^= cur;
418 if (i & 0x10) rp13 ^= cur;
419 if (i & 0x20) rp15 ^= cur;
420
421 and outside the loop added:
422 rp4 = par ^ rp5;
423 rp6 = par ^ rp7;
424 rp8 = par ^ rp9;
425 rp10 = par ^ rp11;
426 rp12 = par ^ rp13;
427 rp14 = par ^ rp15;
428
429And after that the code takes about 30% more time, although the number of
430statements is reduced. This is also reflected in the assembly code.
431
432
433Analysis 3
434==========
435
436Very weird. Guess it has to do with caching or instruction parallellism
437or so. I also tried on an eeePC (Celeron, clocked at 900 Mhz). Interesting
438observation was that this one is only 30% slower (according to time)
439executing the code as my 3Ghz D920 processor.
440
441Well, it was expected not to be easy so maybe instead move to a
442different track: let's move back to the code from attempt2 and do some
443loop unrolling. This will eliminate a few if statements. I'll try
444different amounts of unrolling to see what works best.
445
446
447Attempt 4
448=========
449
450Unrolled the loop 1, 2, 3 and 4 times.
451For 4 the code starts with:
452
453 for (i = 0; i < 4; i++)
454 {
455 cur = *bp++;
456 par ^= cur;
457 rp4 ^= cur;
458 rp6 ^= cur;
459 rp8 ^= cur;
460 rp10 ^= cur;
461 if (i & 0x1) rp13 ^= cur; else rp12 ^= cur;
462 if (i & 0x2) rp15 ^= cur; else rp14 ^= cur;
463 cur = *bp++;
464 par ^= cur;
465 rp5 ^= cur;
466 rp6 ^= cur;
467 ...
468
469
470Analysis 4
471==========
472
473Unrolling once gains about 15%
474Unrolling twice keeps the gain at about 15%
475Unrolling three times gives a gain of 30% compared to attempt 2.
476Unrolling four times gives a marginal improvement compared to unrolling
477three times.
478
479I decided to proceed with a four time unrolled loop anyway. It was my gut
480feeling that in the next steps I would obtain additional gain from it.
481
482The next step was triggered by the fact that par contains the xor of all
483bytes and rp4 and rp5 each contain the xor of half of the bytes.
484So in effect par = rp4 ^ rp5. But as xor is commutative we can also say
485that rp5 = par ^ rp4. So no need to keep both rp4 and rp5 around. We can
486eliminate rp5 (or rp4, but I already foresaw another optimisation).
487The same holds for rp6/7, rp8/9, rp10/11 rp12/13 and rp14/15.
488
489
490Attempt 5
491=========
492
493Effectively so all odd digit rp assignments in the loop were removed.
494This included the else clause of the if statements.
495Of course after the loop we need to correct things by adding code like:
496 rp5 = par ^ rp4;
497Also the initial assignments (rp5 = 0; etc) could be removed.
498Along the line I also removed the initialisation of rp0/1/2/3.
499
500
501Analysis 5
502==========
503
504Measurements showed this was a good move. The run-time roughly halved
505compared with attempt 4 with 4 times unrolled, and we only require 1/3rd
506of the processor time compared to the current code in the linux kernel.
507
508However, still I thought there was more. I didn't like all the if
509statements. Why not keep a running parity and only keep the last if
510statement. Time for yet another version!
511
512
513Attempt 6
514=========
515
516THe code within the for loop was changed to:
517
518 for (i = 0; i < 4; i++)
519 {
520 cur = *bp++; tmppar = cur; rp4 ^= cur;
521 cur = *bp++; tmppar ^= cur; rp6 ^= tmppar;
522 cur = *bp++; tmppar ^= cur; rp4 ^= cur;
523 cur = *bp++; tmppar ^= cur; rp8 ^= tmppar;
524
525 cur = *bp++; tmppar ^= cur; rp4 ^= cur; rp6 ^= cur;
526 cur = *bp++; tmppar ^= cur; rp6 ^= cur;
527 cur = *bp++; tmppar ^= cur; rp4 ^= cur;
528 cur = *bp++; tmppar ^= cur; rp10 ^= tmppar;
529
530 cur = *bp++; tmppar ^= cur; rp4 ^= cur; rp6 ^= cur; rp8 ^= cur;
531 cur = *bp++; tmppar ^= cur; rp6 ^= cur; rp8 ^= cur;
532 cur = *bp++; tmppar ^= cur; rp4 ^= cur; rp8 ^= cur;
533 cur = *bp++; tmppar ^= cur; rp8 ^= cur;
534
535 cur = *bp++; tmppar ^= cur; rp4 ^= cur; rp6 ^= cur;
536 cur = *bp++; tmppar ^= cur; rp6 ^= cur;
537 cur = *bp++; tmppar ^= cur; rp4 ^= cur;
538 cur = *bp++; tmppar ^= cur;
539
540 par ^= tmppar;
541 if ((i & 0x1) == 0) rp12 ^= tmppar;
542 if ((i & 0x2) == 0) rp14 ^= tmppar;
543 }
544
545As you can see tmppar is used to accumulate the parity within a for
546iteration. In the last 3 statements is is added to par and, if needed,
547to rp12 and rp14.
548
549While making the changes I also found that I could exploit that tmppar
550contains the running parity for this iteration. So instead of having:
551rp4 ^= cur; rp6 = cur;
552I removed the rp6 = cur; statement and did rp6 ^= tmppar; on next
553statement. A similar change was done for rp8 and rp10
554
555
556Analysis 6
557==========
558
559Measuring this code again showed big gain. When executing the original
560linux code 1 million times, this took about 1 second on my system.
561(using time to measure the performance). After this iteration I was back
562to 0.075 sec. Actually I had to decide to start measuring over 10
563million interations in order not to loose too much accuracy. This one
564definitely seemed to be the jackpot!
565
566There is a little bit more room for improvement though. There are three
567places with statements:
568rp4 ^= cur; rp6 ^= cur;
569It seems more efficient to also maintain a variable rp4_6 in the while
570loop; This eliminates 3 statements per loop. Of course after the loop we
571need to correct by adding:
572 rp4 ^= rp4_6;
573 rp6 ^= rp4_6
574Furthermore there are 4 sequential assingments to rp8. This can be
575encoded slightly more efficient by saving tmppar before those 4 lines
576and later do rp8 = rp8 ^ tmppar ^ notrp8;
577(where notrp8 is the value of rp8 before those 4 lines).
578Again a use of the commutative property of xor.
579Time for a new test!
580
581
582Attempt 7
583=========
584
585The new code now looks like:
586
587 for (i = 0; i < 4; i++)
588 {
589 cur = *bp++; tmppar = cur; rp4 ^= cur;
590 cur = *bp++; tmppar ^= cur; rp6 ^= tmppar;
591 cur = *bp++; tmppar ^= cur; rp4 ^= cur;
592 cur = *bp++; tmppar ^= cur; rp8 ^= tmppar;
593
594 cur = *bp++; tmppar ^= cur; rp4_6 ^= cur;
595 cur = *bp++; tmppar ^= cur; rp6 ^= cur;
596 cur = *bp++; tmppar ^= cur; rp4 ^= cur;
597 cur = *bp++; tmppar ^= cur; rp10 ^= tmppar;
598
599 notrp8 = tmppar;
600 cur = *bp++; tmppar ^= cur; rp4_6 ^= cur;
601 cur = *bp++; tmppar ^= cur; rp6 ^= cur;
602 cur = *bp++; tmppar ^= cur; rp4 ^= cur;
603 cur = *bp++; tmppar ^= cur;
604 rp8 = rp8 ^ tmppar ^ notrp8;
605
606 cur = *bp++; tmppar ^= cur; rp4_6 ^= cur;
607 cur = *bp++; tmppar ^= cur; rp6 ^= cur;
608 cur = *bp++; tmppar ^= cur; rp4 ^= cur;
609 cur = *bp++; tmppar ^= cur;
610
611 par ^= tmppar;
612 if ((i & 0x1) == 0) rp12 ^= tmppar;
613 if ((i & 0x2) == 0) rp14 ^= tmppar;
614 }
615 rp4 ^= rp4_6;
616 rp6 ^= rp4_6;
617
618
619Not a big change, but every penny counts :-)
620
621
622Analysis 7
623==========
624
625Acutally this made things worse. Not very much, but I don't want to move
626into the wrong direction. Maybe something to investigate later. Could
627have to do with caching again.
628
629Guess that is what there is to win within the loop. Maybe unrolling one
630more time will help. I'll keep the optimisations from 7 for now.
631
632
633Attempt 8
634=========
635
636Unrolled the loop one more time.
637
638
639Analysis 8
640==========
641
642This makes things worse. Let's stick with attempt 6 and continue from there.
643Although it seems that the code within the loop cannot be optimised
644further there is still room to optimize the generation of the ecc codes.
645We can simply calcualate the total parity. If this is 0 then rp4 = rp5
646etc. If the parity is 1, then rp4 = !rp5;
647But if rp4 = rp5 we do not need rp5 etc. We can just write the even bits
648in the result byte and then do something like
649 code[0] |= (code[0] << 1);
650Lets test this.
651
652
653Attempt 9
654=========
655
656Changed the code but again this slightly degrades performance. Tried all
657kind of other things, like having dedicated parity arrays to avoid the
658shift after parity[rp7] << 7; No gain.
659Change the lookup using the parity array by using shift operators (e.g.
660replace parity[rp7] << 7 with:
661rp7 ^= (rp7 << 4);
662rp7 ^= (rp7 << 2);
663rp7 ^= (rp7 << 1);
664rp7 &= 0x80;
665No gain.
666
667The only marginal change was inverting the parity bits, so we can remove
668the last three invert statements.
669
670Ah well, pity this does not deliver more. Then again 10 million
671iterations using the linux driver code takes between 13 and 13.5
672seconds, whereas my code now takes about 0.73 seconds for those 10
673million iterations. So basically I've improved the performance by a
674factor 18 on my system. Not that bad. Of course on different hardware
675you will get different results. No warranties!
676
677But of course there is no such thing as a free lunch. The codesize almost
678tripled (from 562 bytes to 1434 bytes). Then again, it is not that much.
679
680
681Correcting errors
682=================
683
684For correcting errors I again used the ST application note as a starter,
685but I also peeked at the existing code.
686The algorithm itself is pretty straightforward. Just xor the given and
687the calculated ecc. If all bytes are 0 there is no problem. If 11 bits
688are 1 we have one correctable bit error. If there is 1 bit 1, we have an
689error in the given ecc code.
690It proved to be fastest to do some table lookups. Performance gain
691introduced by this is about a factor 2 on my system when a repair had to
692be done, and 1% or so if no repair had to be done.
693Code size increased from 330 bytes to 686 bytes for this function.
694(gcc 4.2, -O3)
695
696
697Conclusion
698==========
699
700The gain when calculating the ecc is tremendous. Om my development hardware
701a speedup of a factor of 18 for ecc calculation was achieved. On a test on an
702embedded system with a MIPS core a factor 7 was obtained.
703On a test with a Linksys NSLU2 (ARMv5TE processor) the speedup was a factor
7045 (big endian mode, gcc 4.1.2, -O3)
705For correction not much gain could be obtained (as bitflips are rare). Then
706again there are also much less cycles spent there.
707
708It seems there is not much more gain possible in this, at least when
709programmed in C. Of course it might be possible to squeeze something more
710out of it with an assembler program, but due to pipeline behaviour etc
711this is very tricky (at least for intel hw).
712
713Author: Frans Meulenbroeks
714Copyright (C) 2008 Koninklijke Philips Electronics NV.
diff --git a/Documentation/sysrq.txt b/Documentation/sysrq.txt
index 7b3b069c376e..10a0263ebb3f 100644
--- a/Documentation/sysrq.txt
+++ b/Documentation/sysrq.txt
@@ -95,8 +95,9 @@ On all - write a character to /proc/sysrq-trigger. e.g.:
95 95
96'p' - Will dump the current registers and flags to your console. 96'p' - Will dump the current registers and flags to your console.
97 97
98'q' - Will dump per CPU lists of all armed hrtimers (not timer_list timers) 98'q' - Will dump per CPU lists of all armed hrtimers (but NOT regular
99 and detailed information about all clockevent devices. 99 timer_list timers) and detailed information about all
100 clockevent devices.
100 101
101'r' - Turns off keyboard raw mode and sets it to XLATE. 102'r' - Turns off keyboard raw mode and sets it to XLATE.
102 103
diff --git a/Documentation/vm/unevictable-lru.txt b/Documentation/vm/unevictable-lru.txt
new file mode 100644
index 000000000000..125eed560e5a
--- /dev/null
+++ b/Documentation/vm/unevictable-lru.txt
@@ -0,0 +1,615 @@
1
2This document describes the Linux memory management "Unevictable LRU"
3infrastructure and the use of this infrastructure to manage several types
4of "unevictable" pages. The document attempts to provide the overall
5rationale behind this mechanism and the rationale for some of the design
6decisions that drove the implementation. The latter design rationale is
7discussed in the context of an implementation description. Admittedly, one
8can obtain the implementation details--the "what does it do?"--by reading the
9code. One hopes that the descriptions below add value by provide the answer
10to "why does it do that?".
11
12Unevictable LRU Infrastructure:
13
14The Unevictable LRU adds an additional LRU list to track unevictable pages
15and to hide these pages from vmscan. This mechanism is based on a patch by
16Larry Woodman of Red Hat to address several scalability problems with page
17reclaim in Linux. The problems have been observed at customer sites on large
18memory x86_64 systems. For example, a non-numal x86_64 platform with 128GB
19of main memory will have over 32 million 4k pages in a single zone. When a
20large fraction of these pages are not evictable for any reason [see below],
21vmscan will spend a lot of time scanning the LRU lists looking for the small
22fraction of pages that are evictable. This can result in a situation where
23all cpus are spending 100% of their time in vmscan for hours or days on end,
24with the system completely unresponsive.
25
26The Unevictable LRU infrastructure addresses the following classes of
27unevictable pages:
28
29+ page owned by ramfs
30+ page mapped into SHM_LOCKed shared memory regions
31+ page mapped into VM_LOCKED [mlock()ed] vmas
32
33The infrastructure might be able to handle other conditions that make pages
34unevictable, either by definition or by circumstance, in the future.
35
36
37The Unevictable LRU List
38
39The Unevictable LRU infrastructure consists of an additional, per-zone, LRU list
40called the "unevictable" list and an associated page flag, PG_unevictable, to
41indicate that the page is being managed on the unevictable list. The
42PG_unevictable flag is analogous to, and mutually exclusive with, the PG_active
43flag in that it indicates on which LRU list a page resides when PG_lru is set.
44The unevictable LRU list is source configurable based on the UNEVICTABLE_LRU
45Kconfig option.
46
47The Unevictable LRU infrastructure maintains unevictable pages on an additional
48LRU list for a few reasons:
49
501) We get to "treat unevictable pages just like we treat other pages in the
51 system, which means we get to use the same code to manipulate them, the
52 same code to isolate them (for migrate, etc.), the same code to keep track
53 of the statistics, etc..." [Rik van Riel]
54
552) We want to be able to migrate unevictable pages between nodes--for memory
56 defragmentation, workload management and memory hotplug. The linux kernel
57 can only migrate pages that it can successfully isolate from the lru lists.
58 If we were to maintain pages elsewise than on an lru-like list, where they
59 can be found by isolate_lru_page(), we would prevent their migration, unless
60 we reworked migration code to find the unevictable pages.
61
62
63The unevictable LRU list does not differentiate between file backed and swap
64backed [anon] pages. This differentiation is only important while the pages
65are, in fact, evictable.
66
67The unevictable LRU list benefits from the "arrayification" of the per-zone
68LRU lists and statistics originally proposed and posted by Christoph Lameter.
69
70The unevictable list does not use the lru pagevec mechanism. Rather,
71unevictable pages are placed directly on the page's zone's unevictable
72list under the zone lru_lock. The reason for this is to prevent stranding
73of pages on the unevictable list when one task has the page isolated from the
74lru and other tasks are changing the "evictability" state of the page.
75
76
77Unevictable LRU and Memory Controller Interaction
78
79The memory controller data structure automatically gets a per zone unevictable
80lru list as a result of the "arrayification" of the per-zone LRU lists. The
81memory controller tracks the movement of pages to and from the unevictable list.
82When a memory control group comes under memory pressure, the controller will
83not attempt to reclaim pages on the unevictable list. This has a couple of
84effects. Because the pages are "hidden" from reclaim on the unevictable list,
85the reclaim process can be more efficient, dealing only with pages that have
86a chance of being reclaimed. On the other hand, if too many of the pages
87charged to the control group are unevictable, the evictable portion of the
88working set of the tasks in the control group may not fit into the available
89memory. This can cause the control group to thrash or to oom-kill tasks.
90
91
92Unevictable LRU: Detecting Unevictable Pages
93
94The function page_evictable(page, vma) in vmscan.c determines whether a
95page is evictable or not. For ramfs pages and pages in SHM_LOCKed regions,
96page_evictable() tests a new address space flag, AS_UNEVICTABLE, in the page's
97address space using a wrapper function. Wrapper functions are used to set,
98clear and test the flag to reduce the requirement for #ifdef's throughout the
99source code. AS_UNEVICTABLE is set on ramfs inode/mapping when it is created.
100This flag remains for the life of the inode.
101
102For shared memory regions, AS_UNEVICTABLE is set when an application
103successfully SHM_LOCKs the region and is removed when the region is
104SHM_UNLOCKed. Note that shmctl(SHM_LOCK, ...) does not populate the page
105tables for the region as does, for example, mlock(). So, we make no special
106effort to push any pages in the SHM_LOCKed region to the unevictable list.
107Vmscan will do this when/if it encounters the pages during reclaim. On
108SHM_UNLOCK, shmctl() scans the pages in the region and "rescues" them from the
109unevictable list if no other condition keeps them unevictable. If a SHM_LOCKed
110region is destroyed, the pages are also "rescued" from the unevictable list in
111the process of freeing them.
112
113page_evictable() detects mlock()ed pages by testing an additional page flag,
114PG_mlocked via the PageMlocked() wrapper. If the page is NOT mlocked, and a
115non-NULL vma is supplied, page_evictable() will check whether the vma is
116VM_LOCKED via is_mlocked_vma(). is_mlocked_vma() will SetPageMlocked() and
117update the appropriate statistics if the vma is VM_LOCKED. This method allows
118efficient "culling" of pages in the fault path that are being faulted in to
119VM_LOCKED vmas.
120
121
122Unevictable Pages and Vmscan [shrink_*_list()]
123
124If unevictable pages are culled in the fault path, or moved to the unevictable
125list at mlock() or mmap() time, vmscan will never encounter the pages until
126they have become evictable again, for example, via munlock() and have been
127"rescued" from the unevictable list. However, there may be situations where we
128decide, for the sake of expediency, to leave a unevictable page on one of the
129regular active/inactive LRU lists for vmscan to deal with. Vmscan checks for
130such pages in all of the shrink_{active|inactive|page}_list() functions and
131will "cull" such pages that it encounters--that is, it diverts those pages to
132the unevictable list for the zone being scanned.
133
134There may be situations where a page is mapped into a VM_LOCKED vma, but the
135page is not marked as PageMlocked. Such pages will make it all the way to
136shrink_page_list() where they will be detected when vmscan walks the reverse
137map in try_to_unmap(). If try_to_unmap() returns SWAP_MLOCK, shrink_page_list()
138will cull the page at that point.
139
140Note that for anonymous pages, shrink_page_list() attempts to add the page to
141the swap cache before it tries to unmap the page. To avoid this unnecessary
142consumption of swap space, shrink_page_list() calls try_to_munlock() to check
143whether any VM_LOCKED vmas map the page without attempting to unmap the page.
144If try_to_munlock() returns SWAP_MLOCK, shrink_page_list() will cull the page
145without consuming swap space. try_to_munlock() will be described below.
146
147To "cull" an unevictable page, vmscan simply puts the page back on the lru
148list using putback_lru_page()--the inverse operation to isolate_lru_page()--
149after dropping the page lock. Because the condition which makes the page
150unevictable may change once the page is unlocked, putback_lru_page() will
151recheck the unevictable state of a page that it places on the unevictable lru
152list. If the page has become unevictable, putback_lru_page() removes it from
153the list and retries, including the page_unevictable() test. Because such a
154race is a rare event and movement of pages onto the unevictable list should be
155rare, these extra evictabilty checks should not occur in the majority of calls
156to putback_lru_page().
157
158
159Mlocked Page: Prior Work
160
161The "Unevictable Mlocked Pages" infrastructure is based on work originally
162posted by Nick Piggin in an RFC patch entitled "mm: mlocked pages off LRU".
163Nick posted his patch as an alternative to a patch posted by Christoph
164Lameter to achieve the same objective--hiding mlocked pages from vmscan.
165In Nick's patch, he used one of the struct page lru list link fields as a count
166of VM_LOCKED vmas that map the page. This use of the link field for a count
167prevented the management of the pages on an LRU list. Thus, mlocked pages were
168not migratable as isolate_lru_page() could not find them and the lru list link
169field was not available to the migration subsystem. Nick resolved this by
170putting mlocked pages back on the lru list before attempting to isolate them,
171thus abandoning the count of VM_LOCKED vmas. When Nick's patch was integrated
172with the Unevictable LRU work, the count was replaced by walking the reverse
173map to determine whether any VM_LOCKED vmas mapped the page. More on this
174below.
175
176
177Mlocked Pages: Basic Management
178
179Mlocked pages--pages mapped into a VM_LOCKED vma--represent one class of
180unevictable pages. When such a page has been "noticed" by the memory
181management subsystem, the page is marked with the PG_mlocked [PageMlocked()]
182flag. A PageMlocked() page will be placed on the unevictable LRU list when
183it is added to the LRU. Pages can be "noticed" by memory management in
184several places:
185
1861) in the mlock()/mlockall() system call handlers.
1872) in the mmap() system call handler when mmap()ing a region with the
188 MAP_LOCKED flag, or mmap()ing a region in a task that has called
189 mlockall() with the MCL_FUTURE flag. Both of these conditions result
190 in the VM_LOCKED flag being set for the vma.
1913) in the fault path, if mlocked pages are "culled" in the fault path,
192 and when a VM_LOCKED stack segment is expanded.
1934) as mentioned above, in vmscan:shrink_page_list() with attempting to
194 reclaim a page in a VM_LOCKED vma--via try_to_unmap() or try_to_munlock().
195
196Mlocked pages become unlocked and rescued from the unevictable list when:
197
1981) mapped in a range unlocked via the munlock()/munlockall() system calls.
1992) munmapped() out of the last VM_LOCKED vma that maps the page, including
200 unmapping at task exit.
2013) when the page is truncated from the last VM_LOCKED vma of an mmap()ed file.
2024) before a page is COWed in a VM_LOCKED vma.
203
204
205Mlocked Pages: mlock()/mlockall() System Call Handling
206
207Both [do_]mlock() and [do_]mlockall() system call handlers call mlock_fixup()
208for each vma in the range specified by the call. In the case of mlockall(),
209this is the entire active address space of the task. Note that mlock_fixup()
210is used for both mlock()ing and munlock()ing a range of memory. A call to
211mlock() an already VM_LOCKED vma, or to munlock() a vma that is not VM_LOCKED
212is treated as a no-op--mlock_fixup() simply returns.
213
214If the vma passes some filtering described in "Mlocked Pages: Filtering Vmas"
215below, mlock_fixup() will attempt to merge the vma with its neighbors or split
216off a subset of the vma if the range does not cover the entire vma. Once the
217vma has been merged or split or neither, mlock_fixup() will call
218__mlock_vma_pages_range() to fault in the pages via get_user_pages() and
219to mark the pages as mlocked via mlock_vma_page().
220
221Note that the vma being mlocked might be mapped with PROT_NONE. In this case,
222get_user_pages() will be unable to fault in the pages. That's OK. If pages
223do end up getting faulted into this VM_LOCKED vma, we'll handle them in the
224fault path or in vmscan.
225
226Also note that a page returned by get_user_pages() could be truncated or
227migrated out from under us, while we're trying to mlock it. To detect
228this, __mlock_vma_pages_range() tests the page_mapping after acquiring
229the page lock. If the page is still associated with its mapping, we'll
230go ahead and call mlock_vma_page(). If the mapping is gone, we just
231unlock the page and move on. Worse case, this results in page mapped
232in a VM_LOCKED vma remaining on a normal LRU list without being
233PageMlocked(). Again, vmscan will detect and cull such pages.
234
235mlock_vma_page(), called with the page locked [N.B., not "mlocked"], will
236TestSetPageMlocked() for each page returned by get_user_pages(). We use
237TestSetPageMlocked() because the page might already be mlocked by another
238task/vma and we don't want to do extra work. We especially do not want to
239count an mlocked page more than once in the statistics. If the page was
240already mlocked, mlock_vma_page() is done.
241
242If the page was NOT already mlocked, mlock_vma_page() attempts to isolate the
243page from the LRU, as it is likely on the appropriate active or inactive list
244at that time. If the isolate_lru_page() succeeds, mlock_vma_page() will
245putback the page--putback_lru_page()--which will notice that the page is now
246mlocked and divert the page to the zone's unevictable LRU list. If
247mlock_vma_page() is unable to isolate the page from the LRU, vmscan will handle
248it later if/when it attempts to reclaim the page.
249
250
251Mlocked Pages: Filtering Special Vmas
252
253mlock_fixup() filters several classes of "special" vmas:
254
2551) vmas with VM_IO|VM_PFNMAP set are skipped entirely. The pages behind
256 these mappings are inherently pinned, so we don't need to mark them as
257 mlocked. In any case, most of the pages have no struct page in which to
258 so mark the page. Because of this, get_user_pages() will fail for these
259 vmas, so there is no sense in attempting to visit them.
260
2612) vmas mapping hugetlbfs page are already effectively pinned into memory.
262 We don't need nor want to mlock() these pages. However, to preserve the
263 prior behavior of mlock()--before the unevictable/mlock changes--mlock_fixup()
264 will call make_pages_present() in the hugetlbfs vma range to allocate the
265 huge pages and populate the ptes.
266
2673) vmas with VM_DONTEXPAND|VM_RESERVED are generally user space mappings of
268 kernel pages, such as the vdso page, relay channel pages, etc. These pages
269 are inherently unevictable and are not managed on the LRU lists.
270 mlock_fixup() treats these vmas the same as hugetlbfs vmas. It calls
271 make_pages_present() to populate the ptes.
272
273Note that for all of these special vmas, mlock_fixup() does not set the
274VM_LOCKED flag. Therefore, we won't have to deal with them later during
275munlock() or munmap()--for example, at task exit. Neither does mlock_fixup()
276account these vmas against the task's "locked_vm".
277
278Mlocked Pages: Downgrading the Mmap Semaphore.
279
280mlock_fixup() must be called with the mmap semaphore held for write, because
281it may have to merge or split vmas. However, mlocking a large region of
282memory can take a long time--especially if vmscan must reclaim pages to
283satisfy the regions requirements. Faulting in a large region with the mmap
284semaphore held for write can hold off other faults on the address space, in
285the case of a multi-threaded task. It can also hold off scans of the task's
286address space via /proc. While testing under heavy load, it was observed that
287the ps(1) command could be held off for many minutes while a large segment was
288mlock()ed down.
289
290To address this issue, and to make the system more responsive during mlock()ing
291of large segments, mlock_fixup() downgrades the mmap semaphore to read mode
292during the call to __mlock_vma_pages_range(). This works fine. However, the
293callers of mlock_fixup() expect the semaphore to be returned in write mode.
294So, mlock_fixup() "upgrades" the semphore to write mode. Linux does not
295support an atomic upgrade_sem() call, so mlock_fixup() must drop the semaphore
296and reacquire it in write mode. In a multi-threaded task, it is possible for
297the task memory map to change while the semaphore is dropped. Therefore,
298mlock_fixup() looks up the vma at the range start address after reacquiring
299the semaphore in write mode and verifies that it still covers the original
300range. If not, mlock_fixup() returns an error [-EAGAIN]. All callers of
301mlock_fixup() have been changed to deal with this new error condition.
302
303Note: when munlocking a region, all of the pages should already be resident--
304unless we have racing threads mlocking() and munlocking() regions. So,
305unlocking should not have to wait for page allocations nor faults of any kind.
306Therefore mlock_fixup() does not downgrade the semaphore for munlock().
307
308
309Mlocked Pages: munlock()/munlockall() System Call Handling
310
311The munlock() and munlockall() system calls are handled by the same functions--
312do_mlock[all]()--as the mlock() and mlockall() system calls with the unlock
313vs lock operation indicated by an argument. So, these system calls are also
314handled by mlock_fixup(). Again, if called for an already munlock()ed vma,
315mlock_fixup() simply returns. Because of the vma filtering discussed above,
316VM_LOCKED will not be set in any "special" vmas. So, these vmas will be
317ignored for munlock.
318
319If the vma is VM_LOCKED, mlock_fixup() again attempts to merge or split off
320the specified range. The range is then munlocked via the function
321__mlock_vma_pages_range()--the same function used to mlock a vma range--
322passing a flag to indicate that munlock() is being performed.
323
324Because the vma access protections could have been changed to PROT_NONE after
325faulting in and mlocking some pages, get_user_pages() was unreliable for visiting
326these pages for munlocking. Because we don't want to leave pages mlocked(),
327get_user_pages() was enhanced to accept a flag to ignore the permissions when
328fetching the pages--all of which should be resident as a result of previous
329mlock()ing.
330
331For munlock(), __mlock_vma_pages_range() unlocks individual pages by calling
332munlock_vma_page(). munlock_vma_page() unconditionally clears the PG_mlocked
333flag using TestClearPageMlocked(). As with mlock_vma_page(), munlock_vma_page()
334use the Test*PageMlocked() function to handle the case where the page might
335have already been unlocked by another task. If the page was mlocked,
336munlock_vma_page() updates that zone statistics for the number of mlocked
337pages. Note, however, that at this point we haven't checked whether the page
338is mapped by other VM_LOCKED vmas.
339
340We can't call try_to_munlock(), the function that walks the reverse map to check
341for other VM_LOCKED vmas, without first isolating the page from the LRU.
342try_to_munlock() is a variant of try_to_unmap() and thus requires that the page
343not be on an lru list. [More on these below.] However, the call to
344isolate_lru_page() could fail, in which case we couldn't try_to_munlock().
345So, we go ahead and clear PG_mlocked up front, as this might be the only chance
346we have. If we can successfully isolate the page, we go ahead and
347try_to_munlock(), which will restore the PG_mlocked flag and update the zone
348page statistics if it finds another vma holding the page mlocked. If we fail
349to isolate the page, we'll have left a potentially mlocked page on the LRU.
350This is fine, because we'll catch it later when/if vmscan tries to reclaim the
351page. This should be relatively rare.
352
353Mlocked Pages: Migrating Them...
354
355A page that is being migrated has been isolated from the lru lists and is
356held locked across unmapping of the page, updating the page's mapping
357[address_space] entry and copying the contents and state, until the
358page table entry has been replaced with an entry that refers to the new
359page. Linux supports migration of mlocked pages and other unevictable
360pages. This involves simply moving the PageMlocked and PageUnevictable states
361from the old page to the new page.
362
363Note that page migration can race with mlocking or munlocking of the same
364page. This has been discussed from the mlock/munlock perspective in the
365respective sections above. Both processes [migration, m[un]locking], hold
366the page locked. This provides the first level of synchronization. Page
367migration zeros out the page_mapping of the old page before unlocking it,
368so m[un]lock can skip these pages by testing the page mapping under page
369lock.
370
371When completing page migration, we place the new and old pages back onto the
372lru after dropping the page lock. The "unneeded" page--old page on success,
373new page on failure--will be freed when the reference count held by the
374migration process is released. To ensure that we don't strand pages on the
375unevictable list because of a race between munlock and migration, page
376migration uses the putback_lru_page() function to add migrated pages back to
377the lru.
378
379
380Mlocked Pages: mmap(MAP_LOCKED) System Call Handling
381
382In addition the the mlock()/mlockall() system calls, an application can request
383that a region of memory be mlocked using the MAP_LOCKED flag with the mmap()
384call. Furthermore, any mmap() call or brk() call that expands the heap by a
385task that has previously called mlockall() with the MCL_FUTURE flag will result
386in the newly mapped memory being mlocked. Before the unevictable/mlock changes,
387the kernel simply called make_pages_present() to allocate pages and populate
388the page table.
389
390To mlock a range of memory under the unevictable/mlock infrastructure, the
391mmap() handler and task address space expansion functions call
392mlock_vma_pages_range() specifying the vma and the address range to mlock.
393mlock_vma_pages_range() filters vmas like mlock_fixup(), as described above in
394"Mlocked Pages: Filtering Vmas". It will clear the VM_LOCKED flag, which will
395have already been set by the caller, in filtered vmas. Thus these vma's need
396not be visited for munlock when the region is unmapped.
397
398For "normal" vmas, mlock_vma_pages_range() calls __mlock_vma_pages_range() to
399fault/allocate the pages and mlock them. Again, like mlock_fixup(),
400mlock_vma_pages_range() downgrades the mmap semaphore to read mode before
401attempting to fault/allocate and mlock the pages; and "upgrades" the semaphore
402back to write mode before returning.
403
404The callers of mlock_vma_pages_range() will have already added the memory
405range to be mlocked to the task's "locked_vm". To account for filtered vmas,
406mlock_vma_pages_range() returns the number of pages NOT mlocked. All of the
407callers then subtract a non-negative return value from the task's locked_vm.
408A negative return value represent an error--for example, from get_user_pages()
409attempting to fault in a vma with PROT_NONE access. In this case, we leave
410the memory range accounted as locked_vm, as the protections could be changed
411later and pages allocated into that region.
412
413
414Mlocked Pages: munmap()/exit()/exec() System Call Handling
415
416When unmapping an mlocked region of memory, whether by an explicit call to
417munmap() or via an internal unmap from exit() or exec() processing, we must
418munlock the pages if we're removing the last VM_LOCKED vma that maps the pages.
419Before the unevictable/mlock changes, mlocking did not mark the pages in any way,
420so unmapping them required no processing.
421
422To munlock a range of memory under the unevictable/mlock infrastructure, the
423munmap() hander and task address space tear down function call
424munlock_vma_pages_all(). The name reflects the observation that one always
425specifies the entire vma range when munlock()ing during unmap of a region.
426Because of the vma filtering when mlocking() regions, only "normal" vmas that
427actually contain mlocked pages will be passed to munlock_vma_pages_all().
428
429munlock_vma_pages_all() clears the VM_LOCKED vma flag and, like mlock_fixup()
430for the munlock case, calls __munlock_vma_pages_range() to walk the page table
431for the vma's memory range and munlock_vma_page() each resident page mapped by
432the vma. This effectively munlocks the page, only if this is the last
433VM_LOCKED vma that maps the page.
434
435
436Mlocked Page: try_to_unmap()
437
438[Note: the code changes represented by this section are really quite small
439compared to the text to describe what happening and why, and to discuss the
440implications.]
441
442Pages can, of course, be mapped into multiple vmas. Some of these vmas may
443have VM_LOCKED flag set. It is possible for a page mapped into one or more
444VM_LOCKED vmas not to have the PG_mlocked flag set and therefore reside on one
445of the active or inactive LRU lists. This could happen if, for example, a
446task in the process of munlock()ing the page could not isolate the page from
447the LRU. As a result, vmscan/shrink_page_list() might encounter such a page
448as described in "Unevictable Pages and Vmscan [shrink_*_list()]". To
449handle this situation, try_to_unmap() has been enhanced to check for VM_LOCKED
450vmas while it is walking a page's reverse map.
451
452try_to_unmap() is always called, by either vmscan for reclaim or for page
453migration, with the argument page locked and isolated from the LRU. BUG_ON()
454assertions enforce this requirement. Separate functions handle anonymous and
455mapped file pages, as these types of pages have different reverse map
456mechanisms.
457
458 try_to_unmap_anon()
459
460To unmap anonymous pages, each vma in the list anchored in the anon_vma must be
461visited--at least until a VM_LOCKED vma is encountered. If the page is being
462unmapped for migration, VM_LOCKED vmas do not stop the process because mlocked
463pages are migratable. However, for reclaim, if the page is mapped into a
464VM_LOCKED vma, the scan stops. try_to_unmap() attempts to acquire the mmap
465semphore of the mm_struct to which the vma belongs in read mode. If this is
466successful, try_to_unmap() will mlock the page via mlock_vma_page()--we
467wouldn't have gotten to try_to_unmap() if the page were already mlocked--and
468will return SWAP_MLOCK, indicating that the page is unevictable. If the
469mmap semaphore cannot be acquired, we are not sure whether the page is really
470unevictable or not. In this case, try_to_unmap() will return SWAP_AGAIN.
471
472 try_to_unmap_file() -- linear mappings
473
474Unmapping of a mapped file page works the same, except that the scan visits
475all vmas that maps the page's index/page offset in the page's mapping's
476reverse map priority search tree. It must also visit each vma in the page's
477mapping's non-linear list, if the list is non-empty. As for anonymous pages,
478on encountering a VM_LOCKED vma for a mapped file page, try_to_unmap() will
479attempt to acquire the associated mm_struct's mmap semaphore to mlock the page,
480returning SWAP_MLOCK if this is successful, and SWAP_AGAIN, if not.
481
482 try_to_unmap_file() -- non-linear mappings
483
484If a page's mapping contains a non-empty non-linear mapping vma list, then
485try_to_un{map|lock}() must also visit each vma in that list to determine
486whether the page is mapped in a VM_LOCKED vma. Again, the scan must visit
487all vmas in the non-linear list to ensure that the pages is not/should not be
488mlocked. If a VM_LOCKED vma is found in the list, the scan could terminate.
489However, there is no easy way to determine whether the page is actually mapped
490in a given vma--either for unmapping or testing whether the VM_LOCKED vma
491actually pins the page.
492
493So, try_to_unmap_file() handles non-linear mappings by scanning a certain
494number of pages--a "cluster"--in each non-linear vma associated with the page's
495mapping, for each file mapped page that vmscan tries to unmap. If this happens
496to unmap the page we're trying to unmap, try_to_unmap() will notice this on
497return--(page_mapcount(page) == 0)--and return SWAP_SUCCESS. Otherwise, it
498will return SWAP_AGAIN, causing vmscan to recirculate this page. We take
499advantage of the cluster scan in try_to_unmap_cluster() as follows:
500
501For each non-linear vma, try_to_unmap_cluster() attempts to acquire the mmap
502semaphore of the associated mm_struct for read without blocking. If this
503attempt is successful and the vma is VM_LOCKED, try_to_unmap_cluster() will
504retain the mmap semaphore for the scan; otherwise it drops it here. Then,
505for each page in the cluster, if we're holding the mmap semaphore for a locked
506vma, try_to_unmap_cluster() calls mlock_vma_page() to mlock the page. This
507call is a no-op if the page is already locked, but will mlock any pages in
508the non-linear mapping that happen to be unlocked. If one of the pages so
509mlocked is the page passed in to try_to_unmap(), try_to_unmap_cluster() will
510return SWAP_MLOCK, rather than the default SWAP_AGAIN. This will allow vmscan
511to cull the page, rather than recirculating it on the inactive list. Again,
512if try_to_unmap_cluster() cannot acquire the vma's mmap sem, it returns
513SWAP_AGAIN, indicating that the page is mapped by a VM_LOCKED vma, but
514couldn't be mlocked.
515
516
517Mlocked pages: try_to_munlock() Reverse Map Scan
518
519TODO/FIXME: a better name might be page_mlocked()--analogous to the
520page_referenced() reverse map walker--especially if we continue to call this
521from shrink_page_list(). See related TODO/FIXME below.
522
523When munlock_vma_page()--see "Mlocked Pages: munlock()/munlockall() System
524Call Handling" above--tries to munlock a page, or when shrink_page_list()
525encounters an anonymous page that is not yet in the swap cache, they need to
526determine whether or not the page is mapped by any VM_LOCKED vma, without
527actually attempting to unmap all ptes from the page. For this purpose, the
528unevictable/mlock infrastructure introduced a variant of try_to_unmap() called
529try_to_munlock().
530
531try_to_munlock() calls the same functions as try_to_unmap() for anonymous and
532mapped file pages with an additional argument specifing unlock versus unmap
533processing. Again, these functions walk the respective reverse maps looking
534for VM_LOCKED vmas. When such a vma is found for anonymous pages and file
535pages mapped in linear VMAs, as in the try_to_unmap() case, the functions
536attempt to acquire the associated mmap semphore, mlock the page via
537mlock_vma_page() and return SWAP_MLOCK. This effectively undoes the
538pre-clearing of the page's PG_mlocked done by munlock_vma_page() and informs
539shrink_page_list() that the anonymous page should be culled rather than added
540to the swap cache in preparation for a try_to_unmap() that will almost
541certainly fail.
542
543If try_to_unmap() is unable to acquire a VM_LOCKED vma's associated mmap
544semaphore, it will return SWAP_AGAIN. This will allow shrink_page_list()
545to recycle the page on the inactive list and hope that it has better luck
546with the page next time.
547
548For file pages mapped into non-linear vmas, the try_to_munlock() logic works
549slightly differently. On encountering a VM_LOCKED non-linear vma that might
550map the page, try_to_munlock() returns SWAP_AGAIN without actually mlocking
551the page. munlock_vma_page() will just leave the page unlocked and let
552vmscan deal with it--the usual fallback position.
553
554Note that try_to_munlock()'s reverse map walk must visit every vma in a pages'
555reverse map to determine that a page is NOT mapped into any VM_LOCKED vma.
556However, the scan can terminate when it encounters a VM_LOCKED vma and can
557successfully acquire the vma's mmap semphore for read and mlock the page.
558Although try_to_munlock() can be called many [very many!] times when
559munlock()ing a large region or tearing down a large address space that has been
560mlocked via mlockall(), overall this is a fairly rare event. In addition,
561although shrink_page_list() calls try_to_munlock() for every anonymous page that
562it handles that is not yet in the swap cache, on average anonymous pages will
563have very short reverse map lists.
564
565Mlocked Page: Page Reclaim in shrink_*_list()
566
567shrink_active_list() culls any obviously unevictable pages--i.e.,
568!page_evictable(page, NULL)--diverting these to the unevictable lru
569list. However, shrink_active_list() only sees unevictable pages that
570made it onto the active/inactive lru lists. Note that these pages do not
571have PageUnevictable set--otherwise, they would be on the unevictable list and
572shrink_active_list would never see them.
573
574Some examples of these unevictable pages on the LRU lists are:
575
5761) ramfs pages that have been placed on the lru lists when first allocated.
577
5782) SHM_LOCKed shared memory pages. shmctl(SHM_LOCK) does not attempt to
579 allocate or fault in the pages in the shared memory region. This happens
580 when an application accesses the page the first time after SHM_LOCKing
581 the segment.
582
5833) Mlocked pages that could not be isolated from the lru and moved to the
584 unevictable list in mlock_vma_page().
585
5863) Pages mapped into multiple VM_LOCKED vmas, but try_to_munlock() couldn't
587 acquire the vma's mmap semaphore to test the flags and set PageMlocked.
588 munlock_vma_page() was forced to let the page back on to the normal
589 LRU list for vmscan to handle.
590
591shrink_inactive_list() also culls any unevictable pages that it finds
592on the inactive lists, again diverting them to the appropriate zone's unevictable
593lru list. shrink_inactive_list() should only see SHM_LOCKed pages that became
594SHM_LOCKed after shrink_active_list() had moved them to the inactive list, or
595pages mapped into VM_LOCKED vmas that munlock_vma_page() couldn't isolate from
596the lru to recheck via try_to_munlock(). shrink_inactive_list() won't notice
597the latter, but will pass on to shrink_page_list().
598
599shrink_page_list() again culls obviously unevictable pages that it could
600encounter for similar reason to shrink_inactive_list(). As already discussed,
601shrink_page_list() proactively looks for anonymous pages that should have
602PG_mlocked set but don't--these would not be detected by page_evictable()--to
603avoid adding them to the swap cache unnecessarily. File pages mapped into
604VM_LOCKED vmas but without PG_mlocked set will make it all the way to
605try_to_unmap(). shrink_page_list() will divert them to the unevictable list when
606try_to_unmap() returns SWAP_MLOCK, as discussed above.
607
608TODO/FIXME: If we can enhance the swap cache to reliably remove entries
609with page_count(page) > 2, as long as all ptes are mapped to the page and
610not the swap entry, we can probably remove the call to try_to_munlock() in
611shrink_page_list() and just remove the page from the swap cache when
612try_to_unmap() returns SWAP_MLOCK. Currently, remove_exclusive_swap_page()
613doesn't seem to allow that.
614
615