aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/x86/x86_64
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/x86/x86_64')
-rw-r--r--Documentation/x86/x86_64/boot-options.txt15
-rw-r--r--Documentation/x86/x86_64/fake-numa-for-cpusets2
-rw-r--r--Documentation/x86/x86_64/mm.txt2
3 files changed, 4 insertions, 15 deletions
diff --git a/Documentation/x86/x86_64/boot-options.txt b/Documentation/x86/x86_64/boot-options.txt
index 72ffb5373ec7..34c13040a718 100644
--- a/Documentation/x86/x86_64/boot-options.txt
+++ b/Documentation/x86/x86_64/boot-options.txt
@@ -35,7 +35,7 @@ APICs
35 35
36 nolapic Don't use the local APIC (alias for i386 compatibility) 36 nolapic Don't use the local APIC (alias for i386 compatibility)
37 37
38 pirq=... See Documentation/i386/IO-APIC.txt 38 pirq=... See Documentation/x86/i386/IO-APIC.txt
39 39
40 noapictimer Don't set up the APIC timer 40 noapictimer Don't set up the APIC timer
41 41
@@ -79,17 +79,6 @@ Timing
79 Report when timer interrupts are lost because some code turned off 79 Report when timer interrupts are lost because some code turned off
80 interrupts for too long. 80 interrupts for too long.
81 81
82 nmi_watchdog=NUMBER[,panic]
83 NUMBER can be:
84 0 don't use an NMI watchdog
85 1 use the IO-APIC timer for the NMI watchdog
86 2 use the local APIC for the NMI watchdog using a performance counter. Note
87 This will use one performance counter and the local APIC's performance
88 vector.
89 When panic is specified panic when an NMI watchdog timeout occurs.
90 This is useful when you use a panic=... timeout and need the box
91 quickly up again.
92
93 nohpet 82 nohpet
94 Don't use the HPET timer. 83 Don't use the HPET timer.
95 84
@@ -139,7 +128,7 @@ Non Executable Mappings
139SMP 128SMP
140 129
141 additional_cpus=NUM Allow NUM more CPUs for hotplug 130 additional_cpus=NUM Allow NUM more CPUs for hotplug
142 (defaults are specified by the BIOS, see Documentation/x86_64/cpu-hotplug-spec) 131 (defaults are specified by the BIOS, see Documentation/x86/x86_64/cpu-hotplug-spec)
143 132
144NUMA 133NUMA
145 134
diff --git a/Documentation/x86/x86_64/fake-numa-for-cpusets b/Documentation/x86/x86_64/fake-numa-for-cpusets
index d1a985c5b00a..33bb56655991 100644
--- a/Documentation/x86/x86_64/fake-numa-for-cpusets
+++ b/Documentation/x86/x86_64/fake-numa-for-cpusets
@@ -10,7 +10,7 @@ amount of system memory that are available to a certain class of tasks.
10For more information on the features of cpusets, see Documentation/cpusets.txt. 10For more information on the features of cpusets, see Documentation/cpusets.txt.
11There are a number of different configurations you can use for your needs. For 11There are a number of different configurations you can use for your needs. For
12more information on the numa=fake command line option and its various ways of 12more information on the numa=fake command line option and its various ways of
13configuring fake nodes, see Documentation/x86_64/boot-options.txt. 13configuring fake nodes, see Documentation/x86/x86_64/boot-options.txt.
14 14
15For the purposes of this introduction, we'll assume a very primitive NUMA 15For the purposes of this introduction, we'll assume a very primitive NUMA
16emulation setup of "numa=fake=4*512,". This will split our system memory into 16emulation setup of "numa=fake=4*512,". This will split our system memory into
diff --git a/Documentation/x86/x86_64/mm.txt b/Documentation/x86/x86_64/mm.txt
index efce75097369..29b52b14d0b4 100644
--- a/Documentation/x86/x86_64/mm.txt
+++ b/Documentation/x86/x86_64/mm.txt
@@ -6,7 +6,7 @@ Virtual memory map with 4 level page tables:
60000000000000000 - 00007fffffffffff (=47 bits) user space, different per mm 60000000000000000 - 00007fffffffffff (=47 bits) user space, different per mm
7hole caused by [48:63] sign extension 7hole caused by [48:63] sign extension
8ffff800000000000 - ffff80ffffffffff (=40 bits) guard hole 8ffff800000000000 - ffff80ffffffffff (=40 bits) guard hole
9ffff810000000000 - ffffc0ffffffffff (=46 bits) direct mapping of all phys. memory 9ffff880000000000 - ffffc0ffffffffff (=57 TB) direct mapping of all phys. memory
10ffffc10000000000 - ffffc1ffffffffff (=40 bits) hole 10ffffc10000000000 - ffffc1ffffffffff (=40 bits) hole
11ffffc20000000000 - ffffe1ffffffffff (=45 bits) vmalloc/ioremap space 11ffffc20000000000 - ffffe1ffffffffff (=45 bits) vmalloc/ioremap space
12ffffe20000000000 - ffffe2ffffffffff (=40 bits) virtual memory map (1TB) 12ffffe20000000000 - ffffe2ffffffffff (=40 bits) virtual memory map (1TB)