aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/vm/page_migration
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/vm/page_migration')
-rw-r--r--Documentation/vm/page_migration114
1 files changed, 43 insertions, 71 deletions
diff --git a/Documentation/vm/page_migration b/Documentation/vm/page_migration
index 0dd4ef30c361..99f89aa10169 100644
--- a/Documentation/vm/page_migration
+++ b/Documentation/vm/page_migration
@@ -26,8 +26,13 @@ a process are located. See also the numa_maps manpage in the numactl package.
26Manual migration is useful if for example the scheduler has relocated 26Manual migration is useful if for example the scheduler has relocated
27a process to a processor on a distant node. A batch scheduler or an 27a process to a processor on a distant node. A batch scheduler or an
28administrator may detect the situation and move the pages of the process 28administrator may detect the situation and move the pages of the process
29nearer to the new processor. At some point in the future we may have 29nearer to the new processor. The kernel itself does only provide
30some mechanism in the scheduler that will automatically move the pages. 30manual page migration support. Automatic page migration may be implemented
31through user space processes that move pages. A special function call
32"move_pages" allows the moving of individual pages within a process.
33A NUMA profiler may f.e. obtain a log showing frequent off node
34accesses and may use the result to move pages to more advantageous
35locations.
31 36
32Larger installations usually partition the system using cpusets into 37Larger installations usually partition the system using cpusets into
33sections of nodes. Paul Jackson has equipped cpusets with the ability to 38sections of nodes. Paul Jackson has equipped cpusets with the ability to
@@ -62,22 +67,14 @@ A. In kernel use of migrate_pages()
62 It also prevents the swapper or other scans to encounter 67 It also prevents the swapper or other scans to encounter
63 the page. 68 the page.
64 69
652. Generate a list of newly allocates page. These pages will contain the 702. We need to have a function of type new_page_t that can be
66 contents of the pages from the first list after page migration is 71 passed to migrate_pages(). This function should figure out
67 complete. 72 how to allocate the correct new page given the old page.
68 73
693. The migrate_pages() function is called which attempts 743. The migrate_pages() function is called which attempts
70 to do the migration. It returns the moved pages in the 75 to do the migration. It will call the function to allocate
71 list specified as the third parameter and the failed 76 the new page for each page that is considered for
72 migrations in the fourth parameter. The first parameter 77 moving.
73 will contain the pages that could still be retried.
74
754. The leftover pages of various types are returned
76 to the LRU using putback_to_lru_pages() or otherwise
77 disposed of. The pages will still have the refcount as
78 increased by isolate_lru_pages() if putback_to_lru_pages() is not
79 used! The kernel may want to handle the various cases of failures in
80 different ways.
81 78
82B. How migrate_pages() works 79B. How migrate_pages() works
83---------------------------- 80----------------------------
@@ -93,83 +90,58 @@ Steps:
93 90
942. Insure that writeback is complete. 912. Insure that writeback is complete.
95 92
963. Make sure that the page has assigned swap cache entry if 933. Prep the new page that we want to move to. It is locked
97 it is an anonyous page. The swap cache reference is necessary
98 to preserve the information contain in the page table maps while
99 page migration occurs.
100
1014. Prep the new page that we want to move to. It is locked
102 and set to not being uptodate so that all accesses to the new 94 and set to not being uptodate so that all accesses to the new
103 page immediately lock while the move is in progress. 95 page immediately lock while the move is in progress.
104 96
1055. All the page table references to the page are either dropped (file 974. The new page is prepped with some settings from the old page so that
106 backed pages) or converted to swap references (anonymous pages). 98 accesses to the new page will discover a page with the correct settings.
107 This should decrease the reference count. 99
1005. All the page table references to the page are converted
101 to migration entries or dropped (nonlinear vmas).
102 This decrease the mapcount of a page. If the resulting
103 mapcount is not zero then we do not migrate the page.
104 All user space processes that attempt to access the page
105 will now wait on the page lock.
108 106
1096. The radix tree lock is taken. This will cause all processes trying 1076. The radix tree lock is taken. This will cause all processes trying
110 to reestablish a pte to block on the radix tree spinlock. 108 to access the page via the mapping to block on the radix tree spinlock.
111 109
1127. The refcount of the page is examined and we back out if references remain 1107. The refcount of the page is examined and we back out if references remain
113 otherwise we know that we are the only one referencing this page. 111 otherwise we know that we are the only one referencing this page.
114 112
1158. The radix tree is checked and if it does not contain the pointer to this 1138. The radix tree is checked and if it does not contain the pointer to this
116 page then we back out because someone else modified the mapping first. 114 page then we back out because someone else modified the radix tree.
117
1189. The mapping is checked. If the mapping is gone then a truncate action may
119 be in progress and we back out.
120
12110. The new page is prepped with some settings from the old page so that
122 accesses to the new page will be discovered to have the correct settings.
123 115
12411. The radix tree is changed to point to the new page. 1169. The radix tree is changed to point to the new page.
125 117
12612. The reference count of the old page is dropped because the radix tree 11810. The reference count of the old page is dropped because the radix tree
127 reference is gone. 119 reference is gone. A reference to the new page is established because
120 the new page is referenced to by the radix tree.
128 121
12913. The radix tree lock is dropped. With that lookups become possible again 12211. The radix tree lock is dropped. With that lookups in the mapping
130 and other processes will move from spinning on the tree lock to sleeping on 123 become possible again. Processes will move from spinning on the tree_lock
131 the locked new page. 124 to sleeping on the locked new page.
132 125
13314. The page contents are copied to the new page. 12612. The page contents are copied to the new page.
134 127
13515. The remaining page flags are copied to the new page. 12813. The remaining page flags are copied to the new page.
136 129
13716. The old page flags are cleared to indicate that the page does 13014. The old page flags are cleared to indicate that the page does
138 not use any information anymore. 131 not provide any information anymore.
139 132
14017. Queued up writeback on the new page is triggered. 13315. Queued up writeback on the new page is triggered.
141 134
14218. If swap pte's were generated for the page then replace them with real 13516. If migration entries were page then replace them with real ptes. Doing
143 ptes. This will reenable access for processes not blocked by the page lock. 136 so will enable access for user space processes not already waiting for
137 the page lock.
144 138
14519. The page locks are dropped from the old and new page. 13919. The page locks are dropped from the old and new page.
146 Processes waiting on the page lock can continue. 140 Processes waiting on the page lock will redo their page faults
141 and will reach the new page.
147 142
14820. The new page is moved to the LRU and can be scanned by the swapper 14320. The new page is moved to the LRU and can be scanned by the swapper
149 etc again. 144 etc again.
150 145
151TODO list 146Christoph Lameter, May 8, 2006.
152---------
153
154- Page migration requires the use of swap handles to preserve the
155 information of the anonymous page table entries. This means that swap
156 space is reserved but never used. The maximum number of swap handles used
157 is determined by CHUNK_SIZE (see mm/mempolicy.c) per ongoing migration.
158 Reservation of pages could be avoided by having a special type of swap
159 handle that does not require swap space and that would only track the page
160 references. Something like that was proposed by Marcelo Tosatti in the
161 past (search for migration cache on lkml or linux-mm@kvack.org).
162
163- Page migration unmaps ptes for file backed pages and requires page
164 faults to reestablish these ptes. This could be optimized by somehow
165 recording the references before migration and then reestablish them later.
166 However, there are several locking challenges that have to be overcome
167 before this is possible.
168
169- Page migration generates read ptes for anonymous pages. Dirty page
170 faults are required to make the pages writable again. It may be possible
171 to generate a pte marked dirty if it is known that the page is dirty and
172 that this process has the only reference to that page.
173
174Christoph Lameter, March 8, 2006.
175 147