aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/video4linux
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/video4linux')
-rw-r--r--Documentation/video4linux/fimc.txt178
1 files changed, 178 insertions, 0 deletions
diff --git a/Documentation/video4linux/fimc.txt b/Documentation/video4linux/fimc.txt
new file mode 100644
index 000000000000..eb049708f3e4
--- /dev/null
+++ b/Documentation/video4linux/fimc.txt
@@ -0,0 +1,178 @@
1Samsung S5P/EXYNOS4 FIMC driver
2
3Copyright (C) 2012 Samsung Electronics Co., Ltd.
4---------------------------------------------------------------------------
5
6The FIMC (Fully Interactive Mobile Camera) device available in Samsung
7SoC Application Processors is an integrated camera host interface, color
8space converter, image resizer and rotator. It's also capable of capturing
9data from LCD controller (FIMD) through the SoC internal writeback data
10path. There are multiple FIMC instances in the SoCs (up to 4), having
11slightly different capabilities, like pixel alignment constraints, rotator
12availability, LCD writeback support, etc. The driver is located at
13drivers/media/video/s5p-fimc directory.
14
151. Supported SoCs
16=================
17
18S5PC100 (mem-to-mem only), S5PV210, EXYNOS4210
19
202. Supported features
21=====================
22
23 - camera parallel interface capture (ITU-R.BT601/565);
24 - camera serial interface capture (MIPI-CSI2);
25 - memory-to-memory processing (color space conversion, scaling, mirror
26 and rotation);
27 - dynamic pipeline re-configuration at runtime (re-attachment of any FIMC
28 instance to any parallel video input or any MIPI-CSI front-end);
29 - runtime PM and system wide suspend/resume
30
31Not currently supported:
32 - LCD writeback input
33 - per frame clock gating (mem-to-mem)
34
353. Files partitioning
36=====================
37
38- media device driver
39 drivers/media/video/s5p-fimc/fimc-mdevice.[ch]
40
41 - camera capture video device driver
42 drivers/media/video/s5p-fimc/fimc-capture.c
43
44 - MIPI-CSI2 receiver subdev
45 drivers/media/video/s5p-fimc/mipi-csis.[ch]
46
47 - video post-processor (mem-to-mem)
48 drivers/media/video/s5p-fimc/fimc-core.c
49
50 - common files
51 drivers/media/video/s5p-fimc/fimc-core.h
52 drivers/media/video/s5p-fimc/fimc-reg.h
53 drivers/media/video/s5p-fimc/regs-fimc.h
54
554. User space interfaces
56========================
57
584.1. Media device interface
59
60The driver supports Media Controller API as defined at
61http://http://linuxtv.org/downloads/v4l-dvb-apis/media_common.html
62The media device driver name is "SAMSUNG S5P FIMC".
63
64The purpose of this interface is to allow changing assignment of FIMC instances
65to the SoC peripheral camera input at runtime and optionally to control internal
66connections of the MIPI-CSIS device(s) to the FIMC entities.
67
68The media device interface allows to configure the SoC for capturing image
69data from the sensor through more than one FIMC instance (e.g. for simultaneous
70viewfinder and still capture setup).
71Reconfiguration is done by enabling/disabling media links created by the driver
72during initialization. The internal device topology can be easily discovered
73through media entity and links enumeration.
74
754.2. Memory-to-memory video node
76
77V4L2 memory-to-memory interface at /dev/video? device node. This is standalone
78video device, it has no media pads. However please note the mem-to-mem and
79capture video node operation on same FIMC instance is not allowed. The driver
80detects such cases but the applications should prevent them to avoid an
81undefined behaviour.
82
834.3. Capture video node
84
85The driver supports V4L2 Video Capture Interface as defined at:
86http://linuxtv.org/downloads/v4l-dvb-apis/devices.html
87
88At the capture and mem-to-mem video nodes only the multi-planar API is
89supported. For more details see:
90http://linuxtv.org/downloads/v4l-dvb-apis/planar-apis.html
91
924.4. Camera capture subdevs
93
94Each FIMC instance exports a sub-device node (/dev/v4l-subdev?), a sub-device
95node is also created per each available and enabled at the platform level
96MIPI-CSI receiver device (currently up to two).
97
984.5. sysfs
99
100In order to enable more precise camera pipeline control through the sub-device
101API the driver creates a sysfs entry associated with "s5p-fimc-md" platform
102device. The entry path is: /sys/platform/devices/s5p-fimc-md/subdev_conf_mode.
103
104In typical use case there could be a following capture pipeline configuration:
105sensor subdev -> mipi-csi subdev -> fimc subdev -> video node
106
107When we configure these devices through sub-device API at user space, the
108configuration flow must be from left to right, and the video node is
109configured as last one.
110When we don't use sub-device user space API the whole configuration of all
111devices belonging to the pipeline is done at the video node driver.
112The sysfs entry allows to instruct the capture node driver not to configure
113the sub-devices (format, crop), to avoid resetting the subdevs' configuration
114when the last configuration steps at the video node is performed.
115
116For full sub-device control support (subdevs configured at user space before
117starting streaming):
118# echo "sub-dev" > /sys/platform/devices/s5p-fimc-md/subdev_conf_mode
119
120For V4L2 video node control only (subdevs configured internally by the host
121driver):
122# echo "vid-dev" > /sys/platform/devices/s5p-fimc-md/subdev_conf_mode
123This is a default option.
124
1255. Device mapping to video and subdev device nodes
126==================================================
127
128There are associated two video device nodes with each device instance in
129hardware - video capture and mem-to-mem and additionally a subdev node for
130more precise FIMC capture subsystem control. In addition a separate v4l2
131sub-device node is created per each MIPI-CSIS device.
132
133How to find out which /dev/video? or /dev/v4l-subdev? is assigned to which
134device?
135
136You can either grep through the kernel log to find relevant information, i.e.
137# dmesg | grep -i fimc
138(note that udev, if present, might still have rearranged the video nodes),
139
140or retrieve the information from /dev/media? with help of the media-ctl tool:
141# media-ctl -p
142
1436. Platform support
144===================
145
146The machine code (plat-s5p and arch/arm/mach-*) must select following options
147
148CONFIG_S5P_DEV_FIMC0 mandatory
149CONFIG_S5P_DEV_FIMC1 \
150CONFIG_S5P_DEV_FIMC2 | optional
151CONFIG_S5P_DEV_FIMC3 |
152CONFIG_S5P_SETUP_FIMC /
153CONFIG_S5P_SETUP_MIPIPHY \
154CONFIG_S5P_DEV_CSIS0 | optional for MIPI-CSI interface
155CONFIG_S5P_DEV_CSIS1 /
156
157Except that, relevant s5p_device_fimc? should be registered in the machine code
158in addition to a "s5p-fimc-md" platform device to which the media device driver
159is bound. The "s5p-fimc-md" device instance is required even if only mem-to-mem
160operation is used.
161
162The description of sensor(s) attached to FIMC/MIPI-CSIS camera inputs should be
163passed as the "s5p-fimc-md" device platform_data. The platform data structure
164is defined in file include/media/s5p_fimc.h.
165
1667. Build
167========
168
169This driver depends on following config options:
170PLAT_S5P,
171PM_RUNTIME,
172I2C,
173REGULATOR,
174VIDEO_V4L2_SUBDEV_API,
175
176If the driver is built as a loadable kernel module (CONFIG_VIDEO_SAMSUNG_S5P_FIMC=m)
177two modules are created (in addition to the core v4l2 modules): s5p-fimc.ko and
178optional s5p-csis.ko (MIPI-CSI receiver subdev).