diff options
Diffstat (limited to 'Documentation/video4linux/videobuf')
-rw-r--r-- | Documentation/video4linux/videobuf | 360 |
1 files changed, 360 insertions, 0 deletions
diff --git a/Documentation/video4linux/videobuf b/Documentation/video4linux/videobuf new file mode 100644 index 000000000000..ba4ca991c550 --- /dev/null +++ b/Documentation/video4linux/videobuf | |||
@@ -0,0 +1,360 @@ | |||
1 | An introduction to the videobuf layer | ||
2 | Jonathan Corbet <corbet@lwn.net> | ||
3 | Current as of 2.6.33 | ||
4 | |||
5 | The videobuf layer functions as a sort of glue layer between a V4L2 driver | ||
6 | and user space. It handles the allocation and management of buffers for | ||
7 | the storage of video frames. There is a set of functions which can be used | ||
8 | to implement many of the standard POSIX I/O system calls, including read(), | ||
9 | poll(), and, happily, mmap(). Another set of functions can be used to | ||
10 | implement the bulk of the V4L2 ioctl() calls related to streaming I/O, | ||
11 | including buffer allocation, queueing and dequeueing, and streaming | ||
12 | control. Using videobuf imposes a few design decisions on the driver | ||
13 | author, but the payback comes in the form of reduced code in the driver and | ||
14 | a consistent implementation of the V4L2 user-space API. | ||
15 | |||
16 | Buffer types | ||
17 | |||
18 | Not all video devices use the same kind of buffers. In fact, there are (at | ||
19 | least) three common variations: | ||
20 | |||
21 | - Buffers which are scattered in both the physical and (kernel) virtual | ||
22 | address spaces. (Almost) all user-space buffers are like this, but it | ||
23 | makes great sense to allocate kernel-space buffers this way as well when | ||
24 | it is possible. Unfortunately, it is not always possible; working with | ||
25 | this kind of buffer normally requires hardware which can do | ||
26 | scatter/gather DMA operations. | ||
27 | |||
28 | - Buffers which are physically scattered, but which are virtually | ||
29 | contiguous; buffers allocated with vmalloc(), in other words. These | ||
30 | buffers are just as hard to use for DMA operations, but they can be | ||
31 | useful in situations where DMA is not available but virtually-contiguous | ||
32 | buffers are convenient. | ||
33 | |||
34 | - Buffers which are physically contiguous. Allocation of this kind of | ||
35 | buffer can be unreliable on fragmented systems, but simpler DMA | ||
36 | controllers cannot deal with anything else. | ||
37 | |||
38 | Videobuf can work with all three types of buffers, but the driver author | ||
39 | must pick one at the outset and design the driver around that decision. | ||
40 | |||
41 | [It's worth noting that there's a fourth kind of buffer: "overlay" buffers | ||
42 | which are located within the system's video memory. The overlay | ||
43 | functionality is considered to be deprecated for most use, but it still | ||
44 | shows up occasionally in system-on-chip drivers where the performance | ||
45 | benefits merit the use of this technique. Overlay buffers can be handled | ||
46 | as a form of scattered buffer, but there are very few implementations in | ||
47 | the kernel and a description of this technique is currently beyond the | ||
48 | scope of this document.] | ||
49 | |||
50 | Data structures, callbacks, and initialization | ||
51 | |||
52 | Depending on which type of buffers are being used, the driver should | ||
53 | include one of the following files: | ||
54 | |||
55 | <media/videobuf-dma-sg.h> /* Physically scattered */ | ||
56 | <media/videobuf-vmalloc.h> /* vmalloc() buffers */ | ||
57 | <media/videobuf-dma-contig.h> /* Physically contiguous */ | ||
58 | |||
59 | The driver's data structure describing a V4L2 device should include a | ||
60 | struct videobuf_queue instance for the management of the buffer queue, | ||
61 | along with a list_head for the queue of available buffers. There will also | ||
62 | need to be an interrupt-safe spinlock which is used to protect (at least) | ||
63 | the queue. | ||
64 | |||
65 | The next step is to write four simple callbacks to help videobuf deal with | ||
66 | the management of buffers: | ||
67 | |||
68 | struct videobuf_queue_ops { | ||
69 | int (*buf_setup)(struct videobuf_queue *q, | ||
70 | unsigned int *count, unsigned int *size); | ||
71 | int (*buf_prepare)(struct videobuf_queue *q, | ||
72 | struct videobuf_buffer *vb, | ||
73 | enum v4l2_field field); | ||
74 | void (*buf_queue)(struct videobuf_queue *q, | ||
75 | struct videobuf_buffer *vb); | ||
76 | void (*buf_release)(struct videobuf_queue *q, | ||
77 | struct videobuf_buffer *vb); | ||
78 | }; | ||
79 | |||
80 | buf_setup() is called early in the I/O process, when streaming is being | ||
81 | initiated; its purpose is to tell videobuf about the I/O stream. The count | ||
82 | parameter will be a suggested number of buffers to use; the driver should | ||
83 | check it for rationality and adjust it if need be. As a practical rule, a | ||
84 | minimum of two buffers are needed for proper streaming, and there is | ||
85 | usually a maximum (which cannot exceed 32) which makes sense for each | ||
86 | device. The size parameter should be set to the expected (maximum) size | ||
87 | for each frame of data. | ||
88 | |||
89 | Each buffer (in the form of a struct videobuf_buffer pointer) will be | ||
90 | passed to buf_prepare(), which should set the buffer's size, width, height, | ||
91 | and field fields properly. If the buffer's state field is | ||
92 | VIDEOBUF_NEEDS_INIT, the driver should pass it to: | ||
93 | |||
94 | int videobuf_iolock(struct videobuf_queue* q, struct videobuf_buffer *vb, | ||
95 | struct v4l2_framebuffer *fbuf); | ||
96 | |||
97 | Among other things, this call will usually allocate memory for the buffer. | ||
98 | Finally, the buf_prepare() function should set the buffer's state to | ||
99 | VIDEOBUF_PREPARED. | ||
100 | |||
101 | When a buffer is queued for I/O, it is passed to buf_queue(), which should | ||
102 | put it onto the driver's list of available buffers and set its state to | ||
103 | VIDEOBUF_QUEUED. Note that this function is called with the queue spinlock | ||
104 | held; if it tries to acquire it as well things will come to a screeching | ||
105 | halt. Yes, this is the voice of experience. Note also that videobuf may | ||
106 | wait on the first buffer in the queue; placing other buffers in front of it | ||
107 | could again gum up the works. So use list_add_tail() to enqueue buffers. | ||
108 | |||
109 | Finally, buf_release() is called when a buffer is no longer intended to be | ||
110 | used. The driver should ensure that there is no I/O active on the buffer, | ||
111 | then pass it to the appropriate free routine(s): | ||
112 | |||
113 | /* Scatter/gather drivers */ | ||
114 | int videobuf_dma_unmap(struct videobuf_queue *q, | ||
115 | struct videobuf_dmabuf *dma); | ||
116 | int videobuf_dma_free(struct videobuf_dmabuf *dma); | ||
117 | |||
118 | /* vmalloc drivers */ | ||
119 | void videobuf_vmalloc_free (struct videobuf_buffer *buf); | ||
120 | |||
121 | /* Contiguous drivers */ | ||
122 | void videobuf_dma_contig_free(struct videobuf_queue *q, | ||
123 | struct videobuf_buffer *buf); | ||
124 | |||
125 | One way to ensure that a buffer is no longer under I/O is to pass it to: | ||
126 | |||
127 | int videobuf_waiton(struct videobuf_buffer *vb, int non_blocking, int intr); | ||
128 | |||
129 | Here, vb is the buffer, non_blocking indicates whether non-blocking I/O | ||
130 | should be used (it should be zero in the buf_release() case), and intr | ||
131 | controls whether an interruptible wait is used. | ||
132 | |||
133 | File operations | ||
134 | |||
135 | At this point, much of the work is done; much of the rest is slipping | ||
136 | videobuf calls into the implementation of the other driver callbacks. The | ||
137 | first step is in the open() function, which must initialize the | ||
138 | videobuf queue. The function to use depends on the type of buffer used: | ||
139 | |||
140 | void videobuf_queue_sg_init(struct videobuf_queue *q, | ||
141 | struct videobuf_queue_ops *ops, | ||
142 | struct device *dev, | ||
143 | spinlock_t *irqlock, | ||
144 | enum v4l2_buf_type type, | ||
145 | enum v4l2_field field, | ||
146 | unsigned int msize, | ||
147 | void *priv); | ||
148 | |||
149 | void videobuf_queue_vmalloc_init(struct videobuf_queue *q, | ||
150 | struct videobuf_queue_ops *ops, | ||
151 | struct device *dev, | ||
152 | spinlock_t *irqlock, | ||
153 | enum v4l2_buf_type type, | ||
154 | enum v4l2_field field, | ||
155 | unsigned int msize, | ||
156 | void *priv); | ||
157 | |||
158 | void videobuf_queue_dma_contig_init(struct videobuf_queue *q, | ||
159 | struct videobuf_queue_ops *ops, | ||
160 | struct device *dev, | ||
161 | spinlock_t *irqlock, | ||
162 | enum v4l2_buf_type type, | ||
163 | enum v4l2_field field, | ||
164 | unsigned int msize, | ||
165 | void *priv); | ||
166 | |||
167 | In each case, the parameters are the same: q is the queue structure for the | ||
168 | device, ops is the set of callbacks as described above, dev is the device | ||
169 | structure for this video device, irqlock is an interrupt-safe spinlock to | ||
170 | protect access to the data structures, type is the buffer type used by the | ||
171 | device (cameras will use V4L2_BUF_TYPE_VIDEO_CAPTURE, for example), field | ||
172 | describes which field is being captured (often V4L2_FIELD_NONE for | ||
173 | progressive devices), msize is the size of any containing structure used | ||
174 | around struct videobuf_buffer, and priv is a private data pointer which | ||
175 | shows up in the priv_data field of struct videobuf_queue. Note that these | ||
176 | are void functions which, evidently, are immune to failure. | ||
177 | |||
178 | V4L2 capture drivers can be written to support either of two APIs: the | ||
179 | read() system call and the rather more complicated streaming mechanism. As | ||
180 | a general rule, it is necessary to support both to ensure that all | ||
181 | applications have a chance of working with the device. Videobuf makes it | ||
182 | easy to do that with the same code. To implement read(), the driver need | ||
183 | only make a call to one of: | ||
184 | |||
185 | ssize_t videobuf_read_one(struct videobuf_queue *q, | ||
186 | char __user *data, size_t count, | ||
187 | loff_t *ppos, int nonblocking); | ||
188 | |||
189 | ssize_t videobuf_read_stream(struct videobuf_queue *q, | ||
190 | char __user *data, size_t count, | ||
191 | loff_t *ppos, int vbihack, int nonblocking); | ||
192 | |||
193 | Either one of these functions will read frame data into data, returning the | ||
194 | amount actually read; the difference is that videobuf_read_one() will only | ||
195 | read a single frame, while videobuf_read_stream() will read multiple frames | ||
196 | if they are needed to satisfy the count requested by the application. A | ||
197 | typical driver read() implementation will start the capture engine, call | ||
198 | one of the above functions, then stop the engine before returning (though a | ||
199 | smarter implementation might leave the engine running for a little while in | ||
200 | anticipation of another read() call happening in the near future). | ||
201 | |||
202 | The poll() function can usually be implemented with a direct call to: | ||
203 | |||
204 | unsigned int videobuf_poll_stream(struct file *file, | ||
205 | struct videobuf_queue *q, | ||
206 | poll_table *wait); | ||
207 | |||
208 | Note that the actual wait queue eventually used will be the one associated | ||
209 | with the first available buffer. | ||
210 | |||
211 | When streaming I/O is done to kernel-space buffers, the driver must support | ||
212 | the mmap() system call to enable user space to access the data. In many | ||
213 | V4L2 drivers, the often-complex mmap() implementation simplifies to a | ||
214 | single call to: | ||
215 | |||
216 | int videobuf_mmap_mapper(struct videobuf_queue *q, | ||
217 | struct vm_area_struct *vma); | ||
218 | |||
219 | Everything else is handled by the videobuf code. | ||
220 | |||
221 | The release() function requires two separate videobuf calls: | ||
222 | |||
223 | void videobuf_stop(struct videobuf_queue *q); | ||
224 | int videobuf_mmap_free(struct videobuf_queue *q); | ||
225 | |||
226 | The call to videobuf_stop() terminates any I/O in progress - though it is | ||
227 | still up to the driver to stop the capture engine. The call to | ||
228 | videobuf_mmap_free() will ensure that all buffers have been unmapped; if | ||
229 | so, they will all be passed to the buf_release() callback. If buffers | ||
230 | remain mapped, videobuf_mmap_free() returns an error code instead. The | ||
231 | purpose is clearly to cause the closing of the file descriptor to fail if | ||
232 | buffers are still mapped, but every driver in the 2.6.32 kernel cheerfully | ||
233 | ignores its return value. | ||
234 | |||
235 | ioctl() operations | ||
236 | |||
237 | The V4L2 API includes a very long list of driver callbacks to respond to | ||
238 | the many ioctl() commands made available to user space. A number of these | ||
239 | - those associated with streaming I/O - turn almost directly into videobuf | ||
240 | calls. The relevant helper functions are: | ||
241 | |||
242 | int videobuf_reqbufs(struct videobuf_queue *q, | ||
243 | struct v4l2_requestbuffers *req); | ||
244 | int videobuf_querybuf(struct videobuf_queue *q, struct v4l2_buffer *b); | ||
245 | int videobuf_qbuf(struct videobuf_queue *q, struct v4l2_buffer *b); | ||
246 | int videobuf_dqbuf(struct videobuf_queue *q, struct v4l2_buffer *b, | ||
247 | int nonblocking); | ||
248 | int videobuf_streamon(struct videobuf_queue *q); | ||
249 | int videobuf_streamoff(struct videobuf_queue *q); | ||
250 | int videobuf_cgmbuf(struct videobuf_queue *q, struct video_mbuf *mbuf, | ||
251 | int count); | ||
252 | |||
253 | So, for example, a VIDIOC_REQBUFS call turns into a call to the driver's | ||
254 | vidioc_reqbufs() callback which, in turn, usually only needs to locate the | ||
255 | proper struct videobuf_queue pointer and pass it to videobuf_reqbufs(). | ||
256 | These support functions can replace a great deal of buffer management | ||
257 | boilerplate in a lot of V4L2 drivers. | ||
258 | |||
259 | The vidioc_streamon() and vidioc_streamoff() functions will be a bit more | ||
260 | complex, of course, since they will also need to deal with starting and | ||
261 | stopping the capture engine. videobuf_cgmbuf(), called from the driver's | ||
262 | vidiocgmbuf() function, only exists if the V4L1 compatibility module has | ||
263 | been selected with CONFIG_VIDEO_V4L1_COMPAT, so its use must be surrounded | ||
264 | with #ifdef directives. | ||
265 | |||
266 | Buffer allocation | ||
267 | |||
268 | Thus far, we have talked about buffers, but have not looked at how they are | ||
269 | allocated. The scatter/gather case is the most complex on this front. For | ||
270 | allocation, the driver can leave buffer allocation entirely up to the | ||
271 | videobuf layer; in this case, buffers will be allocated as anonymous | ||
272 | user-space pages and will be very scattered indeed. If the application is | ||
273 | using user-space buffers, no allocation is needed; the videobuf layer will | ||
274 | take care of calling get_user_pages() and filling in the scatterlist array. | ||
275 | |||
276 | If the driver needs to do its own memory allocation, it should be done in | ||
277 | the vidioc_reqbufs() function, *after* calling videobuf_reqbufs(). The | ||
278 | first step is a call to: | ||
279 | |||
280 | struct videobuf_dmabuf *videobuf_to_dma(struct videobuf_buffer *buf); | ||
281 | |||
282 | The returned videobuf_dmabuf structure (defined in | ||
283 | <media/videobuf-dma-sg.h>) includes a couple of relevant fields: | ||
284 | |||
285 | struct scatterlist *sglist; | ||
286 | int sglen; | ||
287 | |||
288 | The driver must allocate an appropriately-sized scatterlist array and | ||
289 | populate it with pointers to the pieces of the allocated buffer; sglen | ||
290 | should be set to the length of the array. | ||
291 | |||
292 | Drivers using the vmalloc() method need not (and cannot) concern themselves | ||
293 | with buffer allocation at all; videobuf will handle those details. The | ||
294 | same is normally true of contiguous-DMA drivers as well; videobuf will | ||
295 | allocate the buffers (with dma_alloc_coherent()) when it sees fit. That | ||
296 | means that these drivers may be trying to do high-order allocations at any | ||
297 | time, an operation which is not always guaranteed to work. Some drivers | ||
298 | play tricks by allocating DMA space at system boot time; videobuf does not | ||
299 | currently play well with those drivers. | ||
300 | |||
301 | As of 2.6.31, contiguous-DMA drivers can work with a user-supplied buffer, | ||
302 | as long as that buffer is physically contiguous. Normal user-space | ||
303 | allocations will not meet that criterion, but buffers obtained from other | ||
304 | kernel drivers, or those contained within huge pages, will work with these | ||
305 | drivers. | ||
306 | |||
307 | Filling the buffers | ||
308 | |||
309 | The final part of a videobuf implementation has no direct callback - it's | ||
310 | the portion of the code which actually puts frame data into the buffers, | ||
311 | usually in response to interrupts from the device. For all types of | ||
312 | drivers, this process works approximately as follows: | ||
313 | |||
314 | - Obtain the next available buffer and make sure that somebody is actually | ||
315 | waiting for it. | ||
316 | |||
317 | - Get a pointer to the memory and put video data there. | ||
318 | |||
319 | - Mark the buffer as done and wake up the process waiting for it. | ||
320 | |||
321 | Step (1) above is done by looking at the driver-managed list_head structure | ||
322 | - the one which is filled in the buf_queue() callback. Because starting | ||
323 | the engine and enqueueing buffers are done in separate steps, it's possible | ||
324 | for the engine to be running without any buffers available - in the | ||
325 | vmalloc() case especially. So the driver should be prepared for the list | ||
326 | to be empty. It is equally possible that nobody is yet interested in the | ||
327 | buffer; the driver should not remove it from the list or fill it until a | ||
328 | process is waiting on it. That test can be done by examining the buffer's | ||
329 | done field (a wait_queue_head_t structure) with waitqueue_active(). | ||
330 | |||
331 | A buffer's state should be set to VIDEOBUF_ACTIVE before being mapped for | ||
332 | DMA; that ensures that the videobuf layer will not try to do anything with | ||
333 | it while the device is transferring data. | ||
334 | |||
335 | For scatter/gather drivers, the needed memory pointers will be found in the | ||
336 | scatterlist structure described above. Drivers using the vmalloc() method | ||
337 | can get a memory pointer with: | ||
338 | |||
339 | void *videobuf_to_vmalloc(struct videobuf_buffer *buf); | ||
340 | |||
341 | For contiguous DMA drivers, the function to use is: | ||
342 | |||
343 | dma_addr_t videobuf_to_dma_contig(struct videobuf_buffer *buf); | ||
344 | |||
345 | The contiguous DMA API goes out of its way to hide the kernel-space address | ||
346 | of the DMA buffer from drivers. | ||
347 | |||
348 | The final step is to set the size field of the relevant videobuf_buffer | ||
349 | structure to the actual size of the captured image, set state to | ||
350 | VIDEOBUF_DONE, then call wake_up() on the done queue. At this point, the | ||
351 | buffer is owned by the videobuf layer and the driver should not touch it | ||
352 | again. | ||
353 | |||
354 | Developers who are interested in more information can go into the relevant | ||
355 | header files; there are a few low-level functions declared there which have | ||
356 | not been talked about here. Also worthwhile is the vivi driver | ||
357 | (drivers/media/video/vivi.c), which is maintained as an example of how V4L2 | ||
358 | drivers should be written. Vivi only uses the vmalloc() API, but it's good | ||
359 | enough to get started with. Note also that all of these calls are exported | ||
360 | GPL-only, so they will not be available to non-GPL kernel modules. | ||