aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/sound/alsa/soc/overview.txt
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/sound/alsa/soc/overview.txt')
-rw-r--r--Documentation/sound/alsa/soc/overview.txt42
1 files changed, 22 insertions, 20 deletions
diff --git a/Documentation/sound/alsa/soc/overview.txt b/Documentation/sound/alsa/soc/overview.txt
index c47ce9530677..1e4c6d3655f2 100644
--- a/Documentation/sound/alsa/soc/overview.txt
+++ b/Documentation/sound/alsa/soc/overview.txt
@@ -1,25 +1,26 @@
1ALSA SoC Layer 1ALSA SoC Layer
2============== 2==============
3 3
4The overall project goal of the ALSA System on Chip (ASoC) layer is to provide 4The overall project goal of the ALSA System on Chip (ASoC) layer is to
5better ALSA support for embedded system-on-chip processors (e.g. pxa2xx, au1x00, 5provide better ALSA support for embedded system-on-chip processors (e.g.
6iMX, etc) and portable audio codecs. Currently there is some support in the 6pxa2xx, au1x00, iMX, etc) and portable audio codecs. Prior to the ASoC
7kernel for SoC audio, however it has some limitations:- 7subsystem there was some support in the kernel for SoC audio, however it
8had some limitations:-
8 9
9 * Currently, codec drivers are often tightly coupled to the underlying SoC 10 * Codec drivers were often tightly coupled to the underlying SoC
10 CPU. This is not ideal and leads to code duplication i.e. Linux now has 4 11 CPU. This is not ideal and leads to code duplication - for example,
11 different wm8731 drivers for 4 different SoC platforms. 12 Linux had different wm8731 drivers for 4 different SoC platforms.
12 13
13 * There is no standard method to signal user initiated audio events (e.g. 14 * There was no standard method to signal user initiated audio events (e.g.
14 Headphone/Mic insertion, Headphone/Mic detection after an insertion 15 Headphone/Mic insertion, Headphone/Mic detection after an insertion
15 event). These are quite common events on portable devices and often require 16 event). These are quite common events on portable devices and often require
16 machine specific code to re-route audio, enable amps, etc., after such an 17 machine specific code to re-route audio, enable amps, etc., after such an
17 event. 18 event.
18 19
19 * Current drivers tend to power up the entire codec when playing 20 * Drivers tended to power up the entire codec when playing (or
20 (or recording) audio. This is fine for a PC, but tends to waste a lot of 21 recording) audio. This is fine for a PC, but tends to waste a lot of
21 power on portable devices. There is also no support for saving power via 22 power on portable devices. There was also no support for saving
22 changing codec oversampling rates, bias currents, etc. 23 power via changing codec oversampling rates, bias currents, etc.
23 24
24 25
25ASoC Design 26ASoC Design
@@ -31,12 +32,13 @@ features :-
31 * Codec independence. Allows reuse of codec drivers on other platforms 32 * Codec independence. Allows reuse of codec drivers on other platforms
32 and machines. 33 and machines.
33 34
34 * Easy I2S/PCM audio interface setup between codec and SoC. Each SoC interface 35 * Easy I2S/PCM audio interface setup between codec and SoC. Each SoC
35 and codec registers it's audio interface capabilities with the core and are 36 interface and codec registers it's audio interface capabilities with the
36 subsequently matched and configured when the application hw params are known. 37 core and are subsequently matched and configured when the application
38 hardware parameters are known.
37 39
38 * Dynamic Audio Power Management (DAPM). DAPM automatically sets the codec to 40 * Dynamic Audio Power Management (DAPM). DAPM automatically sets the codec to
39 it's minimum power state at all times. This includes powering up/down 41 its minimum power state at all times. This includes powering up/down
40 internal power blocks depending on the internal codec audio routing and any 42 internal power blocks depending on the internal codec audio routing and any
41 active streams. 43 active streams.
42 44
@@ -45,16 +47,16 @@ features :-
45 signals the codec when to change power states. 47 signals the codec when to change power states.
46 48
47 * Machine specific controls: Allow machines to add controls to the sound card 49 * Machine specific controls: Allow machines to add controls to the sound card
48 (e.g. volume control for speaker amp). 50 (e.g. volume control for speaker amplifier).
49 51
50To achieve all this, ASoC basically splits an embedded audio system into 3 52To achieve all this, ASoC basically splits an embedded audio system into 3
51components :- 53components :-
52 54
53 * Codec driver: The codec driver is platform independent and contains audio 55 * Codec driver: The codec driver is platform independent and contains audio
54 controls, audio interface capabilities, codec dapm definition and codec IO 56 controls, audio interface capabilities, codec DAPM definition and codec IO
55 functions. 57 functions.
56 58
57 * Platform driver: The platform driver contains the audio dma engine and audio 59 * Platform driver: The platform driver contains the audio DMA engine and audio
58 interface drivers (e.g. I2S, AC97, PCM) for that platform. 60 interface drivers (e.g. I2S, AC97, PCM) for that platform.
59 61
60 * Machine driver: The machine driver handles any machine specific controls and 62 * Machine driver: The machine driver handles any machine specific controls and
@@ -81,4 +83,4 @@ machine.txt: Machine driver internals.
81 83
82pop_clicks.txt: How to minimise audio artifacts. 84pop_clicks.txt: How to minimise audio artifacts.
83 85
84clocking.txt: ASoC clocking for best power performance. \ No newline at end of file 86clocking.txt: ASoC clocking for best power performance.