aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/sound/alsa/soc/overview.txt
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/sound/alsa/soc/overview.txt')
-rw-r--r--Documentation/sound/alsa/soc/overview.txt83
1 files changed, 83 insertions, 0 deletions
diff --git a/Documentation/sound/alsa/soc/overview.txt b/Documentation/sound/alsa/soc/overview.txt
new file mode 100644
index 000000000000..753c5cc5984a
--- /dev/null
+++ b/Documentation/sound/alsa/soc/overview.txt
@@ -0,0 +1,83 @@
1ALSA SoC Layer
2==============
3
4The overall project goal of the ALSA System on Chip (ASoC) layer is to provide
5better ALSA support for embedded system on chip procesors (e.g. pxa2xx, au1x00,
6iMX, etc) and portable audio codecs. Currently there is some support in the
7kernel for SoC audio, however it has some limitations:-
8
9 * Currently, codec drivers are often tightly coupled to the underlying SoC
10 cpu. This is not ideal and leads to code duplication i.e. Linux now has 4
11 different wm8731 drivers for 4 different SoC platforms.
12
13 * There is no standard method to signal user initiated audio events.
14 e.g. Headphone/Mic insertion, Headphone/Mic detection after an insertion
15 event. These are quite common events on portable devices and ofter require
16 machine specific code to re route audio, enable amps etc after such an event.
17
18 * Current drivers tend to power up the entire codec when playing
19 (or recording) audio. This is fine for a PC, but tends to waste a lot of
20 power on portable devices. There is also no support for saving power via
21 changing codec oversampling rates, bias currents, etc.
22
23
24ASoC Design
25===========
26
27The ASoC layer is designed to address these issues and provide the following
28features :-
29
30 * Codec independence. Allows reuse of codec drivers on other platforms
31 and machines.
32
33 * Easy I2S/PCM audio interface setup between codec and SoC. Each SoC interface
34 and codec registers it's audio interface capabilities with the core and are
35 subsequently matched and configured when the application hw params are known.
36
37 * Dynamic Audio Power Management (DAPM). DAPM automatically sets the codec to
38 it's minimum power state at all times. This includes powering up/down
39 internal power blocks depending on the internal codec audio routing and any
40 active streams.
41
42 * Pop and click reduction. Pops and clicks can be reduced by powering the
43 codec up/down in the correct sequence (including using digital mute). ASoC
44 signals the codec when to change power states.
45
46 * Machine specific controls: Allow machines to add controls to the sound card
47 e.g. volume control for speaker amp.
48
49To achieve all this, ASoC basically splits an embedded audio system into 3
50components :-
51
52 * Codec driver: The codec driver is platform independent and contains audio
53 controls, audio interface capabilities, codec dapm definition and codec IO
54 functions.
55
56 * Platform driver: The platform driver contains the audio dma engine and audio
57 interface drivers (e.g. I2S, AC97, PCM) for that platform.
58
59 * Machine driver: The machine driver handles any machine specific controls and
60 audio events. i.e. turing on an amp at start of playback.
61
62
63Documentation
64=============
65
66The documentation is spilt into the following sections:-
67
68overview.txt: This file.
69
70codec.txt: Codec driver internals.
71
72DAI.txt: Description of Digital Audio Interface standards and how to configure
73a DAI within your codec and CPU DAI drivers.
74
75dapm.txt: Dynamic Audio Power Management
76
77platform.txt: Platform audio DMA and DAI.
78
79machine.txt: Machine driver internals.
80
81pop_clicks.txt: How to minimise audio artifacts.
82
83clocking.txt: ASoC clocking for best power performance. \ No newline at end of file