diff options
Diffstat (limited to 'Documentation/sound/alsa/DocBook/writing-an-alsa-driver.tmpl')
-rw-r--r-- | Documentation/sound/alsa/DocBook/writing-an-alsa-driver.tmpl | 6045 |
1 files changed, 6045 insertions, 0 deletions
diff --git a/Documentation/sound/alsa/DocBook/writing-an-alsa-driver.tmpl b/Documentation/sound/alsa/DocBook/writing-an-alsa-driver.tmpl new file mode 100644 index 000000000000..e789475304b6 --- /dev/null +++ b/Documentation/sound/alsa/DocBook/writing-an-alsa-driver.tmpl | |||
@@ -0,0 +1,6045 @@ | |||
1 | <!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook V4.1//EN"> | ||
2 | |||
3 | <book> | ||
4 | <?dbhtml filename="index.html"> | ||
5 | |||
6 | <!-- ****************************************************** --> | ||
7 | <!-- Header --> | ||
8 | <!-- ****************************************************** --> | ||
9 | <bookinfo> | ||
10 | <title>Writing an ALSA Driver</title> | ||
11 | <author> | ||
12 | <firstname>Takashi</firstname> | ||
13 | <surname>Iwai</surname> | ||
14 | <affiliation> | ||
15 | <address> | ||
16 | <email>tiwai@suse.de</email> | ||
17 | </address> | ||
18 | </affiliation> | ||
19 | </author> | ||
20 | |||
21 | <date>March 6, 2005</date> | ||
22 | <edition>0.3.4</edition> | ||
23 | |||
24 | <abstract> | ||
25 | <para> | ||
26 | This document describes how to write an ALSA (Advanced Linux | ||
27 | Sound Architecture) driver. | ||
28 | </para> | ||
29 | </abstract> | ||
30 | |||
31 | <legalnotice> | ||
32 | <para> | ||
33 | Copyright (c) 2002-2004 Takashi Iwai <email>tiwai@suse.de</email> | ||
34 | </para> | ||
35 | |||
36 | <para> | ||
37 | This document is free; you can redistribute it and/or modify it | ||
38 | under the terms of the GNU General Public License as published by | ||
39 | the Free Software Foundation; either version 2 of the License, or | ||
40 | (at your option) any later version. | ||
41 | </para> | ||
42 | |||
43 | <para> | ||
44 | This document is distributed in the hope that it will be useful, | ||
45 | but <emphasis>WITHOUT ANY WARRANTY</emphasis>; without even the | ||
46 | implied warranty of <emphasis>MERCHANTABILITY or FITNESS FOR A | ||
47 | PARTICULAR PURPOSE</emphasis>. See the GNU General Public License | ||
48 | for more details. | ||
49 | </para> | ||
50 | |||
51 | <para> | ||
52 | You should have received a copy of the GNU General Public | ||
53 | License along with this program; if not, write to the Free | ||
54 | Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, | ||
55 | MA 02111-1307 USA | ||
56 | </para> | ||
57 | </legalnotice> | ||
58 | |||
59 | </bookinfo> | ||
60 | |||
61 | <!-- ****************************************************** --> | ||
62 | <!-- Preface --> | ||
63 | <!-- ****************************************************** --> | ||
64 | <preface id="preface"> | ||
65 | <title>Preface</title> | ||
66 | <para> | ||
67 | This document describes how to write an | ||
68 | <ulink url="http://www.alsa-project.org/"><citetitle> | ||
69 | ALSA (Advanced Linux Sound Architecture)</citetitle></ulink> | ||
70 | driver. The document focuses mainly on the PCI soundcard. | ||
71 | In the case of other device types, the API might | ||
72 | be different, too. However, at least the ALSA kernel API is | ||
73 | consistent, and therefore it would be still a bit help for | ||
74 | writing them. | ||
75 | </para> | ||
76 | |||
77 | <para> | ||
78 | The target of this document is ones who already have enough | ||
79 | skill of C language and have the basic knowledge of linux | ||
80 | kernel programming. This document doesn't explain the general | ||
81 | topics of linux kernel codes and doesn't cover the detail of | ||
82 | implementation of each low-level driver. It describes only how is | ||
83 | the standard way to write a PCI sound driver on ALSA. | ||
84 | </para> | ||
85 | |||
86 | <para> | ||
87 | If you are already familiar with the older ALSA ver.0.5.x, you | ||
88 | can check the drivers such as <filename>es1938.c</filename> or | ||
89 | <filename>maestro3.c</filename> which have also almost the same | ||
90 | code-base in the ALSA 0.5.x tree, so you can compare the differences. | ||
91 | </para> | ||
92 | |||
93 | <para> | ||
94 | This document is still a draft version. Any feedbacks and | ||
95 | corrections, please!! | ||
96 | </para> | ||
97 | </preface> | ||
98 | |||
99 | |||
100 | <!-- ****************************************************** --> | ||
101 | <!-- File Tree Structure --> | ||
102 | <!-- ****************************************************** --> | ||
103 | <chapter id="file-tree"> | ||
104 | <title>File Tree Structure</title> | ||
105 | |||
106 | <section id="file-tree-general"> | ||
107 | <title>General</title> | ||
108 | <para> | ||
109 | The ALSA drivers are provided in the two ways. | ||
110 | </para> | ||
111 | |||
112 | <para> | ||
113 | One is the trees provided as a tarball or via cvs from the | ||
114 | ALSA's ftp site, and another is the 2.6 (or later) Linux kernel | ||
115 | tree. To synchronize both, the ALSA driver tree is split into | ||
116 | two different trees: alsa-kernel and alsa-driver. The former | ||
117 | contains purely the source codes for the Linux 2.6 (or later) | ||
118 | tree. This tree is designed only for compilation on 2.6 or | ||
119 | later environment. The latter, alsa-driver, contains many subtle | ||
120 | files for compiling the ALSA driver on the outside of Linux | ||
121 | kernel like configure script, the wrapper functions for older, | ||
122 | 2.2 and 2.4 kernels, to adapt the latest kernel API, | ||
123 | and additional drivers which are still in development or in | ||
124 | tests. The drivers in alsa-driver tree will be moved to | ||
125 | alsa-kernel (eventually 2.6 kernel tree) once when they are | ||
126 | finished and confirmed to work fine. | ||
127 | </para> | ||
128 | |||
129 | <para> | ||
130 | The file tree structure of ALSA driver is depicted below. Both | ||
131 | alsa-kernel and alsa-driver have almost the same file | ||
132 | structure, except for <quote>core</quote> directory. It's | ||
133 | named as <quote>acore</quote> in alsa-driver tree. | ||
134 | |||
135 | <example> | ||
136 | <title>ALSA File Tree Structure</title> | ||
137 | <literallayout> | ||
138 | sound | ||
139 | /core | ||
140 | /oss | ||
141 | /seq | ||
142 | /oss | ||
143 | /instr | ||
144 | /ioctl32 | ||
145 | /include | ||
146 | /drivers | ||
147 | /mpu401 | ||
148 | /opl3 | ||
149 | /i2c | ||
150 | /l3 | ||
151 | /synth | ||
152 | /emux | ||
153 | /pci | ||
154 | /(cards) | ||
155 | /isa | ||
156 | /(cards) | ||
157 | /arm | ||
158 | /ppc | ||
159 | /sparc | ||
160 | /usb | ||
161 | /pcmcia /(cards) | ||
162 | /oss | ||
163 | </literallayout> | ||
164 | </example> | ||
165 | </para> | ||
166 | </section> | ||
167 | |||
168 | <section id="file-tree-core-directory"> | ||
169 | <title>core directory</title> | ||
170 | <para> | ||
171 | This directory contains the middle layer, that is, the heart | ||
172 | of ALSA drivers. In this directory, the native ALSA modules are | ||
173 | stored. The sub-directories contain different modules and are | ||
174 | dependent upon the kernel config. | ||
175 | </para> | ||
176 | |||
177 | <section id="file-tree-core-directory-oss"> | ||
178 | <title>core/oss</title> | ||
179 | |||
180 | <para> | ||
181 | The codes for PCM and mixer OSS emulation modules are stored | ||
182 | in this directory. The rawmidi OSS emulation is included in | ||
183 | the ALSA rawmidi code since it's quite small. The sequencer | ||
184 | code is stored in core/seq/oss directory (see | ||
185 | <link linkend="file-tree-core-directory-seq-oss"><citetitle> | ||
186 | below</citetitle></link>). | ||
187 | </para> | ||
188 | </section> | ||
189 | |||
190 | <section id="file-tree-core-directory-ioctl32"> | ||
191 | <title>core/ioctl32</title> | ||
192 | |||
193 | <para> | ||
194 | This directory contains the 32bit-ioctl wrappers for 64bit | ||
195 | architectures such like x86-64, ppc64 and sparc64. For 32bit | ||
196 | and alpha architectures, these are not compiled. | ||
197 | </para> | ||
198 | </section> | ||
199 | |||
200 | <section id="file-tree-core-directory-seq"> | ||
201 | <title>core/seq</title> | ||
202 | <para> | ||
203 | This and its sub-directories are for the ALSA | ||
204 | sequencer. This directory contains the sequencer core and | ||
205 | primary sequencer modules such like snd-seq-midi, | ||
206 | snd-seq-virmidi, etc. They are compiled only when | ||
207 | <constant>CONFIG_SND_SEQUENCER</constant> is set in the kernel | ||
208 | config. | ||
209 | </para> | ||
210 | </section> | ||
211 | |||
212 | <section id="file-tree-core-directory-seq-oss"> | ||
213 | <title>core/seq/oss</title> | ||
214 | <para> | ||
215 | This contains the OSS sequencer emulation codes. | ||
216 | </para> | ||
217 | </section> | ||
218 | |||
219 | <section id="file-tree-core-directory-deq-instr"> | ||
220 | <title>core/seq/instr</title> | ||
221 | <para> | ||
222 | This directory contains the modules for the sequencer | ||
223 | instrument layer. | ||
224 | </para> | ||
225 | </section> | ||
226 | </section> | ||
227 | |||
228 | <section id="file-tree-include-directory"> | ||
229 | <title>include directory</title> | ||
230 | <para> | ||
231 | This is the place for the public header files of ALSA drivers, | ||
232 | which are to be exported to the user-space, or included by | ||
233 | several files at different directories. Basically, the private | ||
234 | header files should not be placed in this directory, but you may | ||
235 | still find files there, due to historical reason :) | ||
236 | </para> | ||
237 | </section> | ||
238 | |||
239 | <section id="file-tree-drivers-directory"> | ||
240 | <title>drivers directory</title> | ||
241 | <para> | ||
242 | This directory contains the codes shared among different drivers | ||
243 | on the different architectures. They are hence supposed not to be | ||
244 | architecture-specific. | ||
245 | For example, the dummy pcm driver and the serial MIDI | ||
246 | driver are found in this directory. In the sub-directories, | ||
247 | there are the codes for components which are independent from | ||
248 | bus and cpu architectures. | ||
249 | </para> | ||
250 | |||
251 | <section id="file-tree-drivers-directory-mpu401"> | ||
252 | <title>drivers/mpu401</title> | ||
253 | <para> | ||
254 | The MPU401 and MPU401-UART modules are stored here. | ||
255 | </para> | ||
256 | </section> | ||
257 | |||
258 | <section id="file-tree-drivers-directory-opl3"> | ||
259 | <title>drivers/opl3 and opl4</title> | ||
260 | <para> | ||
261 | The OPL3 and OPL4 FM-synth stuff is found here. | ||
262 | </para> | ||
263 | </section> | ||
264 | </section> | ||
265 | |||
266 | <section id="file-tree-i2c-directory"> | ||
267 | <title>i2c directory</title> | ||
268 | <para> | ||
269 | This contains the ALSA i2c components. | ||
270 | </para> | ||
271 | |||
272 | <para> | ||
273 | Although there is a standard i2c layer on Linux, ALSA has its | ||
274 | own i2c codes for some cards, because the soundcard needs only a | ||
275 | simple operation and the standard i2c API is too complicated for | ||
276 | such a purpose. | ||
277 | </para> | ||
278 | |||
279 | <section id="file-tree-i2c-directory-l3"> | ||
280 | <title>i2c/l3</title> | ||
281 | <para> | ||
282 | This is a sub-directory for ARM L3 i2c. | ||
283 | </para> | ||
284 | </section> | ||
285 | </section> | ||
286 | |||
287 | <section id="file-tree-synth-directory"> | ||
288 | <title>synth directory</title> | ||
289 | <para> | ||
290 | This contains the synth middle-level modules. | ||
291 | </para> | ||
292 | |||
293 | <para> | ||
294 | So far, there is only Emu8000/Emu10k1 synth driver under | ||
295 | synth/emux sub-directory. | ||
296 | </para> | ||
297 | </section> | ||
298 | |||
299 | <section id="file-tree-pci-directory"> | ||
300 | <title>pci directory</title> | ||
301 | <para> | ||
302 | This and its sub-directories hold the top-level card modules | ||
303 | for PCI soundcards and the codes specific to the PCI BUS. | ||
304 | </para> | ||
305 | |||
306 | <para> | ||
307 | The drivers compiled from a single file is stored directly on | ||
308 | pci directory, while the drivers with several source files are | ||
309 | stored on its own sub-directory (e.g. emu10k1, ice1712). | ||
310 | </para> | ||
311 | </section> | ||
312 | |||
313 | <section id="file-tree-isa-directory"> | ||
314 | <title>isa directory</title> | ||
315 | <para> | ||
316 | This and its sub-directories hold the top-level card modules | ||
317 | for ISA soundcards. | ||
318 | </para> | ||
319 | </section> | ||
320 | |||
321 | <section id="file-tree-arm-ppc-sparc-directories"> | ||
322 | <title>arm, ppc, and sparc directories</title> | ||
323 | <para> | ||
324 | These are for the top-level card modules which are | ||
325 | specific to each given architecture. | ||
326 | </para> | ||
327 | </section> | ||
328 | |||
329 | <section id="file-tree-usb-directory"> | ||
330 | <title>usb directory</title> | ||
331 | <para> | ||
332 | This contains the USB-audio driver. On the latest version, the | ||
333 | USB MIDI driver is integrated together with usb-audio driver. | ||
334 | </para> | ||
335 | </section> | ||
336 | |||
337 | <section id="file-tree-pcmcia-directory"> | ||
338 | <title>pcmcia directory</title> | ||
339 | <para> | ||
340 | The PCMCIA, especially PCCard drivers will go here. CardBus | ||
341 | drivers will be on pci directory, because its API is identical | ||
342 | with the standard PCI cards. | ||
343 | </para> | ||
344 | </section> | ||
345 | |||
346 | <section id="file-tree-oss-directory"> | ||
347 | <title>oss directory</title> | ||
348 | <para> | ||
349 | The OSS/Lite source files are stored here on Linux 2.6 (or | ||
350 | later) tree. (In the ALSA driver tarball, it's empty, of course :) | ||
351 | </para> | ||
352 | </section> | ||
353 | </chapter> | ||
354 | |||
355 | |||
356 | <!-- ****************************************************** --> | ||
357 | <!-- Basic Flow for PCI Drivers --> | ||
358 | <!-- ****************************************************** --> | ||
359 | <chapter id="basic-flow"> | ||
360 | <title>Basic Flow for PCI Drivers</title> | ||
361 | |||
362 | <section id="basic-flow-outline"> | ||
363 | <title>Outline</title> | ||
364 | <para> | ||
365 | The minimum flow of PCI soundcard is like the following: | ||
366 | |||
367 | <itemizedlist> | ||
368 | <listitem><para>define the PCI ID table (see the section | ||
369 | <link linkend="pci-resource-entries"><citetitle>PCI Entries | ||
370 | </citetitle></link>).</para></listitem> | ||
371 | <listitem><para>create <function>probe()</function> callback.</para></listitem> | ||
372 | <listitem><para>create <function>remove()</function> callback.</para></listitem> | ||
373 | <listitem><para>create pci_driver table which contains the three pointers above.</para></listitem> | ||
374 | <listitem><para>create <function>init()</function> function just calling <function>pci_module_init()</function> to register the pci_driver table defined above.</para></listitem> | ||
375 | <listitem><para>create <function>exit()</function> function to call <function>pci_unregister_driver()</function> function.</para></listitem> | ||
376 | </itemizedlist> | ||
377 | </para> | ||
378 | </section> | ||
379 | |||
380 | <section id="basic-flow-example"> | ||
381 | <title>Full Code Example</title> | ||
382 | <para> | ||
383 | The code example is shown below. Some parts are kept | ||
384 | unimplemented at this moment but will be filled in the | ||
385 | succeeding sections. The numbers in comment lines of | ||
386 | <function>snd_mychip_probe()</function> function are the | ||
387 | markers. | ||
388 | |||
389 | <example> | ||
390 | <title>Basic Flow for PCI Drivers Example</title> | ||
391 | <programlisting> | ||
392 | <![CDATA[ | ||
393 | #include <sound/driver.h> | ||
394 | #include <linux/init.h> | ||
395 | #include <linux/pci.h> | ||
396 | #include <linux/slab.h> | ||
397 | #include <sound/core.h> | ||
398 | #include <sound/initval.h> | ||
399 | |||
400 | /* module parameters (see "Module Parameters") */ | ||
401 | static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; | ||
402 | static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; | ||
403 | static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; | ||
404 | |||
405 | /* definition of the chip-specific record */ | ||
406 | typedef struct snd_mychip mychip_t; | ||
407 | struct snd_mychip { | ||
408 | snd_card_t *card; | ||
409 | // rest of implementation will be in the section | ||
410 | // "PCI Resource Managements" | ||
411 | }; | ||
412 | |||
413 | /* chip-specific destructor | ||
414 | * (see "PCI Resource Managements") | ||
415 | */ | ||
416 | static int snd_mychip_free(mychip_t *chip) | ||
417 | { | ||
418 | .... // will be implemented later... | ||
419 | } | ||
420 | |||
421 | /* component-destructor | ||
422 | * (see "Management of Cards and Components") | ||
423 | */ | ||
424 | static int snd_mychip_dev_free(snd_device_t *device) | ||
425 | { | ||
426 | mychip_t *chip = device->device_data; | ||
427 | return snd_mychip_free(chip); | ||
428 | } | ||
429 | |||
430 | /* chip-specific constructor | ||
431 | * (see "Management of Cards and Components") | ||
432 | */ | ||
433 | static int __devinit snd_mychip_create(snd_card_t *card, | ||
434 | struct pci_dev *pci, | ||
435 | mychip_t **rchip) | ||
436 | { | ||
437 | mychip_t *chip; | ||
438 | int err; | ||
439 | static snd_device_ops_t ops = { | ||
440 | .dev_free = snd_mychip_dev_free, | ||
441 | }; | ||
442 | |||
443 | *rchip = NULL; | ||
444 | |||
445 | // check PCI availability here | ||
446 | // (see "PCI Resource Managements") | ||
447 | .... | ||
448 | |||
449 | /* allocate a chip-specific data with zero filled */ | ||
450 | chip = kcalloc(1, sizeof(*chip), GFP_KERNEL); | ||
451 | if (chip == NULL) | ||
452 | return -ENOMEM; | ||
453 | |||
454 | chip->card = card; | ||
455 | |||
456 | // rest of initialization here; will be implemented | ||
457 | // later, see "PCI Resource Managements" | ||
458 | .... | ||
459 | |||
460 | if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, | ||
461 | chip, &ops)) < 0) { | ||
462 | snd_mychip_free(chip); | ||
463 | return err; | ||
464 | } | ||
465 | |||
466 | snd_card_set_dev(card, &pci->dev); | ||
467 | |||
468 | *rchip = chip; | ||
469 | return 0; | ||
470 | } | ||
471 | |||
472 | /* constructor -- see "Constructor" sub-section */ | ||
473 | static int __devinit snd_mychip_probe(struct pci_dev *pci, | ||
474 | const struct pci_device_id *pci_id) | ||
475 | { | ||
476 | static int dev; | ||
477 | snd_card_t *card; | ||
478 | mychip_t *chip; | ||
479 | int err; | ||
480 | |||
481 | /* (1) */ | ||
482 | if (dev >= SNDRV_CARDS) | ||
483 | return -ENODEV; | ||
484 | if (!enable[dev]) { | ||
485 | dev++; | ||
486 | return -ENOENT; | ||
487 | } | ||
488 | |||
489 | /* (2) */ | ||
490 | card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0); | ||
491 | if (card == NULL) | ||
492 | return -ENOMEM; | ||
493 | |||
494 | /* (3) */ | ||
495 | if ((err = snd_mychip_create(card, pci, &chip)) < 0) { | ||
496 | snd_card_free(card); | ||
497 | return err; | ||
498 | } | ||
499 | |||
500 | /* (4) */ | ||
501 | strcpy(card->driver, "My Chip"); | ||
502 | strcpy(card->shortname, "My Own Chip 123"); | ||
503 | sprintf(card->longname, "%s at 0x%lx irq %i", | ||
504 | card->shortname, chip->ioport, chip->irq); | ||
505 | |||
506 | /* (5) */ | ||
507 | .... // implemented later | ||
508 | |||
509 | /* (6) */ | ||
510 | if ((err = snd_card_register(card)) < 0) { | ||
511 | snd_card_free(card); | ||
512 | return err; | ||
513 | } | ||
514 | |||
515 | /* (7) */ | ||
516 | pci_set_drvdata(pci, card); | ||
517 | dev++; | ||
518 | return 0; | ||
519 | } | ||
520 | |||
521 | /* destructor -- see "Destructor" sub-section */ | ||
522 | static void __devexit snd_mychip_remove(struct pci_dev *pci) | ||
523 | { | ||
524 | snd_card_free(pci_get_drvdata(pci)); | ||
525 | pci_set_drvdata(pci, NULL); | ||
526 | } | ||
527 | ]]> | ||
528 | </programlisting> | ||
529 | </example> | ||
530 | </para> | ||
531 | </section> | ||
532 | |||
533 | <section id="basic-flow-constructor"> | ||
534 | <title>Constructor</title> | ||
535 | <para> | ||
536 | The real constructor of PCI drivers is probe callback. The | ||
537 | probe callback and other component-constructors which are called | ||
538 | from probe callback should be defined with | ||
539 | <parameter>__devinit</parameter> prefix. You | ||
540 | cannot use <parameter>__init</parameter> prefix for them, | ||
541 | because any PCI device could be a hotplug device. | ||
542 | </para> | ||
543 | |||
544 | <para> | ||
545 | In the probe callback, the following scheme is often used. | ||
546 | </para> | ||
547 | |||
548 | <section id="basic-flow-constructor-device-index"> | ||
549 | <title>1) Check and increment the device index.</title> | ||
550 | <para> | ||
551 | <informalexample> | ||
552 | <programlisting> | ||
553 | <![CDATA[ | ||
554 | static int dev; | ||
555 | .... | ||
556 | if (dev >= SNDRV_CARDS) | ||
557 | return -ENODEV; | ||
558 | if (!enable[dev]) { | ||
559 | dev++; | ||
560 | return -ENOENT; | ||
561 | } | ||
562 | ]]> | ||
563 | </programlisting> | ||
564 | </informalexample> | ||
565 | |||
566 | where enable[dev] is the module option. | ||
567 | </para> | ||
568 | |||
569 | <para> | ||
570 | At each time probe callback is called, check the | ||
571 | availability of the device. If not available, simply increment | ||
572 | the device index and returns. dev will be incremented also | ||
573 | later (<link | ||
574 | linkend="basic-flow-constructor-set-pci"><citetitle>step | ||
575 | 7</citetitle></link>). | ||
576 | </para> | ||
577 | </section> | ||
578 | |||
579 | <section id="basic-flow-constructor-create-card"> | ||
580 | <title>2) Create a card instance</title> | ||
581 | <para> | ||
582 | <informalexample> | ||
583 | <programlisting> | ||
584 | <![CDATA[ | ||
585 | snd_card_t *card; | ||
586 | .... | ||
587 | card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0); | ||
588 | ]]> | ||
589 | </programlisting> | ||
590 | </informalexample> | ||
591 | </para> | ||
592 | |||
593 | <para> | ||
594 | The detail will be explained in the section | ||
595 | <link linkend="card-management-card-instance"><citetitle> | ||
596 | Management of Cards and Components</citetitle></link>. | ||
597 | </para> | ||
598 | </section> | ||
599 | |||
600 | <section id="basic-flow-constructor-create-main"> | ||
601 | <title>3) Create a main component</title> | ||
602 | <para> | ||
603 | In this part, the PCI resources are allocated. | ||
604 | |||
605 | <informalexample> | ||
606 | <programlisting> | ||
607 | <![CDATA[ | ||
608 | mychip_t *chip; | ||
609 | .... | ||
610 | if ((err = snd_mychip_create(card, pci, &chip)) < 0) { | ||
611 | snd_card_free(card); | ||
612 | return err; | ||
613 | } | ||
614 | ]]> | ||
615 | </programlisting> | ||
616 | </informalexample> | ||
617 | |||
618 | The detail will be explained in the section <link | ||
619 | linkend="pci-resource"><citetitle>PCI Resource | ||
620 | Managements</citetitle></link>. | ||
621 | </para> | ||
622 | </section> | ||
623 | |||
624 | <section id="basic-flow-constructor-main-component"> | ||
625 | <title>4) Set the driver ID and name strings.</title> | ||
626 | <para> | ||
627 | <informalexample> | ||
628 | <programlisting> | ||
629 | <![CDATA[ | ||
630 | strcpy(card->driver, "My Chip"); | ||
631 | strcpy(card->shortname, "My Own Chip 123"); | ||
632 | sprintf(card->longname, "%s at 0x%lx irq %i", | ||
633 | card->shortname, chip->ioport, chip->irq); | ||
634 | ]]> | ||
635 | </programlisting> | ||
636 | </informalexample> | ||
637 | |||
638 | The driver field holds the minimal ID string of the | ||
639 | chip. This is referred by alsa-lib's configurator, so keep it | ||
640 | simple but unique. | ||
641 | Even the same driver can have different driver IDs to | ||
642 | distinguish the functionality of each chip type. | ||
643 | </para> | ||
644 | |||
645 | <para> | ||
646 | The shortname field is a string shown as more verbose | ||
647 | name. The longname field contains the information which is | ||
648 | shown in <filename>/proc/asound/cards</filename>. | ||
649 | </para> | ||
650 | </section> | ||
651 | |||
652 | <section id="basic-flow-constructor-create-other"> | ||
653 | <title>5) Create other components, such as mixer, MIDI, etc.</title> | ||
654 | <para> | ||
655 | Here you define the basic components such as | ||
656 | <link linkend="pcm-interface"><citetitle>PCM</citetitle></link>, | ||
657 | mixer (e.g. <link linkend="api-ac97"><citetitle>AC97</citetitle></link>), | ||
658 | MIDI (e.g. <link linkend="midi-interface"><citetitle>MPU-401</citetitle></link>), | ||
659 | and other interfaces. | ||
660 | Also, if you want a <link linkend="proc-interface"><citetitle>proc | ||
661 | file</citetitle></link>, define it here, too. | ||
662 | </para> | ||
663 | </section> | ||
664 | |||
665 | <section id="basic-flow-constructor-register-card"> | ||
666 | <title>6) Register the card instance.</title> | ||
667 | <para> | ||
668 | <informalexample> | ||
669 | <programlisting> | ||
670 | <![CDATA[ | ||
671 | if ((err = snd_card_register(card)) < 0) { | ||
672 | snd_card_free(card); | ||
673 | return err; | ||
674 | } | ||
675 | ]]> | ||
676 | </programlisting> | ||
677 | </informalexample> | ||
678 | </para> | ||
679 | |||
680 | <para> | ||
681 | Will be explained in the section <link | ||
682 | linkend="card-management-registration"><citetitle>Management | ||
683 | of Cards and Components</citetitle></link>, too. | ||
684 | </para> | ||
685 | </section> | ||
686 | |||
687 | <section id="basic-flow-constructor-set-pci"> | ||
688 | <title>7) Set the PCI driver data and return zero.</title> | ||
689 | <para> | ||
690 | <informalexample> | ||
691 | <programlisting> | ||
692 | <![CDATA[ | ||
693 | pci_set_drvdata(pci, card); | ||
694 | dev++; | ||
695 | return 0; | ||
696 | ]]> | ||
697 | </programlisting> | ||
698 | </informalexample> | ||
699 | |||
700 | In the above, the card record is stored. This pointer is | ||
701 | referred in the remove callback and power-management | ||
702 | callbacks, too. | ||
703 | </para> | ||
704 | </section> | ||
705 | </section> | ||
706 | |||
707 | <section id="basic-flow-destructor"> | ||
708 | <title>Destructor</title> | ||
709 | <para> | ||
710 | The destructor, remove callback, simply releases the card | ||
711 | instance. Then the ALSA middle layer will release all the | ||
712 | attached components automatically. | ||
713 | </para> | ||
714 | |||
715 | <para> | ||
716 | It would be typically like the following: | ||
717 | |||
718 | <informalexample> | ||
719 | <programlisting> | ||
720 | <![CDATA[ | ||
721 | static void __devexit snd_mychip_remove(struct pci_dev *pci) | ||
722 | { | ||
723 | snd_card_free(pci_get_drvdata(pci)); | ||
724 | pci_set_drvdata(pci, NULL); | ||
725 | } | ||
726 | ]]> | ||
727 | </programlisting> | ||
728 | </informalexample> | ||
729 | |||
730 | The above code assumes that the card pointer is set to the PCI | ||
731 | driver data. | ||
732 | </para> | ||
733 | </section> | ||
734 | |||
735 | <section id="basic-flow-header-files"> | ||
736 | <title>Header Files</title> | ||
737 | <para> | ||
738 | For the above example, at least the following include files | ||
739 | are necessary. | ||
740 | |||
741 | <informalexample> | ||
742 | <programlisting> | ||
743 | <![CDATA[ | ||
744 | #include <sound/driver.h> | ||
745 | #include <linux/init.h> | ||
746 | #include <linux/pci.h> | ||
747 | #include <linux/slab.h> | ||
748 | #include <sound/core.h> | ||
749 | #include <sound/initval.h> | ||
750 | ]]> | ||
751 | </programlisting> | ||
752 | </informalexample> | ||
753 | |||
754 | where the last one is necessary only when module options are | ||
755 | defined in the source file. If the codes are split to several | ||
756 | files, the file without module options don't need them. | ||
757 | </para> | ||
758 | |||
759 | <para> | ||
760 | In addition to them, you'll need | ||
761 | <filename><linux/interrupt.h></filename> for the interrupt | ||
762 | handling, and <filename><asm/io.h></filename> for the i/o | ||
763 | access. If you use <function>mdelay()</function> or | ||
764 | <function>udelay()</function> functions, you'll need to include | ||
765 | <filename><linux/delay.h></filename>, too. | ||
766 | </para> | ||
767 | |||
768 | <para> | ||
769 | The ALSA interfaces like PCM or control API are defined in other | ||
770 | header files as <filename><sound/xxx.h></filename>. | ||
771 | They have to be included after | ||
772 | <filename><sound/core.h></filename>. | ||
773 | </para> | ||
774 | |||
775 | </section> | ||
776 | </chapter> | ||
777 | |||
778 | |||
779 | <!-- ****************************************************** --> | ||
780 | <!-- Management of Cards and Components --> | ||
781 | <!-- ****************************************************** --> | ||
782 | <chapter id="card-management"> | ||
783 | <title>Management of Cards and Components</title> | ||
784 | |||
785 | <section id="card-management-card-instance"> | ||
786 | <title>Card Instance</title> | ||
787 | <para> | ||
788 | For each soundcard, a <quote>card</quote> record must be allocated. | ||
789 | </para> | ||
790 | |||
791 | <para> | ||
792 | A card record is the headquarters of the soundcard. It manages | ||
793 | the list of whole devices (components) on the soundcard, such as | ||
794 | PCM, mixers, MIDI, synthesizer, and so on. Also, the card | ||
795 | record holds the ID and the name strings of the card, manages | ||
796 | the root of proc files, and controls the power-management states | ||
797 | and hotplug disconnections. The component list on the card | ||
798 | record is used to manage the proper releases of resources at | ||
799 | destruction. | ||
800 | </para> | ||
801 | |||
802 | <para> | ||
803 | As mentioned above, to create a card instance, call | ||
804 | <function>snd_card_new()</function>. | ||
805 | |||
806 | <informalexample> | ||
807 | <programlisting> | ||
808 | <![CDATA[ | ||
809 | snd_card_t *card; | ||
810 | card = snd_card_new(index, id, module, extra_size); | ||
811 | ]]> | ||
812 | </programlisting> | ||
813 | </informalexample> | ||
814 | </para> | ||
815 | |||
816 | <para> | ||
817 | The function takes four arguments, the card-index number, the | ||
818 | id string, the module pointer (usually | ||
819 | <constant>THIS_MODULE</constant>), | ||
820 | and the size of extra-data space. The last argument is used to | ||
821 | allocate card->private_data for the | ||
822 | chip-specific data. Note that this data | ||
823 | <emphasis>is</emphasis> allocated by | ||
824 | <function>snd_card_new()</function>. | ||
825 | </para> | ||
826 | </section> | ||
827 | |||
828 | <section id="card-management-component"> | ||
829 | <title>Components</title> | ||
830 | <para> | ||
831 | After the card is created, you can attach the components | ||
832 | (devices) to the card instance. On ALSA driver, a component is | ||
833 | represented as a <type>snd_device_t</type> object. | ||
834 | A component can be a PCM instance, a control interface, a raw | ||
835 | MIDI interface, etc. Each of such instances has one component | ||
836 | entry. | ||
837 | </para> | ||
838 | |||
839 | <para> | ||
840 | A component can be created via | ||
841 | <function>snd_device_new()</function> function. | ||
842 | |||
843 | <informalexample> | ||
844 | <programlisting> | ||
845 | <![CDATA[ | ||
846 | snd_device_new(card, SNDRV_DEV_XXX, chip, &ops); | ||
847 | ]]> | ||
848 | </programlisting> | ||
849 | </informalexample> | ||
850 | </para> | ||
851 | |||
852 | <para> | ||
853 | This takes the card pointer, the device-level | ||
854 | (<constant>SNDRV_DEV_XXX</constant>), the data pointer, and the | ||
855 | callback pointers (<parameter>&ops</parameter>). The | ||
856 | device-level defines the type of components and the order of | ||
857 | registration and de-registration. For most of components, the | ||
858 | device-level is already defined. For a user-defined component, | ||
859 | you can use <constant>SNDRV_DEV_LOWLEVEL</constant>. | ||
860 | </para> | ||
861 | |||
862 | <para> | ||
863 | This function itself doesn't allocate the data space. The data | ||
864 | must be allocated manually beforehand, and its pointer is passed | ||
865 | as the argument. This pointer is used as the identifier | ||
866 | (<parameter>chip</parameter> in the above example) for the | ||
867 | instance. | ||
868 | </para> | ||
869 | |||
870 | <para> | ||
871 | Each ALSA pre-defined component such as ac97 or pcm calls | ||
872 | <function>snd_device_new()</function> inside its | ||
873 | constructor. The destructor for each component is defined in the | ||
874 | callback pointers. Hence, you don't need to take care of | ||
875 | calling a destructor for such a component. | ||
876 | </para> | ||
877 | |||
878 | <para> | ||
879 | If you would like to create your own component, you need to | ||
880 | set the destructor function to dev_free callback in | ||
881 | <parameter>ops</parameter>, so that it can be released | ||
882 | automatically via <function>snd_card_free()</function>. The | ||
883 | example will be shown later as an implementation of a | ||
884 | chip-specific data. | ||
885 | </para> | ||
886 | </section> | ||
887 | |||
888 | <section id="card-management-chip-specific"> | ||
889 | <title>Chip-Specific Data</title> | ||
890 | <para> | ||
891 | The chip-specific information, e.g. the i/o port address, its | ||
892 | resource pointer, or the irq number, is stored in the | ||
893 | chip-specific record. | ||
894 | Usually, the chip-specific record is typedef'ed as | ||
895 | <type>xxx_t</type> like the following: | ||
896 | |||
897 | <informalexample> | ||
898 | <programlisting> | ||
899 | <![CDATA[ | ||
900 | typedef struct snd_mychip mychip_t; | ||
901 | struct snd_mychip { | ||
902 | .... | ||
903 | }; | ||
904 | ]]> | ||
905 | </programlisting> | ||
906 | </informalexample> | ||
907 | </para> | ||
908 | |||
909 | <para> | ||
910 | In general, there are two ways to allocate the chip record. | ||
911 | </para> | ||
912 | |||
913 | <section id="card-management-chip-specific-snd-card-new"> | ||
914 | <title>1. Allocating via <function>snd_card_new()</function>.</title> | ||
915 | <para> | ||
916 | As mentioned above, you can pass the extra-data-length to the 4th argument of <function>snd_card_new()</function>, i.e. | ||
917 | |||
918 | <informalexample> | ||
919 | <programlisting> | ||
920 | <![CDATA[ | ||
921 | card = snd_card_new(index[dev], id[dev], THIS_MODULE, sizeof(mychip_t)); | ||
922 | ]]> | ||
923 | </programlisting> | ||
924 | </informalexample> | ||
925 | |||
926 | whether <type>mychip_t</type> is the type of the chip record. | ||
927 | </para> | ||
928 | |||
929 | <para> | ||
930 | In return, the allocated record can be accessed as | ||
931 | |||
932 | <informalexample> | ||
933 | <programlisting> | ||
934 | <![CDATA[ | ||
935 | mychip_t *chip = (mychip_t *)card->private_data; | ||
936 | ]]> | ||
937 | </programlisting> | ||
938 | </informalexample> | ||
939 | |||
940 | With this method, you don't have to allocate twice. | ||
941 | The record is released together with the card instance. | ||
942 | </para> | ||
943 | </section> | ||
944 | |||
945 | <section id="card-management-chip-specific-allocate-extra"> | ||
946 | <title>2. Allocating an extra device.</title> | ||
947 | |||
948 | <para> | ||
949 | After allocating a card instance via | ||
950 | <function>snd_card_new()</function> (with | ||
951 | <constant>NULL</constant> on the 4th arg), call | ||
952 | <function>kcalloc()</function>. | ||
953 | |||
954 | <informalexample> | ||
955 | <programlisting> | ||
956 | <![CDATA[ | ||
957 | snd_card_t *card; | ||
958 | mychip_t *chip; | ||
959 | card = snd_card_new(index[dev], id[dev], THIS_MODULE, NULL); | ||
960 | ..... | ||
961 | chip = kcalloc(1, sizeof(*chip), GFP_KERNEL); | ||
962 | ]]> | ||
963 | </programlisting> | ||
964 | </informalexample> | ||
965 | </para> | ||
966 | |||
967 | <para> | ||
968 | The chip record should have the field to hold the card | ||
969 | pointer at least, | ||
970 | |||
971 | <informalexample> | ||
972 | <programlisting> | ||
973 | <![CDATA[ | ||
974 | struct snd_mychip { | ||
975 | snd_card_t *card; | ||
976 | .... | ||
977 | }; | ||
978 | ]]> | ||
979 | </programlisting> | ||
980 | </informalexample> | ||
981 | </para> | ||
982 | |||
983 | <para> | ||
984 | Then, set the card pointer in the returned chip instance. | ||
985 | |||
986 | <informalexample> | ||
987 | <programlisting> | ||
988 | <![CDATA[ | ||
989 | chip->card = card; | ||
990 | ]]> | ||
991 | </programlisting> | ||
992 | </informalexample> | ||
993 | </para> | ||
994 | |||
995 | <para> | ||
996 | Next, initialize the fields, and register this chip | ||
997 | record as a low-level device with a specified | ||
998 | <parameter>ops</parameter>, | ||
999 | |||
1000 | <informalexample> | ||
1001 | <programlisting> | ||
1002 | <![CDATA[ | ||
1003 | static snd_device_ops_t ops = { | ||
1004 | .dev_free = snd_mychip_dev_free, | ||
1005 | }; | ||
1006 | .... | ||
1007 | snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops); | ||
1008 | ]]> | ||
1009 | </programlisting> | ||
1010 | </informalexample> | ||
1011 | |||
1012 | <function>snd_mychip_dev_free()</function> is the | ||
1013 | device-destructor function, which will call the real | ||
1014 | destructor. | ||
1015 | </para> | ||
1016 | |||
1017 | <para> | ||
1018 | <informalexample> | ||
1019 | <programlisting> | ||
1020 | <![CDATA[ | ||
1021 | static int snd_mychip_dev_free(snd_device_t *device) | ||
1022 | { | ||
1023 | mychip_t *chip = device->device_data; | ||
1024 | return snd_mychip_free(chip); | ||
1025 | } | ||
1026 | ]]> | ||
1027 | </programlisting> | ||
1028 | </informalexample> | ||
1029 | |||
1030 | where <function>snd_mychip_free()</function> is the real destructor. | ||
1031 | </para> | ||
1032 | </section> | ||
1033 | </section> | ||
1034 | |||
1035 | <section id="card-management-registration"> | ||
1036 | <title>Registration and Release</title> | ||
1037 | <para> | ||
1038 | After all components are assigned, register the card instance | ||
1039 | by calling <function>snd_card_register()</function>. The access | ||
1040 | to the device files are enabled at this point. That is, before | ||
1041 | <function>snd_card_register()</function> is called, the | ||
1042 | components are safely inaccessible from external side. If this | ||
1043 | call fails, exit the probe function after releasing the card via | ||
1044 | <function>snd_card_free()</function>. | ||
1045 | </para> | ||
1046 | |||
1047 | <para> | ||
1048 | For releasing the card instance, you can call simply | ||
1049 | <function>snd_card_free()</function>. As already mentioned, all | ||
1050 | components are released automatically by this call. | ||
1051 | </para> | ||
1052 | |||
1053 | <para> | ||
1054 | As further notes, the destructors (both | ||
1055 | <function>snd_mychip_dev_free</function> and | ||
1056 | <function>snd_mychip_free</function>) cannot be defined with | ||
1057 | <parameter>__devexit</parameter> prefix, because they may be | ||
1058 | called from the constructor, too, at the false path. | ||
1059 | </para> | ||
1060 | |||
1061 | <para> | ||
1062 | For a device which allows hotplugging, you can use | ||
1063 | <function>snd_card_free_in_thread</function>. This one will | ||
1064 | postpone the destruction and wait in a kernel-thread until all | ||
1065 | devices are closed. | ||
1066 | </para> | ||
1067 | |||
1068 | </section> | ||
1069 | |||
1070 | </chapter> | ||
1071 | |||
1072 | |||
1073 | <!-- ****************************************************** --> | ||
1074 | <!-- PCI Resource Managements --> | ||
1075 | <!-- ****************************************************** --> | ||
1076 | <chapter id="pci-resource"> | ||
1077 | <title>PCI Resource Managements</title> | ||
1078 | |||
1079 | <section id="pci-resource-example"> | ||
1080 | <title>Full Code Example</title> | ||
1081 | <para> | ||
1082 | In this section, we'll finish the chip-specific constructor, | ||
1083 | destructor and PCI entries. The example code is shown first, | ||
1084 | below. | ||
1085 | |||
1086 | <example> | ||
1087 | <title>PCI Resource Managements Example</title> | ||
1088 | <programlisting> | ||
1089 | <![CDATA[ | ||
1090 | struct snd_mychip { | ||
1091 | snd_card_t *card; | ||
1092 | struct pci_dev *pci; | ||
1093 | |||
1094 | unsigned long port; | ||
1095 | int irq; | ||
1096 | }; | ||
1097 | |||
1098 | static int snd_mychip_free(mychip_t *chip) | ||
1099 | { | ||
1100 | /* disable hardware here if any */ | ||
1101 | .... // (not implemented in this document) | ||
1102 | |||
1103 | /* release the irq */ | ||
1104 | if (chip->irq >= 0) | ||
1105 | free_irq(chip->irq, (void *)chip); | ||
1106 | /* release the i/o ports & memory */ | ||
1107 | pci_release_regions(chip->pci); | ||
1108 | /* disable the PCI entry */ | ||
1109 | pci_disable_device(chip->pci); | ||
1110 | /* release the data */ | ||
1111 | kfree(chip); | ||
1112 | return 0; | ||
1113 | } | ||
1114 | |||
1115 | /* chip-specific constructor */ | ||
1116 | static int __devinit snd_mychip_create(snd_card_t *card, | ||
1117 | struct pci_dev *pci, | ||
1118 | mychip_t **rchip) | ||
1119 | { | ||
1120 | mychip_t *chip; | ||
1121 | int err; | ||
1122 | static snd_device_ops_t ops = { | ||
1123 | .dev_free = snd_mychip_dev_free, | ||
1124 | }; | ||
1125 | |||
1126 | *rchip = NULL; | ||
1127 | |||
1128 | /* initialize the PCI entry */ | ||
1129 | if ((err = pci_enable_device(pci)) < 0) | ||
1130 | return err; | ||
1131 | /* check PCI availability (28bit DMA) */ | ||
1132 | if (pci_set_dma_mask(pci, 0x0fffffff) < 0 || | ||
1133 | pci_set_consistent_dma_mask(pci, 0x0fffffff) < 0) { | ||
1134 | printk(KERN_ERR "error to set 28bit mask DMA\n"); | ||
1135 | pci_disable_device(pci); | ||
1136 | return -ENXIO; | ||
1137 | } | ||
1138 | |||
1139 | chip = kcalloc(1, sizeof(*chip), GFP_KERNEL); | ||
1140 | if (chip == NULL) { | ||
1141 | pci_disable_device(pci); | ||
1142 | return -ENOMEM; | ||
1143 | } | ||
1144 | |||
1145 | /* initialize the stuff */ | ||
1146 | chip->card = card; | ||
1147 | chip->pci = pci; | ||
1148 | chip->irq = -1; | ||
1149 | |||
1150 | /* (1) PCI resource allocation */ | ||
1151 | if ((err = pci_request_regions(pci, "My Chip")) < 0) { | ||
1152 | kfree(chip); | ||
1153 | pci_disable_device(pci); | ||
1154 | return err; | ||
1155 | } | ||
1156 | chip->port = pci_resource_start(pci, 0); | ||
1157 | if (request_irq(pci->irq, snd_mychip_interrupt, | ||
1158 | SA_INTERRUPT|SA_SHIRQ, "My Chip", | ||
1159 | (void *)chip)) { | ||
1160 | printk(KERN_ERR "cannot grab irq %d\n", pci->irq); | ||
1161 | snd_mychip_free(chip); | ||
1162 | return -EBUSY; | ||
1163 | } | ||
1164 | chip->irq = pci->irq; | ||
1165 | |||
1166 | /* (2) initialization of the chip hardware */ | ||
1167 | .... // (not implemented in this document) | ||
1168 | |||
1169 | if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, | ||
1170 | chip, &ops)) < 0) { | ||
1171 | snd_mychip_free(chip); | ||
1172 | return err; | ||
1173 | } | ||
1174 | |||
1175 | snd_card_set_dev(card, &pci->dev); | ||
1176 | |||
1177 | *rchip = chip; | ||
1178 | return 0; | ||
1179 | } | ||
1180 | |||
1181 | /* PCI IDs */ | ||
1182 | static struct pci_device_id snd_mychip_ids[] = { | ||
1183 | { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR, | ||
1184 | PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, }, | ||
1185 | .... | ||
1186 | { 0, } | ||
1187 | }; | ||
1188 | MODULE_DEVICE_TABLE(pci, snd_mychip_ids); | ||
1189 | |||
1190 | /* pci_driver definition */ | ||
1191 | static struct pci_driver driver = { | ||
1192 | .name = "My Own Chip", | ||
1193 | .id_table = snd_mychip_ids, | ||
1194 | .probe = snd_mychip_probe, | ||
1195 | .remove = __devexit_p(snd_mychip_remove), | ||
1196 | }; | ||
1197 | |||
1198 | /* initialization of the module */ | ||
1199 | static int __init alsa_card_mychip_init(void) | ||
1200 | { | ||
1201 | return pci_module_init(&driver); | ||
1202 | } | ||
1203 | |||
1204 | /* clean up the module */ | ||
1205 | static void __exit alsa_card_mychip_exit(void) | ||
1206 | { | ||
1207 | pci_unregister_driver(&driver); | ||
1208 | } | ||
1209 | |||
1210 | module_init(alsa_card_mychip_init) | ||
1211 | module_exit(alsa_card_mychip_exit) | ||
1212 | |||
1213 | EXPORT_NO_SYMBOLS; /* for old kernels only */ | ||
1214 | ]]> | ||
1215 | </programlisting> | ||
1216 | </example> | ||
1217 | </para> | ||
1218 | </section> | ||
1219 | |||
1220 | <section id="pci-resource-some-haftas"> | ||
1221 | <title>Some Hafta's</title> | ||
1222 | <para> | ||
1223 | The allocation of PCI resources is done in the | ||
1224 | <function>probe()</function> function, and usually an extra | ||
1225 | <function>xxx_create()</function> function is written for this | ||
1226 | purpose. | ||
1227 | </para> | ||
1228 | |||
1229 | <para> | ||
1230 | In the case of PCI devices, you have to call at first | ||
1231 | <function>pci_enable_device()</function> function before | ||
1232 | allocating resources. Also, you need to set the proper PCI DMA | ||
1233 | mask to limit the accessed i/o range. In some cases, you might | ||
1234 | need to call <function>pci_set_master()</function> function, | ||
1235 | too. | ||
1236 | </para> | ||
1237 | |||
1238 | <para> | ||
1239 | Suppose the 28bit mask, and the code to be added would be like: | ||
1240 | |||
1241 | <informalexample> | ||
1242 | <programlisting> | ||
1243 | <![CDATA[ | ||
1244 | if ((err = pci_enable_device(pci)) < 0) | ||
1245 | return err; | ||
1246 | if (pci_set_dma_mask(pci, 0x0fffffff) < 0 || | ||
1247 | pci_set_consistent_dma_mask(pci, 0x0fffffff) < 0) { | ||
1248 | printk(KERN_ERR "error to set 28bit mask DMA\n"); | ||
1249 | pci_disable_device(pci); | ||
1250 | return -ENXIO; | ||
1251 | } | ||
1252 | |||
1253 | ]]> | ||
1254 | </programlisting> | ||
1255 | </informalexample> | ||
1256 | </para> | ||
1257 | </section> | ||
1258 | |||
1259 | <section id="pci-resource-resource-allocation"> | ||
1260 | <title>Resource Allocation</title> | ||
1261 | <para> | ||
1262 | The allocation of I/O ports and irqs are done via standard kernel | ||
1263 | functions. Unlike ALSA ver.0.5.x., there are no helpers for | ||
1264 | that. And these resources must be released in the destructor | ||
1265 | function (see below). Also, on ALSA 0.9.x, you don't need to | ||
1266 | allocate (pseudo-)DMA for PCI like ALSA 0.5.x. | ||
1267 | </para> | ||
1268 | |||
1269 | <para> | ||
1270 | Now assume that this PCI device has an I/O port with 8 bytes | ||
1271 | and an interrupt. Then <type>mychip_t</type> will have the | ||
1272 | following fields: | ||
1273 | |||
1274 | <informalexample> | ||
1275 | <programlisting> | ||
1276 | <![CDATA[ | ||
1277 | struct snd_mychip { | ||
1278 | snd_card_t *card; | ||
1279 | |||
1280 | unsigned long port; | ||
1281 | int irq; | ||
1282 | }; | ||
1283 | ]]> | ||
1284 | </programlisting> | ||
1285 | </informalexample> | ||
1286 | </para> | ||
1287 | |||
1288 | <para> | ||
1289 | For an i/o port (and also a memory region), you need to have | ||
1290 | the resource pointer for the standard resource management. For | ||
1291 | an irq, you have to keep only the irq number (integer). But you | ||
1292 | need to initialize this number as -1 before actual allocation, | ||
1293 | since irq 0 is valid. The port address and its resource pointer | ||
1294 | can be initialized as null by | ||
1295 | <function>kcalloc()</function> automatically, so you | ||
1296 | don't have to take care of resetting them. | ||
1297 | </para> | ||
1298 | |||
1299 | <para> | ||
1300 | The allocation of an i/o port is done like this: | ||
1301 | |||
1302 | <informalexample> | ||
1303 | <programlisting> | ||
1304 | <![CDATA[ | ||
1305 | if ((err = pci_request_regions(pci, "My Chip")) < 0) { | ||
1306 | kfree(chip); | ||
1307 | pci_disable_device(pci); | ||
1308 | return err; | ||
1309 | } | ||
1310 | chip->port = pci_resource_start(pci, 0); | ||
1311 | ]]> | ||
1312 | </programlisting> | ||
1313 | </informalexample> | ||
1314 | </para> | ||
1315 | |||
1316 | <para> | ||
1317 | <!-- obsolete --> | ||
1318 | It will reserve the i/o port region of 8 bytes of the given | ||
1319 | PCI device. The returned value, chip->res_port, is allocated | ||
1320 | via <function>kmalloc()</function> by | ||
1321 | <function>request_region()</function>. The pointer must be | ||
1322 | released via <function>kfree()</function>, but there is some | ||
1323 | problem regarding this. This issue will be explained more below. | ||
1324 | </para> | ||
1325 | |||
1326 | <para> | ||
1327 | The allocation of an interrupt source is done like this: | ||
1328 | |||
1329 | <informalexample> | ||
1330 | <programlisting> | ||
1331 | <![CDATA[ | ||
1332 | if (request_irq(pci->irq, snd_mychip_interrupt, | ||
1333 | SA_INTERRUPT|SA_SHIRQ, "My Chip", | ||
1334 | (void *)chip)) { | ||
1335 | printk(KERN_ERR "cannot grab irq %d\n", pci->irq); | ||
1336 | snd_mychip_free(chip); | ||
1337 | return -EBUSY; | ||
1338 | } | ||
1339 | chip->irq = pci->irq; | ||
1340 | ]]> | ||
1341 | </programlisting> | ||
1342 | </informalexample> | ||
1343 | |||
1344 | where <function>snd_mychip_interrupt()</function> is the | ||
1345 | interrupt handler defined <link | ||
1346 | linkend="pcm-interface-interrupt-handler"><citetitle>later</citetitle></link>. | ||
1347 | Note that chip->irq should be defined | ||
1348 | only when <function>request_irq()</function> succeeded. | ||
1349 | </para> | ||
1350 | |||
1351 | <para> | ||
1352 | On the PCI bus, the interrupts can be shared. Thus, | ||
1353 | <constant>SA_SHIRQ</constant> is given as the interrupt flag of | ||
1354 | <function>request_irq()</function>. | ||
1355 | </para> | ||
1356 | |||
1357 | <para> | ||
1358 | The last argument of <function>request_irq()</function> is the | ||
1359 | data pointer passed to the interrupt handler. Usually, the | ||
1360 | chip-specific record is used for that, but you can use what you | ||
1361 | like, too. | ||
1362 | </para> | ||
1363 | |||
1364 | <para> | ||
1365 | I won't define the detail of the interrupt handler at this | ||
1366 | point, but at least its appearance can be explained now. The | ||
1367 | interrupt handler looks usually like the following: | ||
1368 | |||
1369 | <informalexample> | ||
1370 | <programlisting> | ||
1371 | <![CDATA[ | ||
1372 | static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id, | ||
1373 | struct pt_regs *regs) | ||
1374 | { | ||
1375 | mychip_t *chip = dev_id; | ||
1376 | .... | ||
1377 | return IRQ_HANDLED; | ||
1378 | } | ||
1379 | ]]> | ||
1380 | </programlisting> | ||
1381 | </informalexample> | ||
1382 | </para> | ||
1383 | |||
1384 | <para> | ||
1385 | Now let's write the corresponding destructor for the resources | ||
1386 | above. The role of destructor is simple: disable the hardware | ||
1387 | (if already activated) and release the resources. So far, we | ||
1388 | have no hardware part, so the disabling is not written here. | ||
1389 | </para> | ||
1390 | |||
1391 | <para> | ||
1392 | For releasing the resources, <quote>check-and-release</quote> | ||
1393 | method is a safer way. For the interrupt, do like this: | ||
1394 | |||
1395 | <informalexample> | ||
1396 | <programlisting> | ||
1397 | <![CDATA[ | ||
1398 | if (chip->irq >= 0) | ||
1399 | free_irq(chip->irq, (void *)chip); | ||
1400 | ]]> | ||
1401 | </programlisting> | ||
1402 | </informalexample> | ||
1403 | |||
1404 | Since the irq number can start from 0, you should initialize | ||
1405 | chip->irq with a negative value (e.g. -1), so that you can | ||
1406 | check the validity of the irq number as above. | ||
1407 | </para> | ||
1408 | |||
1409 | <para> | ||
1410 | When you requested I/O ports or memory regions via | ||
1411 | <function>pci_request_region()</function> or | ||
1412 | <function>pci_request_regions()</function> like this example, | ||
1413 | release the resource(s) using the corresponding function, | ||
1414 | <function>pci_release_region()</function> or | ||
1415 | <function>pci_release_regions()</function>. | ||
1416 | |||
1417 | <informalexample> | ||
1418 | <programlisting> | ||
1419 | <![CDATA[ | ||
1420 | pci_release_regions(chip->pci); | ||
1421 | ]]> | ||
1422 | </programlisting> | ||
1423 | </informalexample> | ||
1424 | </para> | ||
1425 | |||
1426 | <para> | ||
1427 | When you requested manually via <function>request_region()</function> | ||
1428 | or <function>request_mem_region</function>, you can release it via | ||
1429 | <function>release_resource()</function>. Suppose that you keep | ||
1430 | the resource pointer returned from <function>request_region()</function> | ||
1431 | in chip->res_port, the release procedure looks like below: | ||
1432 | |||
1433 | <informalexample> | ||
1434 | <programlisting> | ||
1435 | <![CDATA[ | ||
1436 | if (chip->res_port) { | ||
1437 | release_resource(chip->res_port); | ||
1438 | kfree_nocheck(chip->res_port); | ||
1439 | } | ||
1440 | ]]> | ||
1441 | </programlisting> | ||
1442 | </informalexample> | ||
1443 | |||
1444 | As you can see, the resource pointer is also to be freed | ||
1445 | via <function>kfree_nocheck()</function> after | ||
1446 | <function>release_resource()</function> is called. You | ||
1447 | cannot use <function>kfree()</function> here, because on ALSA, | ||
1448 | <function>kfree()</function> may be a wrapper to its own | ||
1449 | allocator with the memory debugging. Since the resource pointer | ||
1450 | is allocated externally outside the ALSA, it must be released | ||
1451 | via the native | ||
1452 | <function>kfree()</function>. | ||
1453 | <function>kfree_nocheck()</function> is used for that; it calls | ||
1454 | the native <function>kfree()</function> without wrapper. | ||
1455 | </para> | ||
1456 | |||
1457 | <para> | ||
1458 | Don't forget to call <function>pci_disable_device()</function> | ||
1459 | before all finished. | ||
1460 | </para> | ||
1461 | |||
1462 | <para> | ||
1463 | And finally, release the chip-specific record. | ||
1464 | |||
1465 | <informalexample> | ||
1466 | <programlisting> | ||
1467 | <![CDATA[ | ||
1468 | kfree(chip); | ||
1469 | ]]> | ||
1470 | </programlisting> | ||
1471 | </informalexample> | ||
1472 | </para> | ||
1473 | |||
1474 | <para> | ||
1475 | Again, remember that you cannot | ||
1476 | set <parameter>__devexit</parameter> prefix for this destructor. | ||
1477 | </para> | ||
1478 | |||
1479 | <para> | ||
1480 | We didn't implement the hardware-disabling part in the above. | ||
1481 | If you need to do this, please note that the destructor may be | ||
1482 | called even before the initialization of the chip is completed. | ||
1483 | It would be better to have a flag to skip the hardware-disabling | ||
1484 | if the hardware was not initialized yet. | ||
1485 | </para> | ||
1486 | |||
1487 | <para> | ||
1488 | When the chip-data is assigned to the card using | ||
1489 | <function>snd_device_new()</function> with | ||
1490 | <constant>SNDRV_DEV_LOWLELVEL</constant> , its destructor is | ||
1491 | called at the last. That is, it is assured that all other | ||
1492 | components like PCMs and controls have been already released. | ||
1493 | You don't have to call stopping PCMs, etc. explicitly, but just | ||
1494 | stop the hardware in the low-level. | ||
1495 | </para> | ||
1496 | |||
1497 | <para> | ||
1498 | The management of a memory-mapped region is almost as same as | ||
1499 | the management of an i/o port. You'll need three fields like | ||
1500 | the following: | ||
1501 | |||
1502 | <informalexample> | ||
1503 | <programlisting> | ||
1504 | <![CDATA[ | ||
1505 | struct snd_mychip { | ||
1506 | .... | ||
1507 | unsigned long iobase_phys; | ||
1508 | void __iomem *iobase_virt; | ||
1509 | }; | ||
1510 | ]]> | ||
1511 | </programlisting> | ||
1512 | </informalexample> | ||
1513 | |||
1514 | and the allocation would be like below: | ||
1515 | |||
1516 | <informalexample> | ||
1517 | <programlisting> | ||
1518 | <![CDATA[ | ||
1519 | if ((err = pci_request_regions(pci, "My Chip")) < 0) { | ||
1520 | kfree(chip); | ||
1521 | return err; | ||
1522 | } | ||
1523 | chip->iobase_phys = pci_resource_start(pci, 0); | ||
1524 | chip->iobase_virt = ioremap_nocache(chip->iobase_phys, | ||
1525 | pci_resource_len(pci, 0)); | ||
1526 | ]]> | ||
1527 | </programlisting> | ||
1528 | </informalexample> | ||
1529 | |||
1530 | and the corresponding destructor would be: | ||
1531 | |||
1532 | <informalexample> | ||
1533 | <programlisting> | ||
1534 | <![CDATA[ | ||
1535 | static int snd_mychip_free(mychip_t *chip) | ||
1536 | { | ||
1537 | .... | ||
1538 | if (chip->iobase_virt) | ||
1539 | iounmap(chip->iobase_virt); | ||
1540 | .... | ||
1541 | pci_release_regions(chip->pci); | ||
1542 | .... | ||
1543 | } | ||
1544 | ]]> | ||
1545 | </programlisting> | ||
1546 | </informalexample> | ||
1547 | </para> | ||
1548 | |||
1549 | </section> | ||
1550 | |||
1551 | <section id="pci-resource-device-struct"> | ||
1552 | <title>Registration of Device Struct</title> | ||
1553 | <para> | ||
1554 | At some point, typically after calling <function>snd_device_new()</function>, | ||
1555 | you need to register the <structname>struct device</structname> of the chip | ||
1556 | you're handling for udev and co. ALSA provides a macro for compatibility with | ||
1557 | older kernels. Simply call like the following: | ||
1558 | <informalexample> | ||
1559 | <programlisting> | ||
1560 | <![CDATA[ | ||
1561 | snd_card_set_dev(card, &pci->dev); | ||
1562 | ]]> | ||
1563 | </programlisting> | ||
1564 | </informalexample> | ||
1565 | so that it stores the PCI's device pointer to the card. This will be | ||
1566 | referred by ALSA core functions later when the devices are registered. | ||
1567 | </para> | ||
1568 | <para> | ||
1569 | In the case of non-PCI, pass the proper device struct pointer of the BUS | ||
1570 | instead. (In the case of legacy ISA without PnP, you don't have to do | ||
1571 | anything.) | ||
1572 | </para> | ||
1573 | </section> | ||
1574 | |||
1575 | <section id="pci-resource-entries"> | ||
1576 | <title>PCI Entries</title> | ||
1577 | <para> | ||
1578 | So far, so good. Let's finish the rest of missing PCI | ||
1579 | stuffs. At first, we need a | ||
1580 | <structname>pci_device_id</structname> table for this | ||
1581 | chipset. It's a table of PCI vendor/device ID number, and some | ||
1582 | masks. | ||
1583 | </para> | ||
1584 | |||
1585 | <para> | ||
1586 | For example, | ||
1587 | |||
1588 | <informalexample> | ||
1589 | <programlisting> | ||
1590 | <![CDATA[ | ||
1591 | static struct pci_device_id snd_mychip_ids[] = { | ||
1592 | { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR, | ||
1593 | PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, }, | ||
1594 | .... | ||
1595 | { 0, } | ||
1596 | }; | ||
1597 | MODULE_DEVICE_TABLE(pci, snd_mychip_ids); | ||
1598 | ]]> | ||
1599 | </programlisting> | ||
1600 | </informalexample> | ||
1601 | </para> | ||
1602 | |||
1603 | <para> | ||
1604 | The first and second fields of | ||
1605 | <structname>pci_device_id</structname> struct are the vendor and | ||
1606 | device IDs. If you have nothing special to filter the matching | ||
1607 | devices, you can use the rest of fields like above. The last | ||
1608 | field of <structname>pci_device_id</structname> struct is a | ||
1609 | private data for this entry. You can specify any value here, for | ||
1610 | example, to tell the type of different operations per each | ||
1611 | device IDs. Such an example is found in intel8x0 driver. | ||
1612 | </para> | ||
1613 | |||
1614 | <para> | ||
1615 | The last entry of this list is the terminator. You must | ||
1616 | specify this all-zero entry. | ||
1617 | </para> | ||
1618 | |||
1619 | <para> | ||
1620 | Then, prepare the <structname>pci_driver</structname> record: | ||
1621 | |||
1622 | <informalexample> | ||
1623 | <programlisting> | ||
1624 | <![CDATA[ | ||
1625 | static struct pci_driver driver = { | ||
1626 | .name = "My Own Chip", | ||
1627 | .id_table = snd_mychip_ids, | ||
1628 | .probe = snd_mychip_probe, | ||
1629 | .remove = __devexit_p(snd_mychip_remove), | ||
1630 | }; | ||
1631 | ]]> | ||
1632 | </programlisting> | ||
1633 | </informalexample> | ||
1634 | </para> | ||
1635 | |||
1636 | <para> | ||
1637 | The <structfield>probe</structfield> and | ||
1638 | <structfield>remove</structfield> functions are what we already | ||
1639 | defined in | ||
1640 | the previous sections. The <structfield>remove</structfield> should | ||
1641 | be defined with | ||
1642 | <function>__devexit_p()</function> macro, so that it's not | ||
1643 | defined for built-in (and non-hot-pluggable) case. The | ||
1644 | <structfield>name</structfield> | ||
1645 | field is the name string of this device. Note that you must not | ||
1646 | use a slash <quote>/</quote> in this string. | ||
1647 | </para> | ||
1648 | |||
1649 | <para> | ||
1650 | And at last, the module entries: | ||
1651 | |||
1652 | <informalexample> | ||
1653 | <programlisting> | ||
1654 | <![CDATA[ | ||
1655 | static int __init alsa_card_mychip_init(void) | ||
1656 | { | ||
1657 | return pci_module_init(&driver); | ||
1658 | } | ||
1659 | |||
1660 | static void __exit alsa_card_mychip_exit(void) | ||
1661 | { | ||
1662 | pci_unregister_driver(&driver); | ||
1663 | } | ||
1664 | |||
1665 | module_init(alsa_card_mychip_init) | ||
1666 | module_exit(alsa_card_mychip_exit) | ||
1667 | ]]> | ||
1668 | </programlisting> | ||
1669 | </informalexample> | ||
1670 | </para> | ||
1671 | |||
1672 | <para> | ||
1673 | Note that these module entries are tagged with | ||
1674 | <parameter>__init</parameter> and | ||
1675 | <parameter>__exit</parameter> prefixes, not | ||
1676 | <parameter>__devinit</parameter> nor | ||
1677 | <parameter>__devexit</parameter>. | ||
1678 | </para> | ||
1679 | |||
1680 | <para> | ||
1681 | Oh, one thing was forgotten. If you have no exported symbols, | ||
1682 | you need to declare it on 2.2 or 2.4 kernels (on 2.6 kernels | ||
1683 | it's not necessary, though). | ||
1684 | |||
1685 | <informalexample> | ||
1686 | <programlisting> | ||
1687 | <![CDATA[ | ||
1688 | EXPORT_NO_SYMBOLS; | ||
1689 | ]]> | ||
1690 | </programlisting> | ||
1691 | </informalexample> | ||
1692 | |||
1693 | That's all! | ||
1694 | </para> | ||
1695 | </section> | ||
1696 | </chapter> | ||
1697 | |||
1698 | |||
1699 | <!-- ****************************************************** --> | ||
1700 | <!-- PCM Interface --> | ||
1701 | <!-- ****************************************************** --> | ||
1702 | <chapter id="pcm-interface"> | ||
1703 | <title>PCM Interface</title> | ||
1704 | |||
1705 | <section id="pcm-interface-general"> | ||
1706 | <title>General</title> | ||
1707 | <para> | ||
1708 | The PCM middle layer of ALSA is quite powerful and it is only | ||
1709 | necessary for each driver to implement the low-level functions | ||
1710 | to access its hardware. | ||
1711 | </para> | ||
1712 | |||
1713 | <para> | ||
1714 | For accessing to the PCM layer, you need to include | ||
1715 | <filename><sound/pcm.h></filename> above all. In addition, | ||
1716 | <filename><sound/pcm_params.h></filename> might be needed | ||
1717 | if you access to some functions related with hw_param. | ||
1718 | </para> | ||
1719 | |||
1720 | <para> | ||
1721 | Each card device can have up to four pcm instances. A pcm | ||
1722 | instance corresponds to a pcm device file. The limitation of | ||
1723 | number of instances comes only from the available bit size of | ||
1724 | the linux's device number. Once when 64bit device number is | ||
1725 | used, we'll have more available pcm instances. | ||
1726 | </para> | ||
1727 | |||
1728 | <para> | ||
1729 | A pcm instance consists of pcm playback and capture streams, | ||
1730 | and each pcm stream consists of one or more pcm substreams. Some | ||
1731 | soundcard supports the multiple-playback function. For example, | ||
1732 | emu10k1 has a PCM playback of 32 stereo substreams. In this case, at | ||
1733 | each open, a free substream is (usually) automatically chosen | ||
1734 | and opened. Meanwhile, when only one substream exists and it was | ||
1735 | already opened, the succeeding open will result in the blocking | ||
1736 | or the error with <constant>EAGAIN</constant> according to the | ||
1737 | file open mode. But you don't have to know the detail in your | ||
1738 | driver. The PCM middle layer will take all such jobs. | ||
1739 | </para> | ||
1740 | </section> | ||
1741 | |||
1742 | <section id="pcm-interface-example"> | ||
1743 | <title>Full Code Example</title> | ||
1744 | <para> | ||
1745 | The example code below does not include any hardware access | ||
1746 | routines but shows only the skeleton, how to build up the PCM | ||
1747 | interfaces. | ||
1748 | |||
1749 | <example> | ||
1750 | <title>PCM Example Code</title> | ||
1751 | <programlisting> | ||
1752 | <![CDATA[ | ||
1753 | #include <sound/pcm.h> | ||
1754 | .... | ||
1755 | |||
1756 | /* hardware definition */ | ||
1757 | static snd_pcm_hardware_t snd_mychip_playback_hw = { | ||
1758 | .info = (SNDRV_PCM_INFO_MMAP | | ||
1759 | SNDRV_PCM_INFO_INTERLEAVED | | ||
1760 | SNDRV_PCM_INFO_BLOCK_TRANSFER | | ||
1761 | SNDRV_PCM_INFO_MMAP_VALID), | ||
1762 | .formats = SNDRV_PCM_FMTBIT_S16_LE, | ||
1763 | .rates = SNDRV_PCM_RATE_8000_48000, | ||
1764 | .rate_min = 8000, | ||
1765 | .rate_max = 48000, | ||
1766 | .channels_min = 2, | ||
1767 | .channels_max = 2, | ||
1768 | .buffer_bytes_max = 32768, | ||
1769 | .period_bytes_min = 4096, | ||
1770 | .period_bytes_max = 32768, | ||
1771 | .periods_min = 1, | ||
1772 | .periods_max = 1024, | ||
1773 | }; | ||
1774 | |||
1775 | /* hardware definition */ | ||
1776 | static snd_pcm_hardware_t snd_mychip_capture_hw = { | ||
1777 | .info = (SNDRV_PCM_INFO_MMAP | | ||
1778 | SNDRV_PCM_INFO_INTERLEAVED | | ||
1779 | SNDRV_PCM_INFO_BLOCK_TRANSFER | | ||
1780 | SNDRV_PCM_INFO_MMAP_VALID), | ||
1781 | .formats = SNDRV_PCM_FMTBIT_S16_LE, | ||
1782 | .rates = SNDRV_PCM_RATE_8000_48000, | ||
1783 | .rate_min = 8000, | ||
1784 | .rate_max = 48000, | ||
1785 | .channels_min = 2, | ||
1786 | .channels_max = 2, | ||
1787 | .buffer_bytes_max = 32768, | ||
1788 | .period_bytes_min = 4096, | ||
1789 | .period_bytes_max = 32768, | ||
1790 | .periods_min = 1, | ||
1791 | .periods_max = 1024, | ||
1792 | }; | ||
1793 | |||
1794 | /* open callback */ | ||
1795 | static int snd_mychip_playback_open(snd_pcm_substream_t *substream) | ||
1796 | { | ||
1797 | mychip_t *chip = snd_pcm_substream_chip(substream); | ||
1798 | snd_pcm_runtime_t *runtime = substream->runtime; | ||
1799 | |||
1800 | runtime->hw = snd_mychip_playback_hw; | ||
1801 | // more hardware-initialization will be done here | ||
1802 | return 0; | ||
1803 | } | ||
1804 | |||
1805 | /* close callback */ | ||
1806 | static int snd_mychip_playback_close(snd_pcm_substream_t *substream) | ||
1807 | { | ||
1808 | mychip_t *chip = snd_pcm_substream_chip(substream); | ||
1809 | // the hardware-specific codes will be here | ||
1810 | return 0; | ||
1811 | |||
1812 | } | ||
1813 | |||
1814 | /* open callback */ | ||
1815 | static int snd_mychip_capture_open(snd_pcm_substream_t *substream) | ||
1816 | { | ||
1817 | mychip_t *chip = snd_pcm_substream_chip(substream); | ||
1818 | snd_pcm_runtime_t *runtime = substream->runtime; | ||
1819 | |||
1820 | runtime->hw = snd_mychip_capture_hw; | ||
1821 | // more hardware-initialization will be done here | ||
1822 | return 0; | ||
1823 | } | ||
1824 | |||
1825 | /* close callback */ | ||
1826 | static int snd_mychip_capture_close(snd_pcm_substream_t *substream) | ||
1827 | { | ||
1828 | mychip_t *chip = snd_pcm_substream_chip(substream); | ||
1829 | // the hardware-specific codes will be here | ||
1830 | return 0; | ||
1831 | |||
1832 | } | ||
1833 | |||
1834 | /* hw_params callback */ | ||
1835 | static int snd_mychip_pcm_hw_params(snd_pcm_substream_t *substream, | ||
1836 | snd_pcm_hw_params_t * hw_params) | ||
1837 | { | ||
1838 | return snd_pcm_lib_malloc_pages(substream, | ||
1839 | params_buffer_bytes(hw_params)); | ||
1840 | } | ||
1841 | |||
1842 | /* hw_free callback */ | ||
1843 | static int snd_mychip_pcm_hw_free(snd_pcm_substream_t *substream) | ||
1844 | { | ||
1845 | return snd_pcm_lib_free_pages(substream); | ||
1846 | } | ||
1847 | |||
1848 | /* prepare callback */ | ||
1849 | static int snd_mychip_pcm_prepare(snd_pcm_substream_t *substream) | ||
1850 | { | ||
1851 | mychip_t *chip = snd_pcm_substream_chip(substream); | ||
1852 | snd_pcm_runtime_t *runtime = substream->runtime; | ||
1853 | |||
1854 | /* set up the hardware with the current configuration | ||
1855 | * for example... | ||
1856 | */ | ||
1857 | mychip_set_sample_format(chip, runtime->format); | ||
1858 | mychip_set_sample_rate(chip, runtime->rate); | ||
1859 | mychip_set_channels(chip, runtime->channels); | ||
1860 | mychip_set_dma_setup(chip, runtime->dma_area, | ||
1861 | chip->buffer_size, | ||
1862 | chip->period_size); | ||
1863 | return 0; | ||
1864 | } | ||
1865 | |||
1866 | /* trigger callback */ | ||
1867 | static int snd_mychip_pcm_trigger(snd_pcm_substream_t *substream, | ||
1868 | int cmd) | ||
1869 | { | ||
1870 | switch (cmd) { | ||
1871 | case SNDRV_PCM_TRIGGER_START: | ||
1872 | // do something to start the PCM engine | ||
1873 | break; | ||
1874 | case SNDRV_PCM_TRIGGER_STOP: | ||
1875 | // do something to stop the PCM engine | ||
1876 | break; | ||
1877 | default: | ||
1878 | return -EINVAL; | ||
1879 | } | ||
1880 | } | ||
1881 | |||
1882 | /* pointer callback */ | ||
1883 | static snd_pcm_uframes_t | ||
1884 | snd_mychip_pcm_pointer(snd_pcm_substream_t *substream) | ||
1885 | { | ||
1886 | mychip_t *chip = snd_pcm_substream_chip(substream); | ||
1887 | unsigned int current_ptr; | ||
1888 | |||
1889 | /* get the current hardware pointer */ | ||
1890 | current_ptr = mychip_get_hw_pointer(chip); | ||
1891 | return current_ptr; | ||
1892 | } | ||
1893 | |||
1894 | /* operators */ | ||
1895 | static snd_pcm_ops_t snd_mychip_playback_ops = { | ||
1896 | .open = snd_mychip_playback_open, | ||
1897 | .close = snd_mychip_playback_close, | ||
1898 | .ioctl = snd_pcm_lib_ioctl, | ||
1899 | .hw_params = snd_mychip_pcm_hw_params, | ||
1900 | .hw_free = snd_mychip_pcm_hw_free, | ||
1901 | .prepare = snd_mychip_pcm_prepare, | ||
1902 | .trigger = snd_mychip_pcm_trigger, | ||
1903 | .pointer = snd_mychip_pcm_pointer, | ||
1904 | }; | ||
1905 | |||
1906 | /* operators */ | ||
1907 | static snd_pcm_ops_t snd_mychip_capture_ops = { | ||
1908 | .open = snd_mychip_capture_open, | ||
1909 | .close = snd_mychip_capture_close, | ||
1910 | .ioctl = snd_pcm_lib_ioctl, | ||
1911 | .hw_params = snd_mychip_pcm_hw_params, | ||
1912 | .hw_free = snd_mychip_pcm_hw_free, | ||
1913 | .prepare = snd_mychip_pcm_prepare, | ||
1914 | .trigger = snd_mychip_pcm_trigger, | ||
1915 | .pointer = snd_mychip_pcm_pointer, | ||
1916 | }; | ||
1917 | |||
1918 | /* | ||
1919 | * definitions of capture are omitted here... | ||
1920 | */ | ||
1921 | |||
1922 | /* create a pcm device */ | ||
1923 | static int __devinit snd_mychip_new_pcm(mychip_t *chip) | ||
1924 | { | ||
1925 | snd_pcm_t *pcm; | ||
1926 | int err; | ||
1927 | |||
1928 | if ((err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1, | ||
1929 | &pcm)) < 0) | ||
1930 | return err; | ||
1931 | pcm->private_data = chip; | ||
1932 | strcpy(pcm->name, "My Chip"); | ||
1933 | chip->pcm = pcm; | ||
1934 | /* set operators */ | ||
1935 | snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, | ||
1936 | &snd_mychip_playback_ops); | ||
1937 | snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, | ||
1938 | &snd_mychip_capture_ops); | ||
1939 | /* pre-allocation of buffers */ | ||
1940 | /* NOTE: this may fail */ | ||
1941 | snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, | ||
1942 | snd_dma_pci_data(chip->pci), | ||
1943 | 64*1024, 64*1024); | ||
1944 | return 0; | ||
1945 | } | ||
1946 | ]]> | ||
1947 | </programlisting> | ||
1948 | </example> | ||
1949 | </para> | ||
1950 | </section> | ||
1951 | |||
1952 | <section id="pcm-interface-constructor"> | ||
1953 | <title>Constructor</title> | ||
1954 | <para> | ||
1955 | A pcm instance is allocated by <function>snd_pcm_new()</function> | ||
1956 | function. It would be better to create a constructor for pcm, | ||
1957 | namely, | ||
1958 | |||
1959 | <informalexample> | ||
1960 | <programlisting> | ||
1961 | <![CDATA[ | ||
1962 | static int __devinit snd_mychip_new_pcm(mychip_t *chip) | ||
1963 | { | ||
1964 | snd_pcm_t *pcm; | ||
1965 | int err; | ||
1966 | |||
1967 | if ((err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1, | ||
1968 | &pcm)) < 0) | ||
1969 | return err; | ||
1970 | pcm->private_data = chip; | ||
1971 | strcpy(pcm->name, "My Chip"); | ||
1972 | chip->pcm = pcm; | ||
1973 | .... | ||
1974 | return 0; | ||
1975 | } | ||
1976 | ]]> | ||
1977 | </programlisting> | ||
1978 | </informalexample> | ||
1979 | </para> | ||
1980 | |||
1981 | <para> | ||
1982 | The <function>snd_pcm_new()</function> function takes the four | ||
1983 | arguments. The first argument is the card pointer to which this | ||
1984 | pcm is assigned, and the second is the ID string. | ||
1985 | </para> | ||
1986 | |||
1987 | <para> | ||
1988 | The third argument (<parameter>index</parameter>, 0 in the | ||
1989 | above) is the index of this new pcm. It begins from zero. When | ||
1990 | you will create more than one pcm instances, specify the | ||
1991 | different numbers in this argument. For example, | ||
1992 | <parameter>index</parameter> = 1 for the second PCM device. | ||
1993 | </para> | ||
1994 | |||
1995 | <para> | ||
1996 | The fourth and fifth arguments are the number of substreams | ||
1997 | for playback and capture, respectively. Here both 1 are given in | ||
1998 | the above example. When no playback or no capture is available, | ||
1999 | pass 0 to the corresponding argument. | ||
2000 | </para> | ||
2001 | |||
2002 | <para> | ||
2003 | If a chip supports multiple playbacks or captures, you can | ||
2004 | specify more numbers, but they must be handled properly in | ||
2005 | open/close, etc. callbacks. When you need to know which | ||
2006 | substream you are referring to, then it can be obtained from | ||
2007 | <type>snd_pcm_substream_t</type> data passed to each callback | ||
2008 | as follows: | ||
2009 | |||
2010 | <informalexample> | ||
2011 | <programlisting> | ||
2012 | <![CDATA[ | ||
2013 | snd_pcm_substream_t *substream; | ||
2014 | int index = substream->number; | ||
2015 | ]]> | ||
2016 | </programlisting> | ||
2017 | </informalexample> | ||
2018 | </para> | ||
2019 | |||
2020 | <para> | ||
2021 | After the pcm is created, you need to set operators for each | ||
2022 | pcm stream. | ||
2023 | |||
2024 | <informalexample> | ||
2025 | <programlisting> | ||
2026 | <![CDATA[ | ||
2027 | snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, | ||
2028 | &snd_mychip_playback_ops); | ||
2029 | snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, | ||
2030 | &snd_mychip_capture_ops); | ||
2031 | ]]> | ||
2032 | </programlisting> | ||
2033 | </informalexample> | ||
2034 | </para> | ||
2035 | |||
2036 | <para> | ||
2037 | The operators are defined typically like this: | ||
2038 | |||
2039 | <informalexample> | ||
2040 | <programlisting> | ||
2041 | <![CDATA[ | ||
2042 | static snd_pcm_ops_t snd_mychip_playback_ops = { | ||
2043 | .open = snd_mychip_pcm_open, | ||
2044 | .close = snd_mychip_pcm_close, | ||
2045 | .ioctl = snd_pcm_lib_ioctl, | ||
2046 | .hw_params = snd_mychip_pcm_hw_params, | ||
2047 | .hw_free = snd_mychip_pcm_hw_free, | ||
2048 | .prepare = snd_mychip_pcm_prepare, | ||
2049 | .trigger = snd_mychip_pcm_trigger, | ||
2050 | .pointer = snd_mychip_pcm_pointer, | ||
2051 | }; | ||
2052 | ]]> | ||
2053 | </programlisting> | ||
2054 | </informalexample> | ||
2055 | |||
2056 | Each of callbacks is explained in the subsection | ||
2057 | <link linkend="pcm-interface-operators"><citetitle> | ||
2058 | Operators</citetitle></link>. | ||
2059 | </para> | ||
2060 | |||
2061 | <para> | ||
2062 | After setting the operators, most likely you'd like to | ||
2063 | pre-allocate the buffer. For the pre-allocation, simply call | ||
2064 | the following: | ||
2065 | |||
2066 | <informalexample> | ||
2067 | <programlisting> | ||
2068 | <![CDATA[ | ||
2069 | snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, | ||
2070 | snd_dma_pci_data(chip->pci), | ||
2071 | 64*1024, 64*1024); | ||
2072 | ]]> | ||
2073 | </programlisting> | ||
2074 | </informalexample> | ||
2075 | |||
2076 | It will allocate up to 64kB buffer as default. The details of | ||
2077 | buffer management will be described in the later section <link | ||
2078 | linkend="buffer-and-memory"><citetitle>Buffer and Memory | ||
2079 | Management</citetitle></link>. | ||
2080 | </para> | ||
2081 | |||
2082 | <para> | ||
2083 | Additionally, you can set some extra information for this pcm | ||
2084 | in pcm->info_flags. | ||
2085 | The available values are defined as | ||
2086 | <constant>SNDRV_PCM_INFO_XXX</constant> in | ||
2087 | <filename><sound/asound.h></filename>, which is used for | ||
2088 | the hardware definition (described later). When your soundchip | ||
2089 | supports only half-duplex, specify like this: | ||
2090 | |||
2091 | <informalexample> | ||
2092 | <programlisting> | ||
2093 | <![CDATA[ | ||
2094 | pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX; | ||
2095 | ]]> | ||
2096 | </programlisting> | ||
2097 | </informalexample> | ||
2098 | </para> | ||
2099 | </section> | ||
2100 | |||
2101 | <section id="pcm-interface-destructor"> | ||
2102 | <title>... And the Destructor?</title> | ||
2103 | <para> | ||
2104 | The destructor for a pcm instance is not always | ||
2105 | necessary. Since the pcm device will be released by the middle | ||
2106 | layer code automatically, you don't have to call destructor | ||
2107 | explicitly. | ||
2108 | </para> | ||
2109 | |||
2110 | <para> | ||
2111 | The destructor would be necessary when you created some | ||
2112 | special records internally and need to release them. In such a | ||
2113 | case, set the destructor function to | ||
2114 | pcm->private_free: | ||
2115 | |||
2116 | <example> | ||
2117 | <title>PCM Instance with a Destructor</title> | ||
2118 | <programlisting> | ||
2119 | <![CDATA[ | ||
2120 | static void mychip_pcm_free(snd_pcm_t *pcm) | ||
2121 | { | ||
2122 | mychip_t *chip = snd_pcm_chip(pcm); | ||
2123 | /* free your own data */ | ||
2124 | kfree(chip->my_private_pcm_data); | ||
2125 | // do what you like else | ||
2126 | .... | ||
2127 | } | ||
2128 | |||
2129 | static int __devinit snd_mychip_new_pcm(mychip_t *chip) | ||
2130 | { | ||
2131 | snd_pcm_t *pcm; | ||
2132 | .... | ||
2133 | /* allocate your own data */ | ||
2134 | chip->my_private_pcm_data = kmalloc(...); | ||
2135 | /* set the destructor */ | ||
2136 | pcm->private_data = chip; | ||
2137 | pcm->private_free = mychip_pcm_free; | ||
2138 | .... | ||
2139 | } | ||
2140 | ]]> | ||
2141 | </programlisting> | ||
2142 | </example> | ||
2143 | </para> | ||
2144 | </section> | ||
2145 | |||
2146 | <section id="pcm-interface-runtime"> | ||
2147 | <title>Runtime Pointer - The Chest of PCM Information</title> | ||
2148 | <para> | ||
2149 | When the PCM substream is opened, a PCM runtime instance is | ||
2150 | allocated and assigned to the substream. This pointer is | ||
2151 | accessible via <constant>substream->runtime</constant>. | ||
2152 | This runtime pointer holds the various information; it holds | ||
2153 | the copy of hw_params and sw_params configurations, the buffer | ||
2154 | pointers, mmap records, spinlocks, etc. Almost everyhing you | ||
2155 | need for controlling the PCM can be found there. | ||
2156 | </para> | ||
2157 | |||
2158 | <para> | ||
2159 | The definition of runtime instance is found in | ||
2160 | <filename><sound/pcm.h></filename>. Here is the | ||
2161 | copy from the file. | ||
2162 | <informalexample> | ||
2163 | <programlisting> | ||
2164 | <![CDATA[ | ||
2165 | struct _snd_pcm_runtime { | ||
2166 | /* -- Status -- */ | ||
2167 | snd_pcm_substream_t *trigger_master; | ||
2168 | snd_timestamp_t trigger_tstamp; /* trigger timestamp */ | ||
2169 | int overrange; | ||
2170 | snd_pcm_uframes_t avail_max; | ||
2171 | snd_pcm_uframes_t hw_ptr_base; /* Position at buffer restart */ | ||
2172 | snd_pcm_uframes_t hw_ptr_interrupt; /* Position at interrupt time*/ | ||
2173 | |||
2174 | /* -- HW params -- */ | ||
2175 | snd_pcm_access_t access; /* access mode */ | ||
2176 | snd_pcm_format_t format; /* SNDRV_PCM_FORMAT_* */ | ||
2177 | snd_pcm_subformat_t subformat; /* subformat */ | ||
2178 | unsigned int rate; /* rate in Hz */ | ||
2179 | unsigned int channels; /* channels */ | ||
2180 | snd_pcm_uframes_t period_size; /* period size */ | ||
2181 | unsigned int periods; /* periods */ | ||
2182 | snd_pcm_uframes_t buffer_size; /* buffer size */ | ||
2183 | unsigned int tick_time; /* tick time */ | ||
2184 | snd_pcm_uframes_t min_align; /* Min alignment for the format */ | ||
2185 | size_t byte_align; | ||
2186 | unsigned int frame_bits; | ||
2187 | unsigned int sample_bits; | ||
2188 | unsigned int info; | ||
2189 | unsigned int rate_num; | ||
2190 | unsigned int rate_den; | ||
2191 | |||
2192 | /* -- SW params -- */ | ||
2193 | int tstamp_timespec; /* use timeval (0) or timespec (1) */ | ||
2194 | snd_pcm_tstamp_t tstamp_mode; /* mmap timestamp is updated */ | ||
2195 | unsigned int period_step; | ||
2196 | unsigned int sleep_min; /* min ticks to sleep */ | ||
2197 | snd_pcm_uframes_t xfer_align; /* xfer size need to be a multiple */ | ||
2198 | snd_pcm_uframes_t start_threshold; | ||
2199 | snd_pcm_uframes_t stop_threshold; | ||
2200 | snd_pcm_uframes_t silence_threshold; /* Silence filling happens when | ||
2201 | noise is nearest than this */ | ||
2202 | snd_pcm_uframes_t silence_size; /* Silence filling size */ | ||
2203 | snd_pcm_uframes_t boundary; /* pointers wrap point */ | ||
2204 | |||
2205 | snd_pcm_uframes_t silenced_start; | ||
2206 | snd_pcm_uframes_t silenced_size; | ||
2207 | |||
2208 | snd_pcm_sync_id_t sync; /* hardware synchronization ID */ | ||
2209 | |||
2210 | /* -- mmap -- */ | ||
2211 | volatile snd_pcm_mmap_status_t *status; | ||
2212 | volatile snd_pcm_mmap_control_t *control; | ||
2213 | atomic_t mmap_count; | ||
2214 | |||
2215 | /* -- locking / scheduling -- */ | ||
2216 | spinlock_t lock; | ||
2217 | wait_queue_head_t sleep; | ||
2218 | struct timer_list tick_timer; | ||
2219 | struct fasync_struct *fasync; | ||
2220 | |||
2221 | /* -- private section -- */ | ||
2222 | void *private_data; | ||
2223 | void (*private_free)(snd_pcm_runtime_t *runtime); | ||
2224 | |||
2225 | /* -- hardware description -- */ | ||
2226 | snd_pcm_hardware_t hw; | ||
2227 | snd_pcm_hw_constraints_t hw_constraints; | ||
2228 | |||
2229 | /* -- interrupt callbacks -- */ | ||
2230 | void (*transfer_ack_begin)(snd_pcm_substream_t *substream); | ||
2231 | void (*transfer_ack_end)(snd_pcm_substream_t *substream); | ||
2232 | |||
2233 | /* -- timer -- */ | ||
2234 | unsigned int timer_resolution; /* timer resolution */ | ||
2235 | |||
2236 | /* -- DMA -- */ | ||
2237 | unsigned char *dma_area; /* DMA area */ | ||
2238 | dma_addr_t dma_addr; /* physical bus address (not accessible from main CPU) */ | ||
2239 | size_t dma_bytes; /* size of DMA area */ | ||
2240 | |||
2241 | struct snd_dma_buffer *dma_buffer_p; /* allocated buffer */ | ||
2242 | |||
2243 | #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE) | ||
2244 | /* -- OSS things -- */ | ||
2245 | snd_pcm_oss_runtime_t oss; | ||
2246 | #endif | ||
2247 | }; | ||
2248 | ]]> | ||
2249 | </programlisting> | ||
2250 | </informalexample> | ||
2251 | </para> | ||
2252 | |||
2253 | <para> | ||
2254 | For the operators (callbacks) of each sound driver, most of | ||
2255 | these records are supposed to be read-only. Only the PCM | ||
2256 | middle-layer changes / updates these info. The exceptions are | ||
2257 | the hardware description (hw), interrupt callbacks | ||
2258 | (transfer_ack_xxx), DMA buffer information, and the private | ||
2259 | data. Besides, if you use the standard buffer allocation | ||
2260 | method via <function>snd_pcm_lib_malloc_pages()</function>, | ||
2261 | you don't need to set the DMA buffer information by yourself. | ||
2262 | </para> | ||
2263 | |||
2264 | <para> | ||
2265 | In the sections below, important records are explained. | ||
2266 | </para> | ||
2267 | |||
2268 | <section id="pcm-interface-runtime-hw"> | ||
2269 | <title>Hardware Description</title> | ||
2270 | <para> | ||
2271 | The hardware descriptor (<type>snd_pcm_hardware_t</type>) | ||
2272 | contains the definitions of the fundamental hardware | ||
2273 | configuration. Above all, you'll need to define this in | ||
2274 | <link linkend="pcm-interface-operators-open-callback"><citetitle> | ||
2275 | the open callback</citetitle></link>. | ||
2276 | Note that the runtime instance holds the copy of the | ||
2277 | descriptor, not the pointer to the existing descriptor. That | ||
2278 | is, in the open callback, you can modify the copied descriptor | ||
2279 | (<constant>runtime->hw</constant>) as you need. For example, if the maximum | ||
2280 | number of channels is 1 only on some chip models, you can | ||
2281 | still use the same hardware descriptor and change the | ||
2282 | channels_max later: | ||
2283 | <informalexample> | ||
2284 | <programlisting> | ||
2285 | <![CDATA[ | ||
2286 | snd_pcm_runtime_t *runtime = substream->runtime; | ||
2287 | ... | ||
2288 | runtime->hw = snd_mychip_playback_hw; /* common definition */ | ||
2289 | if (chip->model == VERY_OLD_ONE) | ||
2290 | runtime->hw.channels_max = 1; | ||
2291 | ]]> | ||
2292 | </programlisting> | ||
2293 | </informalexample> | ||
2294 | </para> | ||
2295 | |||
2296 | <para> | ||
2297 | Typically, you'll have a hardware descriptor like below: | ||
2298 | <informalexample> | ||
2299 | <programlisting> | ||
2300 | <![CDATA[ | ||
2301 | static snd_pcm_hardware_t snd_mychip_playback_hw = { | ||
2302 | .info = (SNDRV_PCM_INFO_MMAP | | ||
2303 | SNDRV_PCM_INFO_INTERLEAVED | | ||
2304 | SNDRV_PCM_INFO_BLOCK_TRANSFER | | ||
2305 | SNDRV_PCM_INFO_MMAP_VALID), | ||
2306 | .formats = SNDRV_PCM_FMTBIT_S16_LE, | ||
2307 | .rates = SNDRV_PCM_RATE_8000_48000, | ||
2308 | .rate_min = 8000, | ||
2309 | .rate_max = 48000, | ||
2310 | .channels_min = 2, | ||
2311 | .channels_max = 2, | ||
2312 | .buffer_bytes_max = 32768, | ||
2313 | .period_bytes_min = 4096, | ||
2314 | .period_bytes_max = 32768, | ||
2315 | .periods_min = 1, | ||
2316 | .periods_max = 1024, | ||
2317 | }; | ||
2318 | ]]> | ||
2319 | </programlisting> | ||
2320 | </informalexample> | ||
2321 | </para> | ||
2322 | |||
2323 | <para> | ||
2324 | <itemizedlist> | ||
2325 | <listitem><para> | ||
2326 | The <structfield>info</structfield> field contains the type and | ||
2327 | capabilities of this pcm. The bit flags are defined in | ||
2328 | <filename><sound/asound.h></filename> as | ||
2329 | <constant>SNDRV_PCM_INFO_XXX</constant>. Here, at least, you | ||
2330 | have to specify whether the mmap is supported and which | ||
2331 | interleaved format is supported. | ||
2332 | When the mmap is supported, add | ||
2333 | <constant>SNDRV_PCM_INFO_MMAP</constant> flag here. When the | ||
2334 | hardware supports the interleaved or the non-interleaved | ||
2335 | format, <constant>SNDRV_PCM_INFO_INTERLEAVED</constant> or | ||
2336 | <constant>SNDRV_PCM_INFO_NONINTERLEAVED</constant> flag must | ||
2337 | be set, respectively. If both are supported, you can set both, | ||
2338 | too. | ||
2339 | </para> | ||
2340 | |||
2341 | <para> | ||
2342 | In the above example, <constant>MMAP_VALID</constant> and | ||
2343 | <constant>BLOCK_TRANSFER</constant> are specified for OSS mmap | ||
2344 | mode. Usually both are set. Of course, | ||
2345 | <constant>MMAP_VALID</constant> is set only if the mmap is | ||
2346 | really supported. | ||
2347 | </para> | ||
2348 | |||
2349 | <para> | ||
2350 | The other possible flags are | ||
2351 | <constant>SNDRV_PCM_INFO_PAUSE</constant> and | ||
2352 | <constant>SNDRV_PCM_INFO_RESUME</constant>. The | ||
2353 | <constant>PAUSE</constant> bit means that the pcm supports the | ||
2354 | <quote>pause</quote> operation, while the | ||
2355 | <constant>RESUME</constant> bit means that the pcm supports | ||
2356 | the <quote>suspend/resume</quote> operation. If these flags | ||
2357 | are set, the <structfield>trigger</structfield> callback below | ||
2358 | must handle the corresponding commands. | ||
2359 | </para> | ||
2360 | |||
2361 | <para> | ||
2362 | When the PCM substreams can be synchronized (typically, | ||
2363 | synchorinized start/stop of a playback and a capture streams), | ||
2364 | you can give <constant>SNDRV_PCM_INFO_SYNC_START</constant>, | ||
2365 | too. In this case, you'll need to check the linked-list of | ||
2366 | PCM substreams in the trigger callback. This will be | ||
2367 | described in the later section. | ||
2368 | </para> | ||
2369 | </listitem> | ||
2370 | |||
2371 | <listitem> | ||
2372 | <para> | ||
2373 | <structfield>formats</structfield> field contains the bit-flags | ||
2374 | of supported formats (<constant>SNDRV_PCM_FMTBIT_XXX</constant>). | ||
2375 | If the hardware supports more than one format, give all or'ed | ||
2376 | bits. In the example above, the signed 16bit little-endian | ||
2377 | format is specified. | ||
2378 | </para> | ||
2379 | </listitem> | ||
2380 | |||
2381 | <listitem> | ||
2382 | <para> | ||
2383 | <structfield>rates</structfield> field contains the bit-flags of | ||
2384 | supported rates (<constant>SNDRV_PCM_RATE_XXX</constant>). | ||
2385 | When the chip supports continuous rates, pass | ||
2386 | <constant>CONTINUOUS</constant> bit additionally. | ||
2387 | The pre-defined rate bits are provided only for typical | ||
2388 | rates. If your chip supports unconventional rates, you need to add | ||
2389 | <constant>KNOT</constant> bit and set up the hardware | ||
2390 | constraint manually (explained later). | ||
2391 | </para> | ||
2392 | </listitem> | ||
2393 | |||
2394 | <listitem> | ||
2395 | <para> | ||
2396 | <structfield>rate_min</structfield> and | ||
2397 | <structfield>rate_max</structfield> define the minimal and | ||
2398 | maximal sample rate. This should correspond somehow to | ||
2399 | <structfield>rates</structfield> bits. | ||
2400 | </para> | ||
2401 | </listitem> | ||
2402 | |||
2403 | <listitem> | ||
2404 | <para> | ||
2405 | <structfield>channel_min</structfield> and | ||
2406 | <structfield>channel_max</structfield> | ||
2407 | define, as you might already expected, the minimal and maximal | ||
2408 | number of channels. | ||
2409 | </para> | ||
2410 | </listitem> | ||
2411 | |||
2412 | <listitem> | ||
2413 | <para> | ||
2414 | <structfield>buffer_bytes_max</structfield> defines the | ||
2415 | maximal buffer size in bytes. There is no | ||
2416 | <structfield>buffer_bytes_min</structfield> field, since | ||
2417 | it can be calculated from the minimal period size and the | ||
2418 | minimal number of periods. | ||
2419 | Meanwhile, <structfield>period_bytes_min</structfield> and | ||
2420 | define the minimal and maximal size of the period in bytes. | ||
2421 | <structfield>periods_max</structfield> and | ||
2422 | <structfield>periods_min</structfield> define the maximal and | ||
2423 | minimal number of periods in the buffer. | ||
2424 | </para> | ||
2425 | |||
2426 | <para> | ||
2427 | The <quote>period</quote> is a term, that corresponds to | ||
2428 | fragment in the OSS world. The period defines the size at | ||
2429 | which the PCM interrupt is generated. This size strongly | ||
2430 | depends on the hardware. | ||
2431 | Generally, the smaller period size will give you more | ||
2432 | interrupts, that is, more controls. | ||
2433 | In the case of capture, this size defines the input latency. | ||
2434 | On the other hand, the whole buffer size defines the | ||
2435 | output latency for the playback direction. | ||
2436 | </para> | ||
2437 | </listitem> | ||
2438 | |||
2439 | <listitem> | ||
2440 | <para> | ||
2441 | There is also a field <structfield>fifo_size</structfield>. | ||
2442 | This specifies the size of the hardware FIFO, but it's not | ||
2443 | used currently in the driver nor in the alsa-lib. So, you | ||
2444 | can ignore this field. | ||
2445 | </para> | ||
2446 | </listitem> | ||
2447 | </itemizedlist> | ||
2448 | </para> | ||
2449 | </section> | ||
2450 | |||
2451 | <section id="pcm-interface-runtime-config"> | ||
2452 | <title>PCM Configurations</title> | ||
2453 | <para> | ||
2454 | Ok, let's go back again to the PCM runtime records. | ||
2455 | The most frequently referred records in the runtime instance are | ||
2456 | the PCM configurations. | ||
2457 | The PCM configurations are stored on runtime instance | ||
2458 | after the application sends <type>hw_params</type> data via | ||
2459 | alsa-lib. There are many fields copied from hw_params and | ||
2460 | sw_params structs. For example, | ||
2461 | <structfield>format</structfield> holds the format type | ||
2462 | chosen by the application. This field contains the enum value | ||
2463 | <constant>SNDRV_PCM_FORMAT_XXX</constant>. | ||
2464 | </para> | ||
2465 | |||
2466 | <para> | ||
2467 | One thing to be noted is that the configured buffer and period | ||
2468 | sizes are stored in <quote>frames</quote> in the runtime | ||
2469 | In the ALSA world, 1 frame = channels * samples-size. | ||
2470 | For conversion between frames and bytes, you can use the | ||
2471 | helper functions, <function>frames_to_bytes()</function> and | ||
2472 | <function>bytes_to_frames()</function>. | ||
2473 | <informalexample> | ||
2474 | <programlisting> | ||
2475 | <![CDATA[ | ||
2476 | period_bytes = frames_to_bytes(runtime, runtime->period_size); | ||
2477 | ]]> | ||
2478 | </programlisting> | ||
2479 | </informalexample> | ||
2480 | </para> | ||
2481 | |||
2482 | <para> | ||
2483 | Also, many software parameters (sw_params) are | ||
2484 | stored in frames, too. Please check the type of the field. | ||
2485 | <type>snd_pcm_uframes_t</type> is for the frames as unsigned | ||
2486 | integer while <type>snd_pcm_sframes_t</type> is for the frames | ||
2487 | as signed integer. | ||
2488 | </para> | ||
2489 | </section> | ||
2490 | |||
2491 | <section id="pcm-interface-runtime-dma"> | ||
2492 | <title>DMA Buffer Information</title> | ||
2493 | <para> | ||
2494 | The DMA buffer is defined by the following four fields, | ||
2495 | <structfield>dma_area</structfield>, | ||
2496 | <structfield>dma_addr</structfield>, | ||
2497 | <structfield>dma_bytes</structfield> and | ||
2498 | <structfield>dma_private</structfield>. | ||
2499 | The <structfield>dma_area</structfield> holds the buffer | ||
2500 | pointer (the logical address). You can call | ||
2501 | <function>memcpy</function> from/to | ||
2502 | this pointer. Meanwhile, <structfield>dma_addr</structfield> | ||
2503 | holds the physical address of the buffer. This field is | ||
2504 | specified only when the buffer is a linear buffer. | ||
2505 | <structfield>dma_bytes</structfield> holds the size of buffer | ||
2506 | in bytes. <structfield>dma_private</structfield> is used for | ||
2507 | the ALSA DMA allocator. | ||
2508 | </para> | ||
2509 | |||
2510 | <para> | ||
2511 | If you use a standard ALSA function, | ||
2512 | <function>snd_pcm_lib_malloc_pages()</function>, for | ||
2513 | allocating the buffer, these fields are set by the ALSA middle | ||
2514 | layer, and you should <emphasis>not</emphasis> change them by | ||
2515 | yourself. You can read them but not write them. | ||
2516 | On the other hand, if you want to allocate the buffer by | ||
2517 | yourself, you'll need to manage it in hw_params callback. | ||
2518 | At least, <structfield>dma_bytes</structfield> is mandatory. | ||
2519 | <structfield>dma_area</structfield> is necessary when the | ||
2520 | buffer is mmapped. If your driver doesn't support mmap, this | ||
2521 | field is not necessary. <structfield>dma_addr</structfield> | ||
2522 | is also not mandatory. You can use | ||
2523 | <structfield>dma_private</structfield> as you like, too. | ||
2524 | </para> | ||
2525 | </section> | ||
2526 | |||
2527 | <section id="pcm-interface-runtime-status"> | ||
2528 | <title>Running Status</title> | ||
2529 | <para> | ||
2530 | The running status can be referred via <constant>runtime->status</constant>. | ||
2531 | This is the pointer to <type>snd_pcm_mmap_status_t</type> | ||
2532 | record. For example, you can get the current DMA hardware | ||
2533 | pointer via <constant>runtime->status->hw_ptr</constant>. | ||
2534 | </para> | ||
2535 | |||
2536 | <para> | ||
2537 | The DMA application pointer can be referred via | ||
2538 | <constant>runtime->control</constant>, which points | ||
2539 | <type>snd_pcm_mmap_control_t</type> record. | ||
2540 | However, accessing directly to this value is not recommended. | ||
2541 | </para> | ||
2542 | </section> | ||
2543 | |||
2544 | <section id="pcm-interface-runtime-private"> | ||
2545 | <title>Private Data</title> | ||
2546 | <para> | ||
2547 | You can allocate a record for the substream and store it in | ||
2548 | <constant>runtime->private_data</constant>. Usually, this | ||
2549 | done in | ||
2550 | <link linkend="pcm-interface-operators-open-callback"><citetitle> | ||
2551 | the open callback</citetitle></link>. | ||
2552 | Don't mix this with <constant>pcm->private_data</constant>. | ||
2553 | The <constant>pcm->private_data</constant> usually points the | ||
2554 | chip instance assigned statically at the creation of PCM, while the | ||
2555 | <constant>runtime->private_data</constant> points a dynamic | ||
2556 | data created at the PCM open callback. | ||
2557 | |||
2558 | <informalexample> | ||
2559 | <programlisting> | ||
2560 | <![CDATA[ | ||
2561 | static int snd_xxx_open(snd_pcm_substream_t *substream) | ||
2562 | { | ||
2563 | my_pcm_data_t *data; | ||
2564 | .... | ||
2565 | data = kmalloc(sizeof(*data), GFP_KERNEL); | ||
2566 | substream->runtime->private_data = data; | ||
2567 | .... | ||
2568 | } | ||
2569 | ]]> | ||
2570 | </programlisting> | ||
2571 | </informalexample> | ||
2572 | </para> | ||
2573 | |||
2574 | <para> | ||
2575 | The allocated object must be released in | ||
2576 | <link linkend="pcm-interface-operators-open-callback"><citetitle> | ||
2577 | the close callback</citetitle></link>. | ||
2578 | </para> | ||
2579 | </section> | ||
2580 | |||
2581 | <section id="pcm-interface-runtime-intr"> | ||
2582 | <title>Interrupt Callbacks</title> | ||
2583 | <para> | ||
2584 | The field <structfield>transfer_ack_begin</structfield> and | ||
2585 | <structfield>transfer_ack_end</structfield> are called at | ||
2586 | the beginning and the end of | ||
2587 | <function>snd_pcm_period_elapsed()</function>, respectively. | ||
2588 | </para> | ||
2589 | </section> | ||
2590 | |||
2591 | </section> | ||
2592 | |||
2593 | <section id="pcm-interface-operators"> | ||
2594 | <title>Operators</title> | ||
2595 | <para> | ||
2596 | OK, now let me explain the detail of each pcm callback | ||
2597 | (<parameter>ops</parameter>). In general, every callback must | ||
2598 | return 0 if successful, or a negative number with the error | ||
2599 | number such as <constant>-EINVAL</constant> at any | ||
2600 | error. | ||
2601 | </para> | ||
2602 | |||
2603 | <para> | ||
2604 | The callback function takes at least the argument with | ||
2605 | <type>snd_pcm_substream_t</type> pointer. For retrieving the | ||
2606 | chip record from the given substream instance, you can use the | ||
2607 | following macro. | ||
2608 | |||
2609 | <informalexample> | ||
2610 | <programlisting> | ||
2611 | <![CDATA[ | ||
2612 | int xxx() { | ||
2613 | mychip_t *chip = snd_pcm_substream_chip(substream); | ||
2614 | .... | ||
2615 | } | ||
2616 | ]]> | ||
2617 | </programlisting> | ||
2618 | </informalexample> | ||
2619 | |||
2620 | The macro reads <constant>substream->private_data</constant>, | ||
2621 | which is a copy of <constant>pcm->private_data</constant>. | ||
2622 | You can override the former if you need to assign different data | ||
2623 | records per PCM substream. For example, cmi8330 driver assigns | ||
2624 | different private_data for playback and capture directions, | ||
2625 | because it uses two different codecs (SB- and AD-compatible) for | ||
2626 | different directions. | ||
2627 | </para> | ||
2628 | |||
2629 | <section id="pcm-interface-operators-open-callback"> | ||
2630 | <title>open callback</title> | ||
2631 | <para> | ||
2632 | <informalexample> | ||
2633 | <programlisting> | ||
2634 | <![CDATA[ | ||
2635 | static int snd_xxx_open(snd_pcm_substream_t *substream); | ||
2636 | ]]> | ||
2637 | </programlisting> | ||
2638 | </informalexample> | ||
2639 | |||
2640 | This is called when a pcm substream is opened. | ||
2641 | </para> | ||
2642 | |||
2643 | <para> | ||
2644 | At least, here you have to initialize the runtime->hw | ||
2645 | record. Typically, this is done by like this: | ||
2646 | |||
2647 | <informalexample> | ||
2648 | <programlisting> | ||
2649 | <![CDATA[ | ||
2650 | static int snd_xxx_open(snd_pcm_substream_t *substream) | ||
2651 | { | ||
2652 | mychip_t *chip = snd_pcm_substream_chip(substream); | ||
2653 | snd_pcm_runtime_t *runtime = substream->runtime; | ||
2654 | |||
2655 | runtime->hw = snd_mychip_playback_hw; | ||
2656 | return 0; | ||
2657 | } | ||
2658 | ]]> | ||
2659 | </programlisting> | ||
2660 | </informalexample> | ||
2661 | |||
2662 | where <parameter>snd_mychip_playback_hw</parameter> is the | ||
2663 | pre-defined hardware description. | ||
2664 | </para> | ||
2665 | |||
2666 | <para> | ||
2667 | You can allocate a private data in this callback, as described | ||
2668 | in <link linkend="pcm-interface-runtime-private"><citetitle> | ||
2669 | Private Data</citetitle></link> section. | ||
2670 | </para> | ||
2671 | |||
2672 | <para> | ||
2673 | If the hardware configuration needs more constraints, set the | ||
2674 | hardware constraints here, too. | ||
2675 | See <link linkend="pcm-interface-constraints"><citetitle> | ||
2676 | Constraints</citetitle></link> for more details. | ||
2677 | </para> | ||
2678 | </section> | ||
2679 | |||
2680 | <section id="pcm-interface-operators-close-callback"> | ||
2681 | <title>close callback</title> | ||
2682 | <para> | ||
2683 | <informalexample> | ||
2684 | <programlisting> | ||
2685 | <![CDATA[ | ||
2686 | static int snd_xxx_close(snd_pcm_substream_t *substream); | ||
2687 | ]]> | ||
2688 | </programlisting> | ||
2689 | </informalexample> | ||
2690 | |||
2691 | Obviously, this is called when a pcm substream is closed. | ||
2692 | </para> | ||
2693 | |||
2694 | <para> | ||
2695 | Any private instance for a pcm substream allocated in the | ||
2696 | open callback will be released here. | ||
2697 | |||
2698 | <informalexample> | ||
2699 | <programlisting> | ||
2700 | <![CDATA[ | ||
2701 | static int snd_xxx_close(snd_pcm_substream_t *substream) | ||
2702 | { | ||
2703 | .... | ||
2704 | kfree(substream->runtime->private_data); | ||
2705 | .... | ||
2706 | } | ||
2707 | ]]> | ||
2708 | </programlisting> | ||
2709 | </informalexample> | ||
2710 | </para> | ||
2711 | </section> | ||
2712 | |||
2713 | <section id="pcm-interface-operators-ioctl-callback"> | ||
2714 | <title>ioctl callback</title> | ||
2715 | <para> | ||
2716 | This is used for any special action to pcm ioctls. But | ||
2717 | usually you can pass a generic ioctl callback, | ||
2718 | <function>snd_pcm_lib_ioctl</function>. | ||
2719 | </para> | ||
2720 | </section> | ||
2721 | |||
2722 | <section id="pcm-interface-operators-hw-params-callback"> | ||
2723 | <title>hw_params callback</title> | ||
2724 | <para> | ||
2725 | <informalexample> | ||
2726 | <programlisting> | ||
2727 | <![CDATA[ | ||
2728 | static int snd_xxx_hw_params(snd_pcm_substream_t * substream, | ||
2729 | snd_pcm_hw_params_t * hw_params); | ||
2730 | ]]> | ||
2731 | </programlisting> | ||
2732 | </informalexample> | ||
2733 | |||
2734 | This and <structfield>hw_free</structfield> callbacks exist | ||
2735 | only on ALSA 0.9.x. | ||
2736 | </para> | ||
2737 | |||
2738 | <para> | ||
2739 | This is called when the hardware parameter | ||
2740 | (<structfield>hw_params</structfield>) is set | ||
2741 | up by the application, | ||
2742 | that is, once when the buffer size, the period size, the | ||
2743 | format, etc. are defined for the pcm substream. | ||
2744 | </para> | ||
2745 | |||
2746 | <para> | ||
2747 | Many hardware set-up should be done in this callback, | ||
2748 | including the allocation of buffers. | ||
2749 | </para> | ||
2750 | |||
2751 | <para> | ||
2752 | Parameters to be initialized are retrieved by | ||
2753 | <function>params_xxx()</function> macros. For allocating a | ||
2754 | buffer, you can call a helper function, | ||
2755 | |||
2756 | <informalexample> | ||
2757 | <programlisting> | ||
2758 | <![CDATA[ | ||
2759 | snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); | ||
2760 | ]]> | ||
2761 | </programlisting> | ||
2762 | </informalexample> | ||
2763 | |||
2764 | <function>snd_pcm_lib_malloc_pages()</function> is available | ||
2765 | only when the DMA buffers have been pre-allocated. | ||
2766 | See the section <link | ||
2767 | linkend="buffer-and-memory-buffer-types"><citetitle> | ||
2768 | Buffer Types</citetitle></link> for more details. | ||
2769 | </para> | ||
2770 | |||
2771 | <para> | ||
2772 | Note that this and <structfield>prepare</structfield> callbacks | ||
2773 | may be called multiple times per initialization. | ||
2774 | For example, the OSS emulation may | ||
2775 | call these callbacks at each change via its ioctl. | ||
2776 | </para> | ||
2777 | |||
2778 | <para> | ||
2779 | Thus, you need to take care not to allocate the same buffers | ||
2780 | many times, which will lead to memory leak! Calling the | ||
2781 | helper function above many times is OK. It will release the | ||
2782 | previous buffer automatically when it was already allocated. | ||
2783 | </para> | ||
2784 | |||
2785 | <para> | ||
2786 | Another note is that this callback is non-atomic | ||
2787 | (schedulable). This is important, because the | ||
2788 | <structfield>trigger</structfield> callback | ||
2789 | is atomic (non-schedulable). That is, mutex or any | ||
2790 | schedule-related functions are not available in | ||
2791 | <structfield>trigger</structfield> callback. | ||
2792 | Please see the subsection | ||
2793 | <link linkend="pcm-interface-atomicity"><citetitle> | ||
2794 | Atomicity</citetitle></link> for details. | ||
2795 | </para> | ||
2796 | </section> | ||
2797 | |||
2798 | <section id="pcm-interface-operators-hw-free-callback"> | ||
2799 | <title>hw_free callback</title> | ||
2800 | <para> | ||
2801 | <informalexample> | ||
2802 | <programlisting> | ||
2803 | <![CDATA[ | ||
2804 | static int snd_xxx_hw_free(snd_pcm_substream_t * substream); | ||
2805 | ]]> | ||
2806 | </programlisting> | ||
2807 | </informalexample> | ||
2808 | </para> | ||
2809 | |||
2810 | <para> | ||
2811 | This is called to release the resources allocated via | ||
2812 | <structfield>hw_params</structfield>. For example, releasing the | ||
2813 | buffer via | ||
2814 | <function>snd_pcm_lib_malloc_pages()</function> is done by | ||
2815 | calling the following: | ||
2816 | |||
2817 | <informalexample> | ||
2818 | <programlisting> | ||
2819 | <![CDATA[ | ||
2820 | snd_pcm_lib_free_pages(substream); | ||
2821 | ]]> | ||
2822 | </programlisting> | ||
2823 | </informalexample> | ||
2824 | </para> | ||
2825 | |||
2826 | <para> | ||
2827 | This function is always called before the close callback is called. | ||
2828 | Also, the callback may be called multiple times, too. | ||
2829 | Keep track whether the resource was already released. | ||
2830 | </para> | ||
2831 | </section> | ||
2832 | |||
2833 | <section id="pcm-interface-operators-prepare-callback"> | ||
2834 | <title>prepare callback</title> | ||
2835 | <para> | ||
2836 | <informalexample> | ||
2837 | <programlisting> | ||
2838 | <![CDATA[ | ||
2839 | static int snd_xxx_prepare(snd_pcm_substream_t * substream); | ||
2840 | ]]> | ||
2841 | </programlisting> | ||
2842 | </informalexample> | ||
2843 | </para> | ||
2844 | |||
2845 | <para> | ||
2846 | This callback is called when the pcm is | ||
2847 | <quote>prepared</quote>. You can set the format type, sample | ||
2848 | rate, etc. here. The difference from | ||
2849 | <structfield>hw_params</structfield> is that the | ||
2850 | <structfield>prepare</structfield> callback will be called at each | ||
2851 | time | ||
2852 | <function>snd_pcm_prepare()</function> is called, i.e. when | ||
2853 | recovered after underruns, etc. | ||
2854 | </para> | ||
2855 | |||
2856 | <para> | ||
2857 | Note that this callback became non-atomic since the recent version. | ||
2858 | You can use schedule-related fucntions safely in this callback now. | ||
2859 | </para> | ||
2860 | |||
2861 | <para> | ||
2862 | In this and the following callbacks, you can refer to the | ||
2863 | values via the runtime record, | ||
2864 | substream->runtime. | ||
2865 | For example, to get the current | ||
2866 | rate, format or channels, access to | ||
2867 | runtime->rate, | ||
2868 | runtime->format or | ||
2869 | runtime->channels, respectively. | ||
2870 | The physical address of the allocated buffer is set to | ||
2871 | runtime->dma_area. The buffer and period sizes are | ||
2872 | in runtime->buffer_size and runtime->period_size, | ||
2873 | respectively. | ||
2874 | </para> | ||
2875 | |||
2876 | <para> | ||
2877 | Be careful that this callback will be called many times at | ||
2878 | each set up, too. | ||
2879 | </para> | ||
2880 | </section> | ||
2881 | |||
2882 | <section id="pcm-interface-operators-trigger-callback"> | ||
2883 | <title>trigger callback</title> | ||
2884 | <para> | ||
2885 | <informalexample> | ||
2886 | <programlisting> | ||
2887 | <![CDATA[ | ||
2888 | static int snd_xxx_trigger(snd_pcm_substream_t * substream, int cmd); | ||
2889 | ]]> | ||
2890 | </programlisting> | ||
2891 | </informalexample> | ||
2892 | |||
2893 | This is called when the pcm is started, stopped or paused. | ||
2894 | </para> | ||
2895 | |||
2896 | <para> | ||
2897 | Which action is specified in the second argument, | ||
2898 | <constant>SNDRV_PCM_TRIGGER_XXX</constant> in | ||
2899 | <filename><sound/pcm.h></filename>. At least, | ||
2900 | <constant>START</constant> and <constant>STOP</constant> | ||
2901 | commands must be defined in this callback. | ||
2902 | |||
2903 | <informalexample> | ||
2904 | <programlisting> | ||
2905 | <![CDATA[ | ||
2906 | switch (cmd) { | ||
2907 | case SNDRV_PCM_TRIGGER_START: | ||
2908 | // do something to start the PCM engine | ||
2909 | break; | ||
2910 | case SNDRV_PCM_TRIGGER_STOP: | ||
2911 | // do something to stop the PCM engine | ||
2912 | break; | ||
2913 | default: | ||
2914 | return -EINVAL; | ||
2915 | } | ||
2916 | ]]> | ||
2917 | </programlisting> | ||
2918 | </informalexample> | ||
2919 | </para> | ||
2920 | |||
2921 | <para> | ||
2922 | When the pcm supports the pause operation (given in info | ||
2923 | field of the hardware table), <constant>PAUSE_PUSE</constant> | ||
2924 | and <constant>PAUSE_RELEASE</constant> commands must be | ||
2925 | handled here, too. The former is the command to pause the pcm, | ||
2926 | and the latter to restart the pcm again. | ||
2927 | </para> | ||
2928 | |||
2929 | <para> | ||
2930 | When the pcm supports the suspend/resume operation | ||
2931 | (i.e. <constant>SNDRV_PCM_INFO_RESUME</constant> flag is set), | ||
2932 | <constant>SUSPEND</constant> and <constant>RESUME</constant> | ||
2933 | commands must be handled, too. | ||
2934 | These commands are issued when the power-management status is | ||
2935 | changed. Obviously, the <constant>SUSPEND</constant> and | ||
2936 | <constant>RESUME</constant> | ||
2937 | do suspend and resume of the pcm substream, and usually, they | ||
2938 | are identical with <constant>STOP</constant> and | ||
2939 | <constant>START</constant> commands, respectively. | ||
2940 | </para> | ||
2941 | |||
2942 | <para> | ||
2943 | As mentioned, this callback is atomic. You cannot call | ||
2944 | the function going to sleep. | ||
2945 | The trigger callback should be as minimal as possible, | ||
2946 | just really triggering the DMA. The other stuff should be | ||
2947 | initialized hw_params and prepare callbacks properly | ||
2948 | beforehand. | ||
2949 | </para> | ||
2950 | </section> | ||
2951 | |||
2952 | <section id="pcm-interface-operators-pointer-callback"> | ||
2953 | <title>pointer callback</title> | ||
2954 | <para> | ||
2955 | <informalexample> | ||
2956 | <programlisting> | ||
2957 | <![CDATA[ | ||
2958 | static snd_pcm_uframes_t snd_xxx_pointer(snd_pcm_substream_t * substream) | ||
2959 | ]]> | ||
2960 | </programlisting> | ||
2961 | </informalexample> | ||
2962 | |||
2963 | This callback is called when the PCM middle layer inquires | ||
2964 | the current hardware position on the buffer. The position must | ||
2965 | be returned in frames (which was in bytes on ALSA 0.5.x), | ||
2966 | ranged from 0 to buffer_size - 1. | ||
2967 | </para> | ||
2968 | |||
2969 | <para> | ||
2970 | This is called usually from the buffer-update routine in the | ||
2971 | pcm middle layer, which is invoked when | ||
2972 | <function>snd_pcm_period_elapsed()</function> is called in the | ||
2973 | interrupt routine. Then the pcm middle layer updates the | ||
2974 | position and calculates the available space, and wakes up the | ||
2975 | sleeping poll threads, etc. | ||
2976 | </para> | ||
2977 | |||
2978 | <para> | ||
2979 | This callback is also atomic. | ||
2980 | </para> | ||
2981 | </section> | ||
2982 | |||
2983 | <section id="pcm-interface-operators-copy-silence"> | ||
2984 | <title>copy and silence callbacks</title> | ||
2985 | <para> | ||
2986 | These callbacks are not mandatory, and can be omitted in | ||
2987 | most cases. These callbacks are used when the hardware buffer | ||
2988 | cannot be on the normal memory space. Some chips have their | ||
2989 | own buffer on the hardware which is not mappable. In such a | ||
2990 | case, you have to transfer the data manually from the memory | ||
2991 | buffer to the hardware buffer. Or, if the buffer is | ||
2992 | non-contiguous on both physical and virtual memory spaces, | ||
2993 | these callbacks must be defined, too. | ||
2994 | </para> | ||
2995 | |||
2996 | <para> | ||
2997 | If these two callbacks are defined, copy and set-silence | ||
2998 | operations are done by them. The detailed will be described in | ||
2999 | the later section <link | ||
3000 | linkend="buffer-and-memory"><citetitle>Buffer and Memory | ||
3001 | Management</citetitle></link>. | ||
3002 | </para> | ||
3003 | </section> | ||
3004 | |||
3005 | <section id="pcm-interface-operators-ack"> | ||
3006 | <title>ack callback</title> | ||
3007 | <para> | ||
3008 | This callback is also not mandatory. This callback is called | ||
3009 | when the appl_ptr is updated in read or write operations. | ||
3010 | Some drivers like emu10k1-fx and cs46xx need to track the | ||
3011 | current appl_ptr for the internal buffer, and this callback | ||
3012 | is useful only for such a purpose. | ||
3013 | </para> | ||
3014 | <para> | ||
3015 | This callback is atomic. | ||
3016 | </para> | ||
3017 | </section> | ||
3018 | |||
3019 | <section id="pcm-interface-operators-page-callback"> | ||
3020 | <title>page callback</title> | ||
3021 | |||
3022 | <para> | ||
3023 | This callback is also not mandatory. This callback is used | ||
3024 | mainly for the non-contiguous buffer. The mmap calls this | ||
3025 | callback to get the page address. Some examples will be | ||
3026 | explained in the later section <link | ||
3027 | linkend="buffer-and-memory"><citetitle>Buffer and Memory | ||
3028 | Management</citetitle></link>, too. | ||
3029 | </para> | ||
3030 | </section> | ||
3031 | </section> | ||
3032 | |||
3033 | <section id="pcm-interface-interrupt-handler"> | ||
3034 | <title>Interrupt Handler</title> | ||
3035 | <para> | ||
3036 | The rest of pcm stuff is the PCM interrupt handler. The | ||
3037 | role of PCM interrupt handler in the sound driver is to update | ||
3038 | the buffer position and to tell the PCM middle layer when the | ||
3039 | buffer position goes across the prescribed period size. To | ||
3040 | inform this, call <function>snd_pcm_period_elapsed()</function> | ||
3041 | function. | ||
3042 | </para> | ||
3043 | |||
3044 | <para> | ||
3045 | There are several types of sound chips to generate the interrupts. | ||
3046 | </para> | ||
3047 | |||
3048 | <section id="pcm-interface-interrupt-handler-boundary"> | ||
3049 | <title>Interrupts at the period (fragment) boundary</title> | ||
3050 | <para> | ||
3051 | This is the most frequently found type: the hardware | ||
3052 | generates an interrupt at each period boundary. | ||
3053 | In this case, you can call | ||
3054 | <function>snd_pcm_period_elapsed()</function> at each | ||
3055 | interrupt. | ||
3056 | </para> | ||
3057 | |||
3058 | <para> | ||
3059 | <function>snd_pcm_period_elapsed()</function> takes the | ||
3060 | substream pointer as its argument. Thus, you need to keep the | ||
3061 | substream pointer accessible from the chip instance. For | ||
3062 | example, define substream field in the chip record to hold the | ||
3063 | current running substream pointer, and set the pointer value | ||
3064 | at open callback (and reset at close callback). | ||
3065 | </para> | ||
3066 | |||
3067 | <para> | ||
3068 | If you aquire a spinlock in the interrupt handler, and the | ||
3069 | lock is used in other pcm callbacks, too, then you have to | ||
3070 | release the lock before calling | ||
3071 | <function>snd_pcm_period_elapsed()</function>, because | ||
3072 | <function>snd_pcm_period_elapsed()</function> calls other pcm | ||
3073 | callbacks inside. | ||
3074 | </para> | ||
3075 | |||
3076 | <para> | ||
3077 | A typical coding would be like: | ||
3078 | |||
3079 | <example> | ||
3080 | <title>Interrupt Handler Case #1</title> | ||
3081 | <programlisting> | ||
3082 | <![CDATA[ | ||
3083 | static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id, | ||
3084 | struct pt_regs *regs) | ||
3085 | { | ||
3086 | mychip_t *chip = dev_id; | ||
3087 | spin_lock(&chip->lock); | ||
3088 | .... | ||
3089 | if (pcm_irq_invoked(chip)) { | ||
3090 | /* call updater, unlock before it */ | ||
3091 | spin_unlock(&chip->lock); | ||
3092 | snd_pcm_period_elapsed(chip->substream); | ||
3093 | spin_lock(&chip->lock); | ||
3094 | // acknowledge the interrupt if necessary | ||
3095 | } | ||
3096 | .... | ||
3097 | spin_unlock(&chip->lock); | ||
3098 | return IRQ_HANDLED; | ||
3099 | } | ||
3100 | ]]> | ||
3101 | </programlisting> | ||
3102 | </example> | ||
3103 | </para> | ||
3104 | </section> | ||
3105 | |||
3106 | <section id="pcm-interface-interrupt-handler-timer"> | ||
3107 | <title>High-frequent timer interrupts</title> | ||
3108 | <para> | ||
3109 | This is the case when the hardware doesn't generate interrupts | ||
3110 | at the period boundary but do timer-interrupts at the fixed | ||
3111 | timer rate (e.g. es1968 or ymfpci drivers). | ||
3112 | In this case, you need to check the current hardware | ||
3113 | position and accumulates the processed sample length at each | ||
3114 | interrupt. When the accumulated size overcomes the period | ||
3115 | size, call | ||
3116 | <function>snd_pcm_period_elapsed()</function> and reset the | ||
3117 | accumulator. | ||
3118 | </para> | ||
3119 | |||
3120 | <para> | ||
3121 | A typical coding would be like the following. | ||
3122 | |||
3123 | <example> | ||
3124 | <title>Interrupt Handler Case #2</title> | ||
3125 | <programlisting> | ||
3126 | <![CDATA[ | ||
3127 | static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id, | ||
3128 | struct pt_regs *regs) | ||
3129 | { | ||
3130 | mychip_t *chip = dev_id; | ||
3131 | spin_lock(&chip->lock); | ||
3132 | .... | ||
3133 | if (pcm_irq_invoked(chip)) { | ||
3134 | unsigned int last_ptr, size; | ||
3135 | /* get the current hardware pointer (in frames) */ | ||
3136 | last_ptr = get_hw_ptr(chip); | ||
3137 | /* calculate the processed frames since the | ||
3138 | * last update | ||
3139 | */ | ||
3140 | if (last_ptr < chip->last_ptr) | ||
3141 | size = runtime->buffer_size + last_ptr | ||
3142 | - chip->last_ptr; | ||
3143 | else | ||
3144 | size = last_ptr - chip->last_ptr; | ||
3145 | /* remember the last updated point */ | ||
3146 | chip->last_ptr = last_ptr; | ||
3147 | /* accumulate the size */ | ||
3148 | chip->size += size; | ||
3149 | /* over the period boundary? */ | ||
3150 | if (chip->size >= runtime->period_size) { | ||
3151 | /* reset the accumulator */ | ||
3152 | chip->size %= runtime->period_size; | ||
3153 | /* call updater */ | ||
3154 | spin_unlock(&chip->lock); | ||
3155 | snd_pcm_period_elapsed(substream); | ||
3156 | spin_lock(&chip->lock); | ||
3157 | } | ||
3158 | // acknowledge the interrupt if necessary | ||
3159 | } | ||
3160 | .... | ||
3161 | spin_unlock(&chip->lock); | ||
3162 | return IRQ_HANDLED; | ||
3163 | } | ||
3164 | ]]> | ||
3165 | </programlisting> | ||
3166 | </example> | ||
3167 | </para> | ||
3168 | </section> | ||
3169 | |||
3170 | <section id="pcm-interface-interrupt-handler-both"> | ||
3171 | <title>On calling <function>snd_pcm_period_elapsed()</function></title> | ||
3172 | <para> | ||
3173 | In both cases, even if more than one period are elapsed, you | ||
3174 | don't have to call | ||
3175 | <function>snd_pcm_period_elapsed()</function> many times. Call | ||
3176 | only once. And the pcm layer will check the current hardware | ||
3177 | pointer and update to the latest status. | ||
3178 | </para> | ||
3179 | </section> | ||
3180 | </section> | ||
3181 | |||
3182 | <section id="pcm-interface-atomicity"> | ||
3183 | <title>Atomicity</title> | ||
3184 | <para> | ||
3185 | One of the most important (and thus difficult to debug) problem | ||
3186 | on the kernel programming is the race condition. | ||
3187 | On linux kernel, usually it's solved via spin-locks or | ||
3188 | semaphores. In general, if the race condition may | ||
3189 | happen in the interrupt handler, it's handled as atomic, and you | ||
3190 | have to use spinlock for protecting the critical session. If it | ||
3191 | never happens in the interrupt and it may take relatively long | ||
3192 | time, you should use semaphore. | ||
3193 | </para> | ||
3194 | |||
3195 | <para> | ||
3196 | As already seen, some pcm callbacks are atomic and some are | ||
3197 | not. For example, <parameter>hw_params</parameter> callback is | ||
3198 | non-atomic, while <parameter>trigger</parameter> callback is | ||
3199 | atomic. This means, the latter is called already in a spinlock | ||
3200 | held by the PCM middle layer. Please take this atomicity into | ||
3201 | account when you use a spinlock or a semaphore in the callbacks. | ||
3202 | </para> | ||
3203 | |||
3204 | <para> | ||
3205 | In the atomic callbacks, you cannot use functions which may call | ||
3206 | <function>schedule</function> or go to | ||
3207 | <function>sleep</function>. The semaphore and mutex do sleep, | ||
3208 | and hence they cannot be used inside the atomic callbacks | ||
3209 | (e.g. <parameter>trigger</parameter> callback). | ||
3210 | For taking a certain delay in such a callback, please use | ||
3211 | <function>udelay()</function> or <function>mdelay()</function>. | ||
3212 | </para> | ||
3213 | |||
3214 | <para> | ||
3215 | All three atomic callbacks (trigger, pointer, and ack) are | ||
3216 | called with local interrupts disabled. | ||
3217 | </para> | ||
3218 | |||
3219 | </section> | ||
3220 | <section id="pcm-interface-constraints"> | ||
3221 | <title>Constraints</title> | ||
3222 | <para> | ||
3223 | If your chip supports unconventional sample rates, or only the | ||
3224 | limited samples, you need to set a constraint for the | ||
3225 | condition. | ||
3226 | </para> | ||
3227 | |||
3228 | <para> | ||
3229 | For example, in order to restrict the sample rates in the some | ||
3230 | supported values, use | ||
3231 | <function>snd_pcm_hw_constraint_list()</function>. | ||
3232 | You need to call this function in the open callback. | ||
3233 | |||
3234 | <example> | ||
3235 | <title>Example of Hardware Constraints</title> | ||
3236 | <programlisting> | ||
3237 | <![CDATA[ | ||
3238 | static unsigned int rates[] = | ||
3239 | {4000, 10000, 22050, 44100}; | ||
3240 | static snd_pcm_hw_constraint_list_t constraints_rates = { | ||
3241 | .count = ARRAY_SIZE(rates), | ||
3242 | .list = rates, | ||
3243 | .mask = 0, | ||
3244 | }; | ||
3245 | |||
3246 | static int snd_mychip_pcm_open(snd_pcm_substream_t *substream) | ||
3247 | { | ||
3248 | int err; | ||
3249 | .... | ||
3250 | err = snd_pcm_hw_constraint_list(substream->runtime, 0, | ||
3251 | SNDRV_PCM_HW_PARAM_RATE, | ||
3252 | &constraints_rates); | ||
3253 | if (err < 0) | ||
3254 | return err; | ||
3255 | .... | ||
3256 | } | ||
3257 | ]]> | ||
3258 | </programlisting> | ||
3259 | </example> | ||
3260 | </para> | ||
3261 | |||
3262 | <para> | ||
3263 | There are many different constraints. | ||
3264 | Look in <filename>sound/pcm.h</filename> for a complete list. | ||
3265 | You can even define your own constraint rules. | ||
3266 | For example, let's suppose my_chip can manage a substream of 1 channel | ||
3267 | if and only if the format is S16_LE, otherwise it supports any format | ||
3268 | specified in the <type>snd_pcm_hardware_t</type> stucture (or in any | ||
3269 | other constraint_list). You can build a rule like this: | ||
3270 | |||
3271 | <example> | ||
3272 | <title>Example of Hardware Constraints for Channels</title> | ||
3273 | <programlisting> | ||
3274 | <![CDATA[ | ||
3275 | static int hw_rule_format_by_channels(snd_pcm_hw_params_t *params, | ||
3276 | snd_pcm_hw_rule_t *rule) | ||
3277 | { | ||
3278 | snd_interval_t *c = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); | ||
3279 | snd_mask_t *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT); | ||
3280 | snd_mask_t fmt; | ||
3281 | |||
3282 | snd_mask_any(&fmt); /* Init the struct */ | ||
3283 | if (c->min < 2) { | ||
3284 | fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_LE; | ||
3285 | return snd_mask_refine(f, &fmt); | ||
3286 | } | ||
3287 | return 0; | ||
3288 | } | ||
3289 | ]]> | ||
3290 | </programlisting> | ||
3291 | </example> | ||
3292 | </para> | ||
3293 | |||
3294 | <para> | ||
3295 | Then you need to call this function to add your rule: | ||
3296 | |||
3297 | <informalexample> | ||
3298 | <programlisting> | ||
3299 | <![CDATA[ | ||
3300 | snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, | ||
3301 | hw_rule_channels_by_format, 0, SNDRV_PCM_HW_PARAM_FORMAT, | ||
3302 | -1); | ||
3303 | ]]> | ||
3304 | </programlisting> | ||
3305 | </informalexample> | ||
3306 | </para> | ||
3307 | |||
3308 | <para> | ||
3309 | The rule function is called when an application sets the number of | ||
3310 | channels. But an application can set the format before the number of | ||
3311 | channels. Thus you also need to define the inverse rule: | ||
3312 | |||
3313 | <example> | ||
3314 | <title>Example of Hardware Constraints for Channels</title> | ||
3315 | <programlisting> | ||
3316 | <![CDATA[ | ||
3317 | static int hw_rule_channels_by_format(snd_pcm_hw_params_t *params, | ||
3318 | snd_pcm_hw_rule_t *rule) | ||
3319 | { | ||
3320 | snd_interval_t *c = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); | ||
3321 | snd_mask_t *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT); | ||
3322 | snd_interval_t ch; | ||
3323 | |||
3324 | snd_interval_any(&ch); | ||
3325 | if (f->bits[0] == SNDRV_PCM_FMTBIT_S16_LE) { | ||
3326 | ch.min = ch.max = 1; | ||
3327 | ch.integer = 1; | ||
3328 | return snd_interval_refine(c, &ch); | ||
3329 | } | ||
3330 | return 0; | ||
3331 | } | ||
3332 | ]]> | ||
3333 | </programlisting> | ||
3334 | </example> | ||
3335 | </para> | ||
3336 | |||
3337 | <para> | ||
3338 | ...and in the open callback: | ||
3339 | <informalexample> | ||
3340 | <programlisting> | ||
3341 | <![CDATA[ | ||
3342 | snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT, | ||
3343 | hw_rule_format_by_channels, 0, SNDRV_PCM_HW_PARAM_CHANNELS, | ||
3344 | -1); | ||
3345 | ]]> | ||
3346 | </programlisting> | ||
3347 | </informalexample> | ||
3348 | </para> | ||
3349 | |||
3350 | <para> | ||
3351 | I won't explain more details here, rather I | ||
3352 | would like to say, <quote>Luke, use the source.</quote> | ||
3353 | </para> | ||
3354 | </section> | ||
3355 | |||
3356 | </chapter> | ||
3357 | |||
3358 | |||
3359 | <!-- ****************************************************** --> | ||
3360 | <!-- Control Interface --> | ||
3361 | <!-- ****************************************************** --> | ||
3362 | <chapter id="control-interface"> | ||
3363 | <title>Control Interface</title> | ||
3364 | |||
3365 | <section id="control-interface-general"> | ||
3366 | <title>General</title> | ||
3367 | <para> | ||
3368 | The control interface is used widely for many switches, | ||
3369 | sliders, etc. which are accessed from the user-space. Its most | ||
3370 | important use is the mixer interface. In other words, on ALSA | ||
3371 | 0.9.x, all the mixer stuff is implemented on the control kernel | ||
3372 | API (while there was an independent mixer kernel API on 0.5.x). | ||
3373 | </para> | ||
3374 | |||
3375 | <para> | ||
3376 | ALSA has a well-defined AC97 control module. If your chip | ||
3377 | supports only the AC97 and nothing else, you can skip this | ||
3378 | section. | ||
3379 | </para> | ||
3380 | |||
3381 | <para> | ||
3382 | The control API is defined in | ||
3383 | <filename><sound/control.h></filename>. | ||
3384 | Include this file if you add your own controls. | ||
3385 | </para> | ||
3386 | </section> | ||
3387 | |||
3388 | <section id="control-interface-definition"> | ||
3389 | <title>Definition of Controls</title> | ||
3390 | <para> | ||
3391 | For creating a new control, you need to define the three | ||
3392 | callbacks: <structfield>info</structfield>, | ||
3393 | <structfield>get</structfield> and | ||
3394 | <structfield>put</structfield>. Then, define a | ||
3395 | <type>snd_kcontrol_new_t</type> record, such as: | ||
3396 | |||
3397 | <example> | ||
3398 | <title>Definition of a Control</title> | ||
3399 | <programlisting> | ||
3400 | <![CDATA[ | ||
3401 | static snd_kcontrol_new_t my_control __devinitdata = { | ||
3402 | .iface = SNDRV_CTL_ELEM_IFACE_MIXER, | ||
3403 | .name = "PCM Playback Switch", | ||
3404 | .index = 0, | ||
3405 | .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, | ||
3406 | .private_values = 0xffff, | ||
3407 | .info = my_control_info, | ||
3408 | .get = my_control_get, | ||
3409 | .put = my_control_put | ||
3410 | }; | ||
3411 | ]]> | ||
3412 | </programlisting> | ||
3413 | </example> | ||
3414 | </para> | ||
3415 | |||
3416 | <para> | ||
3417 | Most likely the control is created via | ||
3418 | <function>snd_ctl_new1()</function>, and in such a case, you can | ||
3419 | add <parameter>__devinitdata</parameter> prefix to the | ||
3420 | definition like above. | ||
3421 | </para> | ||
3422 | |||
3423 | <para> | ||
3424 | The <structfield>iface</structfield> field specifies the type of | ||
3425 | the control, | ||
3426 | <constant>SNDRV_CTL_ELEM_IFACE_XXX</constant>. There are | ||
3427 | <constant>MIXER</constant>, <constant>PCM</constant>, | ||
3428 | <constant>CARD</constant>, etc. | ||
3429 | </para> | ||
3430 | |||
3431 | <para> | ||
3432 | The <structfield>name</structfield> is the name identifier | ||
3433 | string. On ALSA 0.9.x, the control name is very important, | ||
3434 | because its role is classified from its name. There are | ||
3435 | pre-defined standard control names. The details are described in | ||
3436 | the subsection | ||
3437 | <link linkend="control-interface-control-names"><citetitle> | ||
3438 | Control Names</citetitle></link>. | ||
3439 | </para> | ||
3440 | |||
3441 | <para> | ||
3442 | The <structfield>index</structfield> field holds the index number | ||
3443 | of this control. If there are several different controls with | ||
3444 | the same name, they can be distinguished by the index | ||
3445 | number. This is the case when | ||
3446 | several codecs exist on the card. If the index is zero, you can | ||
3447 | omit the definition above. | ||
3448 | </para> | ||
3449 | |||
3450 | <para> | ||
3451 | The <structfield>access</structfield> field contains the access | ||
3452 | type of this control. Give the combination of bit masks, | ||
3453 | <constant>SNDRV_CTL_ELEM_ACCESS_XXX</constant>, there. | ||
3454 | The detailed will be explained in the subsection | ||
3455 | <link linkend="control-interface-access-flags"><citetitle> | ||
3456 | Access Flags</citetitle></link>. | ||
3457 | </para> | ||
3458 | |||
3459 | <para> | ||
3460 | The <structfield>private_values</structfield> field contains | ||
3461 | an arbitrary long integer value for this record. When using | ||
3462 | generic <structfield>info</structfield>, | ||
3463 | <structfield>get</structfield> and | ||
3464 | <structfield>put</structfield> callbacks, you can pass a value | ||
3465 | through this field. If several small numbers are necessary, you can | ||
3466 | combine them in bitwise. Or, it's possible to give a pointer | ||
3467 | (casted to unsigned long) of some record to this field, too. | ||
3468 | </para> | ||
3469 | |||
3470 | <para> | ||
3471 | The other three are | ||
3472 | <link linkend="control-interface-callbacks"><citetitle> | ||
3473 | callback functions</citetitle></link>. | ||
3474 | </para> | ||
3475 | </section> | ||
3476 | |||
3477 | <section id="control-interface-control-names"> | ||
3478 | <title>Control Names</title> | ||
3479 | <para> | ||
3480 | There are some standards for defining the control names. A | ||
3481 | control is usually defined from the three parts as | ||
3482 | <quote>SOURCE DIRECTION FUNCTION</quote>. | ||
3483 | </para> | ||
3484 | |||
3485 | <para> | ||
3486 | The first, <constant>SOURCE</constant>, specifies the source | ||
3487 | of the control, and is a string such as <quote>Master</quote>, | ||
3488 | <quote>PCM</quote>, <quote>CD</quote> or | ||
3489 | <quote>Line</quote>. There are many pre-defined sources. | ||
3490 | </para> | ||
3491 | |||
3492 | <para> | ||
3493 | The second, <constant>DIRECTION</constant>, is one of the | ||
3494 | following strings according to the direction of the control: | ||
3495 | <quote>Playback</quote>, <quote>Capture</quote>, <quote>Bypass | ||
3496 | Playback</quote> and <quote>Bypass Capture</quote>. Or, it can | ||
3497 | be omitted, meaning both playback and capture directions. | ||
3498 | </para> | ||
3499 | |||
3500 | <para> | ||
3501 | The third, <constant>FUNCTION</constant>, is one of the | ||
3502 | following strings according to the function of the control: | ||
3503 | <quote>Switch</quote>, <quote>Volume</quote> and | ||
3504 | <quote>Route</quote>. | ||
3505 | </para> | ||
3506 | |||
3507 | <para> | ||
3508 | The example of control names are, thus, <quote>Master Capture | ||
3509 | Switch</quote> or <quote>PCM Playback Volume</quote>. | ||
3510 | </para> | ||
3511 | |||
3512 | <para> | ||
3513 | There are some exceptions: | ||
3514 | </para> | ||
3515 | |||
3516 | <section id="control-interface-control-names-global"> | ||
3517 | <title>Global capture and playback</title> | ||
3518 | <para> | ||
3519 | <quote>Capture Source</quote>, <quote>Capture Switch</quote> | ||
3520 | and <quote>Capture Volume</quote> are used for the global | ||
3521 | capture (input) source, switch and volume. Similarly, | ||
3522 | <quote>Playback Switch</quote> and <quote>Playback | ||
3523 | Volume</quote> are used for the global output gain switch and | ||
3524 | volume. | ||
3525 | </para> | ||
3526 | </section> | ||
3527 | |||
3528 | <section id="control-interface-control-names-tone"> | ||
3529 | <title>Tone-controls</title> | ||
3530 | <para> | ||
3531 | tone-control switch and volumes are specified like | ||
3532 | <quote>Tone Control - XXX</quote>, e.g. <quote>Tone Control - | ||
3533 | Switch</quote>, <quote>Tone Control - Bass</quote>, | ||
3534 | <quote>Tone Control - Center</quote>. | ||
3535 | </para> | ||
3536 | </section> | ||
3537 | |||
3538 | <section id="control-interface-control-names-3d"> | ||
3539 | <title>3D controls</title> | ||
3540 | <para> | ||
3541 | 3D-control switches and volumes are specified like <quote>3D | ||
3542 | Control - XXX</quote>, e.g. <quote>3D Control - | ||
3543 | Switch</quote>, <quote>3D Control - Center</quote>, <quote>3D | ||
3544 | Control - Space</quote>. | ||
3545 | </para> | ||
3546 | </section> | ||
3547 | |||
3548 | <section id="control-interface-control-names-mic"> | ||
3549 | <title>Mic boost</title> | ||
3550 | <para> | ||
3551 | Mic-boost switch is set as <quote>Mic Boost</quote> or | ||
3552 | <quote>Mic Boost (6dB)</quote>. | ||
3553 | </para> | ||
3554 | |||
3555 | <para> | ||
3556 | More precise information can be found in | ||
3557 | <filename>Documentation/sound/alsa/ControlNames.txt</filename>. | ||
3558 | </para> | ||
3559 | </section> | ||
3560 | </section> | ||
3561 | |||
3562 | <section id="control-interface-access-flags"> | ||
3563 | <title>Access Flags</title> | ||
3564 | |||
3565 | <para> | ||
3566 | The access flag is the bit-flags which specifies the access type | ||
3567 | of the given control. The default access type is | ||
3568 | <constant>SNDRV_CTL_ELEM_ACCESS_READWRITE</constant>, | ||
3569 | which means both read and write are allowed to this control. | ||
3570 | When the access flag is omitted (i.e. = 0), it is | ||
3571 | regarded as <constant>READWRITE</constant> access as default. | ||
3572 | </para> | ||
3573 | |||
3574 | <para> | ||
3575 | When the control is read-only, pass | ||
3576 | <constant>SNDRV_CTL_ELEM_ACCESS_READ</constant> instead. | ||
3577 | In this case, you don't have to define | ||
3578 | <structfield>put</structfield> callback. | ||
3579 | Similarly, when the control is write-only (although it's a rare | ||
3580 | case), you can use <constant>WRITE</constant> flag instead, and | ||
3581 | you don't need <structfield>get</structfield> callback. | ||
3582 | </para> | ||
3583 | |||
3584 | <para> | ||
3585 | If the control value changes frequently (e.g. the VU meter), | ||
3586 | <constant>VOLATILE</constant> flag should be given. This means | ||
3587 | that the control may be changed without | ||
3588 | <link linkend="control-interface-change-notification"><citetitle> | ||
3589 | notification</citetitle></link>. Applications should poll such | ||
3590 | a control constantly. | ||
3591 | </para> | ||
3592 | |||
3593 | <para> | ||
3594 | When the control is inactive, set | ||
3595 | <constant>INACTIVE</constant> flag, too. | ||
3596 | There are <constant>LOCK</constant> and | ||
3597 | <constant>OWNER</constant> flags for changing the write | ||
3598 | permissions. | ||
3599 | </para> | ||
3600 | |||
3601 | </section> | ||
3602 | |||
3603 | <section id="control-interface-callbacks"> | ||
3604 | <title>Callbacks</title> | ||
3605 | |||
3606 | <section id="control-interface-callbacks-info"> | ||
3607 | <title>info callback</title> | ||
3608 | <para> | ||
3609 | The <structfield>info</structfield> callback is used to get | ||
3610 | the detailed information of this control. This must store the | ||
3611 | values of the given <type>snd_ctl_elem_info_t</type> | ||
3612 | object. For example, for a boolean control with a single | ||
3613 | element will be: | ||
3614 | |||
3615 | <example> | ||
3616 | <title>Example of info callback</title> | ||
3617 | <programlisting> | ||
3618 | <![CDATA[ | ||
3619 | static int snd_myctl_info(snd_kcontrol_t *kcontrol, | ||
3620 | snd_ctl_elem_info_t *uinfo) | ||
3621 | { | ||
3622 | uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; | ||
3623 | uinfo->count = 1; | ||
3624 | uinfo->value.integer.min = 0; | ||
3625 | uinfo->value.integer.max = 1; | ||
3626 | return 0; | ||
3627 | } | ||
3628 | ]]> | ||
3629 | </programlisting> | ||
3630 | </example> | ||
3631 | </para> | ||
3632 | |||
3633 | <para> | ||
3634 | The <structfield>type</structfield> field specifies the type | ||
3635 | of the control. There are <constant>BOOLEAN</constant>, | ||
3636 | <constant>INTEGER</constant>, <constant>ENUMERATED</constant>, | ||
3637 | <constant>BYTES</constant>, <constant>IEC958</constant> and | ||
3638 | <constant>INTEGER64</constant>. The | ||
3639 | <structfield>count</structfield> field specifies the | ||
3640 | number of elements in this control. For example, a stereo | ||
3641 | volume would have count = 2. The | ||
3642 | <structfield>value</structfield> field is a union, and | ||
3643 | the values stored are depending on the type. The boolean and | ||
3644 | integer are identical. | ||
3645 | </para> | ||
3646 | |||
3647 | <para> | ||
3648 | The enumerated type is a bit different from others. You'll | ||
3649 | need to set the string for the currently given item index. | ||
3650 | |||
3651 | <informalexample> | ||
3652 | <programlisting> | ||
3653 | <![CDATA[ | ||
3654 | static int snd_myctl_info(snd_kcontrol_t *kcontrol, | ||
3655 | snd_ctl_elem_info_t *uinfo) | ||
3656 | { | ||
3657 | static char *texts[4] = { | ||
3658 | "First", "Second", "Third", "Fourth" | ||
3659 | }; | ||
3660 | uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; | ||
3661 | uinfo->count = 1; | ||
3662 | uinfo->value.enumerated.items = 4; | ||
3663 | if (uinfo->value.enumerated.item > 3) | ||
3664 | uinfo->value.enumerated.item = 3; | ||
3665 | strcpy(uinfo->value.enumerated.name, | ||
3666 | texts[uinfo->value.enumerated.item]); | ||
3667 | return 0; | ||
3668 | } | ||
3669 | ]]> | ||
3670 | </programlisting> | ||
3671 | </informalexample> | ||
3672 | </para> | ||
3673 | </section> | ||
3674 | |||
3675 | <section id="control-interface-callbacks-get"> | ||
3676 | <title>get callback</title> | ||
3677 | |||
3678 | <para> | ||
3679 | This callback is used to read the current value of the | ||
3680 | control and to return to the user-space. | ||
3681 | </para> | ||
3682 | |||
3683 | <para> | ||
3684 | For example, | ||
3685 | |||
3686 | <example> | ||
3687 | <title>Example of get callback</title> | ||
3688 | <programlisting> | ||
3689 | <![CDATA[ | ||
3690 | static int snd_myctl_get(snd_kcontrol_t *kcontrol, | ||
3691 | snd_ctl_elem_value_t *ucontrol) | ||
3692 | { | ||
3693 | mychip_t *chip = snd_kcontrol_chip(kcontrol); | ||
3694 | ucontrol->value.integer.value[0] = get_some_value(chip); | ||
3695 | return 0; | ||
3696 | } | ||
3697 | ]]> | ||
3698 | </programlisting> | ||
3699 | </example> | ||
3700 | </para> | ||
3701 | |||
3702 | <para> | ||
3703 | Here, the chip instance is retrieved via | ||
3704 | <function>snd_kcontrol_chip()</function> macro. This macro | ||
3705 | converts from kcontrol->private_data to the type defined by | ||
3706 | <type>chip_t</type>. The | ||
3707 | kcontrol->private_data field is | ||
3708 | given as the argument of <function>snd_ctl_new()</function> | ||
3709 | (see the later subsection | ||
3710 | <link linkend="control-interface-constructor"><citetitle>Constructor</citetitle></link>). | ||
3711 | </para> | ||
3712 | |||
3713 | <para> | ||
3714 | The <structfield>value</structfield> field is depending on | ||
3715 | the type of control as well as on info callback. For example, | ||
3716 | the sb driver uses this field to store the register offset, | ||
3717 | the bit-shift and the bit-mask. The | ||
3718 | <structfield>private_value</structfield> is set like | ||
3719 | <informalexample> | ||
3720 | <programlisting> | ||
3721 | <![CDATA[ | ||
3722 | .private_value = reg | (shift << 16) | (mask << 24) | ||
3723 | ]]> | ||
3724 | </programlisting> | ||
3725 | </informalexample> | ||
3726 | and is retrieved in callbacks like | ||
3727 | <informalexample> | ||
3728 | <programlisting> | ||
3729 | <![CDATA[ | ||
3730 | static int snd_sbmixer_get_single(snd_kcontrol_t *kcontrol, | ||
3731 | snd_ctl_elem_value_t *ucontrol) | ||
3732 | { | ||
3733 | int reg = kcontrol->private_value & 0xff; | ||
3734 | int shift = (kcontrol->private_value >> 16) & 0xff; | ||
3735 | int mask = (kcontrol->private_value >> 24) & 0xff; | ||
3736 | .... | ||
3737 | } | ||
3738 | ]]> | ||
3739 | </programlisting> | ||
3740 | </informalexample> | ||
3741 | </para> | ||
3742 | |||
3743 | <para> | ||
3744 | In <structfield>get</structfield> callback, you have to fill all the elements if the | ||
3745 | control has more than one elements, | ||
3746 | i.e. <structfield>count</structfield> > 1. | ||
3747 | In the example above, we filled only one element | ||
3748 | (<structfield>value.integer.value[0]</structfield>) since it's | ||
3749 | assumed as <structfield>count</structfield> = 1. | ||
3750 | </para> | ||
3751 | </section> | ||
3752 | |||
3753 | <section id="control-interface-callbacks-put"> | ||
3754 | <title>put callback</title> | ||
3755 | |||
3756 | <para> | ||
3757 | This callback is used to write a value from the user-space. | ||
3758 | </para> | ||
3759 | |||
3760 | <para> | ||
3761 | For example, | ||
3762 | |||
3763 | <example> | ||
3764 | <title>Example of put callback</title> | ||
3765 | <programlisting> | ||
3766 | <![CDATA[ | ||
3767 | static int snd_myctl_put(snd_kcontrol_t *kcontrol, | ||
3768 | snd_ctl_elem_value_t *ucontrol) | ||
3769 | { | ||
3770 | mychip_t *chip = snd_kcontrol_chip(kcontrol); | ||
3771 | int changed = 0; | ||
3772 | if (chip->current_value != | ||
3773 | ucontrol->value.integer.value[0]) { | ||
3774 | change_current_value(chip, | ||
3775 | ucontrol->value.integer.value[0]); | ||
3776 | changed = 1; | ||
3777 | } | ||
3778 | return changed; | ||
3779 | } | ||
3780 | ]]> | ||
3781 | </programlisting> | ||
3782 | </example> | ||
3783 | |||
3784 | As seen above, you have to return 1 if the value is | ||
3785 | changed. If the value is not changed, return 0 instead. | ||
3786 | If any fatal error happens, return a negative error code as | ||
3787 | usual. | ||
3788 | </para> | ||
3789 | |||
3790 | <para> | ||
3791 | Like <structfield>get</structfield> callback, | ||
3792 | when the control has more than one elements, | ||
3793 | all elemehts must be evaluated in this callback, too. | ||
3794 | </para> | ||
3795 | </section> | ||
3796 | |||
3797 | <section id="control-interface-callbacks-all"> | ||
3798 | <title>Callbacks are not atomic</title> | ||
3799 | <para> | ||
3800 | All these three callbacks are basically not atomic. | ||
3801 | </para> | ||
3802 | </section> | ||
3803 | </section> | ||
3804 | |||
3805 | <section id="control-interface-constructor"> | ||
3806 | <title>Constructor</title> | ||
3807 | <para> | ||
3808 | When everything is ready, finally we can create a new | ||
3809 | control. For creating a control, there are two functions to be | ||
3810 | called, <function>snd_ctl_new1()</function> and | ||
3811 | <function>snd_ctl_add()</function>. | ||
3812 | </para> | ||
3813 | |||
3814 | <para> | ||
3815 | In the simplest way, you can do like this: | ||
3816 | |||
3817 | <informalexample> | ||
3818 | <programlisting> | ||
3819 | <![CDATA[ | ||
3820 | if ((err = snd_ctl_add(card, snd_ctl_new1(&my_control, chip))) < 0) | ||
3821 | return err; | ||
3822 | ]]> | ||
3823 | </programlisting> | ||
3824 | </informalexample> | ||
3825 | |||
3826 | where <parameter>my_control</parameter> is the | ||
3827 | <type>snd_kcontrol_new_t</type> object defined above, and chip | ||
3828 | is the object pointer to be passed to | ||
3829 | kcontrol->private_data | ||
3830 | which can be referred in callbacks. | ||
3831 | </para> | ||
3832 | |||
3833 | <para> | ||
3834 | <function>snd_ctl_new1()</function> allocates a new | ||
3835 | <type>snd_kcontrol_t</type> instance (that's why the definition | ||
3836 | of <parameter>my_control</parameter> can be with | ||
3837 | <parameter>__devinitdata</parameter> | ||
3838 | prefix), and <function>snd_ctl_add</function> assigns the given | ||
3839 | control component to the card. | ||
3840 | </para> | ||
3841 | </section> | ||
3842 | |||
3843 | <section id="control-interface-change-notification"> | ||
3844 | <title>Change Notification</title> | ||
3845 | <para> | ||
3846 | If you need to change and update a control in the interrupt | ||
3847 | routine, you can call <function>snd_ctl_notify()</function>. For | ||
3848 | example, | ||
3849 | |||
3850 | <informalexample> | ||
3851 | <programlisting> | ||
3852 | <![CDATA[ | ||
3853 | snd_ctl_notify(card, SNDRV_CTL_EVENT_MASK_VALUE, id_pointer); | ||
3854 | ]]> | ||
3855 | </programlisting> | ||
3856 | </informalexample> | ||
3857 | |||
3858 | This function takes the card pointer, the event-mask, and the | ||
3859 | control id pointer for the notification. The event-mask | ||
3860 | specifies the types of notification, for example, in the above | ||
3861 | example, the change of control values is notified. | ||
3862 | The id pointer is the pointer of <type>snd_ctl_elem_id_t</type> | ||
3863 | to be notified. | ||
3864 | You can find some examples in <filename>es1938.c</filename> or | ||
3865 | <filename>es1968.c</filename> for hardware volume interrupts. | ||
3866 | </para> | ||
3867 | </section> | ||
3868 | |||
3869 | </chapter> | ||
3870 | |||
3871 | |||
3872 | <!-- ****************************************************** --> | ||
3873 | <!-- API for AC97 Codec --> | ||
3874 | <!-- ****************************************************** --> | ||
3875 | <chapter id="api-ac97"> | ||
3876 | <title>API for AC97 Codec</title> | ||
3877 | |||
3878 | <section> | ||
3879 | <title>General</title> | ||
3880 | <para> | ||
3881 | The ALSA AC97 codec layer is a well-defined one, and you don't | ||
3882 | have to write many codes to control it. Only low-level control | ||
3883 | routines are necessary. The AC97 codec API is defined in | ||
3884 | <filename><sound/ac97_codec.h></filename>. | ||
3885 | </para> | ||
3886 | </section> | ||
3887 | |||
3888 | <section id="api-ac97-example"> | ||
3889 | <title>Full Code Example</title> | ||
3890 | <para> | ||
3891 | <example> | ||
3892 | <title>Example of AC97 Interface</title> | ||
3893 | <programlisting> | ||
3894 | <![CDATA[ | ||
3895 | struct snd_mychip { | ||
3896 | .... | ||
3897 | ac97_t *ac97; | ||
3898 | .... | ||
3899 | }; | ||
3900 | |||
3901 | static unsigned short snd_mychip_ac97_read(ac97_t *ac97, | ||
3902 | unsigned short reg) | ||
3903 | { | ||
3904 | mychip_t *chip = ac97->private_data; | ||
3905 | .... | ||
3906 | // read a register value here from the codec | ||
3907 | return the_register_value; | ||
3908 | } | ||
3909 | |||
3910 | static void snd_mychip_ac97_write(ac97_t *ac97, | ||
3911 | unsigned short reg, unsigned short val) | ||
3912 | { | ||
3913 | mychip_t *chip = ac97->private_data; | ||
3914 | .... | ||
3915 | // write the given register value to the codec | ||
3916 | } | ||
3917 | |||
3918 | static int snd_mychip_ac97(mychip_t *chip) | ||
3919 | { | ||
3920 | ac97_bus_t *bus; | ||
3921 | ac97_template_t ac97; | ||
3922 | int err; | ||
3923 | static ac97_bus_ops_t ops = { | ||
3924 | .write = snd_mychip_ac97_write, | ||
3925 | .read = snd_mychip_ac97_read, | ||
3926 | }; | ||
3927 | |||
3928 | if ((err = snd_ac97_bus(chip->card, 0, &ops, NULL, &bus)) < 0) | ||
3929 | return err; | ||
3930 | memset(&ac97, 0, sizeof(ac97)); | ||
3931 | ac97.private_data = chip; | ||
3932 | return snd_ac97_mixer(bus, &ac97, &chip->ac97); | ||
3933 | } | ||
3934 | |||
3935 | ]]> | ||
3936 | </programlisting> | ||
3937 | </example> | ||
3938 | </para> | ||
3939 | </section> | ||
3940 | |||
3941 | <section id="api-ac97-constructor"> | ||
3942 | <title>Constructor</title> | ||
3943 | <para> | ||
3944 | For creating an ac97 instance, first call <function>snd_ac97_bus</function> | ||
3945 | with an <type>ac97_bus_ops_t</type> record with callback functions. | ||
3946 | |||
3947 | <informalexample> | ||
3948 | <programlisting> | ||
3949 | <![CDATA[ | ||
3950 | ac97_bus_t *bus; | ||
3951 | static ac97_bus_ops_t ops = { | ||
3952 | .write = snd_mychip_ac97_write, | ||
3953 | .read = snd_mychip_ac97_read, | ||
3954 | }; | ||
3955 | |||
3956 | snd_ac97_bus(card, 0, &ops, NULL, &pbus); | ||
3957 | ]]> | ||
3958 | </programlisting> | ||
3959 | </informalexample> | ||
3960 | |||
3961 | The bus record is shared among all belonging ac97 instances. | ||
3962 | </para> | ||
3963 | |||
3964 | <para> | ||
3965 | And then call <function>snd_ac97_mixer()</function> with an <type>ac97_template_t</type> | ||
3966 | record together with the bus pointer created above. | ||
3967 | |||
3968 | <informalexample> | ||
3969 | <programlisting> | ||
3970 | <![CDATA[ | ||
3971 | ac97_template_t ac97; | ||
3972 | int err; | ||
3973 | |||
3974 | memset(&ac97, 0, sizeof(ac97)); | ||
3975 | ac97.private_data = chip; | ||
3976 | snd_ac97_mixer(bus, &ac97, &chip->ac97); | ||
3977 | ]]> | ||
3978 | </programlisting> | ||
3979 | </informalexample> | ||
3980 | |||
3981 | where chip->ac97 is the pointer of a newly created | ||
3982 | <type>ac97_t</type> instance. | ||
3983 | In this case, the chip pointer is set as the private data, so that | ||
3984 | the read/write callback functions can refer to this chip instance. | ||
3985 | This instance is not necessarily stored in the chip | ||
3986 | record. When you need to change the register values from the | ||
3987 | driver, or need the suspend/resume of ac97 codecs, keep this | ||
3988 | pointer to pass to the corresponding functions. | ||
3989 | </para> | ||
3990 | </section> | ||
3991 | |||
3992 | <section id="api-ac97-callbacks"> | ||
3993 | <title>Callbacks</title> | ||
3994 | <para> | ||
3995 | The standard callbacks are <structfield>read</structfield> and | ||
3996 | <structfield>write</structfield>. Obviously they | ||
3997 | correspond to the functions for read and write accesses to the | ||
3998 | hardware low-level codes. | ||
3999 | </para> | ||
4000 | |||
4001 | <para> | ||
4002 | The <structfield>read</structfield> callback returns the | ||
4003 | register value specified in the argument. | ||
4004 | |||
4005 | <informalexample> | ||
4006 | <programlisting> | ||
4007 | <![CDATA[ | ||
4008 | static unsigned short snd_mychip_ac97_read(ac97_t *ac97, | ||
4009 | unsigned short reg) | ||
4010 | { | ||
4011 | mychip_t *chip = ac97->private_data; | ||
4012 | .... | ||
4013 | return the_register_value; | ||
4014 | } | ||
4015 | ]]> | ||
4016 | </programlisting> | ||
4017 | </informalexample> | ||
4018 | |||
4019 | Here, the chip can be cast from ac97->private_data. | ||
4020 | </para> | ||
4021 | |||
4022 | <para> | ||
4023 | Meanwhile, the <structfield>write</structfield> callback is | ||
4024 | used to set the register value. | ||
4025 | |||
4026 | <informalexample> | ||
4027 | <programlisting> | ||
4028 | <![CDATA[ | ||
4029 | static void snd_mychip_ac97_write(ac97_t *ac97, | ||
4030 | unsigned short reg, unsigned short val) | ||
4031 | ]]> | ||
4032 | </programlisting> | ||
4033 | </informalexample> | ||
4034 | </para> | ||
4035 | |||
4036 | <para> | ||
4037 | These callbacks are non-atomic like the callbacks of control API. | ||
4038 | </para> | ||
4039 | |||
4040 | <para> | ||
4041 | There are also other callbacks: | ||
4042 | <structfield>reset</structfield>, | ||
4043 | <structfield>wait</structfield> and | ||
4044 | <structfield>init</structfield>. | ||
4045 | </para> | ||
4046 | |||
4047 | <para> | ||
4048 | The <structfield>reset</structfield> callback is used to reset | ||
4049 | the codec. If the chip requires a special way of reset, you can | ||
4050 | define this callback. | ||
4051 | </para> | ||
4052 | |||
4053 | <para> | ||
4054 | The <structfield>wait</structfield> callback is used for a | ||
4055 | certain wait at the standard initialization of the codec. If the | ||
4056 | chip requires the extra wait-time, define this callback. | ||
4057 | </para> | ||
4058 | |||
4059 | <para> | ||
4060 | The <structfield>init</structfield> callback is used for | ||
4061 | additional initialization of the codec. | ||
4062 | </para> | ||
4063 | </section> | ||
4064 | |||
4065 | <section id="api-ac97-updating-registers"> | ||
4066 | <title>Updating Registers in The Driver</title> | ||
4067 | <para> | ||
4068 | If you need to access to the codec from the driver, you can | ||
4069 | call the following functions: | ||
4070 | <function>snd_ac97_write()</function>, | ||
4071 | <function>snd_ac97_read()</function>, | ||
4072 | <function>snd_ac97_update()</function> and | ||
4073 | <function>snd_ac97_update_bits()</function>. | ||
4074 | </para> | ||
4075 | |||
4076 | <para> | ||
4077 | Both <function>snd_ac97_write()</function> and | ||
4078 | <function>snd_ac97_update()</function> functions are used to | ||
4079 | set a value to the given register | ||
4080 | (<constant>AC97_XXX</constant>). The difference between them is | ||
4081 | that <function>snd_ac97_update()</function> doesn't write a | ||
4082 | value if the given value has been already set, while | ||
4083 | <function>snd_ac97_write()</function> always rewrites the | ||
4084 | value. | ||
4085 | |||
4086 | <informalexample> | ||
4087 | <programlisting> | ||
4088 | <![CDATA[ | ||
4089 | snd_ac97_write(ac97, AC97_MASTER, 0x8080); | ||
4090 | snd_ac97_update(ac97, AC97_MASTER, 0x8080); | ||
4091 | ]]> | ||
4092 | </programlisting> | ||
4093 | </informalexample> | ||
4094 | </para> | ||
4095 | |||
4096 | <para> | ||
4097 | <function>snd_ac97_read()</function> is used to read the value | ||
4098 | of the given register. For example, | ||
4099 | |||
4100 | <informalexample> | ||
4101 | <programlisting> | ||
4102 | <![CDATA[ | ||
4103 | value = snd_ac97_read(ac97, AC97_MASTER); | ||
4104 | ]]> | ||
4105 | </programlisting> | ||
4106 | </informalexample> | ||
4107 | </para> | ||
4108 | |||
4109 | <para> | ||
4110 | <function>snd_ac97_update_bits()</function> is used to update | ||
4111 | some bits of the given register. | ||
4112 | |||
4113 | <informalexample> | ||
4114 | <programlisting> | ||
4115 | <![CDATA[ | ||
4116 | snd_ac97_update_bits(ac97, reg, mask, value); | ||
4117 | ]]> | ||
4118 | </programlisting> | ||
4119 | </informalexample> | ||
4120 | </para> | ||
4121 | |||
4122 | <para> | ||
4123 | Also, there is a function to change the sample rate (of a | ||
4124 | certain register such as | ||
4125 | <constant>AC97_PCM_FRONT_DAC_RATE</constant>) when VRA or | ||
4126 | DRA is supported by the codec: | ||
4127 | <function>snd_ac97_set_rate()</function>. | ||
4128 | |||
4129 | <informalexample> | ||
4130 | <programlisting> | ||
4131 | <![CDATA[ | ||
4132 | snd_ac97_set_rate(ac97, AC97_PCM_FRONT_DAC_RATE, 44100); | ||
4133 | ]]> | ||
4134 | </programlisting> | ||
4135 | </informalexample> | ||
4136 | </para> | ||
4137 | |||
4138 | <para> | ||
4139 | The following registers are available for setting the rate: | ||
4140 | <constant>AC97_PCM_MIC_ADC_RATE</constant>, | ||
4141 | <constant>AC97_PCM_FRONT_DAC_RATE</constant>, | ||
4142 | <constant>AC97_PCM_LR_ADC_RATE</constant>, | ||
4143 | <constant>AC97_SPDIF</constant>. When the | ||
4144 | <constant>AC97_SPDIF</constant> is specified, the register is | ||
4145 | not really changed but the corresponding IEC958 status bits will | ||
4146 | be updated. | ||
4147 | </para> | ||
4148 | </section> | ||
4149 | |||
4150 | <section id="api-ac97-clock-adjustment"> | ||
4151 | <title>Clock Adjustment</title> | ||
4152 | <para> | ||
4153 | On some chip, the clock of the codec isn't 48000 but using a | ||
4154 | PCI clock (to save a quartz!). In this case, change the field | ||
4155 | bus->clock to the corresponding | ||
4156 | value. For example, intel8x0 | ||
4157 | and es1968 drivers have the auto-measurement function of the | ||
4158 | clock. | ||
4159 | </para> | ||
4160 | </section> | ||
4161 | |||
4162 | <section id="api-ac97-proc-files"> | ||
4163 | <title>Proc Files</title> | ||
4164 | <para> | ||
4165 | The ALSA AC97 interface will create a proc file such as | ||
4166 | <filename>/proc/asound/card0/codec97#0/ac97#0-0</filename> and | ||
4167 | <filename>ac97#0-0+regs</filename>. You can refer to these files to | ||
4168 | see the current status and registers of the codec. | ||
4169 | </para> | ||
4170 | </section> | ||
4171 | |||
4172 | <section id="api-ac97-multiple-codecs"> | ||
4173 | <title>Multiple Codecs</title> | ||
4174 | <para> | ||
4175 | When there are several codecs on the same card, you need to | ||
4176 | call <function>snd_ac97_new()</function> multiple times with | ||
4177 | ac97.num=1 or greater. The <structfield>num</structfield> field | ||
4178 | specifies the codec | ||
4179 | number. | ||
4180 | </para> | ||
4181 | |||
4182 | <para> | ||
4183 | If you have set up multiple codecs, you need to either write | ||
4184 | different callbacks for each codec or check | ||
4185 | ac97->num in the | ||
4186 | callback routines. | ||
4187 | </para> | ||
4188 | </section> | ||
4189 | |||
4190 | </chapter> | ||
4191 | |||
4192 | |||
4193 | <!-- ****************************************************** --> | ||
4194 | <!-- MIDI (MPU401-UART) Interface --> | ||
4195 | <!-- ****************************************************** --> | ||
4196 | <chapter id="midi-interface"> | ||
4197 | <title>MIDI (MPU401-UART) Interface</title> | ||
4198 | |||
4199 | <section id="midi-interface-general"> | ||
4200 | <title>General</title> | ||
4201 | <para> | ||
4202 | Many soundcards have built-in MIDI (MPU401-UART) | ||
4203 | interfaces. When the soundcard supports the standard MPU401-UART | ||
4204 | interface, most likely you can use the ALSA MPU401-UART API. The | ||
4205 | MPU401-UART API is defined in | ||
4206 | <filename><sound/mpu401.h></filename>. | ||
4207 | </para> | ||
4208 | |||
4209 | <para> | ||
4210 | Some soundchips have similar but a little bit different | ||
4211 | implementation of mpu401 stuff. For example, emu10k1 has its own | ||
4212 | mpu401 routines. | ||
4213 | </para> | ||
4214 | </section> | ||
4215 | |||
4216 | <section id="midi-interface-constructor"> | ||
4217 | <title>Constructor</title> | ||
4218 | <para> | ||
4219 | For creating a rawmidi object, call | ||
4220 | <function>snd_mpu401_uart_new()</function>. | ||
4221 | |||
4222 | <informalexample> | ||
4223 | <programlisting> | ||
4224 | <![CDATA[ | ||
4225 | snd_rawmidi_t *rmidi; | ||
4226 | snd_mpu401_uart_new(card, 0, MPU401_HW_MPU401, port, integrated, | ||
4227 | irq, irq_flags, &rmidi); | ||
4228 | ]]> | ||
4229 | </programlisting> | ||
4230 | </informalexample> | ||
4231 | </para> | ||
4232 | |||
4233 | <para> | ||
4234 | The first argument is the card pointer, and the second is the | ||
4235 | index of this component. You can create up to 8 rawmidi | ||
4236 | devices. | ||
4237 | </para> | ||
4238 | |||
4239 | <para> | ||
4240 | The third argument is the type of the hardware, | ||
4241 | <constant>MPU401_HW_XXX</constant>. If it's not a special one, | ||
4242 | you can use <constant>MPU401_HW_MPU401</constant>. | ||
4243 | </para> | ||
4244 | |||
4245 | <para> | ||
4246 | The 4th argument is the i/o port address. Many | ||
4247 | backward-compatible MPU401 has an i/o port such as 0x330. Or, it | ||
4248 | might be a part of its own PCI i/o region. It depends on the | ||
4249 | chip design. | ||
4250 | </para> | ||
4251 | |||
4252 | <para> | ||
4253 | When the i/o port address above is a part of the PCI i/o | ||
4254 | region, the MPU401 i/o port might have been already allocated | ||
4255 | (reserved) by the driver itself. In such a case, pass non-zero | ||
4256 | to the 5th argument | ||
4257 | (<parameter>integrated</parameter>). Otherwise, pass 0 to it, | ||
4258 | and | ||
4259 | the mpu401-uart layer will allocate the i/o ports by itself. | ||
4260 | </para> | ||
4261 | |||
4262 | <para> | ||
4263 | Usually, the port address corresponds to the command port and | ||
4264 | port + 1 corresponds to the data port. If not, you may change | ||
4265 | the <structfield>cport</structfield> field of | ||
4266 | <type>mpu401_t</type> manually | ||
4267 | afterward. However, <type>mpu401_t</type> pointer is not | ||
4268 | returned explicitly by | ||
4269 | <function>snd_mpu401_uart_new()</function>. You need to cast | ||
4270 | rmidi->private_data to | ||
4271 | <type>mpu401_t</type> explicitly, | ||
4272 | |||
4273 | <informalexample> | ||
4274 | <programlisting> | ||
4275 | <![CDATA[ | ||
4276 | mpu401_t *mpu; | ||
4277 | mpu = rmidi->private_data; | ||
4278 | ]]> | ||
4279 | </programlisting> | ||
4280 | </informalexample> | ||
4281 | |||
4282 | and reset the cport as you like: | ||
4283 | |||
4284 | <informalexample> | ||
4285 | <programlisting> | ||
4286 | <![CDATA[ | ||
4287 | mpu->cport = my_own_control_port; | ||
4288 | ]]> | ||
4289 | </programlisting> | ||
4290 | </informalexample> | ||
4291 | </para> | ||
4292 | |||
4293 | <para> | ||
4294 | The 6th argument specifies the irq number for UART. If the irq | ||
4295 | is already allocated, pass 0 to the 7th argument | ||
4296 | (<parameter>irq_flags</parameter>). Otherwise, pass the flags | ||
4297 | for irq allocation | ||
4298 | (<constant>SA_XXX</constant> bits) to it, and the irq will be | ||
4299 | reserved by the mpu401-uart layer. If the card doesn't generates | ||
4300 | UART interrupts, pass -1 as the irq number. Then a timer | ||
4301 | interrupt will be invoked for polling. | ||
4302 | </para> | ||
4303 | </section> | ||
4304 | |||
4305 | <section id="midi-interface-interrupt-handler"> | ||
4306 | <title>Interrupt Handler</title> | ||
4307 | <para> | ||
4308 | When the interrupt is allocated in | ||
4309 | <function>snd_mpu401_uart_new()</function>, the private | ||
4310 | interrupt handler is used, hence you don't have to do nothing | ||
4311 | else than creating the mpu401 stuff. Otherwise, you have to call | ||
4312 | <function>snd_mpu401_uart_interrupt()</function> explicitly when | ||
4313 | a UART interrupt is invoked and checked in your own interrupt | ||
4314 | handler. | ||
4315 | </para> | ||
4316 | |||
4317 | <para> | ||
4318 | In this case, you need to pass the private_data of the | ||
4319 | returned rawmidi object from | ||
4320 | <function>snd_mpu401_uart_new()</function> as the second | ||
4321 | argument of <function>snd_mpu401_uart_interrupt()</function>. | ||
4322 | |||
4323 | <informalexample> | ||
4324 | <programlisting> | ||
4325 | <![CDATA[ | ||
4326 | snd_mpu401_uart_interrupt(irq, rmidi->private_data, regs); | ||
4327 | ]]> | ||
4328 | </programlisting> | ||
4329 | </informalexample> | ||
4330 | </para> | ||
4331 | </section> | ||
4332 | |||
4333 | </chapter> | ||
4334 | |||
4335 | |||
4336 | <!-- ****************************************************** --> | ||
4337 | <!-- RawMIDI Interface --> | ||
4338 | <!-- ****************************************************** --> | ||
4339 | <chapter id="rawmidi-interface"> | ||
4340 | <title>RawMIDI Interface</title> | ||
4341 | |||
4342 | <section id="rawmidi-interface-overview"> | ||
4343 | <title>Overview</title> | ||
4344 | |||
4345 | <para> | ||
4346 | The raw MIDI interface is used for hardware MIDI ports that can | ||
4347 | be accessed as a byte stream. It is not used for synthesizer | ||
4348 | chips that do not directly understand MIDI. | ||
4349 | </para> | ||
4350 | |||
4351 | <para> | ||
4352 | ALSA handles file and buffer management. All you have to do is | ||
4353 | to write some code to move data between the buffer and the | ||
4354 | hardware. | ||
4355 | </para> | ||
4356 | |||
4357 | <para> | ||
4358 | The rawmidi API is defined in | ||
4359 | <filename><sound/rawmidi.h></filename>. | ||
4360 | </para> | ||
4361 | </section> | ||
4362 | |||
4363 | <section id="rawmidi-interface-constructor"> | ||
4364 | <title>Constructor</title> | ||
4365 | |||
4366 | <para> | ||
4367 | To create a rawmidi device, call the | ||
4368 | <function>snd_rawmidi_new</function> function: | ||
4369 | <informalexample> | ||
4370 | <programlisting> | ||
4371 | <![CDATA[ | ||
4372 | snd_rawmidi_t *rmidi; | ||
4373 | err = snd_rawmidi_new(chip->card, "MyMIDI", 0, outs, ins, &rmidi); | ||
4374 | if (err < 0) | ||
4375 | return err; | ||
4376 | rmidi->private_data = chip; | ||
4377 | strcpy(rmidi->name, "My MIDI"); | ||
4378 | rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT | | ||
4379 | SNDRV_RAWMIDI_INFO_INPUT | | ||
4380 | SNDRV_RAWMIDI_INFO_DUPLEX; | ||
4381 | ]]> | ||
4382 | </programlisting> | ||
4383 | </informalexample> | ||
4384 | </para> | ||
4385 | |||
4386 | <para> | ||
4387 | The first argument is the card pointer, the second argument is | ||
4388 | the ID string. | ||
4389 | </para> | ||
4390 | |||
4391 | <para> | ||
4392 | The third argument is the index of this component. You can | ||
4393 | create up to 8 rawmidi devices. | ||
4394 | </para> | ||
4395 | |||
4396 | <para> | ||
4397 | The fourth and fifth arguments are the number of output and | ||
4398 | input substreams, respectively, of this device. (A substream is | ||
4399 | the equivalent of a MIDI port.) | ||
4400 | </para> | ||
4401 | |||
4402 | <para> | ||
4403 | Set the <structfield>info_flags</structfield> field to specify | ||
4404 | the capabilities of the device. | ||
4405 | Set <constant>SNDRV_RAWMIDI_INFO_OUTPUT</constant> if there is | ||
4406 | at least one output port, | ||
4407 | <constant>SNDRV_RAWMIDI_INFO_INPUT</constant> if there is at | ||
4408 | least one input port, | ||
4409 | and <constant>SNDRV_RAWMIDI_INFO_DUPLEX</constant> if the device | ||
4410 | can handle output and input at the same time. | ||
4411 | </para> | ||
4412 | |||
4413 | <para> | ||
4414 | After the rawmidi device is created, you need to set the | ||
4415 | operators (callbacks) for each substream. There are helper | ||
4416 | functions to set the operators for all substream of a device: | ||
4417 | <informalexample> | ||
4418 | <programlisting> | ||
4419 | <![CDATA[ | ||
4420 | snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_mymidi_output_ops); | ||
4421 | snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_mymidi_input_ops); | ||
4422 | ]]> | ||
4423 | </programlisting> | ||
4424 | </informalexample> | ||
4425 | </para> | ||
4426 | |||
4427 | <para> | ||
4428 | The operators are usually defined like this: | ||
4429 | <informalexample> | ||
4430 | <programlisting> | ||
4431 | <![CDATA[ | ||
4432 | static snd_rawmidi_ops_t snd_mymidi_output_ops = { | ||
4433 | .open = snd_mymidi_output_open, | ||
4434 | .close = snd_mymidi_output_close, | ||
4435 | .trigger = snd_mymidi_output_trigger, | ||
4436 | }; | ||
4437 | ]]> | ||
4438 | </programlisting> | ||
4439 | </informalexample> | ||
4440 | These callbacks are explained in the <link | ||
4441 | linkend="rawmidi-interface-callbacks"><citetitle>Callbacks</citetitle></link> | ||
4442 | section. | ||
4443 | </para> | ||
4444 | |||
4445 | <para> | ||
4446 | If there is more than one substream, you should give each one a | ||
4447 | unique name: | ||
4448 | <informalexample> | ||
4449 | <programlisting> | ||
4450 | <![CDATA[ | ||
4451 | struct list_head *list; | ||
4452 | snd_rawmidi_substream_t *substream; | ||
4453 | list_for_each(list, &rmidi->streams[SNDRV_RAWMIDI_STREAM_OUTPUT].substreams) { | ||
4454 | substream = list_entry(list, snd_rawmidi_substream_t, list); | ||
4455 | sprintf(substream->name, "My MIDI Port %d", substream->number + 1); | ||
4456 | } | ||
4457 | /* same for SNDRV_RAWMIDI_STREAM_INPUT */ | ||
4458 | ]]> | ||
4459 | </programlisting> | ||
4460 | </informalexample> | ||
4461 | </para> | ||
4462 | </section> | ||
4463 | |||
4464 | <section id="rawmidi-interface-callbacks"> | ||
4465 | <title>Callbacks</title> | ||
4466 | |||
4467 | <para> | ||
4468 | In all callbacks, the private data that you've set for the | ||
4469 | rawmidi device can be accessed as | ||
4470 | substream->rmidi->private_data. | ||
4471 | <!-- <code> isn't available before DocBook 4.3 --> | ||
4472 | </para> | ||
4473 | |||
4474 | <para> | ||
4475 | If there is more than one port, your callbacks can determine the | ||
4476 | port index from the snd_rawmidi_substream_t data passed to each | ||
4477 | callback: | ||
4478 | <informalexample> | ||
4479 | <programlisting> | ||
4480 | <![CDATA[ | ||
4481 | snd_rawmidi_substream_t *substream; | ||
4482 | int index = substream->number; | ||
4483 | ]]> | ||
4484 | </programlisting> | ||
4485 | </informalexample> | ||
4486 | </para> | ||
4487 | |||
4488 | <section id="rawmidi-interface-op-open"> | ||
4489 | <title><function>open</function> callback</title> | ||
4490 | |||
4491 | <informalexample> | ||
4492 | <programlisting> | ||
4493 | <![CDATA[ | ||
4494 | static int snd_xxx_open(snd_rawmidi_substream_t *substream); | ||
4495 | ]]> | ||
4496 | </programlisting> | ||
4497 | </informalexample> | ||
4498 | |||
4499 | <para> | ||
4500 | This is called when a substream is opened. | ||
4501 | You can initialize the hardware here, but you should not yet | ||
4502 | start transmitting/receiving data. | ||
4503 | </para> | ||
4504 | </section> | ||
4505 | |||
4506 | <section id="rawmidi-interface-op-close"> | ||
4507 | <title><function>close</function> callback</title> | ||
4508 | |||
4509 | <informalexample> | ||
4510 | <programlisting> | ||
4511 | <![CDATA[ | ||
4512 | static int snd_xxx_close(snd_rawmidi_substream_t *substream); | ||
4513 | ]]> | ||
4514 | </programlisting> | ||
4515 | </informalexample> | ||
4516 | |||
4517 | <para> | ||
4518 | Guess what. | ||
4519 | </para> | ||
4520 | |||
4521 | <para> | ||
4522 | The <function>open</function> and <function>close</function> | ||
4523 | callbacks of a rawmidi device are serialized with a mutex, | ||
4524 | and can sleep. | ||
4525 | </para> | ||
4526 | </section> | ||
4527 | |||
4528 | <section id="rawmidi-interface-op-trigger-out"> | ||
4529 | <title><function>trigger</function> callback for output | ||
4530 | substreams</title> | ||
4531 | |||
4532 | <informalexample> | ||
4533 | <programlisting> | ||
4534 | <![CDATA[ | ||
4535 | static void snd_xxx_output_trigger(snd_rawmidi_substream_t *substream, int up); | ||
4536 | ]]> | ||
4537 | </programlisting> | ||
4538 | </informalexample> | ||
4539 | |||
4540 | <para> | ||
4541 | This is called with a nonzero <parameter>up</parameter> | ||
4542 | parameter when there is some data in the substream buffer that | ||
4543 | must be transmitted. | ||
4544 | </para> | ||
4545 | |||
4546 | <para> | ||
4547 | To read data from the buffer, call | ||
4548 | <function>snd_rawmidi_transmit_peek</function>. It will | ||
4549 | return the number of bytes that have been read; this will be | ||
4550 | less than the number of bytes requested when there is no more | ||
4551 | data in the buffer. | ||
4552 | After the data has been transmitted successfully, call | ||
4553 | <function>snd_rawmidi_transmit_ack</function> to remove the | ||
4554 | data from the substream buffer: | ||
4555 | <informalexample> | ||
4556 | <programlisting> | ||
4557 | <![CDATA[ | ||
4558 | unsigned char data; | ||
4559 | while (snd_rawmidi_transmit_peek(substream, &data, 1) == 1) { | ||
4560 | if (mychip_try_to_transmit(data)) | ||
4561 | snd_rawmidi_transmit_ack(substream, 1); | ||
4562 | else | ||
4563 | break; /* hardware FIFO full */ | ||
4564 | } | ||
4565 | ]]> | ||
4566 | </programlisting> | ||
4567 | </informalexample> | ||
4568 | </para> | ||
4569 | |||
4570 | <para> | ||
4571 | If you know beforehand that the hardware will accept data, you | ||
4572 | can use the <function>snd_rawmidi_transmit</function> function | ||
4573 | which reads some data and removes it from the buffer at once: | ||
4574 | <informalexample> | ||
4575 | <programlisting> | ||
4576 | <![CDATA[ | ||
4577 | while (mychip_transmit_possible()) { | ||
4578 | unsigned char data; | ||
4579 | if (snd_rawmidi_transmit(substream, &data, 1) != 1) | ||
4580 | break; /* no more data */ | ||
4581 | mychip_transmit(data); | ||
4582 | } | ||
4583 | ]]> | ||
4584 | </programlisting> | ||
4585 | </informalexample> | ||
4586 | </para> | ||
4587 | |||
4588 | <para> | ||
4589 | If you know beforehand how many bytes you can accept, you can | ||
4590 | use a buffer size greater than one with the | ||
4591 | <function>snd_rawmidi_transmit*</function> functions. | ||
4592 | </para> | ||
4593 | |||
4594 | <para> | ||
4595 | The <function>trigger</function> callback must not sleep. If | ||
4596 | the hardware FIFO is full before the substream buffer has been | ||
4597 | emptied, you have to continue transmitting data later, either | ||
4598 | in an interrupt handler, or with a timer if the hardware | ||
4599 | doesn't have a MIDI transmit interrupt. | ||
4600 | </para> | ||
4601 | |||
4602 | <para> | ||
4603 | The <function>trigger</function> callback is called with a | ||
4604 | zero <parameter>up</parameter> parameter when the transmission | ||
4605 | of data should be aborted. | ||
4606 | </para> | ||
4607 | </section> | ||
4608 | |||
4609 | <section id="rawmidi-interface-op-trigger-in"> | ||
4610 | <title><function>trigger</function> callback for input | ||
4611 | substreams</title> | ||
4612 | |||
4613 | <informalexample> | ||
4614 | <programlisting> | ||
4615 | <![CDATA[ | ||
4616 | static void snd_xxx_input_trigger(snd_rawmidi_substream_t *substream, int up); | ||
4617 | ]]> | ||
4618 | </programlisting> | ||
4619 | </informalexample> | ||
4620 | |||
4621 | <para> | ||
4622 | This is called with a nonzero <parameter>up</parameter> | ||
4623 | parameter to enable receiving data, or with a zero | ||
4624 | <parameter>up</parameter> parameter do disable receiving data. | ||
4625 | </para> | ||
4626 | |||
4627 | <para> | ||
4628 | The <function>trigger</function> callback must not sleep; the | ||
4629 | actual reading of data from the device is usually done in an | ||
4630 | interrupt handler. | ||
4631 | </para> | ||
4632 | |||
4633 | <para> | ||
4634 | When data reception is enabled, your interrupt handler should | ||
4635 | call <function>snd_rawmidi_receive</function> for all received | ||
4636 | data: | ||
4637 | <informalexample> | ||
4638 | <programlisting> | ||
4639 | <![CDATA[ | ||
4640 | void snd_mychip_midi_interrupt(...) | ||
4641 | { | ||
4642 | while (mychip_midi_available()) { | ||
4643 | unsigned char data; | ||
4644 | data = mychip_midi_read(); | ||
4645 | snd_rawmidi_receive(substream, &data, 1); | ||
4646 | } | ||
4647 | } | ||
4648 | ]]> | ||
4649 | </programlisting> | ||
4650 | </informalexample> | ||
4651 | </para> | ||
4652 | </section> | ||
4653 | |||
4654 | <section id="rawmidi-interface-op-drain"> | ||
4655 | <title><function>drain</function> callback</title> | ||
4656 | |||
4657 | <informalexample> | ||
4658 | <programlisting> | ||
4659 | <![CDATA[ | ||
4660 | static void snd_xxx_drain(snd_rawmidi_substream_t *substream); | ||
4661 | ]]> | ||
4662 | </programlisting> | ||
4663 | </informalexample> | ||
4664 | |||
4665 | <para> | ||
4666 | This is only used with output substreams. This function should wait | ||
4667 | until all data read from the substream buffer has been transmitted. | ||
4668 | This ensures that the device can be closed and the driver unloaded | ||
4669 | without losing data. | ||
4670 | </para> | ||
4671 | |||
4672 | <para> | ||
4673 | This callback is optional. If you do not set | ||
4674 | <structfield>drain</structfield> in the snd_rawmidi_ops_t | ||
4675 | structure, ALSA will simply wait for 50 milliseconds | ||
4676 | instead. | ||
4677 | </para> | ||
4678 | </section> | ||
4679 | </section> | ||
4680 | |||
4681 | </chapter> | ||
4682 | |||
4683 | |||
4684 | <!-- ****************************************************** --> | ||
4685 | <!-- Miscellaneous Devices --> | ||
4686 | <!-- ****************************************************** --> | ||
4687 | <chapter id="misc-devices"> | ||
4688 | <title>Miscellaneous Devices</title> | ||
4689 | |||
4690 | <section id="misc-devices-opl3"> | ||
4691 | <title>FM OPL3</title> | ||
4692 | <para> | ||
4693 | The FM OPL3 is still used on many chips (mainly for backward | ||
4694 | compatibility). ALSA has a nice OPL3 FM control layer, too. The | ||
4695 | OPL3 API is defined in | ||
4696 | <filename><sound/opl3.h></filename>. | ||
4697 | </para> | ||
4698 | |||
4699 | <para> | ||
4700 | FM registers can be directly accessed through direct-FM API, | ||
4701 | defined in <filename><sound/asound_fm.h></filename>. In | ||
4702 | ALSA native mode, FM registers are accessed through | ||
4703 | Hardware-Dependant Device direct-FM extension API, whereas in | ||
4704 | OSS compatible mode, FM registers can be accessed with OSS | ||
4705 | direct-FM compatible API on <filename>/dev/dmfmX</filename> device. | ||
4706 | </para> | ||
4707 | |||
4708 | <para> | ||
4709 | For creating the OPL3 component, you have two functions to | ||
4710 | call. The first one is a constructor for <type>opl3_t</type> | ||
4711 | instance. | ||
4712 | |||
4713 | <informalexample> | ||
4714 | <programlisting> | ||
4715 | <![CDATA[ | ||
4716 | opl3_t *opl3; | ||
4717 | snd_opl3_create(card, lport, rport, OPL3_HW_OPL3_XXX, | ||
4718 | integrated, &opl3); | ||
4719 | ]]> | ||
4720 | </programlisting> | ||
4721 | </informalexample> | ||
4722 | </para> | ||
4723 | |||
4724 | <para> | ||
4725 | The first argument is the card pointer, the second one is the | ||
4726 | left port address, and the third is the right port address. In | ||
4727 | most cases, the right port is placed at the left port + 2. | ||
4728 | </para> | ||
4729 | |||
4730 | <para> | ||
4731 | The fourth argument is the hardware type. | ||
4732 | </para> | ||
4733 | |||
4734 | <para> | ||
4735 | When the left and right ports have been already allocated by | ||
4736 | the card driver, pass non-zero to the fifth argument | ||
4737 | (<parameter>integrated</parameter>). Otherwise, opl3 module will | ||
4738 | allocate the specified ports by itself. | ||
4739 | </para> | ||
4740 | |||
4741 | <para> | ||
4742 | When the accessing to the hardware requires special method | ||
4743 | instead of the standard I/O access, you can create opl3 instance | ||
4744 | separately with <function>snd_opl3_new()</function>. | ||
4745 | |||
4746 | <informalexample> | ||
4747 | <programlisting> | ||
4748 | <![CDATA[ | ||
4749 | opl3_t *opl3; | ||
4750 | snd_opl3_new(card, OPL3_HW_OPL3_XXX, &opl3); | ||
4751 | ]]> | ||
4752 | </programlisting> | ||
4753 | </informalexample> | ||
4754 | </para> | ||
4755 | |||
4756 | <para> | ||
4757 | Then set <structfield>command</structfield>, | ||
4758 | <structfield>private_data</structfield> and | ||
4759 | <structfield>private_free</structfield> for the private | ||
4760 | access function, the private data and the destructor. | ||
4761 | The l_port and r_port are not necessarily set. Only the | ||
4762 | command must be set properly. You can retrieve the data | ||
4763 | from opl3->private_data field. | ||
4764 | </para> | ||
4765 | |||
4766 | <para> | ||
4767 | After creating the opl3 instance via <function>snd_opl3_new()</function>, | ||
4768 | call <function>snd_opl3_init()</function> to initialize the chip to the | ||
4769 | proper state. Note that <function>snd_opl3_create()</function> always | ||
4770 | calls it internally. | ||
4771 | </para> | ||
4772 | |||
4773 | <para> | ||
4774 | If the opl3 instance is created successfully, then create a | ||
4775 | hwdep device for this opl3. | ||
4776 | |||
4777 | <informalexample> | ||
4778 | <programlisting> | ||
4779 | <![CDATA[ | ||
4780 | snd_hwdep_t *opl3hwdep; | ||
4781 | snd_opl3_hwdep_new(opl3, 0, 1, &opl3hwdep); | ||
4782 | ]]> | ||
4783 | </programlisting> | ||
4784 | </informalexample> | ||
4785 | </para> | ||
4786 | |||
4787 | <para> | ||
4788 | The first argument is the <type>opl3_t</type> instance you | ||
4789 | created, and the second is the index number, usually 0. | ||
4790 | </para> | ||
4791 | |||
4792 | <para> | ||
4793 | The third argument is the index-offset for the sequencer | ||
4794 | client assigned to the OPL3 port. When there is an MPU401-UART, | ||
4795 | give 1 for here (UART always takes 0). | ||
4796 | </para> | ||
4797 | </section> | ||
4798 | |||
4799 | <section id="misc-devices-hardware-dependent"> | ||
4800 | <title>Hardware-Dependent Devices</title> | ||
4801 | <para> | ||
4802 | Some chips need the access from the user-space for special | ||
4803 | controls or for loading the micro code. In such a case, you can | ||
4804 | create a hwdep (hardware-dependent) device. The hwdep API is | ||
4805 | defined in <filename><sound/hwdep.h></filename>. You can | ||
4806 | find examples in opl3 driver or | ||
4807 | <filename>isa/sb/sb16_csp.c</filename>. | ||
4808 | </para> | ||
4809 | |||
4810 | <para> | ||
4811 | Creation of the <type>hwdep</type> instance is done via | ||
4812 | <function>snd_hwdep_new()</function>. | ||
4813 | |||
4814 | <informalexample> | ||
4815 | <programlisting> | ||
4816 | <![CDATA[ | ||
4817 | snd_hwdep_t *hw; | ||
4818 | snd_hwdep_new(card, "My HWDEP", 0, &hw); | ||
4819 | ]]> | ||
4820 | </programlisting> | ||
4821 | </informalexample> | ||
4822 | |||
4823 | where the third argument is the index number. | ||
4824 | </para> | ||
4825 | |||
4826 | <para> | ||
4827 | You can then pass any pointer value to the | ||
4828 | <parameter>private_data</parameter>. | ||
4829 | If you assign a private data, you should define the | ||
4830 | destructor, too. The destructor function is set to | ||
4831 | <structfield>private_free</structfield> field. | ||
4832 | |||
4833 | <informalexample> | ||
4834 | <programlisting> | ||
4835 | <![CDATA[ | ||
4836 | mydata_t *p = kmalloc(sizeof(*p), GFP_KERNEL); | ||
4837 | hw->private_data = p; | ||
4838 | hw->private_free = mydata_free; | ||
4839 | ]]> | ||
4840 | </programlisting> | ||
4841 | </informalexample> | ||
4842 | |||
4843 | and the implementation of destructor would be: | ||
4844 | |||
4845 | <informalexample> | ||
4846 | <programlisting> | ||
4847 | <![CDATA[ | ||
4848 | static void mydata_free(snd_hwdep_t *hw) | ||
4849 | { | ||
4850 | mydata_t *p = hw->private_data; | ||
4851 | kfree(p); | ||
4852 | } | ||
4853 | ]]> | ||
4854 | </programlisting> | ||
4855 | </informalexample> | ||
4856 | </para> | ||
4857 | |||
4858 | <para> | ||
4859 | The arbitrary file operations can be defined for this | ||
4860 | instance. The file operators are defined in | ||
4861 | <parameter>ops</parameter> table. For example, assume that | ||
4862 | this chip needs an ioctl. | ||
4863 | |||
4864 | <informalexample> | ||
4865 | <programlisting> | ||
4866 | <![CDATA[ | ||
4867 | hw->ops.open = mydata_open; | ||
4868 | hw->ops.ioctl = mydata_ioctl; | ||
4869 | hw->ops.release = mydata_release; | ||
4870 | ]]> | ||
4871 | </programlisting> | ||
4872 | </informalexample> | ||
4873 | |||
4874 | And implement the callback functions as you like. | ||
4875 | </para> | ||
4876 | </section> | ||
4877 | |||
4878 | <section id="misc-devices-IEC958"> | ||
4879 | <title>IEC958 (S/PDIF)</title> | ||
4880 | <para> | ||
4881 | Usually the controls for IEC958 devices are implemented via | ||
4882 | control interface. There is a macro to compose a name string for | ||
4883 | IEC958 controls, <function>SNDRV_CTL_NAME_IEC958()</function> | ||
4884 | defined in <filename><include/asound.h></filename>. | ||
4885 | </para> | ||
4886 | |||
4887 | <para> | ||
4888 | There are some standard controls for IEC958 status bits. These | ||
4889 | controls use the type <type>SNDRV_CTL_ELEM_TYPE_IEC958</type>, | ||
4890 | and the size of element is fixed as 4 bytes array | ||
4891 | (value.iec958.status[x]). For <structfield>info</structfield> | ||
4892 | callback, you don't specify | ||
4893 | the value field for this type (the count field must be set, | ||
4894 | though). | ||
4895 | </para> | ||
4896 | |||
4897 | <para> | ||
4898 | <quote>IEC958 Playback Con Mask</quote> is used to return the | ||
4899 | bit-mask for the IEC958 status bits of consumer mode. Similarly, | ||
4900 | <quote>IEC958 Playback Pro Mask</quote> returns the bitmask for | ||
4901 | professional mode. They are read-only controls, and are defined | ||
4902 | as MIXER controls (iface = | ||
4903 | <constant>SNDRV_CTL_ELEM_IFACE_MIXER</constant>). | ||
4904 | </para> | ||
4905 | |||
4906 | <para> | ||
4907 | Meanwhile, <quote>IEC958 Playback Default</quote> control is | ||
4908 | defined for getting and setting the current default IEC958 | ||
4909 | bits. Note that this one is usually defined as a PCM control | ||
4910 | (iface = <constant>SNDRV_CTL_ELEM_IFACE_PCM</constant>), | ||
4911 | although in some places it's defined as a MIXER control. | ||
4912 | </para> | ||
4913 | |||
4914 | <para> | ||
4915 | In addition, you can define the control switches to | ||
4916 | enable/disable or to set the raw bit mode. The implementation | ||
4917 | will depend on the chip, but the control should be named as | ||
4918 | <quote>IEC958 xxx</quote>, preferably using | ||
4919 | <function>SNDRV_CTL_NAME_IEC958()</function> macro. | ||
4920 | </para> | ||
4921 | |||
4922 | <para> | ||
4923 | You can find several cases, for example, | ||
4924 | <filename>pci/emu10k1</filename>, | ||
4925 | <filename>pci/ice1712</filename>, or | ||
4926 | <filename>pci/cmipci.c</filename>. | ||
4927 | </para> | ||
4928 | </section> | ||
4929 | |||
4930 | </chapter> | ||
4931 | |||
4932 | |||
4933 | <!-- ****************************************************** --> | ||
4934 | <!-- Buffer and Memory Management --> | ||
4935 | <!-- ****************************************************** --> | ||
4936 | <chapter id="buffer-and-memory"> | ||
4937 | <title>Buffer and Memory Management</title> | ||
4938 | |||
4939 | <section id="buffer-and-memory-buffer-types"> | ||
4940 | <title>Buffer Types</title> | ||
4941 | <para> | ||
4942 | ALSA provides several different buffer allocation functions | ||
4943 | depending on the bus and the architecture. All these have a | ||
4944 | consistent API. The allocation of physically-contiguous pages is | ||
4945 | done via | ||
4946 | <function>snd_malloc_xxx_pages()</function> function, where xxx | ||
4947 | is the bus type. | ||
4948 | </para> | ||
4949 | |||
4950 | <para> | ||
4951 | The allocation of pages with fallback is | ||
4952 | <function>snd_malloc_xxx_pages_fallback()</function>. This | ||
4953 | function tries to allocate the specified pages but if the pages | ||
4954 | are not available, it tries to reduce the page sizes until the | ||
4955 | enough space is found. | ||
4956 | </para> | ||
4957 | |||
4958 | <para> | ||
4959 | For releasing the space, call | ||
4960 | <function>snd_free_xxx_pages()</function> function. | ||
4961 | </para> | ||
4962 | |||
4963 | <para> | ||
4964 | Usually, ALSA drivers try to allocate and reserve | ||
4965 | a large contiguous physical space | ||
4966 | at the time the module is loaded for the later use. | ||
4967 | This is called <quote>pre-allocation</quote>. | ||
4968 | As already written, you can call the following function at the | ||
4969 | construction of pcm instance (in the case of PCI bus). | ||
4970 | |||
4971 | <informalexample> | ||
4972 | <programlisting> | ||
4973 | <![CDATA[ | ||
4974 | snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, | ||
4975 | snd_dma_pci_data(pci), size, max); | ||
4976 | ]]> | ||
4977 | </programlisting> | ||
4978 | </informalexample> | ||
4979 | |||
4980 | where <parameter>size</parameter> is the byte size to be | ||
4981 | pre-allocated and the <parameter>max</parameter> is the maximal | ||
4982 | size to be changed via <filename>prealloc</filename> proc file. | ||
4983 | The allocator will try to get as large area as possible | ||
4984 | within the given size. | ||
4985 | </para> | ||
4986 | |||
4987 | <para> | ||
4988 | The second argument (type) and the third argument (device pointer) | ||
4989 | are dependent on the bus. | ||
4990 | In the case of ISA bus, pass <function>snd_dma_isa_data()</function> | ||
4991 | as the third argument with <constant>SNDRV_DMA_TYPE_DEV</constant> type. | ||
4992 | For the continuous buffer unrelated to the bus can be pre-allocated | ||
4993 | with <constant>SNDRV_DMA_TYPE_CONTINUOUS</constant> type and the | ||
4994 | <function>snd_dma_continuous_data(GFP_KERNEL)</function> device pointer, | ||
4995 | whereh <constant>GFP_KERNEL</constant> is the kernel allocation flag to | ||
4996 | use. For the SBUS, <constant>SNDRV_DMA_TYPE_SBUS</constant> and | ||
4997 | <function>snd_dma_sbus_data(sbus_dev)</function> are used instead. | ||
4998 | For the PCI scatter-gather buffers, use | ||
4999 | <constant>SNDRV_DMA_TYPE_DEV_SG</constant> with | ||
5000 | <function>snd_dma_pci_data(pci)</function> | ||
5001 | (see the section | ||
5002 | <link linkend="buffer-and-memory-non-contiguous"><citetitle>Non-Contiguous Buffers | ||
5003 | </citetitle></link>). | ||
5004 | </para> | ||
5005 | |||
5006 | <para> | ||
5007 | Once when the buffer is pre-allocated, you can use the | ||
5008 | allocator in the <structfield>hw_params</structfield> callback | ||
5009 | |||
5010 | <informalexample> | ||
5011 | <programlisting> | ||
5012 | <![CDATA[ | ||
5013 | snd_pcm_lib_malloc_pages(substream, size); | ||
5014 | ]]> | ||
5015 | </programlisting> | ||
5016 | </informalexample> | ||
5017 | |||
5018 | Note that you have to pre-allocate to use this function. | ||
5019 | </para> | ||
5020 | </section> | ||
5021 | |||
5022 | <section id="buffer-and-memory-external-hardware"> | ||
5023 | <title>External Hardware Buffers</title> | ||
5024 | <para> | ||
5025 | Some chips have their own hardware buffers and the DMA | ||
5026 | transfer from the host memory is not available. In such a case, | ||
5027 | you need to either 1) copy/set the audio data directly to the | ||
5028 | external hardware buffer, or 2) make an intermediate buffer and | ||
5029 | copy/set the data from it to the external hardware buffer in | ||
5030 | interrupts (or in tasklets, preferably). | ||
5031 | </para> | ||
5032 | |||
5033 | <para> | ||
5034 | The first case works fine if the external hardware buffer is enough | ||
5035 | large. This method doesn't need any extra buffers and thus is | ||
5036 | more effective. You need to define the | ||
5037 | <structfield>copy</structfield> and | ||
5038 | <structfield>silence</structfield> callbacks for | ||
5039 | the data transfer. However, there is a drawback: it cannot | ||
5040 | be mmapped. The examples are GUS's GF1 PCM or emu8000's | ||
5041 | wavetable PCM. | ||
5042 | </para> | ||
5043 | |||
5044 | <para> | ||
5045 | The second case allows the mmap of the buffer, although you have | ||
5046 | to handle an interrupt or a tasklet for transferring the data | ||
5047 | from the intermediate buffer to the hardware buffer. You can find an | ||
5048 | example in vxpocket driver. | ||
5049 | </para> | ||
5050 | |||
5051 | <para> | ||
5052 | Another case is that the chip uses a PCI memory-map | ||
5053 | region for the buffer instead of the host memory. In this case, | ||
5054 | mmap is available only on certain architectures like intel. In | ||
5055 | non-mmap mode, the data cannot be transferred as the normal | ||
5056 | way. Thus you need to define <structfield>copy</structfield> and | ||
5057 | <structfield>silence</structfield> callbacks as well | ||
5058 | as in the cases above. The examples are found in | ||
5059 | <filename>rme32.c</filename> and <filename>rme96.c</filename>. | ||
5060 | </para> | ||
5061 | |||
5062 | <para> | ||
5063 | The implementation of <structfield>copy</structfield> and | ||
5064 | <structfield>silence</structfield> callbacks depends upon | ||
5065 | whether the hardware supports interleaved or non-interleaved | ||
5066 | samples. The <structfield>copy</structfield> callback is | ||
5067 | defined like below, a bit | ||
5068 | differently depending whether the direction is playback or | ||
5069 | capture: | ||
5070 | |||
5071 | <informalexample> | ||
5072 | <programlisting> | ||
5073 | <![CDATA[ | ||
5074 | static int playback_copy(snd_pcm_substream_t *substream, int channel, | ||
5075 | snd_pcm_uframes_t pos, void *src, snd_pcm_uframes_t count); | ||
5076 | static int capture_copy(snd_pcm_substream_t *substream, int channel, | ||
5077 | snd_pcm_uframes_t pos, void *dst, snd_pcm_uframes_t count); | ||
5078 | ]]> | ||
5079 | </programlisting> | ||
5080 | </informalexample> | ||
5081 | </para> | ||
5082 | |||
5083 | <para> | ||
5084 | In the case of interleaved samples, the second argument | ||
5085 | (<parameter>channel</parameter>) is not used. The third argument | ||
5086 | (<parameter>pos</parameter>) points the | ||
5087 | current position offset in frames. | ||
5088 | </para> | ||
5089 | |||
5090 | <para> | ||
5091 | The meaning of the fourth argument is different between | ||
5092 | playback and capture. For playback, it holds the source data | ||
5093 | pointer, and for capture, it's the destination data pointer. | ||
5094 | </para> | ||
5095 | |||
5096 | <para> | ||
5097 | The last argument is the number of frames to be copied. | ||
5098 | </para> | ||
5099 | |||
5100 | <para> | ||
5101 | What you have to do in this callback is again different | ||
5102 | between playback and capture directions. In the case of | ||
5103 | playback, you do: copy the given amount of data | ||
5104 | (<parameter>count</parameter>) at the specified pointer | ||
5105 | (<parameter>src</parameter>) to the specified offset | ||
5106 | (<parameter>pos</parameter>) on the hardware buffer. When | ||
5107 | coded like memcpy-like way, the copy would be like: | ||
5108 | |||
5109 | <informalexample> | ||
5110 | <programlisting> | ||
5111 | <![CDATA[ | ||
5112 | my_memcpy(my_buffer + frames_to_bytes(runtime, pos), src, | ||
5113 | frames_to_bytes(runtime, count)); | ||
5114 | ]]> | ||
5115 | </programlisting> | ||
5116 | </informalexample> | ||
5117 | </para> | ||
5118 | |||
5119 | <para> | ||
5120 | For the capture direction, you do: copy the given amount of | ||
5121 | data (<parameter>count</parameter>) at the specified offset | ||
5122 | (<parameter>pos</parameter>) on the hardware buffer to the | ||
5123 | specified pointer (<parameter>dst</parameter>). | ||
5124 | |||
5125 | <informalexample> | ||
5126 | <programlisting> | ||
5127 | <![CDATA[ | ||
5128 | my_memcpy(dst, my_buffer + frames_to_bytes(runtime, pos), | ||
5129 | frames_to_bytes(runtime, count)); | ||
5130 | ]]> | ||
5131 | </programlisting> | ||
5132 | </informalexample> | ||
5133 | |||
5134 | Note that both of the position and the data amount are given | ||
5135 | in frames. | ||
5136 | </para> | ||
5137 | |||
5138 | <para> | ||
5139 | In the case of non-interleaved samples, the implementation | ||
5140 | will be a bit more complicated. | ||
5141 | </para> | ||
5142 | |||
5143 | <para> | ||
5144 | You need to check the channel argument, and if it's -1, copy | ||
5145 | the whole channels. Otherwise, you have to copy only the | ||
5146 | specified channel. Please check | ||
5147 | <filename>isa/gus/gus_pcm.c</filename> as an example. | ||
5148 | </para> | ||
5149 | |||
5150 | <para> | ||
5151 | The <structfield>silence</structfield> callback is also | ||
5152 | implemented in a similar way. | ||
5153 | |||
5154 | <informalexample> | ||
5155 | <programlisting> | ||
5156 | <![CDATA[ | ||
5157 | static int silence(snd_pcm_substream_t *substream, int channel, | ||
5158 | snd_pcm_uframes_t pos, snd_pcm_uframes_t count); | ||
5159 | ]]> | ||
5160 | </programlisting> | ||
5161 | </informalexample> | ||
5162 | </para> | ||
5163 | |||
5164 | <para> | ||
5165 | The meanings of arguments are identical with the | ||
5166 | <structfield>copy</structfield> | ||
5167 | callback, although there is no <parameter>src/dst</parameter> | ||
5168 | argument. In the case of interleaved samples, the channel | ||
5169 | argument has no meaning, as well as on | ||
5170 | <structfield>copy</structfield> callback. | ||
5171 | </para> | ||
5172 | |||
5173 | <para> | ||
5174 | The role of <structfield>silence</structfield> callback is to | ||
5175 | set the given amount | ||
5176 | (<parameter>count</parameter>) of silence data at the | ||
5177 | specified offset (<parameter>pos</parameter>) on the hardware | ||
5178 | buffer. Suppose that the data format is signed (that is, the | ||
5179 | silent-data is 0), and the implementation using a memset-like | ||
5180 | function would be like: | ||
5181 | |||
5182 | <informalexample> | ||
5183 | <programlisting> | ||
5184 | <![CDATA[ | ||
5185 | my_memcpy(my_buffer + frames_to_bytes(runtime, pos), 0, | ||
5186 | frames_to_bytes(runtime, count)); | ||
5187 | ]]> | ||
5188 | </programlisting> | ||
5189 | </informalexample> | ||
5190 | </para> | ||
5191 | |||
5192 | <para> | ||
5193 | In the case of non-interleaved samples, again, the | ||
5194 | implementation becomes a bit more complicated. See, for example, | ||
5195 | <filename>isa/gus/gus_pcm.c</filename>. | ||
5196 | </para> | ||
5197 | </section> | ||
5198 | |||
5199 | <section id="buffer-and-memory-non-contiguous"> | ||
5200 | <title>Non-Contiguous Buffers</title> | ||
5201 | <para> | ||
5202 | If your hardware supports the page table like emu10k1 or the | ||
5203 | buffer descriptors like via82xx, you can use the scatter-gather | ||
5204 | (SG) DMA. ALSA provides an interface for handling SG-buffers. | ||
5205 | The API is provided in <filename><sound/pcm.h></filename>. | ||
5206 | </para> | ||
5207 | |||
5208 | <para> | ||
5209 | For creating the SG-buffer handler, call | ||
5210 | <function>snd_pcm_lib_preallocate_pages()</function> or | ||
5211 | <function>snd_pcm_lib_preallocate_pages_for_all()</function> | ||
5212 | with <constant>SNDRV_DMA_TYPE_DEV_SG</constant> | ||
5213 | in the PCM constructor like other PCI pre-allocator. | ||
5214 | You need to pass the <function>snd_dma_pci_data(pci)</function>, | ||
5215 | where pci is the struct <structname>pci_dev</structname> pointer | ||
5216 | of the chip as well. | ||
5217 | The <type>snd_sg_buf_t</type> instance is created as | ||
5218 | substream->dma_private. You can cast | ||
5219 | the pointer like: | ||
5220 | |||
5221 | <informalexample> | ||
5222 | <programlisting> | ||
5223 | <![CDATA[ | ||
5224 | snd_pcm_sgbuf_t *sgbuf = (snd_pcm_sgbuf_t*)substream->dma_private; | ||
5225 | ]]> | ||
5226 | </programlisting> | ||
5227 | </informalexample> | ||
5228 | </para> | ||
5229 | |||
5230 | <para> | ||
5231 | Then call <function>snd_pcm_lib_malloc_pages()</function> | ||
5232 | in <structfield>hw_params</structfield> callback | ||
5233 | as well as in the case of normal PCI buffer. | ||
5234 | The SG-buffer handler will allocate the non-contiguous kernel | ||
5235 | pages of the given size and map them onto the virtually contiguous | ||
5236 | memory. The virtual pointer is addressed in runtime->dma_area. | ||
5237 | The physical address (runtime->dma_addr) is set to zero, | ||
5238 | because the buffer is physically non-contigous. | ||
5239 | The physical address table is set up in sgbuf->table. | ||
5240 | You can get the physical address at a certain offset via | ||
5241 | <function>snd_pcm_sgbuf_get_addr()</function>. | ||
5242 | </para> | ||
5243 | |||
5244 | <para> | ||
5245 | When a SG-handler is used, you need to set | ||
5246 | <function>snd_pcm_sgbuf_ops_page</function> as | ||
5247 | the <structfield>page</structfield> callback. | ||
5248 | (See <link linkend="pcm-interface-operators-page-callback"> | ||
5249 | <citetitle>page callback section</citetitle></link>.) | ||
5250 | </para> | ||
5251 | |||
5252 | <para> | ||
5253 | For releasing the data, call | ||
5254 | <function>snd_pcm_lib_free_pages()</function> in the | ||
5255 | <structfield>hw_free</structfield> callback as usual. | ||
5256 | </para> | ||
5257 | </section> | ||
5258 | |||
5259 | <section id="buffer-and-memory-vmalloced"> | ||
5260 | <title>Vmalloc'ed Buffers</title> | ||
5261 | <para> | ||
5262 | It's possible to use a buffer allocated via | ||
5263 | <function>vmalloc</function>, for example, for an intermediate | ||
5264 | buffer. Since the allocated pages are not contiguous, you need | ||
5265 | to set the <structfield>page</structfield> callback to obtain | ||
5266 | the physical address at every offset. | ||
5267 | </para> | ||
5268 | |||
5269 | <para> | ||
5270 | The implementation of <structfield>page</structfield> callback | ||
5271 | would be like this: | ||
5272 | |||
5273 | <informalexample> | ||
5274 | <programlisting> | ||
5275 | <![CDATA[ | ||
5276 | #include <linux/vmalloc.h> | ||
5277 | |||
5278 | /* get the physical page pointer on the given offset */ | ||
5279 | static struct page *mychip_page(snd_pcm_substream_t *substream, | ||
5280 | unsigned long offset) | ||
5281 | { | ||
5282 | void *pageptr = substream->runtime->dma_area + offset; | ||
5283 | return vmalloc_to_page(pageptr); | ||
5284 | } | ||
5285 | ]]> | ||
5286 | </programlisting> | ||
5287 | </informalexample> | ||
5288 | </para> | ||
5289 | </section> | ||
5290 | |||
5291 | </chapter> | ||
5292 | |||
5293 | |||
5294 | <!-- ****************************************************** --> | ||
5295 | <!-- Proc Interface --> | ||
5296 | <!-- ****************************************************** --> | ||
5297 | <chapter id="proc-interface"> | ||
5298 | <title>Proc Interface</title> | ||
5299 | <para> | ||
5300 | ALSA provides an easy interface for procfs. The proc files are | ||
5301 | very useful for debugging. I recommend you set up proc files if | ||
5302 | you write a driver and want to get a running status or register | ||
5303 | dumps. The API is found in | ||
5304 | <filename><sound/info.h></filename>. | ||
5305 | </para> | ||
5306 | |||
5307 | <para> | ||
5308 | For creating a proc file, call | ||
5309 | <function>snd_card_proc_new()</function>. | ||
5310 | |||
5311 | <informalexample> | ||
5312 | <programlisting> | ||
5313 | <![CDATA[ | ||
5314 | snd_info_entry_t *entry; | ||
5315 | int err = snd_card_proc_new(card, "my-file", &entry); | ||
5316 | ]]> | ||
5317 | </programlisting> | ||
5318 | </informalexample> | ||
5319 | |||
5320 | where the second argument specifies the proc-file name to be | ||
5321 | created. The above example will create a file | ||
5322 | <filename>my-file</filename> under the card directory, | ||
5323 | e.g. <filename>/proc/asound/card0/my-file</filename>. | ||
5324 | </para> | ||
5325 | |||
5326 | <para> | ||
5327 | Like other components, the proc entry created via | ||
5328 | <function>snd_card_proc_new()</function> will be registered and | ||
5329 | released automatically in the card registration and release | ||
5330 | functions. | ||
5331 | </para> | ||
5332 | |||
5333 | <para> | ||
5334 | When the creation is successful, the function stores a new | ||
5335 | instance at the pointer given in the third argument. | ||
5336 | It is initialized as a text proc file for read only. For using | ||
5337 | this proc file as a read-only text file as it is, set the read | ||
5338 | callback with a private data via | ||
5339 | <function>snd_info_set_text_ops()</function>. | ||
5340 | |||
5341 | <informalexample> | ||
5342 | <programlisting> | ||
5343 | <![CDATA[ | ||
5344 | snd_info_set_text_ops(entry, chip, read_size, my_proc_read); | ||
5345 | ]]> | ||
5346 | </programlisting> | ||
5347 | </informalexample> | ||
5348 | |||
5349 | where the second argument (<parameter>chip</parameter>) is the | ||
5350 | private data to be used in the callbacks. The third parameter | ||
5351 | specifies the read buffer size and the fourth | ||
5352 | (<parameter>my_proc_read</parameter>) is the callback function, which | ||
5353 | is defined like | ||
5354 | |||
5355 | <informalexample> | ||
5356 | <programlisting> | ||
5357 | <![CDATA[ | ||
5358 | static void my_proc_read(snd_info_entry_t *entry, | ||
5359 | snd_info_buffer_t *buffer); | ||
5360 | ]]> | ||
5361 | </programlisting> | ||
5362 | </informalexample> | ||
5363 | |||
5364 | </para> | ||
5365 | |||
5366 | <para> | ||
5367 | In the read callback, use <function>snd_iprintf()</function> for | ||
5368 | output strings, which works just like normal | ||
5369 | <function>printf()</function>. For example, | ||
5370 | |||
5371 | <informalexample> | ||
5372 | <programlisting> | ||
5373 | <![CDATA[ | ||
5374 | static void my_proc_read(snd_info_entry_t *entry, | ||
5375 | snd_info_buffer_t *buffer) | ||
5376 | { | ||
5377 | chip_t *chip = entry->private_data; | ||
5378 | |||
5379 | snd_iprintf(buffer, "This is my chip!\n"); | ||
5380 | snd_iprintf(buffer, "Port = %ld\n", chip->port); | ||
5381 | } | ||
5382 | ]]> | ||
5383 | </programlisting> | ||
5384 | </informalexample> | ||
5385 | </para> | ||
5386 | |||
5387 | <para> | ||
5388 | The file permission can be changed afterwards. As default, it's | ||
5389 | set as read only for all users. If you want to add the write | ||
5390 | permission to the user (root as default), set like below: | ||
5391 | |||
5392 | <informalexample> | ||
5393 | <programlisting> | ||
5394 | <![CDATA[ | ||
5395 | entry->mode = S_IFREG | S_IRUGO | S_IWUSR; | ||
5396 | ]]> | ||
5397 | </programlisting> | ||
5398 | </informalexample> | ||
5399 | |||
5400 | and set the write buffer size and the callback | ||
5401 | |||
5402 | <informalexample> | ||
5403 | <programlisting> | ||
5404 | <![CDATA[ | ||
5405 | entry->c.text.write_size = 256; | ||
5406 | entry->c.text.write = my_proc_write; | ||
5407 | ]]> | ||
5408 | </programlisting> | ||
5409 | </informalexample> | ||
5410 | </para> | ||
5411 | |||
5412 | <para> | ||
5413 | The buffer size for read is set to 1024 implicitly by | ||
5414 | <function>snd_info_set_text_ops()</function>. It should suffice | ||
5415 | in most cases (the size will be aligned to | ||
5416 | <constant>PAGE_SIZE</constant> anyway), but if you need to handle | ||
5417 | very large text files, you can set it explicitly, too. | ||
5418 | |||
5419 | <informalexample> | ||
5420 | <programlisting> | ||
5421 | <![CDATA[ | ||
5422 | entry->c.text.read_size = 65536; | ||
5423 | ]]> | ||
5424 | </programlisting> | ||
5425 | </informalexample> | ||
5426 | </para> | ||
5427 | |||
5428 | <para> | ||
5429 | For the write callback, you can use | ||
5430 | <function>snd_info_get_line()</function> to get a text line, and | ||
5431 | <function>snd_info_get_str()</function> to retrieve a string from | ||
5432 | the line. Some examples are found in | ||
5433 | <filename>core/oss/mixer_oss.c</filename>, core/oss/and | ||
5434 | <filename>pcm_oss.c</filename>. | ||
5435 | </para> | ||
5436 | |||
5437 | <para> | ||
5438 | For a raw-data proc-file, set the attributes like the following: | ||
5439 | |||
5440 | <informalexample> | ||
5441 | <programlisting> | ||
5442 | <![CDATA[ | ||
5443 | static struct snd_info_entry_ops my_file_io_ops = { | ||
5444 | .read = my_file_io_read, | ||
5445 | }; | ||
5446 | |||
5447 | entry->content = SNDRV_INFO_CONTENT_DATA; | ||
5448 | entry->private_data = chip; | ||
5449 | entry->c.ops = &my_file_io_ops; | ||
5450 | entry->size = 4096; | ||
5451 | entry->mode = S_IFREG | S_IRUGO; | ||
5452 | ]]> | ||
5453 | </programlisting> | ||
5454 | </informalexample> | ||
5455 | </para> | ||
5456 | |||
5457 | <para> | ||
5458 | The callback is much more complicated than the text-file | ||
5459 | version. You need to use a low-level i/o functions such as | ||
5460 | <function>copy_from/to_user()</function> to transfer the | ||
5461 | data. | ||
5462 | |||
5463 | <informalexample> | ||
5464 | <programlisting> | ||
5465 | <![CDATA[ | ||
5466 | static long my_file_io_read(snd_info_entry_t *entry, | ||
5467 | void *file_private_data, | ||
5468 | struct file *file, | ||
5469 | char *buf, | ||
5470 | unsigned long count, | ||
5471 | unsigned long pos) | ||
5472 | { | ||
5473 | long size = count; | ||
5474 | if (pos + size > local_max_size) | ||
5475 | size = local_max_size - pos; | ||
5476 | if (copy_to_user(buf, local_data + pos, size)) | ||
5477 | return -EFAULT; | ||
5478 | return size; | ||
5479 | } | ||
5480 | ]]> | ||
5481 | </programlisting> | ||
5482 | </informalexample> | ||
5483 | </para> | ||
5484 | |||
5485 | </chapter> | ||
5486 | |||
5487 | |||
5488 | <!-- ****************************************************** --> | ||
5489 | <!-- Power Management --> | ||
5490 | <!-- ****************************************************** --> | ||
5491 | <chapter id="power-management"> | ||
5492 | <title>Power Management</title> | ||
5493 | <para> | ||
5494 | If the chip is supposed to work with with suspend/resume | ||
5495 | functions, you need to add the power-management codes to the | ||
5496 | driver. The additional codes for the power-management should be | ||
5497 | <function>ifdef</function>'ed with | ||
5498 | <constant>CONFIG_PM</constant>. | ||
5499 | </para> | ||
5500 | |||
5501 | <para> | ||
5502 | ALSA provides the common power-management layer. Each card driver | ||
5503 | needs to have only low-level suspend and resume callbacks. | ||
5504 | |||
5505 | <informalexample> | ||
5506 | <programlisting> | ||
5507 | <![CDATA[ | ||
5508 | #ifdef CONFIG_PM | ||
5509 | static int snd_my_suspend(snd_card_t *card, pm_message_t state) | ||
5510 | { | ||
5511 | .... // do things for suspsend | ||
5512 | return 0; | ||
5513 | } | ||
5514 | static int snd_my_resume(snd_card_t *card) | ||
5515 | { | ||
5516 | .... // do things for suspsend | ||
5517 | return 0; | ||
5518 | } | ||
5519 | #endif | ||
5520 | ]]> | ||
5521 | </programlisting> | ||
5522 | </informalexample> | ||
5523 | </para> | ||
5524 | |||
5525 | <para> | ||
5526 | The scheme of the real suspend job is as following. | ||
5527 | |||
5528 | <orderedlist> | ||
5529 | <listitem><para>Retrieve the chip data from pm_private_data field.</para></listitem> | ||
5530 | <listitem><para>Call <function>snd_pcm_suspend_all()</function> to suspend the running PCM streams.</para></listitem> | ||
5531 | <listitem><para>Save the register values if necessary.</para></listitem> | ||
5532 | <listitem><para>Stop the hardware if necessary.</para></listitem> | ||
5533 | <listitem><para>Disable the PCI device by calling <function>pci_disable_device()</function>.</para></listitem> | ||
5534 | </orderedlist> | ||
5535 | </para> | ||
5536 | |||
5537 | <para> | ||
5538 | A typical code would be like: | ||
5539 | |||
5540 | <informalexample> | ||
5541 | <programlisting> | ||
5542 | <![CDATA[ | ||
5543 | static int mychip_suspend(snd_card_t *card, pm_message_t state) | ||
5544 | { | ||
5545 | /* (1) */ | ||
5546 | mychip_t *chip = card->pm_private_data; | ||
5547 | /* (2) */ | ||
5548 | snd_pcm_suspend_all(chip->pcm); | ||
5549 | /* (3) */ | ||
5550 | snd_mychip_save_registers(chip); | ||
5551 | /* (4) */ | ||
5552 | snd_mychip_stop_hardware(chip); | ||
5553 | /* (5) */ | ||
5554 | pci_disable_device(chip->pci); | ||
5555 | return 0; | ||
5556 | } | ||
5557 | ]]> | ||
5558 | </programlisting> | ||
5559 | </informalexample> | ||
5560 | </para> | ||
5561 | |||
5562 | <para> | ||
5563 | The scheme of the real resume job is as following. | ||
5564 | |||
5565 | <orderedlist> | ||
5566 | <listitem><para>Retrieve the chip data from pm_private_data field.</para></listitem> | ||
5567 | <listitem><para>Enable the pci device again by calling | ||
5568 | <function>pci_enable_device()</function>.</para></listitem> | ||
5569 | <listitem><para>Re-initialize the chip.</para></listitem> | ||
5570 | <listitem><para>Restore the saved registers if necessary.</para></listitem> | ||
5571 | <listitem><para>Resume the mixer, e.g. calling | ||
5572 | <function>snd_ac97_resume()</function>.</para></listitem> | ||
5573 | <listitem><para>Restart the hardware (if any).</para></listitem> | ||
5574 | </orderedlist> | ||
5575 | </para> | ||
5576 | |||
5577 | <para> | ||
5578 | A typical code would be like: | ||
5579 | |||
5580 | <informalexample> | ||
5581 | <programlisting> | ||
5582 | <![CDATA[ | ||
5583 | static void mychip_resume(mychip_t *chip) | ||
5584 | { | ||
5585 | /* (1) */ | ||
5586 | mychip_t *chip = card->pm_private_data; | ||
5587 | /* (2) */ | ||
5588 | pci_enable_device(chip->pci); | ||
5589 | /* (3) */ | ||
5590 | snd_mychip_reinit_chip(chip); | ||
5591 | /* (4) */ | ||
5592 | snd_mychip_restore_registers(chip); | ||
5593 | /* (5) */ | ||
5594 | snd_ac97_resume(chip->ac97); | ||
5595 | /* (6) */ | ||
5596 | snd_mychip_restart_chip(chip); | ||
5597 | return 0; | ||
5598 | } | ||
5599 | ]]> | ||
5600 | </programlisting> | ||
5601 | </informalexample> | ||
5602 | </para> | ||
5603 | |||
5604 | <para> | ||
5605 | OK, we have all callbacks now. Let's set up them now. In the | ||
5606 | initialization of the card, add the following: | ||
5607 | |||
5608 | <informalexample> | ||
5609 | <programlisting> | ||
5610 | <![CDATA[ | ||
5611 | static int __devinit snd_mychip_probe(struct pci_dev *pci, | ||
5612 | const struct pci_device_id *pci_id) | ||
5613 | { | ||
5614 | .... | ||
5615 | snd_card_t *card; | ||
5616 | mychip_t *chip; | ||
5617 | .... | ||
5618 | snd_card_set_pm_callback(card, snd_my_suspend, snd_my_resume, chip); | ||
5619 | .... | ||
5620 | } | ||
5621 | ]]> | ||
5622 | </programlisting> | ||
5623 | </informalexample> | ||
5624 | |||
5625 | Here you don't have to put ifdef CONFIG_PM around, since it's already | ||
5626 | checked in the header and expanded to empty if not needed. | ||
5627 | </para> | ||
5628 | |||
5629 | <para> | ||
5630 | If you need a space for saving the registers, you'll need to | ||
5631 | allocate the buffer for it here, too, since it would be fatal | ||
5632 | if you cannot allocate a memory in the suspend phase. | ||
5633 | The allocated buffer should be released in the corresponding | ||
5634 | destructor. | ||
5635 | </para> | ||
5636 | |||
5637 | <para> | ||
5638 | And next, set suspend/resume callbacks to the pci_driver, | ||
5639 | This can be done by passing a macro SND_PCI_PM_CALLBACKS | ||
5640 | in the pci_driver struct. This macro is expanded to the correct | ||
5641 | (global) callbacks if CONFIG_PM is set. | ||
5642 | |||
5643 | <informalexample> | ||
5644 | <programlisting> | ||
5645 | <![CDATA[ | ||
5646 | static struct pci_driver driver = { | ||
5647 | .name = "My Chip", | ||
5648 | .id_table = snd_my_ids, | ||
5649 | .probe = snd_my_probe, | ||
5650 | .remove = __devexit_p(snd_my_remove), | ||
5651 | SND_PCI_PM_CALLBACKS | ||
5652 | }; | ||
5653 | ]]> | ||
5654 | </programlisting> | ||
5655 | </informalexample> | ||
5656 | </para> | ||
5657 | |||
5658 | </chapter> | ||
5659 | |||
5660 | |||
5661 | <!-- ****************************************************** --> | ||
5662 | <!-- Module Parameters --> | ||
5663 | <!-- ****************************************************** --> | ||
5664 | <chapter id="module-parameters"> | ||
5665 | <title>Module Parameters</title> | ||
5666 | <para> | ||
5667 | There are standard module options for ALSA. At least, each | ||
5668 | module should have <parameter>index</parameter>, | ||
5669 | <parameter>id</parameter> and <parameter>enable</parameter> | ||
5670 | options. | ||
5671 | </para> | ||
5672 | |||
5673 | <para> | ||
5674 | If the module supports multiple cards (usually up to | ||
5675 | 8 = <constant>SNDRV_CARDS</constant> cards), they should be | ||
5676 | arrays. The default initial values are defined already as | ||
5677 | constants for ease of programming: | ||
5678 | |||
5679 | <informalexample> | ||
5680 | <programlisting> | ||
5681 | <![CDATA[ | ||
5682 | static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; | ||
5683 | static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; | ||
5684 | static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; | ||
5685 | ]]> | ||
5686 | </programlisting> | ||
5687 | </informalexample> | ||
5688 | </para> | ||
5689 | |||
5690 | <para> | ||
5691 | If the module supports only a single card, they could be single | ||
5692 | variables, instead. <parameter>enable</parameter> option is not | ||
5693 | always necessary in this case, but it wouldn't be so bad to have a | ||
5694 | dummy option for compatibility. | ||
5695 | </para> | ||
5696 | |||
5697 | <para> | ||
5698 | The module parameters must be declared with the standard | ||
5699 | <function>module_param()()</function>, | ||
5700 | <function>module_param_array()()</function> and | ||
5701 | <function>MODULE_PARM_DESC()</function> macros. | ||
5702 | </para> | ||
5703 | |||
5704 | <para> | ||
5705 | The typical coding would be like below: | ||
5706 | |||
5707 | <informalexample> | ||
5708 | <programlisting> | ||
5709 | <![CDATA[ | ||
5710 | #define CARD_NAME "My Chip" | ||
5711 | |||
5712 | module_param_array(index, int, NULL, 0444); | ||
5713 | MODULE_PARM_DESC(index, "Index value for " CARD_NAME " soundcard."); | ||
5714 | module_param_array(id, charp, NULL, 0444); | ||
5715 | MODULE_PARM_DESC(id, "ID string for " CARD_NAME " soundcard."); | ||
5716 | module_param_array(enable, bool, NULL, 0444); | ||
5717 | MODULE_PARM_DESC(enable, "Enable " CARD_NAME " soundcard."); | ||
5718 | ]]> | ||
5719 | </programlisting> | ||
5720 | </informalexample> | ||
5721 | </para> | ||
5722 | |||
5723 | <para> | ||
5724 | Also, don't forget to define the module description, classes, | ||
5725 | license and devices. Especially, the recent modprobe requires to | ||
5726 | define the module license as GPL, etc., otherwise the system is | ||
5727 | shown as <quote>tainted</quote>. | ||
5728 | |||
5729 | <informalexample> | ||
5730 | <programlisting> | ||
5731 | <![CDATA[ | ||
5732 | MODULE_DESCRIPTION("My Chip"); | ||
5733 | MODULE_LICENSE("GPL"); | ||
5734 | MODULE_SUPPORTED_DEVICE("{{Vendor,My Chip Name}}"); | ||
5735 | ]]> | ||
5736 | </programlisting> | ||
5737 | </informalexample> | ||
5738 | </para> | ||
5739 | |||
5740 | </chapter> | ||
5741 | |||
5742 | |||
5743 | <!-- ****************************************************** --> | ||
5744 | <!-- How To Put Your Driver --> | ||
5745 | <!-- ****************************************************** --> | ||
5746 | <chapter id="how-to-put-your-driver"> | ||
5747 | <title>How To Put Your Driver Into ALSA Tree</title> | ||
5748 | <section> | ||
5749 | <title>General</title> | ||
5750 | <para> | ||
5751 | So far, you've learned how to write the driver codes. | ||
5752 | And you might have a question now: how to put my own | ||
5753 | driver into the ALSA driver tree? | ||
5754 | Here (finally :) the standard procedure is described briefly. | ||
5755 | </para> | ||
5756 | |||
5757 | <para> | ||
5758 | Suppose that you'll create a new PCI driver for the card | ||
5759 | <quote>xyz</quote>. The card module name would be | ||
5760 | snd-xyz. The new driver is usually put into alsa-driver | ||
5761 | tree, <filename>alsa-driver/pci</filename> directory in | ||
5762 | the case of PCI cards. | ||
5763 | Then the driver is evaluated, audited and tested | ||
5764 | by developers and users. After a certain time, the driver | ||
5765 | will go to alsa-kernel tree (to the corresponding directory, | ||
5766 | such as <filename>alsa-kernel/pci</filename>) and eventually | ||
5767 | integrated into Linux 2.6 tree (the directory would be | ||
5768 | <filename>linux/sound/pci</filename>). | ||
5769 | </para> | ||
5770 | |||
5771 | <para> | ||
5772 | In the following sections, the driver code is supposed | ||
5773 | to be put into alsa-driver tree. The two cases are assumed: | ||
5774 | a driver consisting of a single source file and one consisting | ||
5775 | of several source files. | ||
5776 | </para> | ||
5777 | </section> | ||
5778 | |||
5779 | <section> | ||
5780 | <title>Driver with A Single Source File</title> | ||
5781 | <para> | ||
5782 | <orderedlist> | ||
5783 | <listitem> | ||
5784 | <para> | ||
5785 | Modify alsa-driver/pci/Makefile | ||
5786 | </para> | ||
5787 | |||
5788 | <para> | ||
5789 | Suppose you have a file xyz.c. Add the following | ||
5790 | two lines | ||
5791 | <informalexample> | ||
5792 | <programlisting> | ||
5793 | <![CDATA[ | ||
5794 | snd-xyz-objs := xyz.o | ||
5795 | obj-$(CONFIG_SND_XYZ) += snd-xyz.o | ||
5796 | ]]> | ||
5797 | </programlisting> | ||
5798 | </informalexample> | ||
5799 | </para> | ||
5800 | </listitem> | ||
5801 | |||
5802 | <listitem> | ||
5803 | <para> | ||
5804 | Create the Kconfig entry | ||
5805 | </para> | ||
5806 | |||
5807 | <para> | ||
5808 | Add the new entry of Kconfig for your xyz driver. | ||
5809 | <informalexample> | ||
5810 | <programlisting> | ||
5811 | <![CDATA[ | ||
5812 | config SND_XYZ | ||
5813 | tristate "Foobar XYZ" | ||
5814 | depends on SND | ||
5815 | select SND_PCM | ||
5816 | help | ||
5817 | Say Y here to include support for Foobar XYZ soundcard. | ||
5818 | |||
5819 | To compile this driver as a module, choose M here: the module | ||
5820 | will be called snd-xyz. | ||
5821 | ]]> | ||
5822 | </programlisting> | ||
5823 | </informalexample> | ||
5824 | |||
5825 | the line, select SND_PCM, specifies that the driver xyz supports | ||
5826 | PCM. In addition to SND_PCM, the following components are | ||
5827 | supported for select command: | ||
5828 | SND_RAWMIDI, SND_TIMER, SND_HWDEP, SND_MPU401_UART, | ||
5829 | SND_OPL3_LIB, SND_OPL4_LIB, SND_VX_LIB, SND_AC97_CODEC. | ||
5830 | Add the select command for each supported component. | ||
5831 | </para> | ||
5832 | |||
5833 | <para> | ||
5834 | Note that some selections imply the lowlevel selections. | ||
5835 | For example, PCM includes TIMER, MPU401_UART includes RAWMIDI, | ||
5836 | AC97_CODEC includes PCM, and OPL3_LIB includes HWDEP. | ||
5837 | You don't need to give the lowlevel selections again. | ||
5838 | </para> | ||
5839 | |||
5840 | <para> | ||
5841 | For the details of Kconfig script, refer to the kbuild | ||
5842 | documentation. | ||
5843 | </para> | ||
5844 | |||
5845 | </listitem> | ||
5846 | |||
5847 | <listitem> | ||
5848 | <para> | ||
5849 | Run cvscompile script to re-generate the configure script and | ||
5850 | build the whole stuff again. | ||
5851 | </para> | ||
5852 | </listitem> | ||
5853 | </orderedlist> | ||
5854 | </para> | ||
5855 | </section> | ||
5856 | |||
5857 | <section> | ||
5858 | <title>Drivers with Several Source Files</title> | ||
5859 | <para> | ||
5860 | Suppose that the driver snd-xyz have several source files. | ||
5861 | They are located in the new subdirectory, | ||
5862 | pci/xyz. | ||
5863 | |||
5864 | <orderedlist> | ||
5865 | <listitem> | ||
5866 | <para> | ||
5867 | Add a new directory (<filename>xyz</filename>) in | ||
5868 | <filename>alsa-driver/pci/Makefile</filename> like below | ||
5869 | |||
5870 | <informalexample> | ||
5871 | <programlisting> | ||
5872 | <![CDATA[ | ||
5873 | obj-$(CONFIG_SND) += xyz/ | ||
5874 | ]]> | ||
5875 | </programlisting> | ||
5876 | </informalexample> | ||
5877 | </para> | ||
5878 | </listitem> | ||
5879 | |||
5880 | <listitem> | ||
5881 | <para> | ||
5882 | Under the directory <filename>xyz</filename>, create a Makefile | ||
5883 | |||
5884 | <example> | ||
5885 | <title>Sample Makefile for a driver xyz</title> | ||
5886 | <programlisting> | ||
5887 | <![CDATA[ | ||
5888 | ifndef SND_TOPDIR | ||
5889 | SND_TOPDIR=../.. | ||
5890 | endif | ||
5891 | |||
5892 | include $(SND_TOPDIR)/toplevel.config | ||
5893 | include $(SND_TOPDIR)/Makefile.conf | ||
5894 | |||
5895 | snd-xyz-objs := xyz.o abc.o def.o | ||
5896 | |||
5897 | obj-$(CONFIG_SND_XYZ) += snd-xyz.o | ||
5898 | |||
5899 | include $(SND_TOPDIR)/Rules.make | ||
5900 | ]]> | ||
5901 | </programlisting> | ||
5902 | </example> | ||
5903 | </para> | ||
5904 | </listitem> | ||
5905 | |||
5906 | <listitem> | ||
5907 | <para> | ||
5908 | Create the Kconfig entry | ||
5909 | </para> | ||
5910 | |||
5911 | <para> | ||
5912 | This procedure is as same as in the last section. | ||
5913 | </para> | ||
5914 | </listitem> | ||
5915 | |||
5916 | <listitem> | ||
5917 | <para> | ||
5918 | Run cvscompile script to re-generate the configure script and | ||
5919 | build the whole stuff again. | ||
5920 | </para> | ||
5921 | </listitem> | ||
5922 | </orderedlist> | ||
5923 | </para> | ||
5924 | </section> | ||
5925 | |||
5926 | </chapter> | ||
5927 | |||
5928 | <!-- ****************************************************** --> | ||
5929 | <!-- Useful Functions --> | ||
5930 | <!-- ****************************************************** --> | ||
5931 | <chapter id="useful-functions"> | ||
5932 | <title>Useful Functions</title> | ||
5933 | |||
5934 | <section id="useful-functions-snd-printk"> | ||
5935 | <title><function>snd_printk()</function> and friends</title> | ||
5936 | <para> | ||
5937 | ALSA provides a verbose version of | ||
5938 | <function>printk()</function> function. If a kernel config | ||
5939 | <constant>CONFIG_SND_VERBOSE_PRINTK</constant> is set, this | ||
5940 | function prints the given message together with the file name | ||
5941 | and the line of the caller. The <constant>KERN_XXX</constant> | ||
5942 | prefix is processed as | ||
5943 | well as the original <function>printk()</function> does, so it's | ||
5944 | recommended to add this prefix, e.g. | ||
5945 | |||
5946 | <informalexample> | ||
5947 | <programlisting> | ||
5948 | <![CDATA[ | ||
5949 | snd_printk(KERN_ERR "Oh my, sorry, it's extremely bad!\n"); | ||
5950 | ]]> | ||
5951 | </programlisting> | ||
5952 | </informalexample> | ||
5953 | </para> | ||
5954 | |||
5955 | <para> | ||
5956 | There are also <function>printk()</function>'s for | ||
5957 | debugging. <function>snd_printd()</function> can be used for | ||
5958 | general debugging purposes. If | ||
5959 | <constant>CONFIG_SND_DEBUG</constant> is set, this function is | ||
5960 | compiled, and works just like | ||
5961 | <function>snd_printk()</function>. If the ALSA is compiled | ||
5962 | without the debugging flag, it's ignored. | ||
5963 | </para> | ||
5964 | |||
5965 | <para> | ||
5966 | <function>snd_printdd()</function> is compiled in only when | ||
5967 | <constant>CONFIG_SND_DEBUG_DETECT</constant> is set. Please note | ||
5968 | that <constant>DEBUG_DETECT</constant> is not set as default | ||
5969 | even if you configure the alsa-driver with | ||
5970 | <option>--with-debug=full</option> option. You need to give | ||
5971 | explicitly <option>--with-debug=detect</option> option instead. | ||
5972 | </para> | ||
5973 | </section> | ||
5974 | |||
5975 | <section id="useful-functions-snd-assert"> | ||
5976 | <title><function>snd_assert()</function></title> | ||
5977 | <para> | ||
5978 | <function>snd_assert()</function> macro is similar with the | ||
5979 | normal <function>assert()</function> macro. For example, | ||
5980 | |||
5981 | <informalexample> | ||
5982 | <programlisting> | ||
5983 | <![CDATA[ | ||
5984 | snd_assert(pointer != NULL, return -EINVAL); | ||
5985 | ]]> | ||
5986 | </programlisting> | ||
5987 | </informalexample> | ||
5988 | </para> | ||
5989 | |||
5990 | <para> | ||
5991 | The first argument is the expression to evaluate, and the | ||
5992 | second argument is the action if it fails. When | ||
5993 | <constant>CONFIG_SND_DEBUG</constant>, is set, it will show an | ||
5994 | error message such as <computeroutput>BUG? (xxx) (called from | ||
5995 | yyy)</computeroutput>. When no debug flag is set, this is | ||
5996 | ignored. | ||
5997 | </para> | ||
5998 | </section> | ||
5999 | |||
6000 | <section id="useful-functions-snd-runtime-check"> | ||
6001 | <title><function>snd_runtime_check()</function></title> | ||
6002 | <para> | ||
6003 | This macro is quite similar with | ||
6004 | <function>snd_assert()</function>. Unlike | ||
6005 | <function>snd_assert()</function>, the expression is always | ||
6006 | evaluated regardless of | ||
6007 | <constant>CONFIG_SND_DEBUG</constant>. When | ||
6008 | <constant>CONFIG_SND_DEBUG</constant> is set, the macro will | ||
6009 | show a message like <computeroutput>ERROR (xx) (called from | ||
6010 | yyy)</computeroutput>. | ||
6011 | </para> | ||
6012 | </section> | ||
6013 | |||
6014 | <section id="useful-functions-snd-bug"> | ||
6015 | <title><function>snd_BUG()</function></title> | ||
6016 | <para> | ||
6017 | It calls <function>snd_assert(0,)</function> -- that is, just | ||
6018 | prints the error message at the point. It's useful to show that | ||
6019 | a fatal error happens there. | ||
6020 | </para> | ||
6021 | </section> | ||
6022 | </chapter> | ||
6023 | |||
6024 | |||
6025 | <!-- ****************************************************** --> | ||
6026 | <!-- Acknowledgments --> | ||
6027 | <!-- ****************************************************** --> | ||
6028 | <chapter id="acknowledments"> | ||
6029 | <title>Acknowledgments</title> | ||
6030 | <para> | ||
6031 | I would like to thank Phil Kerr for his help for improvement and | ||
6032 | corrections of this document. | ||
6033 | </para> | ||
6034 | <para> | ||
6035 | Kevin Conder reformatted the original plain-text to the | ||
6036 | DocBook format. | ||
6037 | </para> | ||
6038 | <para> | ||
6039 | Giuliano Pochini corrected typos and contributed the example codes | ||
6040 | in the hardware constraints section. | ||
6041 | </para> | ||
6042 | </chapter> | ||
6043 | |||
6044 | |||
6045 | </book> | ||