aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/slow-work.txt
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/slow-work.txt')
-rw-r--r--Documentation/slow-work.txt160
1 files changed, 154 insertions, 6 deletions
diff --git a/Documentation/slow-work.txt b/Documentation/slow-work.txt
index ebc50f808ea4..52bc31433723 100644
--- a/Documentation/slow-work.txt
+++ b/Documentation/slow-work.txt
@@ -41,6 +41,13 @@ expand files, provided the time taken to do so isn't too long.
41Operations of both types may sleep during execution, thus tying up the thread 41Operations of both types may sleep during execution, thus tying up the thread
42loaned to it. 42loaned to it.
43 43
44A further class of work item is available, based on the slow work item class:
45
46 (*) Delayed slow work items.
47
48These are slow work items that have a timer to defer queueing of the item for
49a while.
50
44 51
45THREAD-TO-CLASS ALLOCATION 52THREAD-TO-CLASS ALLOCATION
46-------------------------- 53--------------------------
@@ -64,9 +71,11 @@ USING SLOW WORK ITEMS
64Firstly, a module or subsystem wanting to make use of slow work items must 71Firstly, a module or subsystem wanting to make use of slow work items must
65register its interest: 72register its interest:
66 73
67 int ret = slow_work_register_user(); 74 int ret = slow_work_register_user(struct module *module);
68 75
69This will return 0 if successful, or a -ve error upon failure. 76This will return 0 if successful, or a -ve error upon failure. The module
77pointer should be the module interested in using this facility (almost
78certainly THIS_MODULE).
70 79
71 80
72Slow work items may then be set up by: 81Slow work items may then be set up by:
@@ -93,6 +102,10 @@ Slow work items may then be set up by:
93 102
94 or: 103 or:
95 104
105 delayed_slow_work_init(&myitem, &myitem_ops);
106
107 or:
108
96 vslow_work_init(&myitem, &myitem_ops); 109 vslow_work_init(&myitem, &myitem_ops);
97 110
98 depending on its class. 111 depending on its class.
@@ -102,15 +115,92 @@ A suitably set up work item can then be enqueued for processing:
102 int ret = slow_work_enqueue(&myitem); 115 int ret = slow_work_enqueue(&myitem);
103 116
104This will return a -ve error if the thread pool is unable to gain a reference 117This will return a -ve error if the thread pool is unable to gain a reference
105on the item, 0 otherwise. 118on the item, 0 otherwise, or (for delayed work):
119
120 int ret = delayed_slow_work_enqueue(&myitem, my_jiffy_delay);
106 121
107 122
108The items are reference counted, so there ought to be no need for a flush 123The items are reference counted, so there ought to be no need for a flush
109operation. When all a module's slow work items have been processed, and the 124operation. But as the reference counting is optional, means to cancel
125existing work items are also included:
126
127 cancel_slow_work(&myitem);
128 cancel_delayed_slow_work(&myitem);
129
130can be used to cancel pending work. The above cancel function waits for
131existing work to have been executed (or prevent execution of them, depending
132on timing).
133
134
135When all a module's slow work items have been processed, and the
110module has no further interest in the facility, it should unregister its 136module has no further interest in the facility, it should unregister its
111interest: 137interest:
112 138
113 slow_work_unregister_user(); 139 slow_work_unregister_user(struct module *module);
140
141The module pointer is used to wait for all outstanding work items for that
142module before completing the unregistration. This prevents the put_ref() code
143from being taken away before it completes. module should almost certainly be
144THIS_MODULE.
145
146
147================
148HELPER FUNCTIONS
149================
150
151The slow-work facility provides a function by which it can be determined
152whether or not an item is queued for later execution:
153
154 bool queued = slow_work_is_queued(struct slow_work *work);
155
156If it returns false, then the item is not on the queue (it may be executing
157with a requeue pending). This can be used to work out whether an item on which
158another depends is on the queue, thus allowing a dependent item to be queued
159after it.
160
161If the above shows an item on which another depends not to be queued, then the
162owner of the dependent item might need to wait. However, to avoid locking up
163the threads unnecessarily be sleeping in them, it can make sense under some
164circumstances to return the work item to the queue, thus deferring it until
165some other items have had a chance to make use of the yielded thread.
166
167To yield a thread and defer an item, the work function should simply enqueue
168the work item again and return. However, this doesn't work if there's nothing
169actually on the queue, as the thread just vacated will jump straight back into
170the item's work function, thus busy waiting on a CPU.
171
172Instead, the item should use the thread to wait for the dependency to go away,
173but rather than using schedule() or schedule_timeout() to sleep, it should use
174the following function:
175
176 bool requeue = slow_work_sleep_till_thread_needed(
177 struct slow_work *work,
178 signed long *_timeout);
179
180This will add a second wait and then sleep, such that it will be woken up if
181either something appears on the queue that could usefully make use of the
182thread - and behind which this item can be queued, or if the event the caller
183set up to wait for happens. True will be returned if something else appeared
184on the queue and this work function should perhaps return, of false if
185something else woke it up. The timeout is as for schedule_timeout().
186
187For example:
188
189 wq = bit_waitqueue(&my_flags, MY_BIT);
190 init_wait(&wait);
191 requeue = false;
192 do {
193 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
194 if (!test_bit(MY_BIT, &my_flags))
195 break;
196 requeue = slow_work_sleep_till_thread_needed(&my_work,
197 &timeout);
198 } while (timeout > 0 && !requeue);
199 finish_wait(wq, &wait);
200 if (!test_bit(MY_BIT, &my_flags)
201 goto do_my_thing;
202 if (requeue)
203 return; // to slow_work
114 204
115 205
116=============== 206===============
@@ -118,7 +208,8 @@ ITEM OPERATIONS
118=============== 208===============
119 209
120Each work item requires a table of operations of type struct slow_work_ops. 210Each work item requires a table of operations of type struct slow_work_ops.
121All members are required: 211Only ->execute() is required; the getting and putting of a reference and the
212describing of an item are all optional.
122 213
123 (*) Get a reference on an item: 214 (*) Get a reference on an item:
124 215
@@ -148,6 +239,16 @@ All members are required:
148 This should perform the work required of the item. It may sleep, it may 239 This should perform the work required of the item. It may sleep, it may
149 perform disk I/O and it may wait for locks. 240 perform disk I/O and it may wait for locks.
150 241
242 (*) View an item through /proc:
243
244 void (*desc)(struct slow_work *work, struct seq_file *m);
245
246 If supplied, this should print to 'm' a small string describing the work
247 the item is to do. This should be no more than about 40 characters, and
248 shouldn't include a newline character.
249
250 See the 'Viewing executing and queued items' section below.
251
151 252
152================== 253==================
153POOL CONFIGURATION 254POOL CONFIGURATION
@@ -172,3 +273,50 @@ The slow-work thread pool has a number of configurables:
172 is bounded to between 1 and one fewer than the number of active threads. 273 is bounded to between 1 and one fewer than the number of active threads.
173 This ensures there is always at least one thread that can process very 274 This ensures there is always at least one thread that can process very
174 slow work items, and always at least one thread that won't. 275 slow work items, and always at least one thread that won't.
276
277
278==================================
279VIEWING EXECUTING AND QUEUED ITEMS
280==================================
281
282If CONFIG_SLOW_WORK_PROC is enabled, a proc file is made available:
283
284 /proc/slow_work_rq
285
286through which the list of work items being executed and the queues of items to
287be executed may be viewed. The owner of a work item is given the chance to
288add some information of its own.
289
290The contents look something like the following:
291
292 THR PID ITEM ADDR FL MARK DESC
293 === ===== ================ == ===== ==========
294 0 3005 ffff880023f52348 a 952ms FSC: OBJ17d3: LOOK
295 1 3006 ffff880024e33668 2 160ms FSC: OBJ17e5 OP60d3b: Write1/Store fl=2
296 2 3165 ffff8800296dd180 a 424ms FSC: OBJ17e4: LOOK
297 3 4089 ffff8800262c8d78 a 212ms FSC: OBJ17ea: CRTN
298 4 4090 ffff88002792bed8 2 388ms FSC: OBJ17e8 OP60d36: Write1/Store fl=2
299 5 4092 ffff88002a0ef308 2 388ms FSC: OBJ17e7 OP60d2e: Write1/Store fl=2
300 6 4094 ffff88002abaf4b8 2 132ms FSC: OBJ17e2 OP60d4e: Write1/Store fl=2
301 7 4095 ffff88002bb188e0 a 388ms FSC: OBJ17e9: CRTN
302 vsq - ffff880023d99668 1 308ms FSC: OBJ17e0 OP60f91: Write1/EnQ fl=2
303 vsq - ffff8800295d1740 1 212ms FSC: OBJ16be OP4d4b6: Write1/EnQ fl=2
304 vsq - ffff880025ba3308 1 160ms FSC: OBJ179a OP58dec: Write1/EnQ fl=2
305 vsq - ffff880024ec83e0 1 160ms FSC: OBJ17ae OP599f2: Write1/EnQ fl=2
306 vsq - ffff880026618e00 1 160ms FSC: OBJ17e6 OP60d33: Write1/EnQ fl=2
307 vsq - ffff880025a2a4b8 1 132ms FSC: OBJ16a2 OP4d583: Write1/EnQ fl=2
308 vsq - ffff880023cbe6d8 9 212ms FSC: OBJ17eb: LOOK
309 vsq - ffff880024d37590 9 212ms FSC: OBJ17ec: LOOK
310 vsq - ffff880027746cb0 9 212ms FSC: OBJ17ed: LOOK
311 vsq - ffff880024d37ae8 9 212ms FSC: OBJ17ee: LOOK
312 vsq - ffff880024d37cb0 9 212ms FSC: OBJ17ef: LOOK
313 vsq - ffff880025036550 9 212ms FSC: OBJ17f0: LOOK
314 vsq - ffff8800250368e0 9 212ms FSC: OBJ17f1: LOOK
315 vsq - ffff880025036aa8 9 212ms FSC: OBJ17f2: LOOK
316
317In the 'THR' column, executing items show the thread they're occupying and
318queued threads indicate which queue they're on. 'PID' shows the process ID of
319a slow-work thread that's executing something. 'FL' shows the work item flags.
320'MARK' indicates how long since an item was queued or began executing. Lastly,
321the 'DESC' column permits the owner of an item to give some information.
322