aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/scsi
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/scsi')
-rw-r--r--Documentation/scsi/00-INDEX2
-rw-r--r--Documentation/scsi/aic79xx.txt2
-rw-r--r--Documentation/scsi/aic7xxx.txt2
-rw-r--r--Documentation/scsi/osst.txt2
-rw-r--r--Documentation/scsi/st.txt4
-rw-r--r--Documentation/scsi/ufs.txt133
6 files changed, 142 insertions, 3 deletions
diff --git a/Documentation/scsi/00-INDEX b/Documentation/scsi/00-INDEX
index b48ded55b555..b7dd6502bec5 100644
--- a/Documentation/scsi/00-INDEX
+++ b/Documentation/scsi/00-INDEX
@@ -94,3 +94,5 @@ sym53c8xx_2.txt
94 - info on second generation driver for sym53c8xx based adapters 94 - info on second generation driver for sym53c8xx based adapters
95tmscsim.txt 95tmscsim.txt
96 - info on driver for AM53c974 based adapters 96 - info on driver for AM53c974 based adapters
97ufs.txt
98 - info on Universal Flash Storage(UFS) and UFS host controller driver.
diff --git a/Documentation/scsi/aic79xx.txt b/Documentation/scsi/aic79xx.txt
index 64ac7093c872..e2d3273000d4 100644
--- a/Documentation/scsi/aic79xx.txt
+++ b/Documentation/scsi/aic79xx.txt
@@ -215,7 +215,7 @@ The following information is available in this file:
215 INCORRECTLY CAN RENDER YOUR SYSTEM INOPERABLE. 215 INCORRECTLY CAN RENDER YOUR SYSTEM INOPERABLE.
216 USE THEM WITH CAUTION. 216 USE THEM WITH CAUTION.
217 217
218 Edit the file "modprobe.conf" in the directory /etc and add/edit a 218 Put a .conf file in the /etc/modprobe.d/ directory and add/edit a
219 line containing 'options aic79xx aic79xx=[command[,command...]]' where 219 line containing 'options aic79xx aic79xx=[command[,command...]]' where
220 'command' is one or more of the following: 220 'command' is one or more of the following:
221 ----------------------------------------------------------------- 221 -----------------------------------------------------------------
diff --git a/Documentation/scsi/aic7xxx.txt b/Documentation/scsi/aic7xxx.txt
index 18f8d1905e6a..7c5d0223d444 100644
--- a/Documentation/scsi/aic7xxx.txt
+++ b/Documentation/scsi/aic7xxx.txt
@@ -190,7 +190,7 @@ The following information is available in this file:
190 INCORRECTLY CAN RENDER YOUR SYSTEM INOPERABLE. 190 INCORRECTLY CAN RENDER YOUR SYSTEM INOPERABLE.
191 USE THEM WITH CAUTION. 191 USE THEM WITH CAUTION.
192 192
193 Edit the file "modprobe.conf" in the directory /etc and add/edit a 193 Put a .conf file in the /etc/modprobe.d directory and add/edit a
194 line containing 'options aic7xxx aic7xxx=[command[,command...]]' where 194 line containing 'options aic7xxx aic7xxx=[command[,command...]]' where
195 'command' is one or more of the following: 195 'command' is one or more of the following:
196 ----------------------------------------------------------------- 196 -----------------------------------------------------------------
diff --git a/Documentation/scsi/osst.txt b/Documentation/scsi/osst.txt
index ad86c6d1e898..00c8ebb2fd18 100644
--- a/Documentation/scsi/osst.txt
+++ b/Documentation/scsi/osst.txt
@@ -66,7 +66,7 @@ recognized.
66If you want to have the module autoloaded on access to /dev/osst, you may 66If you want to have the module autoloaded on access to /dev/osst, you may
67add something like 67add something like
68alias char-major-206 osst 68alias char-major-206 osst
69to your /etc/modprobe.conf (before 2.6: modules.conf). 69to a file under /etc/modprobe.d/ directory.
70 70
71You may find it convenient to create a symbolic link 71You may find it convenient to create a symbolic link
72ln -s nosst0 /dev/tape 72ln -s nosst0 /dev/tape
diff --git a/Documentation/scsi/st.txt b/Documentation/scsi/st.txt
index 691ca292c24d..685bf3582abe 100644
--- a/Documentation/scsi/st.txt
+++ b/Documentation/scsi/st.txt
@@ -390,6 +390,10 @@ MTSETDRVBUFFER
390 MT_ST_SYSV sets the SYSV semantics (mode) 390 MT_ST_SYSV sets the SYSV semantics (mode)
391 MT_ST_NOWAIT enables immediate mode (i.e., don't wait for 391 MT_ST_NOWAIT enables immediate mode (i.e., don't wait for
392 the command to finish) for some commands (e.g., rewind) 392 the command to finish) for some commands (e.g., rewind)
393 MT_ST_NOWAIT_EOF enables immediate filemark mode (i.e. when
394 writing a filemark, don't wait for it to complete). Please
395 see the BASICS note about MTWEOFI with respect to the
396 possible dangers of writing immediate filemarks.
393 MT_ST_SILI enables setting the SILI bit in SCSI commands when 397 MT_ST_SILI enables setting the SILI bit in SCSI commands when
394 reading in variable block mode to enhance performance when 398 reading in variable block mode to enhance performance when
395 reading blocks shorter than the byte count; set this only 399 reading blocks shorter than the byte count; set this only
diff --git a/Documentation/scsi/ufs.txt b/Documentation/scsi/ufs.txt
new file mode 100644
index 000000000000..41a6164592aa
--- /dev/null
+++ b/Documentation/scsi/ufs.txt
@@ -0,0 +1,133 @@
1 Universal Flash Storage
2 =======================
3
4
5Contents
6--------
7
81. Overview
92. UFS Architecture Overview
10 2.1 Application Layer
11 2.2 UFS Transport Protocol(UTP) layer
12 2.3 UFS Interconnect(UIC) Layer
133. UFSHCD Overview
14 3.1 UFS controller initialization
15 3.2 UTP Transfer requests
16 3.3 UFS error handling
17 3.4 SCSI Error handling
18
19
201. Overview
21-----------
22
23Universal Flash Storage(UFS) is a storage specification for flash devices.
24It is aimed to provide a universal storage interface for both
25embedded and removable flash memory based storage in mobile
26devices such as smart phones and tablet computers. The specification
27is defined by JEDEC Solid State Technology Association. UFS is based
28on MIPI M-PHY physical layer standard. UFS uses MIPI M-PHY as the
29physical layer and MIPI Unipro as the link layer.
30
31The main goals of UFS is to provide,
32 * Optimized performance:
33 For UFS version 1.0 and 1.1 the target performance is as follows,
34 Support for Gear1 is mandatory (rate A: 1248Mbps, rate B: 1457.6Mbps)
35 Support for Gear2 is optional (rate A: 2496Mbps, rate B: 2915.2Mbps)
36 Future version of the standard,
37 Gear3 (rate A: 4992Mbps, rate B: 5830.4Mbps)
38 * Low power consumption
39 * High random IOPs and low latency
40
41
422. UFS Architecture Overview
43----------------------------
44
45UFS has a layered communication architecture which is based on SCSI
46SAM-5 architectural model.
47
48UFS communication architecture consists of following layers,
49
502.1 Application Layer
51
52 The Application layer is composed of UFS command set layer(UCS),
53 Task Manager and Device manager. The UFS interface is designed to be
54 protocol agnostic, however SCSI has been selected as a baseline
55 protocol for versions 1.0 and 1.1 of UFS protocol layer.
56 UFS supports subset of SCSI commands defined by SPC-4 and SBC-3.
57 * UCS: It handles SCSI commands supported by UFS specification.
58 * Task manager: It handles task management functions defined by the
59 UFS which are meant for command queue control.
60 * Device manager: It handles device level operations and device
61 configuration operations. Device level operations mainly involve
62 device power management operations and commands to Interconnect
63 layers. Device level configurations involve handling of query
64 requests which are used to modify and retrieve configuration
65 information of the device.
66
672.2 UFS Transport Protocol(UTP) layer
68
69 UTP layer provides services for
70 the higher layers through Service Access Points. UTP defines 3
71 service access points for higher layers.
72 * UDM_SAP: Device manager service access point is exposed to device
73 manager for device level operations. These device level operations
74 are done through query requests.
75 * UTP_CMD_SAP: Command service access point is exposed to UFS command
76 set layer(UCS) to transport commands.
77 * UTP_TM_SAP: Task management service access point is exposed to task
78 manager to transport task management functions.
79 UTP transports messages through UFS protocol information unit(UPIU).
80
812.3 UFS Interconnect(UIC) Layer
82
83 UIC is the lowest layer of UFS layered architecture. It handles
84 connection between UFS host and UFS device. UIC consists of
85 MIPI UniPro and MIPI M-PHY. UIC provides 2 service access points
86 to upper layer,
87 * UIC_SAP: To transport UPIU between UFS host and UFS device.
88 * UIO_SAP: To issue commands to Unipro layers.
89
90
913. UFSHCD Overview
92------------------
93
94The UFS host controller driver is based on Linux SCSI Framework.
95UFSHCD is a low level device driver which acts as an interface between
96SCSI Midlayer and PCIe based UFS host controllers.
97
98The current UFSHCD implementation supports following functionality,
99
1003.1 UFS controller initialization
101
102 The initialization module brings UFS host controller to active state
103 and prepares the controller to transfer commands/response between
104 UFSHCD and UFS device.
105
1063.2 UTP Transfer requests
107
108 Transfer request handling module of UFSHCD receives SCSI commands
109 from SCSI Midlayer, forms UPIUs and issues the UPIUs to UFS Host
110 controller. Also, the module decodes, responses received from UFS
111 host controller in the form of UPIUs and intimates the SCSI Midlayer
112 of the status of the command.
113
1143.3 UFS error handling
115
116 Error handling module handles Host controller fatal errors,
117 Device fatal errors and UIC interconnect layer related errors.
118
1193.4 SCSI Error handling
120
121 This is done through UFSHCD SCSI error handling routines registered
122 with SCSI Midlayer. Examples of some of the error handling commands
123 issues by SCSI Midlayer are Abort task, Lun reset and host reset.
124 UFSHCD Routines to perform these tasks are registered with
125 SCSI Midlayer through .eh_abort_handler, .eh_device_reset_handler and
126 .eh_host_reset_handler.
127
128In this version of UFSHCD Query requests and power management
129functionality are not implemented.
130
131UFS Specifications can be found at,
132UFS - http://www.jedec.org/sites/default/files/docs/JESD220.pdf
133UFSHCI - http://www.jedec.org/sites/default/files/docs/JESD223.pdf