diff options
Diffstat (limited to 'Documentation/power/states.txt')
-rw-r--r-- | Documentation/power/states.txt | 30 |
1 files changed, 17 insertions, 13 deletions
diff --git a/Documentation/power/states.txt b/Documentation/power/states.txt index 4416b28630df..442d43df9b25 100644 --- a/Documentation/power/states.txt +++ b/Documentation/power/states.txt | |||
@@ -2,12 +2,26 @@ | |||
2 | System Power Management States | 2 | System Power Management States |
3 | 3 | ||
4 | 4 | ||
5 | The kernel supports three power management states generically, though | 5 | The kernel supports four power management states generically, though |
6 | each is dependent on platform support code to implement the low-level | 6 | one is generic and the other three are dependent on platform support |
7 | details for each state. This file describes each state, what they are | 7 | code to implement the low-level details for each state. |
8 | This file describes each state, what they are | ||
8 | commonly called, what ACPI state they map to, and what string to write | 9 | commonly called, what ACPI state they map to, and what string to write |
9 | to /sys/power/state to enter that state | 10 | to /sys/power/state to enter that state |
10 | 11 | ||
12 | state: Freeze / Low-Power Idle | ||
13 | ACPI state: S0 | ||
14 | String: "freeze" | ||
15 | |||
16 | This state is a generic, pure software, light-weight, low-power state. | ||
17 | It allows more energy to be saved relative to idle by freezing user | ||
18 | space and putting all I/O devices into low-power states (possibly | ||
19 | lower-power than available at run time), such that the processors can | ||
20 | spend more time in their idle states. | ||
21 | This state can be used for platforms without Standby/Suspend-to-RAM | ||
22 | support, or it can be used in addition to Suspend-to-RAM (memory sleep) | ||
23 | to provide reduced resume latency. | ||
24 | |||
11 | 25 | ||
12 | State: Standby / Power-On Suspend | 26 | State: Standby / Power-On Suspend |
13 | ACPI State: S1 | 27 | ACPI State: S1 |
@@ -22,9 +36,6 @@ We try to put devices in a low-power state equivalent to D1, which | |||
22 | also offers low power savings, but low resume latency. Not all devices | 36 | also offers low power savings, but low resume latency. Not all devices |
23 | support D1, and those that don't are left on. | 37 | support D1, and those that don't are left on. |
24 | 38 | ||
25 | A transition from Standby to the On state should take about 1-2 | ||
26 | seconds. | ||
27 | |||
28 | 39 | ||
29 | State: Suspend-to-RAM | 40 | State: Suspend-to-RAM |
30 | ACPI State: S3 | 41 | ACPI State: S3 |
@@ -42,9 +53,6 @@ transition back to the On state. | |||
42 | For at least ACPI, STR requires some minimal boot-strapping code to | 53 | For at least ACPI, STR requires some minimal boot-strapping code to |
43 | resume the system from STR. This may be true on other platforms. | 54 | resume the system from STR. This may be true on other platforms. |
44 | 55 | ||
45 | A transition from Suspend-to-RAM to the On state should take about | ||
46 | 3-5 seconds. | ||
47 | |||
48 | 56 | ||
49 | State: Suspend-to-disk | 57 | State: Suspend-to-disk |
50 | ACPI State: S4 | 58 | ACPI State: S4 |
@@ -74,7 +82,3 @@ low-power state (like ACPI S4), or it may simply power down. Powering | |||
74 | down offers greater savings, and allows this mechanism to work on any | 82 | down offers greater savings, and allows this mechanism to work on any |
75 | system. However, entering a real low-power state allows the user to | 83 | system. However, entering a real low-power state allows the user to |
76 | trigger wake up events (e.g. pressing a key or opening a laptop lid). | 84 | trigger wake up events (e.g. pressing a key or opening a laptop lid). |
77 | |||
78 | A transition from Suspend-to-Disk to the On state should take about 30 | ||
79 | seconds, though it's typically a bit more with the current | ||
80 | implementation. | ||