aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/power/freezing-of-tasks.txt
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/power/freezing-of-tasks.txt')
-rw-r--r--Documentation/power/freezing-of-tasks.txt37
1 files changed, 19 insertions, 18 deletions
diff --git a/Documentation/power/freezing-of-tasks.txt b/Documentation/power/freezing-of-tasks.txt
index ec715cd78fbb..6ec291ea1c78 100644
--- a/Documentation/power/freezing-of-tasks.txt
+++ b/Documentation/power/freezing-of-tasks.txt
@@ -9,7 +9,7 @@ architectures).
9 9
10II. How does it work? 10II. How does it work?
11 11
12There are four per-task flags used for that, PF_NOFREEZE, PF_FROZEN, TIF_FREEZE 12There are three per-task flags used for that, PF_NOFREEZE, PF_FROZEN
13and PF_FREEZER_SKIP (the last one is auxiliary). The tasks that have 13and PF_FREEZER_SKIP (the last one is auxiliary). The tasks that have
14PF_NOFREEZE unset (all user space processes and some kernel threads) are 14PF_NOFREEZE unset (all user space processes and some kernel threads) are
15regarded as 'freezable' and treated in a special way before the system enters a 15regarded as 'freezable' and treated in a special way before the system enters a
@@ -17,30 +17,31 @@ suspend state as well as before a hibernation image is created (in what follows
17we only consider hibernation, but the description also applies to suspend). 17we only consider hibernation, but the description also applies to suspend).
18 18
19Namely, as the first step of the hibernation procedure the function 19Namely, as the first step of the hibernation procedure the function
20freeze_processes() (defined in kernel/power/process.c) is called. It executes 20freeze_processes() (defined in kernel/power/process.c) is called. A system-wide
21try_to_freeze_tasks() that sets TIF_FREEZE for all of the freezable tasks and 21variable system_freezing_cnt (as opposed to a per-task flag) is used to indicate
22either wakes them up, if they are kernel threads, or sends fake signals to them, 22whether the system is to undergo a freezing operation. And freeze_processes()
23if they are user space processes. A task that has TIF_FREEZE set, should react 23sets this variable. After this, it executes try_to_freeze_tasks() that sends a
24to it by calling the function called __refrigerator() (defined in 24fake signal to all user space processes, and wakes up all the kernel threads.
25kernel/freezer.c), which sets the task's PF_FROZEN flag, changes its state 25All freezable tasks must react to that by calling try_to_freeze(), which
26to TASK_UNINTERRUPTIBLE and makes it loop until PF_FROZEN is cleared for it. 26results in a call to __refrigerator() (defined in kernel/freezer.c), which sets
27Then, we say that the task is 'frozen' and therefore the set of functions 27the task's PF_FROZEN flag, changes its state to TASK_UNINTERRUPTIBLE and makes
28handling this mechanism is referred to as 'the freezer' (these functions are 28it loop until PF_FROZEN is cleared for it. Then, we say that the task is
29defined in kernel/power/process.c, kernel/freezer.c & include/linux/freezer.h). 29'frozen' and therefore the set of functions handling this mechanism is referred
30User space processes are generally frozen before kernel threads. 30to as 'the freezer' (these functions are defined in kernel/power/process.c,
31kernel/freezer.c & include/linux/freezer.h). User space processes are generally
32frozen before kernel threads.
31 33
32__refrigerator() must not be called directly. Instead, use the 34__refrigerator() must not be called directly. Instead, use the
33try_to_freeze() function (defined in include/linux/freezer.h), that checks 35try_to_freeze() function (defined in include/linux/freezer.h), that checks
34the task's TIF_FREEZE flag and makes the task enter __refrigerator() if the 36if the task is to be frozen and makes the task enter __refrigerator().
35flag is set.
36 37
37For user space processes try_to_freeze() is called automatically from the 38For user space processes try_to_freeze() is called automatically from the
38signal-handling code, but the freezable kernel threads need to call it 39signal-handling code, but the freezable kernel threads need to call it
39explicitly in suitable places or use the wait_event_freezable() or 40explicitly in suitable places or use the wait_event_freezable() or
40wait_event_freezable_timeout() macros (defined in include/linux/freezer.h) 41wait_event_freezable_timeout() macros (defined in include/linux/freezer.h)
41that combine interruptible sleep with checking if TIF_FREEZE is set and calling 42that combine interruptible sleep with checking if the task is to be frozen and
42try_to_freeze(). The main loop of a freezable kernel thread may look like the 43calling try_to_freeze(). The main loop of a freezable kernel thread may look
43following one: 44like the following one:
44 45
45 set_freezable(); 46 set_freezable();
46 do { 47 do {
@@ -53,7 +54,7 @@ following one:
53(from drivers/usb/core/hub.c::hub_thread()). 54(from drivers/usb/core/hub.c::hub_thread()).
54 55
55If a freezable kernel thread fails to call try_to_freeze() after the freezer has 56If a freezable kernel thread fails to call try_to_freeze() after the freezer has
56set TIF_FREEZE for it, the freezing of tasks will fail and the entire 57initiated a freezing operation, the freezing of tasks will fail and the entire
57hibernation operation will be cancelled. For this reason, freezable kernel 58hibernation operation will be cancelled. For this reason, freezable kernel
58threads must call try_to_freeze() somewhere or use one of the 59threads must call try_to_freeze() somewhere or use one of the
59wait_event_freezable() and wait_event_freezable_timeout() macros. 60wait_event_freezable() and wait_event_freezable_timeout() macros.