diff options
Diffstat (limited to 'Documentation/netlabel/lsm_interface.txt')
-rw-r--r-- | Documentation/netlabel/lsm_interface.txt | 47 |
1 files changed, 47 insertions, 0 deletions
diff --git a/Documentation/netlabel/lsm_interface.txt b/Documentation/netlabel/lsm_interface.txt new file mode 100644 index 000000000000..98dd9f7430f2 --- /dev/null +++ b/Documentation/netlabel/lsm_interface.txt | |||
@@ -0,0 +1,47 @@ | |||
1 | NetLabel Linux Security Module Interface | ||
2 | ============================================================================== | ||
3 | Paul Moore, paul.moore@hp.com | ||
4 | |||
5 | May 17, 2006 | ||
6 | |||
7 | * Overview | ||
8 | |||
9 | NetLabel is a mechanism which can set and retrieve security attributes from | ||
10 | network packets. It is intended to be used by LSM developers who want to make | ||
11 | use of a common code base for several different packet labeling protocols. | ||
12 | The NetLabel security module API is defined in 'include/net/netlabel.h' but a | ||
13 | brief overview is given below. | ||
14 | |||
15 | * NetLabel Security Attributes | ||
16 | |||
17 | Since NetLabel supports multiple different packet labeling protocols and LSMs | ||
18 | it uses the concept of security attributes to refer to the packet's security | ||
19 | labels. The NetLabel security attributes are defined by the | ||
20 | 'netlbl_lsm_secattr' structure in the NetLabel header file. Internally the | ||
21 | NetLabel subsystem converts the security attributes to and from the correct | ||
22 | low-level packet label depending on the NetLabel build time and run time | ||
23 | configuration. It is up to the LSM developer to translate the NetLabel | ||
24 | security attributes into whatever security identifiers are in use for their | ||
25 | particular LSM. | ||
26 | |||
27 | * NetLabel LSM Protocol Operations | ||
28 | |||
29 | These are the functions which allow the LSM developer to manipulate the labels | ||
30 | on outgoing packets as well as read the labels on incoming packets. Functions | ||
31 | exist to operate both on sockets as well as the sk_buffs directly. These high | ||
32 | level functions are translated into low level protocol operations based on how | ||
33 | the administrator has configured the NetLabel subsystem. | ||
34 | |||
35 | * NetLabel Label Mapping Cache Operations | ||
36 | |||
37 | Depending on the exact configuration, translation between the network packet | ||
38 | label and the internal LSM security identifier can be time consuming. The | ||
39 | NetLabel label mapping cache is a caching mechanism which can be used to | ||
40 | sidestep much of this overhead once a mapping has been established. Once the | ||
41 | LSM has received a packet, used NetLabel to decode it's security attributes, | ||
42 | and translated the security attributes into a LSM internal identifier the LSM | ||
43 | can use the NetLabel caching functions to associate the LSM internal | ||
44 | identifier with the network packet's label. This means that in the future | ||
45 | when a incoming packet matches a cached value not only are the internal | ||
46 | NetLabel translation mechanisms bypassed but the LSM translation mechanisms are | ||
47 | bypassed as well which should result in a significant reduction in overhead. | ||