diff options
Diffstat (limited to 'Documentation/keys.txt')
-rw-r--r-- | Documentation/keys.txt | 319 |
1 files changed, 206 insertions, 113 deletions
diff --git a/Documentation/keys.txt b/Documentation/keys.txt index 36d80aeeaf28..0321ded4b9ae 100644 --- a/Documentation/keys.txt +++ b/Documentation/keys.txt | |||
@@ -22,6 +22,7 @@ This document has the following sections: | |||
22 | - New procfs files | 22 | - New procfs files |
23 | - Userspace system call interface | 23 | - Userspace system call interface |
24 | - Kernel services | 24 | - Kernel services |
25 | - Notes on accessing payload contents | ||
25 | - Defining a key type | 26 | - Defining a key type |
26 | - Request-key callback service | 27 | - Request-key callback service |
27 | - Key access filesystem | 28 | - Key access filesystem |
@@ -45,27 +46,26 @@ Each key has a number of attributes: | |||
45 | - State. | 46 | - State. |
46 | 47 | ||
47 | 48 | ||
48 | (*) Each key is issued a serial number of type key_serial_t that is unique | 49 | (*) Each key is issued a serial number of type key_serial_t that is unique for |
49 | for the lifetime of that key. All serial numbers are positive non-zero | 50 | the lifetime of that key. All serial numbers are positive non-zero 32-bit |
50 | 32-bit integers. | 51 | integers. |
51 | 52 | ||
52 | Userspace programs can use a key's serial numbers as a way to gain access | 53 | Userspace programs can use a key's serial numbers as a way to gain access |
53 | to it, subject to permission checking. | 54 | to it, subject to permission checking. |
54 | 55 | ||
55 | (*) Each key is of a defined "type". Types must be registered inside the | 56 | (*) Each key is of a defined "type". Types must be registered inside the |
56 | kernel by a kernel service (such as a filesystem) before keys of that | 57 | kernel by a kernel service (such as a filesystem) before keys of that type |
57 | type can be added or used. Userspace programs cannot define new types | 58 | can be added or used. Userspace programs cannot define new types directly. |
58 | directly. | ||
59 | 59 | ||
60 | Key types are represented in the kernel by struct key_type. This defines | 60 | Key types are represented in the kernel by struct key_type. This defines a |
61 | a number of operations that can be performed on a key of that type. | 61 | number of operations that can be performed on a key of that type. |
62 | 62 | ||
63 | Should a type be removed from the system, all the keys of that type will | 63 | Should a type be removed from the system, all the keys of that type will |
64 | be invalidated. | 64 | be invalidated. |
65 | 65 | ||
66 | (*) Each key has a description. This should be a printable string. The key | 66 | (*) Each key has a description. This should be a printable string. The key |
67 | type provides an operation to perform a match between the description on | 67 | type provides an operation to perform a match between the description on a |
68 | a key and a criterion string. | 68 | key and a criterion string. |
69 | 69 | ||
70 | (*) Each key has an owner user ID, a group ID and a permissions mask. These | 70 | (*) Each key has an owner user ID, a group ID and a permissions mask. These |
71 | are used to control what a process may do to a key from userspace, and | 71 | are used to control what a process may do to a key from userspace, and |
@@ -74,10 +74,10 @@ Each key has a number of attributes: | |||
74 | (*) Each key can be set to expire at a specific time by the key type's | 74 | (*) Each key can be set to expire at a specific time by the key type's |
75 | instantiation function. Keys can also be immortal. | 75 | instantiation function. Keys can also be immortal. |
76 | 76 | ||
77 | (*) Each key can have a payload. This is a quantity of data that represent | 77 | (*) Each key can have a payload. This is a quantity of data that represent the |
78 | the actual "key". In the case of a keyring, this is a list of keys to | 78 | actual "key". In the case of a keyring, this is a list of keys to which |
79 | which the keyring links; in the case of a user-defined key, it's an | 79 | the keyring links; in the case of a user-defined key, it's an arbitrary |
80 | arbitrary blob of data. | 80 | blob of data. |
81 | 81 | ||
82 | Having a payload is not required; and the payload can, in fact, just be a | 82 | Having a payload is not required; and the payload can, in fact, just be a |
83 | value stored in the struct key itself. | 83 | value stored in the struct key itself. |
@@ -92,8 +92,8 @@ Each key has a number of attributes: | |||
92 | 92 | ||
93 | (*) Each key can be in one of a number of basic states: | 93 | (*) Each key can be in one of a number of basic states: |
94 | 94 | ||
95 | (*) Uninstantiated. The key exists, but does not have any data | 95 | (*) Uninstantiated. The key exists, but does not have any data attached. |
96 | attached. Keys being requested from userspace will be in this state. | 96 | Keys being requested from userspace will be in this state. |
97 | 97 | ||
98 | (*) Instantiated. This is the normal state. The key is fully formed, and | 98 | (*) Instantiated. This is the normal state. The key is fully formed, and |
99 | has data attached. | 99 | has data attached. |
@@ -140,10 +140,10 @@ The key service provides a number of features besides keys: | |||
140 | clone, fork, vfork or execve occurs. A new keyring is created only when | 140 | clone, fork, vfork or execve occurs. A new keyring is created only when |
141 | required. | 141 | required. |
142 | 142 | ||
143 | The process-specific keyring is replaced with an empty one in the child | 143 | The process-specific keyring is replaced with an empty one in the child on |
144 | on clone, fork, vfork unless CLONE_THREAD is supplied, in which case it | 144 | clone, fork, vfork unless CLONE_THREAD is supplied, in which case it is |
145 | is shared. execve also discards the process's process keyring and creates | 145 | shared. execve also discards the process's process keyring and creates a |
146 | a new one. | 146 | new one. |
147 | 147 | ||
148 | The session-specific keyring is persistent across clone, fork, vfork and | 148 | The session-specific keyring is persistent across clone, fork, vfork and |
149 | execve, even when the latter executes a set-UID or set-GID binary. A | 149 | execve, even when the latter executes a set-UID or set-GID binary. A |
@@ -177,11 +177,11 @@ The key service provides a number of features besides keys: | |||
177 | If a system call that modifies a key or keyring in some way would put the | 177 | If a system call that modifies a key or keyring in some way would put the |
178 | user over quota, the operation is refused and error EDQUOT is returned. | 178 | user over quota, the operation is refused and error EDQUOT is returned. |
179 | 179 | ||
180 | (*) There's a system call interface by which userspace programs can create | 180 | (*) There's a system call interface by which userspace programs can create and |
181 | and manipulate keys and keyrings. | 181 | manipulate keys and keyrings. |
182 | 182 | ||
183 | (*) There's a kernel interface by which services can register types and | 183 | (*) There's a kernel interface by which services can register types and search |
184 | search for keys. | 184 | for keys. |
185 | 185 | ||
186 | (*) There's a way for the a search done from the kernel to call back to | 186 | (*) There's a way for the a search done from the kernel to call back to |
187 | userspace to request a key that can't be found in a process's keyrings. | 187 | userspace to request a key that can't be found in a process's keyrings. |
@@ -194,9 +194,9 @@ The key service provides a number of features besides keys: | |||
194 | KEY ACCESS PERMISSIONS | 194 | KEY ACCESS PERMISSIONS |
195 | ====================== | 195 | ====================== |
196 | 196 | ||
197 | Keys have an owner user ID, a group access ID, and a permissions mask. The | 197 | Keys have an owner user ID, a group access ID, and a permissions mask. The mask |
198 | mask has up to eight bits each for user, group and other access. Only five of | 198 | has up to eight bits each for user, group and other access. Only five of each |
199 | each set of eight bits are defined. These permissions granted are: | 199 | set of eight bits are defined. These permissions granted are: |
200 | 200 | ||
201 | (*) View | 201 | (*) View |
202 | 202 | ||
@@ -210,8 +210,8 @@ each set of eight bits are defined. These permissions granted are: | |||
210 | 210 | ||
211 | (*) Write | 211 | (*) Write |
212 | 212 | ||
213 | This permits a key's payload to be instantiated or updated, or it allows | 213 | This permits a key's payload to be instantiated or updated, or it allows a |
214 | a link to be added to or removed from a keyring. | 214 | link to be added to or removed from a keyring. |
215 | 215 | ||
216 | (*) Search | 216 | (*) Search |
217 | 217 | ||
@@ -238,8 +238,8 @@ about the status of the key service: | |||
238 | (*) /proc/keys | 238 | (*) /proc/keys |
239 | 239 | ||
240 | This lists all the keys on the system, giving information about their | 240 | This lists all the keys on the system, giving information about their |
241 | type, description and permissions. The payload of the key is not | 241 | type, description and permissions. The payload of the key is not available |
242 | available this way: | 242 | this way: |
243 | 243 | ||
244 | SERIAL FLAGS USAGE EXPY PERM UID GID TYPE DESCRIPTION: SUMMARY | 244 | SERIAL FLAGS USAGE EXPY PERM UID GID TYPE DESCRIPTION: SUMMARY |
245 | 00000001 I----- 39 perm 1f0000 0 0 keyring _uid_ses.0: 1/4 | 245 | 00000001 I----- 39 perm 1f0000 0 0 keyring _uid_ses.0: 1/4 |
@@ -318,21 +318,21 @@ The main syscalls are: | |||
318 | If a key of the same type and description as that proposed already exists | 318 | If a key of the same type and description as that proposed already exists |
319 | in the keyring, this will try to update it with the given payload, or it | 319 | in the keyring, this will try to update it with the given payload, or it |
320 | will return error EEXIST if that function is not supported by the key | 320 | will return error EEXIST if that function is not supported by the key |
321 | type. The process must also have permission to write to the key to be | 321 | type. The process must also have permission to write to the key to be able |
322 | able to update it. The new key will have all user permissions granted and | 322 | to update it. The new key will have all user permissions granted and no |
323 | no group or third party permissions. | 323 | group or third party permissions. |
324 | 324 | ||
325 | Otherwise, this will attempt to create a new key of the specified type | 325 | Otherwise, this will attempt to create a new key of the specified type and |
326 | and description, and to instantiate it with the supplied payload and | 326 | description, and to instantiate it with the supplied payload and attach it |
327 | attach it to the keyring. In this case, an error will be generated if the | 327 | to the keyring. In this case, an error will be generated if the process |
328 | process does not have permission to write to the keyring. | 328 | does not have permission to write to the keyring. |
329 | 329 | ||
330 | The payload is optional, and the pointer can be NULL if not required by | 330 | The payload is optional, and the pointer can be NULL if not required by |
331 | the type. The payload is plen in size, and plen can be zero for an empty | 331 | the type. The payload is plen in size, and plen can be zero for an empty |
332 | payload. | 332 | payload. |
333 | 333 | ||
334 | A new keyring can be generated by setting type "keyring", the keyring | 334 | A new keyring can be generated by setting type "keyring", the keyring name |
335 | name as the description (or NULL) and setting the payload to NULL. | 335 | as the description (or NULL) and setting the payload to NULL. |
336 | 336 | ||
337 | User defined keys can be created by specifying type "user". It is | 337 | User defined keys can be created by specifying type "user". It is |
338 | recommended that a user defined key's description by prefixed with a type | 338 | recommended that a user defined key's description by prefixed with a type |
@@ -369,9 +369,9 @@ The keyctl syscall functions are: | |||
369 | key_serial_t keyctl(KEYCTL_GET_KEYRING_ID, key_serial_t id, | 369 | key_serial_t keyctl(KEYCTL_GET_KEYRING_ID, key_serial_t id, |
370 | int create); | 370 | int create); |
371 | 371 | ||
372 | The special key specified by "id" is looked up (with the key being | 372 | The special key specified by "id" is looked up (with the key being created |
373 | created if necessary) and the ID of the key or keyring thus found is | 373 | if necessary) and the ID of the key or keyring thus found is returned if |
374 | returned if it exists. | 374 | it exists. |
375 | 375 | ||
376 | If the key does not yet exist, the key will be created if "create" is | 376 | If the key does not yet exist, the key will be created if "create" is |
377 | non-zero; and the error ENOKEY will be returned if "create" is zero. | 377 | non-zero; and the error ENOKEY will be returned if "create" is zero. |
@@ -402,8 +402,8 @@ The keyctl syscall functions are: | |||
402 | 402 | ||
403 | This will try to update the specified key with the given payload, or it | 403 | This will try to update the specified key with the given payload, or it |
404 | will return error EOPNOTSUPP if that function is not supported by the key | 404 | will return error EOPNOTSUPP if that function is not supported by the key |
405 | type. The process must also have permission to write to the key to be | 405 | type. The process must also have permission to write to the key to be able |
406 | able to update it. | 406 | to update it. |
407 | 407 | ||
408 | The payload is of length plen, and may be absent or empty as for | 408 | The payload is of length plen, and may be absent or empty as for |
409 | add_key(). | 409 | add_key(). |
@@ -422,8 +422,8 @@ The keyctl syscall functions are: | |||
422 | 422 | ||
423 | long keyctl(KEYCTL_CHOWN, key_serial_t key, uid_t uid, gid_t gid); | 423 | long keyctl(KEYCTL_CHOWN, key_serial_t key, uid_t uid, gid_t gid); |
424 | 424 | ||
425 | This function permits a key's owner and group ID to be changed. Either | 425 | This function permits a key's owner and group ID to be changed. Either one |
426 | one of uid or gid can be set to -1 to suppress that change. | 426 | of uid or gid can be set to -1 to suppress that change. |
427 | 427 | ||
428 | Only the superuser can change a key's owner to something other than the | 428 | Only the superuser can change a key's owner to something other than the |
429 | key's current owner. Similarly, only the superuser can change a key's | 429 | key's current owner. Similarly, only the superuser can change a key's |
@@ -484,12 +484,12 @@ The keyctl syscall functions are: | |||
484 | 484 | ||
485 | long keyctl(KEYCTL_LINK, key_serial_t keyring, key_serial_t key); | 485 | long keyctl(KEYCTL_LINK, key_serial_t keyring, key_serial_t key); |
486 | 486 | ||
487 | This function creates a link from the keyring to the key. The process | 487 | This function creates a link from the keyring to the key. The process must |
488 | must have write permission on the keyring and must have link permission | 488 | have write permission on the keyring and must have link permission on the |
489 | on the key. | 489 | key. |
490 | 490 | ||
491 | Should the keyring not be a keyring, error ENOTDIR will result; and if | 491 | Should the keyring not be a keyring, error ENOTDIR will result; and if the |
492 | the keyring is full, error ENFILE will result. | 492 | keyring is full, error ENFILE will result. |
493 | 493 | ||
494 | The link procedure checks the nesting of the keyrings, returning ELOOP if | 494 | The link procedure checks the nesting of the keyrings, returning ELOOP if |
495 | it appears to deep or EDEADLK if the link would introduce a cycle. | 495 | it appears to deep or EDEADLK if the link would introduce a cycle. |
@@ -503,8 +503,8 @@ The keyctl syscall functions are: | |||
503 | specified key, and removes it if found. Subsequent links to that key are | 503 | specified key, and removes it if found. Subsequent links to that key are |
504 | ignored. The process must have write permission on the keyring. | 504 | ignored. The process must have write permission on the keyring. |
505 | 505 | ||
506 | If the keyring is not a keyring, error ENOTDIR will result; and if the | 506 | If the keyring is not a keyring, error ENOTDIR will result; and if the key |
507 | key is not present, error ENOENT will be the result. | 507 | is not present, error ENOENT will be the result. |
508 | 508 | ||
509 | 509 | ||
510 | (*) Search a keyring tree for a key: | 510 | (*) Search a keyring tree for a key: |
@@ -513,9 +513,9 @@ The keyctl syscall functions are: | |||
513 | const char *type, const char *description, | 513 | const char *type, const char *description, |
514 | key_serial_t dest_keyring); | 514 | key_serial_t dest_keyring); |
515 | 515 | ||
516 | This searches the keyring tree headed by the specified keyring until a | 516 | This searches the keyring tree headed by the specified keyring until a key |
517 | key is found that matches the type and description criteria. Each keyring | 517 | is found that matches the type and description criteria. Each keyring is |
518 | is checked for keys before recursion into its children occurs. | 518 | checked for keys before recursion into its children occurs. |
519 | 519 | ||
520 | The process must have search permission on the top level keyring, or else | 520 | The process must have search permission on the top level keyring, or else |
521 | error EACCES will result. Only keyrings that the process has search | 521 | error EACCES will result. Only keyrings that the process has search |
@@ -549,8 +549,8 @@ The keyctl syscall functions are: | |||
549 | As much of the data as can be fitted into the buffer will be copied to | 549 | As much of the data as can be fitted into the buffer will be copied to |
550 | userspace if the buffer pointer is not NULL. | 550 | userspace if the buffer pointer is not NULL. |
551 | 551 | ||
552 | On a successful return, the function will always return the amount of | 552 | On a successful return, the function will always return the amount of data |
553 | data available rather than the amount copied. | 553 | available rather than the amount copied. |
554 | 554 | ||
555 | 555 | ||
556 | (*) Instantiate a partially constructed key. | 556 | (*) Instantiate a partially constructed key. |
@@ -568,8 +568,8 @@ The keyctl syscall functions are: | |||
568 | it, and the key must be uninstantiated. | 568 | it, and the key must be uninstantiated. |
569 | 569 | ||
570 | If a keyring is specified (non-zero), the key will also be linked into | 570 | If a keyring is specified (non-zero), the key will also be linked into |
571 | that keyring, however all the constraints applying in KEYCTL_LINK apply | 571 | that keyring, however all the constraints applying in KEYCTL_LINK apply in |
572 | in this case too. | 572 | this case too. |
573 | 573 | ||
574 | The payload and plen arguments describe the payload data as for add_key(). | 574 | The payload and plen arguments describe the payload data as for add_key(). |
575 | 575 | ||
@@ -587,8 +587,39 @@ The keyctl syscall functions are: | |||
587 | it, and the key must be uninstantiated. | 587 | it, and the key must be uninstantiated. |
588 | 588 | ||
589 | If a keyring is specified (non-zero), the key will also be linked into | 589 | If a keyring is specified (non-zero), the key will also be linked into |
590 | that keyring, however all the constraints applying in KEYCTL_LINK apply | 590 | that keyring, however all the constraints applying in KEYCTL_LINK apply in |
591 | in this case too. | 591 | this case too. |
592 | |||
593 | |||
594 | (*) Set the default request-key destination keyring. | ||
595 | |||
596 | long keyctl(KEYCTL_SET_REQKEY_KEYRING, int reqkey_defl); | ||
597 | |||
598 | This sets the default keyring to which implicitly requested keys will be | ||
599 | attached for this thread. reqkey_defl should be one of these constants: | ||
600 | |||
601 | CONSTANT VALUE NEW DEFAULT KEYRING | ||
602 | ====================================== ====== ======================= | ||
603 | KEY_REQKEY_DEFL_NO_CHANGE -1 No change | ||
604 | KEY_REQKEY_DEFL_DEFAULT 0 Default[1] | ||
605 | KEY_REQKEY_DEFL_THREAD_KEYRING 1 Thread keyring | ||
606 | KEY_REQKEY_DEFL_PROCESS_KEYRING 2 Process keyring | ||
607 | KEY_REQKEY_DEFL_SESSION_KEYRING 3 Session keyring | ||
608 | KEY_REQKEY_DEFL_USER_KEYRING 4 User keyring | ||
609 | KEY_REQKEY_DEFL_USER_SESSION_KEYRING 5 User session keyring | ||
610 | KEY_REQKEY_DEFL_GROUP_KEYRING 6 Group keyring | ||
611 | |||
612 | The old default will be returned if successful and error EINVAL will be | ||
613 | returned if reqkey_defl is not one of the above values. | ||
614 | |||
615 | The default keyring can be overridden by the keyring indicated to the | ||
616 | request_key() system call. | ||
617 | |||
618 | Note that this setting is inherited across fork/exec. | ||
619 | |||
620 | [1] The default default is: the thread keyring if there is one, otherwise | ||
621 | the process keyring if there is one, otherwise the session keyring if | ||
622 | there is one, otherwise the user default session keyring. | ||
592 | 623 | ||
593 | 624 | ||
594 | =============== | 625 | =============== |
@@ -601,17 +632,14 @@ be broken down into two areas: keys and key types. | |||
601 | Dealing with keys is fairly straightforward. Firstly, the kernel service | 632 | Dealing with keys is fairly straightforward. Firstly, the kernel service |
602 | registers its type, then it searches for a key of that type. It should retain | 633 | registers its type, then it searches for a key of that type. It should retain |
603 | the key as long as it has need of it, and then it should release it. For a | 634 | the key as long as it has need of it, and then it should release it. For a |
604 | filesystem or device file, a search would probably be performed during the | 635 | filesystem or device file, a search would probably be performed during the open |
605 | open call, and the key released upon close. How to deal with conflicting keys | 636 | call, and the key released upon close. How to deal with conflicting keys due to |
606 | due to two different users opening the same file is left to the filesystem | 637 | two different users opening the same file is left to the filesystem author to |
607 | author to solve. | 638 | solve. |
608 | 639 | ||
609 | When accessing a key's payload data, key->lock should be at least read locked, | 640 | When accessing a key's payload contents, certain precautions must be taken to |
610 | or else the data may be changed by an update being performed from userspace | 641 | prevent access vs modification races. See the section "Notes on accessing |
611 | whilst the driver or filesystem is trying to access it. If no update method is | 642 | payload contents" for more information. |
612 | supplied, then the key's payload may be accessed without holding a lock as | ||
613 | there is no way to change it, provided it can be guaranteed that the key's | ||
614 | type definition won't go away. | ||
615 | 643 | ||
616 | (*) To search for a key, call: | 644 | (*) To search for a key, call: |
617 | 645 | ||
@@ -629,6 +657,9 @@ type definition won't go away. | |||
629 | Should the function fail error ENOKEY, EKEYEXPIRED or EKEYREVOKED will be | 657 | Should the function fail error ENOKEY, EKEYEXPIRED or EKEYREVOKED will be |
630 | returned. | 658 | returned. |
631 | 659 | ||
660 | If successful, the key will have been attached to the default keyring for | ||
661 | implicitly obtained request-key keys, as set by KEYCTL_SET_REQKEY_KEYRING. | ||
662 | |||
632 | 663 | ||
633 | (*) When it is no longer required, the key should be released using: | 664 | (*) When it is no longer required, the key should be released using: |
634 | 665 | ||
@@ -690,6 +721,54 @@ type definition won't go away. | |||
690 | void unregister_key_type(struct key_type *type); | 721 | void unregister_key_type(struct key_type *type); |
691 | 722 | ||
692 | 723 | ||
724 | =================================== | ||
725 | NOTES ON ACCESSING PAYLOAD CONTENTS | ||
726 | =================================== | ||
727 | |||
728 | The simplest payload is just a number in key->payload.value. In this case, | ||
729 | there's no need to indulge in RCU or locking when accessing the payload. | ||
730 | |||
731 | More complex payload contents must be allocated and a pointer to them set in | ||
732 | key->payload.data. One of the following ways must be selected to access the | ||
733 | data: | ||
734 | |||
735 | (1) Unmodifyable key type. | ||
736 | |||
737 | If the key type does not have a modify method, then the key's payload can | ||
738 | be accessed without any form of locking, provided that it's known to be | ||
739 | instantiated (uninstantiated keys cannot be "found"). | ||
740 | |||
741 | (2) The key's semaphore. | ||
742 | |||
743 | The semaphore could be used to govern access to the payload and to control | ||
744 | the payload pointer. It must be write-locked for modifications and would | ||
745 | have to be read-locked for general access. The disadvantage of doing this | ||
746 | is that the accessor may be required to sleep. | ||
747 | |||
748 | (3) RCU. | ||
749 | |||
750 | RCU must be used when the semaphore isn't already held; if the semaphore | ||
751 | is held then the contents can't change under you unexpectedly as the | ||
752 | semaphore must still be used to serialise modifications to the key. The | ||
753 | key management code takes care of this for the key type. | ||
754 | |||
755 | However, this means using: | ||
756 | |||
757 | rcu_read_lock() ... rcu_dereference() ... rcu_read_unlock() | ||
758 | |||
759 | to read the pointer, and: | ||
760 | |||
761 | rcu_dereference() ... rcu_assign_pointer() ... call_rcu() | ||
762 | |||
763 | to set the pointer and dispose of the old contents after a grace period. | ||
764 | Note that only the key type should ever modify a key's payload. | ||
765 | |||
766 | Furthermore, an RCU controlled payload must hold a struct rcu_head for the | ||
767 | use of call_rcu() and, if the payload is of variable size, the length of | ||
768 | the payload. key->datalen cannot be relied upon to be consistent with the | ||
769 | payload just dereferenced if the key's semaphore is not held. | ||
770 | |||
771 | |||
693 | =================== | 772 | =================== |
694 | DEFINING A KEY TYPE | 773 | DEFINING A KEY TYPE |
695 | =================== | 774 | =================== |
@@ -717,15 +796,15 @@ The structure has a number of fields, some of which are mandatory: | |||
717 | 796 | ||
718 | int key_payload_reserve(struct key *key, size_t datalen); | 797 | int key_payload_reserve(struct key *key, size_t datalen); |
719 | 798 | ||
720 | With the revised data length. Error EDQUOT will be returned if this is | 799 | With the revised data length. Error EDQUOT will be returned if this is not |
721 | not viable. | 800 | viable. |
722 | 801 | ||
723 | 802 | ||
724 | (*) int (*instantiate)(struct key *key, const void *data, size_t datalen); | 803 | (*) int (*instantiate)(struct key *key, const void *data, size_t datalen); |
725 | 804 | ||
726 | This method is called to attach a payload to a key during construction. | 805 | This method is called to attach a payload to a key during construction. |
727 | The payload attached need not bear any relation to the data passed to | 806 | The payload attached need not bear any relation to the data passed to this |
728 | this function. | 807 | function. |
729 | 808 | ||
730 | If the amount of data attached to the key differs from the size in | 809 | If the amount of data attached to the key differs from the size in |
731 | keytype->def_datalen, then key_payload_reserve() should be called. | 810 | keytype->def_datalen, then key_payload_reserve() should be called. |
@@ -734,38 +813,47 @@ The structure has a number of fields, some of which are mandatory: | |||
734 | The fact that KEY_FLAG_INSTANTIATED is not set in key->flags prevents | 813 | The fact that KEY_FLAG_INSTANTIATED is not set in key->flags prevents |
735 | anything else from gaining access to the key. | 814 | anything else from gaining access to the key. |
736 | 815 | ||
737 | This method may sleep if it wishes. | 816 | It is safe to sleep in this method. |
738 | 817 | ||
739 | 818 | ||
740 | (*) int (*duplicate)(struct key *key, const struct key *source); | 819 | (*) int (*duplicate)(struct key *key, const struct key *source); |
741 | 820 | ||
742 | If this type of key can be duplicated, then this method should be | 821 | If this type of key can be duplicated, then this method should be |
743 | provided. It is called to copy the payload attached to the source into | 822 | provided. It is called to copy the payload attached to the source into the |
744 | the new key. The data length on the new key will have been updated and | 823 | new key. The data length on the new key will have been updated and the |
745 | the quota adjusted already. | 824 | quota adjusted already. |
746 | 825 | ||
747 | This method will be called with the source key's semaphore read-locked to | 826 | This method will be called with the source key's semaphore read-locked to |
748 | prevent its payload from being changed. It is safe to sleep here. | 827 | prevent its payload from being changed, thus RCU constraints need not be |
828 | applied to the source key. | ||
829 | |||
830 | This method does not have to lock the destination key in order to attach a | ||
831 | payload. The fact that KEY_FLAG_INSTANTIATED is not set in key->flags | ||
832 | prevents anything else from gaining access to the key. | ||
833 | |||
834 | It is safe to sleep in this method. | ||
749 | 835 | ||
750 | 836 | ||
751 | (*) int (*update)(struct key *key, const void *data, size_t datalen); | 837 | (*) int (*update)(struct key *key, const void *data, size_t datalen); |
752 | 838 | ||
753 | If this type of key can be updated, then this method should be | 839 | If this type of key can be updated, then this method should be provided. |
754 | provided. It is called to update a key's payload from the blob of data | 840 | It is called to update a key's payload from the blob of data provided. |
755 | provided. | ||
756 | 841 | ||
757 | key_payload_reserve() should be called if the data length might change | 842 | key_payload_reserve() should be called if the data length might change |
758 | before any changes are actually made. Note that if this succeeds, the | 843 | before any changes are actually made. Note that if this succeeds, the type |
759 | type is committed to changing the key because it's already been altered, | 844 | is committed to changing the key because it's already been altered, so all |
760 | so all memory allocation must be done first. | 845 | memory allocation must be done first. |
846 | |||
847 | The key will have its semaphore write-locked before this method is called, | ||
848 | but this only deters other writers; any changes to the key's payload must | ||
849 | be made under RCU conditions, and call_rcu() must be used to dispose of | ||
850 | the old payload. | ||
761 | 851 | ||
762 | key_payload_reserve() should be called with the key->lock write locked, | 852 | key_payload_reserve() should be called before the changes are made, but |
763 | and the changes to the key's attached payload should be made before the | 853 | after all allocations and other potentially failing function calls are |
764 | key is locked. | 854 | made. |
765 | 855 | ||
766 | The key will have its semaphore write-locked before this method is | 856 | It is safe to sleep in this method. |
767 | called. Any changes to the key should be made with the key's rwlock | ||
768 | write-locked also. It is safe to sleep here. | ||
769 | 857 | ||
770 | 858 | ||
771 | (*) int (*match)(const struct key *key, const void *desc); | 859 | (*) int (*match)(const struct key *key, const void *desc); |
@@ -782,12 +870,12 @@ The structure has a number of fields, some of which are mandatory: | |||
782 | 870 | ||
783 | (*) void (*destroy)(struct key *key); | 871 | (*) void (*destroy)(struct key *key); |
784 | 872 | ||
785 | This method is optional. It is called to discard the payload data on a | 873 | This method is optional. It is called to discard the payload data on a key |
786 | key when it is being destroyed. | 874 | when it is being destroyed. |
787 | 875 | ||
788 | This method does not need to lock the key; it can consider the key as | 876 | This method does not need to lock the key to access the payload; it can |
789 | being inaccessible. Note that the key's type may have changed before this | 877 | consider the key as being inaccessible at this time. Note that the key's |
790 | function is called. | 878 | type may have been changed before this function is called. |
791 | 879 | ||
792 | It is not safe to sleep in this method; the caller may hold spinlocks. | 880 | It is not safe to sleep in this method; the caller may hold spinlocks. |
793 | 881 | ||
@@ -797,26 +885,31 @@ The structure has a number of fields, some of which are mandatory: | |||
797 | This method is optional. It is called during /proc/keys reading to | 885 | This method is optional. It is called during /proc/keys reading to |
798 | summarise a key's description and payload in text form. | 886 | summarise a key's description and payload in text form. |
799 | 887 | ||
800 | This method will be called with the key's rwlock read-locked. This will | 888 | This method will be called with the RCU read lock held. rcu_dereference() |
801 | prevent the key's payload and state changing; also the description should | 889 | should be used to read the payload pointer if the payload is to be |
802 | not change. This also means it is not safe to sleep in this method. | 890 | accessed. key->datalen cannot be trusted to stay consistent with the |
891 | contents of the payload. | ||
892 | |||
893 | The description will not change, though the key's state may. | ||
894 | |||
895 | It is not safe to sleep in this method; the RCU read lock is held by the | ||
896 | caller. | ||
803 | 897 | ||
804 | 898 | ||
805 | (*) long (*read)(const struct key *key, char __user *buffer, size_t buflen); | 899 | (*) long (*read)(const struct key *key, char __user *buffer, size_t buflen); |
806 | 900 | ||
807 | This method is optional. It is called by KEYCTL_READ to translate the | 901 | This method is optional. It is called by KEYCTL_READ to translate the |
808 | key's payload into something a blob of data for userspace to deal | 902 | key's payload into something a blob of data for userspace to deal with. |
809 | with. Ideally, the blob should be in the same format as that passed in to | 903 | Ideally, the blob should be in the same format as that passed in to the |
810 | the instantiate and update methods. | 904 | instantiate and update methods. |
811 | 905 | ||
812 | If successful, the blob size that could be produced should be returned | 906 | If successful, the blob size that could be produced should be returned |
813 | rather than the size copied. | 907 | rather than the size copied. |
814 | 908 | ||
815 | This method will be called with the key's semaphore read-locked. This | 909 | This method will be called with the key's semaphore read-locked. This will |
816 | will prevent the key's payload changing. It is not necessary to also | 910 | prevent the key's payload changing. It is not necessary to use RCU locking |
817 | read-lock key->lock when accessing the key's payload. It is safe to sleep | 911 | when accessing the key's payload. It is safe to sleep in this method, such |
818 | in this method, such as might happen when the userspace buffer is | 912 | as might happen when the userspace buffer is accessed. |
819 | accessed. | ||
820 | 913 | ||
821 | 914 | ||
822 | ============================ | 915 | ============================ |
@@ -853,8 +946,8 @@ If it returns with the key remaining in the unconstructed state, the key will | |||
853 | be marked as being negative, it will be added to the session keyring, and an | 946 | be marked as being negative, it will be added to the session keyring, and an |
854 | error will be returned to the key requestor. | 947 | error will be returned to the key requestor. |
855 | 948 | ||
856 | Supplementary information may be provided from whoever or whatever invoked | 949 | Supplementary information may be provided from whoever or whatever invoked this |
857 | this service. This will be passed as the <callout_info> parameter. If no such | 950 | service. This will be passed as the <callout_info> parameter. If no such |
858 | information was made available, then "-" will be passed as this parameter | 951 | information was made available, then "-" will be passed as this parameter |
859 | instead. | 952 | instead. |
860 | 953 | ||