diff options
Diffstat (limited to 'Documentation/i2c/instantiating-devices')
-rw-r--r-- | Documentation/i2c/instantiating-devices | 167 |
1 files changed, 167 insertions, 0 deletions
diff --git a/Documentation/i2c/instantiating-devices b/Documentation/i2c/instantiating-devices new file mode 100644 index 000000000000..b55ce57a84db --- /dev/null +++ b/Documentation/i2c/instantiating-devices | |||
@@ -0,0 +1,167 @@ | |||
1 | How to instantiate I2C devices | ||
2 | ============================== | ||
3 | |||
4 | Unlike PCI or USB devices, I2C devices are not enumerated at the hardware | ||
5 | level. Instead, the software must know which devices are connected on each | ||
6 | I2C bus segment, and what address these devices are using. For this | ||
7 | reason, the kernel code must instantiate I2C devices explicitly. There are | ||
8 | several ways to achieve this, depending on the context and requirements. | ||
9 | |||
10 | |||
11 | Method 1: Declare the I2C devices by bus number | ||
12 | ----------------------------------------------- | ||
13 | |||
14 | This method is appropriate when the I2C bus is a system bus as is the case | ||
15 | for many embedded systems. On such systems, each I2C bus has a number | ||
16 | which is known in advance. It is thus possible to pre-declare the I2C | ||
17 | devices which live on this bus. This is done with an array of struct | ||
18 | i2c_board_info which is registered by calling i2c_register_board_info(). | ||
19 | |||
20 | Example (from omap2 h4): | ||
21 | |||
22 | static struct i2c_board_info __initdata h4_i2c_board_info[] = { | ||
23 | { | ||
24 | I2C_BOARD_INFO("isp1301_omap", 0x2d), | ||
25 | .irq = OMAP_GPIO_IRQ(125), | ||
26 | }, | ||
27 | { /* EEPROM on mainboard */ | ||
28 | I2C_BOARD_INFO("24c01", 0x52), | ||
29 | .platform_data = &m24c01, | ||
30 | }, | ||
31 | { /* EEPROM on cpu card */ | ||
32 | I2C_BOARD_INFO("24c01", 0x57), | ||
33 | .platform_data = &m24c01, | ||
34 | }, | ||
35 | }; | ||
36 | |||
37 | static void __init omap_h4_init(void) | ||
38 | { | ||
39 | (...) | ||
40 | i2c_register_board_info(1, h4_i2c_board_info, | ||
41 | ARRAY_SIZE(h4_i2c_board_info)); | ||
42 | (...) | ||
43 | } | ||
44 | |||
45 | The above code declares 3 devices on I2C bus 1, including their respective | ||
46 | addresses and custom data needed by their drivers. When the I2C bus in | ||
47 | question is registered, the I2C devices will be instantiated automatically | ||
48 | by i2c-core. | ||
49 | |||
50 | The devices will be automatically unbound and destroyed when the I2C bus | ||
51 | they sit on goes away (if ever.) | ||
52 | |||
53 | |||
54 | Method 2: Instantiate the devices explicitly | ||
55 | -------------------------------------------- | ||
56 | |||
57 | This method is appropriate when a larger device uses an I2C bus for | ||
58 | internal communication. A typical case is TV adapters. These can have a | ||
59 | tuner, a video decoder, an audio decoder, etc. usually connected to the | ||
60 | main chip by the means of an I2C bus. You won't know the number of the I2C | ||
61 | bus in advance, so the method 1 described above can't be used. Instead, | ||
62 | you can instantiate your I2C devices explicitly. This is done by filling | ||
63 | a struct i2c_board_info and calling i2c_new_device(). | ||
64 | |||
65 | Example (from the sfe4001 network driver): | ||
66 | |||
67 | static struct i2c_board_info sfe4001_hwmon_info = { | ||
68 | I2C_BOARD_INFO("max6647", 0x4e), | ||
69 | }; | ||
70 | |||
71 | int sfe4001_init(struct efx_nic *efx) | ||
72 | { | ||
73 | (...) | ||
74 | efx->board_info.hwmon_client = | ||
75 | i2c_new_device(&efx->i2c_adap, &sfe4001_hwmon_info); | ||
76 | |||
77 | (...) | ||
78 | } | ||
79 | |||
80 | The above code instantiates 1 I2C device on the I2C bus which is on the | ||
81 | network adapter in question. | ||
82 | |||
83 | A variant of this is when you don't know for sure if an I2C device is | ||
84 | present or not (for example for an optional feature which is not present | ||
85 | on cheap variants of a board but you have no way to tell them apart), or | ||
86 | it may have different addresses from one board to the next (manufacturer | ||
87 | changing its design without notice). In this case, you can call | ||
88 | i2c_new_probed_device() instead of i2c_new_device(). | ||
89 | |||
90 | Example (from the pnx4008 OHCI driver): | ||
91 | |||
92 | static const unsigned short normal_i2c[] = { 0x2c, 0x2d, I2C_CLIENT_END }; | ||
93 | |||
94 | static int __devinit usb_hcd_pnx4008_probe(struct platform_device *pdev) | ||
95 | { | ||
96 | (...) | ||
97 | struct i2c_adapter *i2c_adap; | ||
98 | struct i2c_board_info i2c_info; | ||
99 | |||
100 | (...) | ||
101 | i2c_adap = i2c_get_adapter(2); | ||
102 | memset(&i2c_info, 0, sizeof(struct i2c_board_info)); | ||
103 | strlcpy(i2c_info.name, "isp1301_pnx", I2C_NAME_SIZE); | ||
104 | isp1301_i2c_client = i2c_new_probed_device(i2c_adap, &i2c_info, | ||
105 | normal_i2c); | ||
106 | i2c_put_adapter(i2c_adap); | ||
107 | (...) | ||
108 | } | ||
109 | |||
110 | The above code instantiates up to 1 I2C device on the I2C bus which is on | ||
111 | the OHCI adapter in question. It first tries at address 0x2c, if nothing | ||
112 | is found there it tries address 0x2d, and if still nothing is found, it | ||
113 | simply gives up. | ||
114 | |||
115 | The driver which instantiated the I2C device is responsible for destroying | ||
116 | it on cleanup. This is done by calling i2c_unregister_device() on the | ||
117 | pointer that was earlier returned by i2c_new_device() or | ||
118 | i2c_new_probed_device(). | ||
119 | |||
120 | |||
121 | Method 3: Probe an I2C bus for certain devices | ||
122 | ---------------------------------------------- | ||
123 | |||
124 | Sometimes you do not have enough information about an I2C device, not even | ||
125 | to call i2c_new_probed_device(). The typical case is hardware monitoring | ||
126 | chips on PC mainboards. There are several dozen models, which can live | ||
127 | at 25 different addresses. Given the huge number of mainboards out there, | ||
128 | it is next to impossible to build an exhaustive list of the hardware | ||
129 | monitoring chips being used. Fortunately, most of these chips have | ||
130 | manufacturer and device ID registers, so they can be identified by | ||
131 | probing. | ||
132 | |||
133 | In that case, I2C devices are neither declared nor instantiated | ||
134 | explicitly. Instead, i2c-core will probe for such devices as soon as their | ||
135 | drivers are loaded, and if any is found, an I2C device will be | ||
136 | instantiated automatically. In order to prevent any misbehavior of this | ||
137 | mechanism, the following restrictions apply: | ||
138 | * The I2C device driver must implement the detect() method, which | ||
139 | identifies a supported device by reading from arbitrary registers. | ||
140 | * Only buses which are likely to have a supported device and agree to be | ||
141 | probed, will be probed. For example this avoids probing for hardware | ||
142 | monitoring chips on a TV adapter. | ||
143 | |||
144 | Example: | ||
145 | See lm90_driver and lm90_detect() in drivers/hwmon/lm90.c | ||
146 | |||
147 | I2C devices instantiated as a result of such a successful probe will be | ||
148 | destroyed automatically when the driver which detected them is removed, | ||
149 | or when the underlying I2C bus is itself destroyed, whichever happens | ||
150 | first. | ||
151 | |||
152 | Those of you familiar with the i2c subsystem of 2.4 kernels and early 2.6 | ||
153 | kernels will find out that this method 3 is essentially similar to what | ||
154 | was done there. Two significant differences are: | ||
155 | * Probing is only one way to instantiate I2C devices now, while it was the | ||
156 | only way back then. Where possible, methods 1 and 2 should be preferred. | ||
157 | Method 3 should only be used when there is no other way, as it can have | ||
158 | undesirable side effects. | ||
159 | * I2C buses must now explicitly say which I2C driver classes can probe | ||
160 | them (by the means of the class bitfield), while all I2C buses were | ||
161 | probed by default back then. The default is an empty class which means | ||
162 | that no probing happens. The purpose of the class bitfield is to limit | ||
163 | the aforementioned undesirable side effects. | ||
164 | |||
165 | Once again, method 3 should be avoided wherever possible. Explicit device | ||
166 | instantiation (methods 1 and 2) is much preferred for it is safer and | ||
167 | faster. | ||