aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/hwmon
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/hwmon')
-rw-r--r--Documentation/hwmon/dme173757
-rw-r--r--Documentation/hwmon/ibmaem33
-rw-r--r--Documentation/hwmon/it8713
-rw-r--r--Documentation/hwmon/lm8511
-rw-r--r--Documentation/hwmon/w83627hf4
-rw-r--r--Documentation/hwmon/w83791d6
6 files changed, 72 insertions, 52 deletions
diff --git a/Documentation/hwmon/dme1737 b/Documentation/hwmon/dme1737
index 8f446070e64a..001d2e70bc11 100644
--- a/Documentation/hwmon/dme1737
+++ b/Documentation/hwmon/dme1737
@@ -10,6 +10,10 @@ Supported chips:
10 Prefix: 'sch311x' 10 Prefix: 'sch311x'
11 Addresses scanned: none, address read from Super-I/O config space 11 Addresses scanned: none, address read from Super-I/O config space
12 Datasheet: http://www.nuhorizons.com/FeaturedProducts/Volume1/SMSC/311x.pdf 12 Datasheet: http://www.nuhorizons.com/FeaturedProducts/Volume1/SMSC/311x.pdf
13 * SMSC SCH5027
14 Prefix: 'sch5027'
15 Addresses scanned: I2C 0x2c, 0x2d, 0x2e
16 Datasheet: Provided by SMSC upon request and under NDA
13 17
14Authors: 18Authors:
15 Juerg Haefliger <juergh@gmail.com> 19 Juerg Haefliger <juergh@gmail.com>
@@ -22,34 +26,36 @@ Module Parameters
22 and PWM output control functions. Using this parameter 26 and PWM output control functions. Using this parameter
23 shouldn't be required since the BIOS usually takes care 27 shouldn't be required since the BIOS usually takes care
24 of this. 28 of this.
25 29* probe_all_addr: bool Include non-standard LPC addresses 0x162e and 0x164e
26Note that there is no need to use this parameter if the driver loads without 30 when probing for ISA devices. This is required for the
27complaining. The driver will say so if it is necessary. 31 following boards:
32 - VIA EPIA SN18000
28 33
29 34
30Description 35Description
31----------- 36-----------
32 37
33This driver implements support for the hardware monitoring capabilities of the 38This driver implements support for the hardware monitoring capabilities of the
34SMSC DME1737 and Asus A8000 (which are the same) and SMSC SCH311x Super-I/O 39SMSC DME1737 and Asus A8000 (which are the same), SMSC SCH5027, and SMSC
35chips. These chips feature monitoring of 3 temp sensors temp[1-3] (2 remote 40SCH311x Super-I/O chips. These chips feature monitoring of 3 temp sensors
36diodes and 1 internal), 7 voltages in[0-6] (6 external and 1 internal) and up 41temp[1-3] (2 remote diodes and 1 internal), 7 voltages in[0-6] (6 external and
37to 6 fan speeds fan[1-6]. Additionally, the chips implement up to 5 PWM 421 internal) and up to 6 fan speeds fan[1-6]. Additionally, the chips implement
38outputs pwm[1-3,5-6] for controlling fan speeds both manually and 43up to 5 PWM outputs pwm[1-3,5-6] for controlling fan speeds both manually and
39automatically. 44automatically.
40 45
41For the DME1737 and A8000, fan[1-2] and pwm[1-2] are always present. Fan[3-6] 46For the DME1737, A8000 and SCH5027, fan[1-2] and pwm[1-2] are always present.
42and pwm[3,5-6] are optional features and their availability depends on the 47Fan[3-6] and pwm[3,5-6] are optional features and their availability depends on
43configuration of the chip. The driver will detect which features are present 48the configuration of the chip. The driver will detect which features are
44during initialization and create the sysfs attributes accordingly. 49present during initialization and create the sysfs attributes accordingly.
45 50
46For the SCH311x, fan[1-3] and pwm[1-3] are always present and fan[4-6] and 51For the SCH311x, fan[1-3] and pwm[1-3] are always present and fan[4-6] and
47pwm[5-6] don't exist. 52pwm[5-6] don't exist.
48 53
49The hardware monitoring features of the DME1737 and A8000 are only accessible 54The hardware monitoring features of the DME1737, A8000, and SCH5027 are only
50via SMBus, while the SCH311x only provides access via the ISA bus. The driver 55accessible via SMBus, while the SCH311x only provides access via the ISA bus.
51will therefore register itself as an I2C client driver if it detects a DME1737 56The driver will therefore register itself as an I2C client driver if it detects
52or A8000 and as a platform driver if it detects a SCH311x chip. 57a DME1737, A8000, or SCH5027 and as a platform driver if it detects a SCH311x
58chip.
53 59
54 60
55Voltage Monitoring 61Voltage Monitoring
@@ -60,6 +66,7 @@ scaling resistors. The values returned by the driver therefore reflect true
60millivolts and don't need scaling. The voltage inputs are mapped as follows 66millivolts and don't need scaling. The voltage inputs are mapped as follows
61(the last column indicates the input ranges): 67(the last column indicates the input ranges):
62 68
69DME1737, A8000:
63 in0: +5VTR (+5V standby) 0V - 6.64V 70 in0: +5VTR (+5V standby) 0V - 6.64V
64 in1: Vccp (processor core) 0V - 3V 71 in1: Vccp (processor core) 0V - 3V
65 in2: VCC (internal +3.3V) 0V - 4.38V 72 in2: VCC (internal +3.3V) 0V - 4.38V
@@ -68,6 +75,24 @@ millivolts and don't need scaling. The voltage inputs are mapped as follows
68 in5: VTR (+3.3V standby) 0V - 4.38V 75 in5: VTR (+3.3V standby) 0V - 4.38V
69 in6: Vbat (+3.0V) 0V - 4.38V 76 in6: Vbat (+3.0V) 0V - 4.38V
70 77
78SCH311x:
79 in0: +2.5V 0V - 6.64V
80 in1: Vccp (processor core) 0V - 2V
81 in2: VCC (internal +3.3V) 0V - 4.38V
82 in3: +5V 0V - 6.64V
83 in4: +12V 0V - 16V
84 in5: VTR (+3.3V standby) 0V - 4.38V
85 in6: Vbat (+3.0V) 0V - 4.38V
86
87SCH5027:
88 in0: +5VTR (+5V standby) 0V - 6.64V
89 in1: Vccp (processor core) 0V - 3V
90 in2: VCC (internal +3.3V) 0V - 4.38V
91 in3: V2_IN 0V - 1.5V
92 in4: V1_IN 0V - 1.5V
93 in5: VTR (+3.3V standby) 0V - 4.38V
94 in6: Vbat (+3.0V) 0V - 4.38V
95
71Each voltage input has associated min and max limits which trigger an alarm 96Each voltage input has associated min and max limits which trigger an alarm
72when crossed. 97when crossed.
73 98
diff --git a/Documentation/hwmon/ibmaem b/Documentation/hwmon/ibmaem
index 2fefaf582a43..e98bdfea3467 100644
--- a/Documentation/hwmon/ibmaem
+++ b/Documentation/hwmon/ibmaem
@@ -1,8 +1,11 @@
1Kernel driver ibmaem 1Kernel driver ibmaem
2====================== 2======================
3 3
4This driver talks to the IBM Systems Director Active Energy Manager, known
5henceforth as AEM.
6
4Supported systems: 7Supported systems:
5 * Any recent IBM System X server with Active Energy Manager support. 8 * Any recent IBM System X server with AEM support.
6 This includes the x3350, x3550, x3650, x3655, x3755, x3850 M2, 9 This includes the x3350, x3550, x3650, x3655, x3755, x3850 M2,
7 x3950 M2, and certain HS2x/LS2x/QS2x blades. The IPMI host interface 10 x3950 M2, and certain HS2x/LS2x/QS2x blades. The IPMI host interface
8 driver ("ipmi-si") needs to be loaded for this driver to do anything. 11 driver ("ipmi-si") needs to be loaded for this driver to do anything.
@@ -14,24 +17,22 @@ Author: Darrick J. Wong
14Description 17Description
15----------- 18-----------
16 19
17This driver implements sensor reading support for the energy and power 20This driver implements sensor reading support for the energy and power meters
18meters available on various IBM System X hardware through the BMC. All 21available on various IBM System X hardware through the BMC. All sensor banks
19sensor banks will be exported as platform devices; this driver can talk 22will be exported as platform devices; this driver can talk to both v1 and v2
20to both v1 and v2 interfaces. This driver is completely separate from the 23interfaces. This driver is completely separate from the older ibmpex driver.
21older ibmpex driver.
22 24
23The v1 AEM interface has a simple set of features to monitor energy use. 25The v1 AEM interface has a simple set of features to monitor energy use. There
24There is a register that displays an estimate of raw energy consumption 26is a register that displays an estimate of raw energy consumption since the
25since the last BMC reset, and a power sensor that returns average power 27last BMC reset, and a power sensor that returns average power use over a
26use over a configurable interval. 28configurable interval.
27 29
28The v2 AEM interface is a bit more sophisticated, being able to present 30The v2 AEM interface is a bit more sophisticated, being able to present a wider
29a wider range of energy and power use registers, the power cap as 31range of energy and power use registers, the power cap as set by the AEM
30set by the AEM software, and temperature sensors. 32software, and temperature sensors.
31 33
32Special Features 34Special Features
33---------------- 35----------------
34 36
35The "power_cap" value displays the current system power cap, as set by 37The "power_cap" value displays the current system power cap, as set by the AEM
36the Active Energy Manager software. Setting the power cap from the host 38software. Setting the power cap from the host is not currently supported.
37is not currently supported.
diff --git a/Documentation/hwmon/it87 b/Documentation/hwmon/it87
index f4ce1fdbeff6..3496b7020e7c 100644
--- a/Documentation/hwmon/it87
+++ b/Documentation/hwmon/it87
@@ -6,12 +6,14 @@ Supported chips:
6 Prefix: 'it87' 6 Prefix: 'it87'
7 Addresses scanned: from Super I/O config space (8 I/O ports) 7 Addresses scanned: from Super I/O config space (8 I/O ports)
8 Datasheet: Publicly available at the ITE website 8 Datasheet: Publicly available at the ITE website
9 http://www.ite.com.tw/ 9 http://www.ite.com.tw/product_info/file/pc/IT8705F_V.0.4.1.pdf
10 * IT8712F 10 * IT8712F
11 Prefix: 'it8712' 11 Prefix: 'it8712'
12 Addresses scanned: from Super I/O config space (8 I/O ports) 12 Addresses scanned: from Super I/O config space (8 I/O ports)
13 Datasheet: Publicly available at the ITE website 13 Datasheet: Publicly available at the ITE website
14 http://www.ite.com.tw/ 14 http://www.ite.com.tw/product_info/file/pc/IT8712F_V0.9.1.pdf
15 http://www.ite.com.tw/product_info/file/pc/Errata%20V0.1%20for%20IT8712F%20V0.9.1.pdf
16 http://www.ite.com.tw/product_info/file/pc/IT8712F_V0.9.3.pdf
15 * IT8716F/IT8726F 17 * IT8716F/IT8726F
16 Prefix: 'it8716' 18 Prefix: 'it8716'
17 Addresses scanned: from Super I/O config space (8 I/O ports) 19 Addresses scanned: from Super I/O config space (8 I/O ports)
@@ -90,14 +92,13 @@ upper VID bits share their pins with voltage inputs (in5 and in6) so you
90can't have both on a given board. 92can't have both on a given board.
91 93
92The IT8716F, IT8718F and later IT8712F revisions have support for 94The IT8716F, IT8718F and later IT8712F revisions have support for
932 additional fans. They are supported by the driver for the IT8716F and 952 additional fans. The additional fans are supported by the driver.
94IT8718F but not for the IT8712F
95 96
96The IT8716F and IT8718F, and late IT8712F and IT8705F also have optional 97The IT8716F and IT8718F, and late IT8712F and IT8705F also have optional
9716-bit tachometer counters for fans 1 to 3. This is better (no more fan 9816-bit tachometer counters for fans 1 to 3. This is better (no more fan
98clock divider mess) but not compatible with the older chips and 99clock divider mess) but not compatible with the older chips and
99revisions. For now, the driver only uses the 16-bit mode on the 100revisions. The 16-bit tachometer mode is enabled by the driver when one
100IT8716F and IT8718F. 101of the above chips is detected.
101 102
102The IT8726F is just bit enhanced IT8716F with additional hardware 103The IT8726F is just bit enhanced IT8716F with additional hardware
103for AMD power sequencing. Therefore the chip will appear as IT8716F 104for AMD power sequencing. Therefore the chip will appear as IT8716F
diff --git a/Documentation/hwmon/lm85 b/Documentation/hwmon/lm85
index 9549237530cf..6d41db7f17f8 100644
--- a/Documentation/hwmon/lm85
+++ b/Documentation/hwmon/lm85
@@ -96,11 +96,6 @@ initial testing of the ADM1027 it was 1.00 degC steps. Analog Devices has
96confirmed this "bug". The ADT7463 is reported to work as described in the 96confirmed this "bug". The ADT7463 is reported to work as described in the
97documentation. The current lm85 driver does not show the offset register. 97documentation. The current lm85 driver does not show the offset register.
98 98
99The ADT7463 has a THERM asserted counter. This counter has a 22.76ms
100resolution and a range of 5.8 seconds. The driver implements a 32-bit
101accumulator of the counter value to extend the range to over a year. The
102counter will stay at it's max value until read.
103
104See the vendor datasheets for more information. There is application note 99See the vendor datasheets for more information. There is application note
105from National (AN-1260) with some additional information about the LM85. 100from National (AN-1260) with some additional information about the LM85.
106The Analog Devices datasheet is very detailed and describes a procedure for 101The Analog Devices datasheet is very detailed and describes a procedure for
@@ -206,13 +201,15 @@ Configuration choices:
206 201
207The National LM85's have two vendor specific configuration 202The National LM85's have two vendor specific configuration
208features. Tach. mode and Spinup Control. For more details on these, 203features. Tach. mode and Spinup Control. For more details on these,
209see the LM85 datasheet or Application Note AN-1260. 204see the LM85 datasheet or Application Note AN-1260. These features
205are not currently supported by the lm85 driver.
210 206
211The Analog Devices ADM1027 has several vendor specific enhancements. 207The Analog Devices ADM1027 has several vendor specific enhancements.
212The number of pulses-per-rev of the fans can be set, Tach monitoring 208The number of pulses-per-rev of the fans can be set, Tach monitoring
213can be optimized for PWM operation, and an offset can be applied to 209can be optimized for PWM operation, and an offset can be applied to
214the temperatures to compensate for systemic errors in the 210the temperatures to compensate for systemic errors in the
215measurements. 211measurements. These features are not currently supported by the lm85
212driver.
216 213
217In addition to the ADM1027 features, the ADT7463 also has Tmin control 214In addition to the ADM1027 features, the ADT7463 also has Tmin control
218and THERM asserted counts. Automatic Tmin control acts to adjust the 215and THERM asserted counts. Automatic Tmin control acts to adjust the
diff --git a/Documentation/hwmon/w83627hf b/Documentation/hwmon/w83627hf
index 880a59f53da9..6ee36dbafd64 100644
--- a/Documentation/hwmon/w83627hf
+++ b/Documentation/hwmon/w83627hf
@@ -40,10 +40,6 @@ Module Parameters
40 (default is 1) 40 (default is 1)
41 Use 'init=0' to bypass initializing the chip. 41 Use 'init=0' to bypass initializing the chip.
42 Try this if your computer crashes when you load the module. 42 Try this if your computer crashes when you load the module.
43* reset: int
44 (default is 0)
45 The driver used to reset the chip on load, but does no more. Use
46 'reset=1' to restore the old behavior. Report if you need to do this.
47 43
48Description 44Description
49----------- 45-----------
diff --git a/Documentation/hwmon/w83791d b/Documentation/hwmon/w83791d
index f153b2f6d62c..a67d3b7a7098 100644
--- a/Documentation/hwmon/w83791d
+++ b/Documentation/hwmon/w83791d
@@ -22,6 +22,7 @@ Credits:
22 22
23Additional contributors: 23Additional contributors:
24 Sven Anders <anders@anduras.de> 24 Sven Anders <anders@anduras.de>
25 Marc Hulsman <m.hulsman@tudelft.nl>
25 26
26Module Parameters 27Module Parameters
27----------------- 28-----------------
@@ -67,9 +68,8 @@ on until the temperature falls below the Hysteresis value.
67 68
68Fan rotation speeds are reported in RPM (rotations per minute). An alarm is 69Fan rotation speeds are reported in RPM (rotations per minute). An alarm is
69triggered if the rotation speed has dropped below a programmable limit. Fan 70triggered if the rotation speed has dropped below a programmable limit. Fan
70readings can be divided by a programmable divider (1, 2, 4, 8 for fan 1/2/3 71readings can be divided by a programmable divider (1, 2, 4, 8, 16,
71and 1, 2, 4, 8, 16, 32, 64 or 128 for fan 4/5) to give the readings more 7232, 64 or 128 for all fans) to give the readings more range or accuracy.
72range or accuracy.
73 73
74Voltage sensors (also known as IN sensors) report their values in millivolts. 74Voltage sensors (also known as IN sensors) report their values in millivolts.
75An alarm is triggered if the voltage has crossed a programmable minimum 75An alarm is triggered if the voltage has crossed a programmable minimum