aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/gpio
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/gpio')
-rw-r--r--Documentation/gpio/00-INDEX14
-rw-r--r--Documentation/gpio/board.txt115
-rw-r--r--Documentation/gpio/consumer.txt197
-rw-r--r--Documentation/gpio/driver.txt75
-rw-r--r--Documentation/gpio/gpio-legacy.txt775
-rw-r--r--Documentation/gpio/gpio.txt119
-rw-r--r--Documentation/gpio/sysfs.txt155
7 files changed, 1450 insertions, 0 deletions
diff --git a/Documentation/gpio/00-INDEX b/Documentation/gpio/00-INDEX
new file mode 100644
index 000000000000..1de43ae46ae6
--- /dev/null
+++ b/Documentation/gpio/00-INDEX
@@ -0,0 +1,14 @@
100-INDEX
2 - This file
3gpio.txt
4 - Introduction to GPIOs and their kernel interfaces
5consumer.txt
6 - How to obtain and use GPIOs in a driver
7driver.txt
8 - How to write a GPIO driver
9board.txt
10 - How to assign GPIOs to a consumer device and a function
11sysfs.txt
12 - Information about the GPIO sysfs interface
13gpio-legacy.txt
14 - Historical documentation of the deprecated GPIO integer interface
diff --git a/Documentation/gpio/board.txt b/Documentation/gpio/board.txt
new file mode 100644
index 000000000000..0d03506f2cc5
--- /dev/null
+++ b/Documentation/gpio/board.txt
@@ -0,0 +1,115 @@
1GPIO Mappings
2=============
3
4This document explains how GPIOs can be assigned to given devices and functions.
5Note that it only applies to the new descriptor-based interface. For a
6description of the deprecated integer-based GPIO interface please refer to
7gpio-legacy.txt (actually, there is no real mapping possible with the old
8interface; you just fetch an integer from somewhere and request the
9corresponding GPIO.
10
11Platforms that make use of GPIOs must select ARCH_REQUIRE_GPIOLIB (if GPIO usage
12is mandatory) or ARCH_WANT_OPTIONAL_GPIOLIB (if GPIO support can be omitted) in
13their Kconfig. Then, how GPIOs are mapped depends on what the platform uses to
14describe its hardware layout. Currently, mappings can be defined through device
15tree, ACPI, and platform data.
16
17Device Tree
18-----------
19GPIOs can easily be mapped to devices and functions in the device tree. The
20exact way to do it depends on the GPIO controller providing the GPIOs, see the
21device tree bindings for your controller.
22
23GPIOs mappings are defined in the consumer device's node, in a property named
24<function>-gpios, where <function> is the function the driver will request
25through gpiod_get(). For example:
26
27 foo_device {
28 compatible = "acme,foo";
29 ...
30 led-gpios = <&gpio 15 GPIO_ACTIVE_HIGH>, /* red */
31 <&gpio 16 GPIO_ACTIVE_HIGH>, /* green */
32 <&gpio 17 GPIO_ACTIVE_HIGH>; /* blue */
33
34 power-gpio = <&gpio 1 GPIO_ACTIVE_LOW>;
35 };
36
37This property will make GPIOs 15, 16 and 17 available to the driver under the
38"led" function, and GPIO 1 as the "power" GPIO:
39
40 struct gpio_desc *red, *green, *blue, *power;
41
42 red = gpiod_get_index(dev, "led", 0);
43 green = gpiod_get_index(dev, "led", 1);
44 blue = gpiod_get_index(dev, "led", 2);
45
46 power = gpiod_get(dev, "power");
47
48The led GPIOs will be active-high, while the power GPIO will be active-low (i.e.
49gpiod_is_active_low(power) will be true).
50
51ACPI
52----
53ACPI does not support function names for GPIOs. Therefore, only the "idx"
54argument of gpiod_get_index() is useful to discriminate between GPIOs assigned
55to a device. The "con_id" argument can still be set for debugging purposes (it
56will appear under error messages as well as debug and sysfs nodes).
57
58Platform Data
59-------------
60Finally, GPIOs can be bound to devices and functions using platform data. Board
61files that desire to do so need to include the following header:
62
63 #include <linux/gpio/driver.h>
64
65GPIOs are mapped by the means of tables of lookups, containing instances of the
66gpiod_lookup structure. Two macros are defined to help declaring such mappings:
67
68 GPIO_LOOKUP(chip_label, chip_hwnum, dev_id, con_id, flags)
69 GPIO_LOOKUP_IDX(chip_label, chip_hwnum, dev_id, con_id, idx, flags)
70
71where
72
73 - chip_label is the label of the gpiod_chip instance providing the GPIO
74 - chip_hwnum is the hardware number of the GPIO within the chip
75 - dev_id is the identifier of the device that will make use of this GPIO. If
76 NULL, the GPIO will be available to all devices.
77 - con_id is the name of the GPIO function from the device point of view. It
78 can be NULL.
79 - idx is the index of the GPIO within the function.
80 - flags is defined to specify the following properties:
81 * GPIOF_ACTIVE_LOW - to configure the GPIO as active-low
82 * GPIOF_OPEN_DRAIN - GPIO pin is open drain type.
83 * GPIOF_OPEN_SOURCE - GPIO pin is open source type.
84
85In the future, these flags might be extended to support more properties.
86
87Note that GPIO_LOOKUP() is just a shortcut to GPIO_LOOKUP_IDX() where idx = 0.
88
89A lookup table can then be defined as follows:
90
91 struct gpiod_lookup gpios_table[] = {
92 GPIO_LOOKUP_IDX("gpio.0", 15, "foo.0", "led", 0, GPIO_ACTIVE_HIGH),
93 GPIO_LOOKUP_IDX("gpio.0", 16, "foo.0", "led", 1, GPIO_ACTIVE_HIGH),
94 GPIO_LOOKUP_IDX("gpio.0", 17, "foo.0", "led", 2, GPIO_ACTIVE_HIGH),
95 GPIO_LOOKUP("gpio.0", 1, "foo.0", "power", GPIO_ACTIVE_LOW),
96 };
97
98And the table can be added by the board code as follows:
99
100 gpiod_add_table(gpios_table, ARRAY_SIZE(gpios_table));
101
102The driver controlling "foo.0" will then be able to obtain its GPIOs as follows:
103
104 struct gpio_desc *red, *green, *blue, *power;
105
106 red = gpiod_get_index(dev, "led", 0);
107 green = gpiod_get_index(dev, "led", 1);
108 blue = gpiod_get_index(dev, "led", 2);
109
110 power = gpiod_get(dev, "power");
111 gpiod_direction_output(power, 1);
112
113Since the "power" GPIO is mapped as active-low, its actual signal will be 0
114after this code. Contrary to the legacy integer GPIO interface, the active-low
115property is handled during mapping and is thus transparent to GPIO consumers.
diff --git a/Documentation/gpio/consumer.txt b/Documentation/gpio/consumer.txt
new file mode 100644
index 000000000000..07c74a3765a0
--- /dev/null
+++ b/Documentation/gpio/consumer.txt
@@ -0,0 +1,197 @@
1GPIO Descriptor Consumer Interface
2==================================
3
4This document describes the consumer interface of the GPIO framework. Note that
5it describes the new descriptor-based interface. For a description of the
6deprecated integer-based GPIO interface please refer to gpio-legacy.txt.
7
8
9Guidelines for GPIOs consumers
10==============================
11
12Drivers that can't work without standard GPIO calls should have Kconfig entries
13that depend on GPIOLIB. The functions that allow a driver to obtain and use
14GPIOs are available by including the following file:
15
16 #include <linux/gpio/consumer.h>
17
18All the functions that work with the descriptor-based GPIO interface are
19prefixed with gpiod_. The gpio_ prefix is used for the legacy interface. No
20other function in the kernel should use these prefixes.
21
22
23Obtaining and Disposing GPIOs
24=============================
25
26With the descriptor-based interface, GPIOs are identified with an opaque,
27non-forgeable handler that must be obtained through a call to one of the
28gpiod_get() functions. Like many other kernel subsystems, gpiod_get() takes the
29device that will use the GPIO and the function the requested GPIO is supposed to
30fulfill:
31
32 struct gpio_desc *gpiod_get(struct device *dev, const char *con_id)
33
34If a function is implemented by using several GPIOs together (e.g. a simple LED
35device that displays digits), an additional index argument can be specified:
36
37 struct gpio_desc *gpiod_get_index(struct device *dev,
38 const char *con_id, unsigned int idx)
39
40Both functions return either a valid GPIO descriptor, or an error code checkable
41with IS_ERR(). They will never return a NULL pointer.
42
43Device-managed variants of these functions are also defined:
44
45 struct gpio_desc *devm_gpiod_get(struct device *dev, const char *con_id)
46
47 struct gpio_desc *devm_gpiod_get_index(struct device *dev,
48 const char *con_id,
49 unsigned int idx)
50
51A GPIO descriptor can be disposed of using the gpiod_put() function:
52
53 void gpiod_put(struct gpio_desc *desc)
54
55It is strictly forbidden to use a descriptor after calling this function. The
56device-managed variant is, unsurprisingly:
57
58 void devm_gpiod_put(struct device *dev, struct gpio_desc *desc)
59
60
61Using GPIOs
62===========
63
64Setting Direction
65-----------------
66The first thing a driver must do with a GPIO is setting its direction. This is
67done by invoking one of the gpiod_direction_*() functions:
68
69 int gpiod_direction_input(struct gpio_desc *desc)
70 int gpiod_direction_output(struct gpio_desc *desc, int value)
71
72The return value is zero for success, else a negative errno. It should be
73checked, since the get/set calls don't return errors and since misconfiguration
74is possible. You should normally issue these calls from a task context. However,
75for spinlock-safe GPIOs it is OK to use them before tasking is enabled, as part
76of early board setup.
77
78For output GPIOs, the value provided becomes the initial output value. This
79helps avoid signal glitching during system startup.
80
81A driver can also query the current direction of a GPIO:
82
83 int gpiod_get_direction(const struct gpio_desc *desc)
84
85This function will return either GPIOF_DIR_IN or GPIOF_DIR_OUT.
86
87Be aware that there is no default direction for GPIOs. Therefore, **using a GPIO
88without setting its direction first is illegal and will result in undefined
89behavior!**
90
91
92Spinlock-Safe GPIO Access
93-------------------------
94Most GPIO controllers can be accessed with memory read/write instructions. Those
95don't need to sleep, and can safely be done from inside hard (non-threaded) IRQ
96handlers and similar contexts.
97
98Use the following calls to access GPIOs from an atomic context:
99
100 int gpiod_get_value(const struct gpio_desc *desc);
101 void gpiod_set_value(struct gpio_desc *desc, int value);
102
103The values are boolean, zero for low, nonzero for high. When reading the value
104of an output pin, the value returned should be what's seen on the pin. That
105won't always match the specified output value, because of issues including
106open-drain signaling and output latencies.
107
108The get/set calls do not return errors because "invalid GPIO" should have been
109reported earlier from gpiod_direction_*(). However, note that not all platforms
110can read the value of output pins; those that can't should always return zero.
111Also, using these calls for GPIOs that can't safely be accessed without sleeping
112(see below) is an error.
113
114
115GPIO Access That May Sleep
116--------------------------
117Some GPIO controllers must be accessed using message based buses like I2C or
118SPI. Commands to read or write those GPIO values require waiting to get to the
119head of a queue to transmit a command and get its response. This requires
120sleeping, which can't be done from inside IRQ handlers.
121
122Platforms that support this type of GPIO distinguish them from other GPIOs by
123returning nonzero from this call:
124
125 int gpiod_cansleep(const struct gpio_desc *desc)
126
127To access such GPIOs, a different set of accessors is defined:
128
129 int gpiod_get_value_cansleep(const struct gpio_desc *desc)
130 void gpiod_set_value_cansleep(struct gpio_desc *desc, int value)
131
132Accessing such GPIOs requires a context which may sleep, for example a threaded
133IRQ handler, and those accessors must be used instead of spinlock-safe
134accessors without the cansleep() name suffix.
135
136Other than the fact that these accessors might sleep, and will work on GPIOs
137that can't be accessed from hardIRQ handlers, these calls act the same as the
138spinlock-safe calls.
139
140
141Active-low State and Raw GPIO Values
142------------------------------------
143Device drivers like to manage the logical state of a GPIO, i.e. the value their
144device will actually receive, no matter what lies between it and the GPIO line.
145In some cases, it might make sense to control the actual GPIO line value. The
146following set of calls ignore the active-low property of a GPIO and work on the
147raw line value:
148
149 int gpiod_get_raw_value(const struct gpio_desc *desc)
150 void gpiod_set_raw_value(struct gpio_desc *desc, int value)
151 int gpiod_get_raw_value_cansleep(const struct gpio_desc *desc)
152 void gpiod_set_raw_value_cansleep(struct gpio_desc *desc, int value)
153
154The active-low state of a GPIO can also be queried using the following call:
155
156 int gpiod_is_active_low(const struct gpio_desc *desc)
157
158Note that these functions should only be used with great moderation ; a driver
159should not have to care about the physical line level.
160
161GPIOs mapped to IRQs
162--------------------
163GPIO lines can quite often be used as IRQs. You can get the IRQ number
164corresponding to a given GPIO using the following call:
165
166 int gpiod_to_irq(const struct gpio_desc *desc)
167
168It will return an IRQ number, or an negative errno code if the mapping can't be
169done (most likely because that particular GPIO cannot be used as IRQ). It is an
170unchecked error to use a GPIO that wasn't set up as an input using
171gpiod_direction_input(), or to use an IRQ number that didn't originally come
172from gpiod_to_irq(). gpiod_to_irq() is not allowed to sleep.
173
174Non-error values returned from gpiod_to_irq() can be passed to request_irq() or
175free_irq(). They will often be stored into IRQ resources for platform devices,
176by the board-specific initialization code. Note that IRQ trigger options are
177part of the IRQ interface, e.g. IRQF_TRIGGER_FALLING, as are system wakeup
178capabilities.
179
180
181Interacting With the Legacy GPIO Subsystem
182==========================================
183Many kernel subsystems still handle GPIOs using the legacy integer-based
184interface. Although it is strongly encouraged to upgrade them to the safer
185descriptor-based API, the following two functions allow you to convert a GPIO
186descriptor into the GPIO integer namespace and vice-versa:
187
188 int desc_to_gpio(const struct gpio_desc *desc)
189 struct gpio_desc *gpio_to_desc(unsigned gpio)
190
191The GPIO number returned by desc_to_gpio() can be safely used as long as the
192GPIO descriptor has not been freed. All the same, a GPIO number passed to
193gpio_to_desc() must have been properly acquired, and usage of the returned GPIO
194descriptor is only possible after the GPIO number has been released.
195
196Freeing a GPIO obtained by one API with the other API is forbidden and an
197unchecked error.
diff --git a/Documentation/gpio/driver.txt b/Documentation/gpio/driver.txt
new file mode 100644
index 000000000000..9da0bfa74781
--- /dev/null
+++ b/Documentation/gpio/driver.txt
@@ -0,0 +1,75 @@
1GPIO Descriptor Driver Interface
2================================
3
4This document serves as a guide for GPIO chip drivers writers. Note that it
5describes the new descriptor-based interface. For a description of the
6deprecated integer-based GPIO interface please refer to gpio-legacy.txt.
7
8Each GPIO controller driver needs to include the following header, which defines
9the structures used to define a GPIO driver:
10
11 #include <linux/gpio/driver.h>
12
13
14Internal Representation of GPIOs
15================================
16
17Inside a GPIO driver, individual GPIOs are identified by their hardware number,
18which is a unique number between 0 and n, n being the number of GPIOs managed by
19the chip. This number is purely internal: the hardware number of a particular
20GPIO descriptor is never made visible outside of the driver.
21
22On top of this internal number, each GPIO also need to have a global number in
23the integer GPIO namespace so that it can be used with the legacy GPIO
24interface. Each chip must thus have a "base" number (which can be automatically
25assigned), and for each GPIO the global number will be (base + hardware number).
26Although the integer representation is considered deprecated, it still has many
27users and thus needs to be maintained.
28
29So for example one platform could use numbers 32-159 for GPIOs, with a
30controller defining 128 GPIOs at a "base" of 32 ; while another platform uses
31numbers 0..63 with one set of GPIO controllers, 64-79 with another type of GPIO
32controller, and on one particular board 80-95 with an FPGA. The numbers need not
33be contiguous; either of those platforms could also use numbers 2000-2063 to
34identify GPIOs in a bank of I2C GPIO expanders.
35
36
37Controller Drivers: gpio_chip
38=============================
39
40In the gpiolib framework each GPIO controller is packaged as a "struct
41gpio_chip" (see linux/gpio/driver.h for its complete definition) with members
42common to each controller of that type:
43
44 - methods to establish GPIO direction
45 - methods used to access GPIO values
46 - method to return the IRQ number associated to a given GPIO
47 - flag saying whether calls to its methods may sleep
48 - optional debugfs dump method (showing extra state like pullup config)
49 - optional base number (will be automatically assigned if omitted)
50 - label for diagnostics and GPIOs mapping using platform data
51
52The code implementing a gpio_chip should support multiple instances of the
53controller, possibly using the driver model. That code will configure each
54gpio_chip and issue gpiochip_add(). Removing a GPIO controller should be rare;
55use gpiochip_remove() when it is unavoidable.
56
57Most often a gpio_chip is part of an instance-specific structure with state not
58exposed by the GPIO interfaces, such as addressing, power management, and more.
59Chips such as codecs will have complex non-GPIO state.
60
61Any debugfs dump method should normally ignore signals which haven't been
62requested as GPIOs. They can use gpiochip_is_requested(), which returns either
63NULL or the label associated with that GPIO when it was requested.
64
65Locking IRQ usage
66-----------------
67Input GPIOs can be used as IRQ signals. When this happens, a driver is requested
68to mark the GPIO as being used as an IRQ:
69
70 int gpiod_lock_as_irq(struct gpio_desc *desc)
71
72This will prevent the use of non-irq related GPIO APIs until the GPIO IRQ lock
73is released:
74
75 void gpiod_unlock_as_irq(struct gpio_desc *desc)
diff --git a/Documentation/gpio/gpio-legacy.txt b/Documentation/gpio/gpio-legacy.txt
new file mode 100644
index 000000000000..6f83fa965b4b
--- /dev/null
+++ b/Documentation/gpio/gpio-legacy.txt
@@ -0,0 +1,775 @@
1GPIO Interfaces
2
3This provides an overview of GPIO access conventions on Linux.
4
5These calls use the gpio_* naming prefix. No other calls should use that
6prefix, or the related __gpio_* prefix.
7
8
9What is a GPIO?
10===============
11A "General Purpose Input/Output" (GPIO) is a flexible software-controlled
12digital signal. They are provided from many kinds of chip, and are familiar
13to Linux developers working with embedded and custom hardware. Each GPIO
14represents a bit connected to a particular pin, or "ball" on Ball Grid Array
15(BGA) packages. Board schematics show which external hardware connects to
16which GPIOs. Drivers can be written generically, so that board setup code
17passes such pin configuration data to drivers.
18
19System-on-Chip (SOC) processors heavily rely on GPIOs. In some cases, every
20non-dedicated pin can be configured as a GPIO; and most chips have at least
21several dozen of them. Programmable logic devices (like FPGAs) can easily
22provide GPIOs; multifunction chips like power managers, and audio codecs
23often have a few such pins to help with pin scarcity on SOCs; and there are
24also "GPIO Expander" chips that connect using the I2C or SPI serial busses.
25Most PC southbridges have a few dozen GPIO-capable pins (with only the BIOS
26firmware knowing how they're used).
27
28The exact capabilities of GPIOs vary between systems. Common options:
29
30 - Output values are writable (high=1, low=0). Some chips also have
31 options about how that value is driven, so that for example only one
32 value might be driven ... supporting "wire-OR" and similar schemes
33 for the other value (notably, "open drain" signaling).
34
35 - Input values are likewise readable (1, 0). Some chips support readback
36 of pins configured as "output", which is very useful in such "wire-OR"
37 cases (to support bidirectional signaling). GPIO controllers may have
38 input de-glitch/debounce logic, sometimes with software controls.
39
40 - Inputs can often be used as IRQ signals, often edge triggered but
41 sometimes level triggered. Such IRQs may be configurable as system
42 wakeup events, to wake the system from a low power state.
43
44 - Usually a GPIO will be configurable as either input or output, as needed
45 by different product boards; single direction ones exist too.
46
47 - Most GPIOs can be accessed while holding spinlocks, but those accessed
48 through a serial bus normally can't. Some systems support both types.
49
50On a given board each GPIO is used for one specific purpose like monitoring
51MMC/SD card insertion/removal, detecting card writeprotect status, driving
52a LED, configuring a transceiver, bitbanging a serial bus, poking a hardware
53watchdog, sensing a switch, and so on.
54
55
56GPIO conventions
57================
58Note that this is called a "convention" because you don't need to do it this
59way, and it's no crime if you don't. There **are** cases where portability
60is not the main issue; GPIOs are often used for the kind of board-specific
61glue logic that may even change between board revisions, and can't ever be
62used on a board that's wired differently. Only least-common-denominator
63functionality can be very portable. Other features are platform-specific,
64and that can be critical for glue logic.
65
66Plus, this doesn't require any implementation framework, just an interface.
67One platform might implement it as simple inline functions accessing chip
68registers; another might implement it by delegating through abstractions
69used for several very different kinds of GPIO controller. (There is some
70optional code supporting such an implementation strategy, described later
71in this document, but drivers acting as clients to the GPIO interface must
72not care how it's implemented.)
73
74That said, if the convention is supported on their platform, drivers should
75use it when possible. Platforms must select ARCH_REQUIRE_GPIOLIB or
76ARCH_WANT_OPTIONAL_GPIOLIB in their Kconfig. Drivers that can't work without
77standard GPIO calls should have Kconfig entries which depend on GPIOLIB. The
78GPIO calls are available, either as "real code" or as optimized-away stubs,
79when drivers use the include file:
80
81 #include <linux/gpio.h>
82
83If you stick to this convention then it'll be easier for other developers to
84see what your code is doing, and help maintain it.
85
86Note that these operations include I/O barriers on platforms which need to
87use them; drivers don't need to add them explicitly.
88
89
90Identifying GPIOs
91-----------------
92GPIOs are identified by unsigned integers in the range 0..MAX_INT. That
93reserves "negative" numbers for other purposes like marking signals as
94"not available on this board", or indicating faults. Code that doesn't
95touch the underlying hardware treats these integers as opaque cookies.
96
97Platforms define how they use those integers, and usually #define symbols
98for the GPIO lines so that board-specific setup code directly corresponds
99to the relevant schematics. In contrast, drivers should only use GPIO
100numbers passed to them from that setup code, using platform_data to hold
101board-specific pin configuration data (along with other board specific
102data they need). That avoids portability problems.
103
104So for example one platform uses numbers 32-159 for GPIOs; while another
105uses numbers 0..63 with one set of GPIO controllers, 64-79 with another
106type of GPIO controller, and on one particular board 80-95 with an FPGA.
107The numbers need not be contiguous; either of those platforms could also
108use numbers 2000-2063 to identify GPIOs in a bank of I2C GPIO expanders.
109
110If you want to initialize a structure with an invalid GPIO number, use
111some negative number (perhaps "-EINVAL"); that will never be valid. To
112test if such number from such a structure could reference a GPIO, you
113may use this predicate:
114
115 int gpio_is_valid(int number);
116
117A number that's not valid will be rejected by calls which may request
118or free GPIOs (see below). Other numbers may also be rejected; for
119example, a number might be valid but temporarily unused on a given board.
120
121Whether a platform supports multiple GPIO controllers is a platform-specific
122implementation issue, as are whether that support can leave "holes" in the space
123of GPIO numbers, and whether new controllers can be added at runtime. Such issues
124can affect things including whether adjacent GPIO numbers are both valid.
125
126Using GPIOs
127-----------
128The first thing a system should do with a GPIO is allocate it, using
129the gpio_request() call; see later.
130
131One of the next things to do with a GPIO, often in board setup code when
132setting up a platform_device using the GPIO, is mark its direction:
133
134 /* set as input or output, returning 0 or negative errno */
135 int gpio_direction_input(unsigned gpio);
136 int gpio_direction_output(unsigned gpio, int value);
137
138The return value is zero for success, else a negative errno. It should
139be checked, since the get/set calls don't have error returns and since
140misconfiguration is possible. You should normally issue these calls from
141a task context. However, for spinlock-safe GPIOs it's OK to use them
142before tasking is enabled, as part of early board setup.
143
144For output GPIOs, the value provided becomes the initial output value.
145This helps avoid signal glitching during system startup.
146
147For compatibility with legacy interfaces to GPIOs, setting the direction
148of a GPIO implicitly requests that GPIO (see below) if it has not been
149requested already. That compatibility is being removed from the optional
150gpiolib framework.
151
152Setting the direction can fail if the GPIO number is invalid, or when
153that particular GPIO can't be used in that mode. It's generally a bad
154idea to rely on boot firmware to have set the direction correctly, since
155it probably wasn't validated to do more than boot Linux. (Similarly,
156that board setup code probably needs to multiplex that pin as a GPIO,
157and configure pullups/pulldowns appropriately.)
158
159
160Spinlock-Safe GPIO access
161-------------------------
162Most GPIO controllers can be accessed with memory read/write instructions.
163Those don't need to sleep, and can safely be done from inside hard
164(nonthreaded) IRQ handlers and similar contexts.
165
166Use the following calls to access such GPIOs,
167for which gpio_cansleep() will always return false (see below):
168
169 /* GPIO INPUT: return zero or nonzero */
170 int gpio_get_value(unsigned gpio);
171
172 /* GPIO OUTPUT */
173 void gpio_set_value(unsigned gpio, int value);
174
175The values are boolean, zero for low, nonzero for high. When reading the
176value of an output pin, the value returned should be what's seen on the
177pin ... that won't always match the specified output value, because of
178issues including open-drain signaling and output latencies.
179
180The get/set calls have no error returns because "invalid GPIO" should have
181been reported earlier from gpio_direction_*(). However, note that not all
182platforms can read the value of output pins; those that can't should always
183return zero. Also, using these calls for GPIOs that can't safely be accessed
184without sleeping (see below) is an error.
185
186Platform-specific implementations are encouraged to optimize the two
187calls to access the GPIO value in cases where the GPIO number (and for
188output, value) are constant. It's normal for them to need only a couple
189of instructions in such cases (reading or writing a hardware register),
190and not to need spinlocks. Such optimized calls can make bitbanging
191applications a lot more efficient (in both space and time) than spending
192dozens of instructions on subroutine calls.
193
194
195GPIO access that may sleep
196--------------------------
197Some GPIO controllers must be accessed using message based busses like I2C
198or SPI. Commands to read or write those GPIO values require waiting to
199get to the head of a queue to transmit a command and get its response.
200This requires sleeping, which can't be done from inside IRQ handlers.
201
202Platforms that support this type of GPIO distinguish them from other GPIOs
203by returning nonzero from this call (which requires a valid GPIO number,
204which should have been previously allocated with gpio_request):
205
206 int gpio_cansleep(unsigned gpio);
207
208To access such GPIOs, a different set of accessors is defined:
209
210 /* GPIO INPUT: return zero or nonzero, might sleep */
211 int gpio_get_value_cansleep(unsigned gpio);
212
213 /* GPIO OUTPUT, might sleep */
214 void gpio_set_value_cansleep(unsigned gpio, int value);
215
216
217Accessing such GPIOs requires a context which may sleep, for example
218a threaded IRQ handler, and those accessors must be used instead of
219spinlock-safe accessors without the cansleep() name suffix.
220
221Other than the fact that these accessors might sleep, and will work
222on GPIOs that can't be accessed from hardIRQ handlers, these calls act
223the same as the spinlock-safe calls.
224
225 ** IN ADDITION ** calls to setup and configure such GPIOs must be made
226from contexts which may sleep, since they may need to access the GPIO
227controller chip too: (These setup calls are usually made from board
228setup or driver probe/teardown code, so this is an easy constraint.)
229
230 gpio_direction_input()
231 gpio_direction_output()
232 gpio_request()
233
234## gpio_request_one()
235## gpio_request_array()
236## gpio_free_array()
237
238 gpio_free()
239 gpio_set_debounce()
240
241
242
243Claiming and Releasing GPIOs
244----------------------------
245To help catch system configuration errors, two calls are defined.
246
247 /* request GPIO, returning 0 or negative errno.
248 * non-null labels may be useful for diagnostics.
249 */
250 int gpio_request(unsigned gpio, const char *label);
251
252 /* release previously-claimed GPIO */
253 void gpio_free(unsigned gpio);
254
255Passing invalid GPIO numbers to gpio_request() will fail, as will requesting
256GPIOs that have already been claimed with that call. The return value of
257gpio_request() must be checked. You should normally issue these calls from
258a task context. However, for spinlock-safe GPIOs it's OK to request GPIOs
259before tasking is enabled, as part of early board setup.
260
261These calls serve two basic purposes. One is marking the signals which
262are actually in use as GPIOs, for better diagnostics; systems may have
263several hundred potential GPIOs, but often only a dozen are used on any
264given board. Another is to catch conflicts, identifying errors when
265(a) two or more drivers wrongly think they have exclusive use of that
266signal, or (b) something wrongly believes it's safe to remove drivers
267needed to manage a signal that's in active use. That is, requesting a
268GPIO can serve as a kind of lock.
269
270Some platforms may also use knowledge about what GPIOs are active for
271power management, such as by powering down unused chip sectors and, more
272easily, gating off unused clocks.
273
274For GPIOs that use pins known to the pinctrl subsystem, that subsystem should
275be informed of their use; a gpiolib driver's .request() operation may call
276pinctrl_request_gpio(), and a gpiolib driver's .free() operation may call
277pinctrl_free_gpio(). The pinctrl subsystem allows a pinctrl_request_gpio()
278to succeed concurrently with a pin or pingroup being "owned" by a device for
279pin multiplexing.
280
281Any programming of pin multiplexing hardware that is needed to route the
282GPIO signal to the appropriate pin should occur within a GPIO driver's
283.direction_input() or .direction_output() operations, and occur after any
284setup of an output GPIO's value. This allows a glitch-free migration from a
285pin's special function to GPIO. This is sometimes required when using a GPIO
286to implement a workaround on signals typically driven by a non-GPIO HW block.
287
288Some platforms allow some or all GPIO signals to be routed to different pins.
289Similarly, other aspects of the GPIO or pin may need to be configured, such as
290pullup/pulldown. Platform software should arrange that any such details are
291configured prior to gpio_request() being called for those GPIOs, e.g. using
292the pinctrl subsystem's mapping table, so that GPIO users need not be aware
293of these details.
294
295Also note that it's your responsibility to have stopped using a GPIO
296before you free it.
297
298Considering in most cases GPIOs are actually configured right after they
299are claimed, three additional calls are defined:
300
301 /* request a single GPIO, with initial configuration specified by
302 * 'flags', identical to gpio_request() wrt other arguments and
303 * return value
304 */
305 int gpio_request_one(unsigned gpio, unsigned long flags, const char *label);
306
307 /* request multiple GPIOs in a single call
308 */
309 int gpio_request_array(struct gpio *array, size_t num);
310
311 /* release multiple GPIOs in a single call
312 */
313 void gpio_free_array(struct gpio *array, size_t num);
314
315where 'flags' is currently defined to specify the following properties:
316
317 * GPIOF_DIR_IN - to configure direction as input
318 * GPIOF_DIR_OUT - to configure direction as output
319
320 * GPIOF_INIT_LOW - as output, set initial level to LOW
321 * GPIOF_INIT_HIGH - as output, set initial level to HIGH
322 * GPIOF_OPEN_DRAIN - gpio pin is open drain type.
323 * GPIOF_OPEN_SOURCE - gpio pin is open source type.
324
325 * GPIOF_EXPORT_DIR_FIXED - export gpio to sysfs, keep direction
326 * GPIOF_EXPORT_DIR_CHANGEABLE - also export, allow changing direction
327
328since GPIOF_INIT_* are only valid when configured as output, so group valid
329combinations as:
330
331 * GPIOF_IN - configure as input
332 * GPIOF_OUT_INIT_LOW - configured as output, initial level LOW
333 * GPIOF_OUT_INIT_HIGH - configured as output, initial level HIGH
334
335When setting the flag as GPIOF_OPEN_DRAIN then it will assume that pins is
336open drain type. Such pins will not be driven to 1 in output mode. It is
337require to connect pull-up on such pins. By enabling this flag, gpio lib will
338make the direction to input when it is asked to set value of 1 in output mode
339to make the pin HIGH. The pin is make to LOW by driving value 0 in output mode.
340
341When setting the flag as GPIOF_OPEN_SOURCE then it will assume that pins is
342open source type. Such pins will not be driven to 0 in output mode. It is
343require to connect pull-down on such pin. By enabling this flag, gpio lib will
344make the direction to input when it is asked to set value of 0 in output mode
345to make the pin LOW. The pin is make to HIGH by driving value 1 in output mode.
346
347In the future, these flags can be extended to support more properties.
348
349Further more, to ease the claim/release of multiple GPIOs, 'struct gpio' is
350introduced to encapsulate all three fields as:
351
352 struct gpio {
353 unsigned gpio;
354 unsigned long flags;
355 const char *label;
356 };
357
358A typical example of usage:
359
360 static struct gpio leds_gpios[] = {
361 { 32, GPIOF_OUT_INIT_HIGH, "Power LED" }, /* default to ON */
362 { 33, GPIOF_OUT_INIT_LOW, "Green LED" }, /* default to OFF */
363 { 34, GPIOF_OUT_INIT_LOW, "Red LED" }, /* default to OFF */
364 { 35, GPIOF_OUT_INIT_LOW, "Blue LED" }, /* default to OFF */
365 { ... },
366 };
367
368 err = gpio_request_one(31, GPIOF_IN, "Reset Button");
369 if (err)
370 ...
371
372 err = gpio_request_array(leds_gpios, ARRAY_SIZE(leds_gpios));
373 if (err)
374 ...
375
376 gpio_free_array(leds_gpios, ARRAY_SIZE(leds_gpios));
377
378
379GPIOs mapped to IRQs
380--------------------
381GPIO numbers are unsigned integers; so are IRQ numbers. These make up
382two logically distinct namespaces (GPIO 0 need not use IRQ 0). You can
383map between them using calls like:
384
385 /* map GPIO numbers to IRQ numbers */
386 int gpio_to_irq(unsigned gpio);
387
388 /* map IRQ numbers to GPIO numbers (avoid using this) */
389 int irq_to_gpio(unsigned irq);
390
391Those return either the corresponding number in the other namespace, or
392else a negative errno code if the mapping can't be done. (For example,
393some GPIOs can't be used as IRQs.) It is an unchecked error to use a GPIO
394number that wasn't set up as an input using gpio_direction_input(), or
395to use an IRQ number that didn't originally come from gpio_to_irq().
396
397These two mapping calls are expected to cost on the order of a single
398addition or subtraction. They're not allowed to sleep.
399
400Non-error values returned from gpio_to_irq() can be passed to request_irq()
401or free_irq(). They will often be stored into IRQ resources for platform
402devices, by the board-specific initialization code. Note that IRQ trigger
403options are part of the IRQ interface, e.g. IRQF_TRIGGER_FALLING, as are
404system wakeup capabilities.
405
406Non-error values returned from irq_to_gpio() would most commonly be used
407with gpio_get_value(), for example to initialize or update driver state
408when the IRQ is edge-triggered. Note that some platforms don't support
409this reverse mapping, so you should avoid using it.
410
411
412Emulating Open Drain Signals
413----------------------------
414Sometimes shared signals need to use "open drain" signaling, where only the
415low signal level is actually driven. (That term applies to CMOS transistors;
416"open collector" is used for TTL.) A pullup resistor causes the high signal
417level. This is sometimes called a "wire-AND"; or more practically, from the
418negative logic (low=true) perspective this is a "wire-OR".
419
420One common example of an open drain signal is a shared active-low IRQ line.
421Also, bidirectional data bus signals sometimes use open drain signals.
422
423Some GPIO controllers directly support open drain outputs; many don't. When
424you need open drain signaling but your hardware doesn't directly support it,
425there's a common idiom you can use to emulate it with any GPIO pin that can
426be used as either an input or an output:
427
428 LOW: gpio_direction_output(gpio, 0) ... this drives the signal
429 and overrides the pullup.
430
431 HIGH: gpio_direction_input(gpio) ... this turns off the output,
432 so the pullup (or some other device) controls the signal.
433
434If you are "driving" the signal high but gpio_get_value(gpio) reports a low
435value (after the appropriate rise time passes), you know some other component
436is driving the shared signal low. That's not necessarily an error. As one
437common example, that's how I2C clocks are stretched: a slave that needs a
438slower clock delays the rising edge of SCK, and the I2C master adjusts its
439signaling rate accordingly.
440
441
442GPIO controllers and the pinctrl subsystem
443------------------------------------------
444
445A GPIO controller on a SOC might be tightly coupled with the pinctrl
446subsystem, in the sense that the pins can be used by other functions
447together with an optional gpio feature. We have already covered the
448case where e.g. a GPIO controller need to reserve a pin or set the
449direction of a pin by calling any of:
450
451pinctrl_request_gpio()
452pinctrl_free_gpio()
453pinctrl_gpio_direction_input()
454pinctrl_gpio_direction_output()
455
456But how does the pin control subsystem cross-correlate the GPIO
457numbers (which are a global business) to a certain pin on a certain
458pin controller?
459
460This is done by registering "ranges" of pins, which are essentially
461cross-reference tables. These are described in
462Documentation/pinctrl.txt
463
464While the pin allocation is totally managed by the pinctrl subsystem,
465gpio (under gpiolib) is still maintained by gpio drivers. It may happen
466that different pin ranges in a SoC is managed by different gpio drivers.
467
468This makes it logical to let gpio drivers announce their pin ranges to
469the pin ctrl subsystem before it will call 'pinctrl_request_gpio' in order
470to request the corresponding pin to be prepared by the pinctrl subsystem
471before any gpio usage.
472
473For this, the gpio controller can register its pin range with pinctrl
474subsystem. There are two ways of doing it currently: with or without DT.
475
476For with DT support refer to Documentation/devicetree/bindings/gpio/gpio.txt.
477
478For non-DT support, user can call gpiochip_add_pin_range() with appropriate
479parameters to register a range of gpio pins with a pinctrl driver. For this
480exact name string of pinctrl device has to be passed as one of the
481argument to this routine.
482
483
484What do these conventions omit?
485===============================
486One of the biggest things these conventions omit is pin multiplexing, since
487this is highly chip-specific and nonportable. One platform might not need
488explicit multiplexing; another might have just two options for use of any
489given pin; another might have eight options per pin; another might be able
490to route a given GPIO to any one of several pins. (Yes, those examples all
491come from systems that run Linux today.)
492
493Related to multiplexing is configuration and enabling of the pullups or
494pulldowns integrated on some platforms. Not all platforms support them,
495or support them in the same way; and any given board might use external
496pullups (or pulldowns) so that the on-chip ones should not be used.
497(When a circuit needs 5 kOhm, on-chip 100 kOhm resistors won't do.)
498Likewise drive strength (2 mA vs 20 mA) and voltage (1.8V vs 3.3V) is a
499platform-specific issue, as are models like (not) having a one-to-one
500correspondence between configurable pins and GPIOs.
501
502There are other system-specific mechanisms that are not specified here,
503like the aforementioned options for input de-glitching and wire-OR output.
504Hardware may support reading or writing GPIOs in gangs, but that's usually
505configuration dependent: for GPIOs sharing the same bank. (GPIOs are
506commonly grouped in banks of 16 or 32, with a given SOC having several such
507banks.) Some systems can trigger IRQs from output GPIOs, or read values
508from pins not managed as GPIOs. Code relying on such mechanisms will
509necessarily be nonportable.
510
511Dynamic definition of GPIOs is not currently standard; for example, as
512a side effect of configuring an add-on board with some GPIO expanders.
513
514
515GPIO implementor's framework (OPTIONAL)
516=======================================
517As noted earlier, there is an optional implementation framework making it
518easier for platforms to support different kinds of GPIO controller using
519the same programming interface. This framework is called "gpiolib".
520
521As a debugging aid, if debugfs is available a /sys/kernel/debug/gpio file
522will be found there. That will list all the controllers registered through
523this framework, and the state of the GPIOs currently in use.
524
525
526Controller Drivers: gpio_chip
527-----------------------------
528In this framework each GPIO controller is packaged as a "struct gpio_chip"
529with information common to each controller of that type:
530
531 - methods to establish GPIO direction
532 - methods used to access GPIO values
533 - flag saying whether calls to its methods may sleep
534 - optional debugfs dump method (showing extra state like pullup config)
535 - label for diagnostics
536
537There is also per-instance data, which may come from device.platform_data:
538the number of its first GPIO, and how many GPIOs it exposes.
539
540The code implementing a gpio_chip should support multiple instances of the
541controller, possibly using the driver model. That code will configure each
542gpio_chip and issue gpiochip_add(). Removing a GPIO controller should be
543rare; use gpiochip_remove() when it is unavoidable.
544
545Most often a gpio_chip is part of an instance-specific structure with state
546not exposed by the GPIO interfaces, such as addressing, power management,
547and more. Chips such as codecs will have complex non-GPIO state.
548
549Any debugfs dump method should normally ignore signals which haven't been
550requested as GPIOs. They can use gpiochip_is_requested(), which returns
551either NULL or the label associated with that GPIO when it was requested.
552
553
554Platform Support
555----------------
556To support this framework, a platform's Kconfig will "select" either
557ARCH_REQUIRE_GPIOLIB or ARCH_WANT_OPTIONAL_GPIOLIB
558and arrange that its <asm/gpio.h> includes <asm-generic/gpio.h> and defines
559three functions: gpio_get_value(), gpio_set_value(), and gpio_cansleep().
560
561It may also provide a custom value for ARCH_NR_GPIOS, so that it better
562reflects the number of GPIOs in actual use on that platform, without
563wasting static table space. (It should count both built-in/SoC GPIOs and
564also ones on GPIO expanders.
565
566ARCH_REQUIRE_GPIOLIB means that the gpiolib code will always get compiled
567into the kernel on that architecture.
568
569ARCH_WANT_OPTIONAL_GPIOLIB means the gpiolib code defaults to off and the user
570can enable it and build it into the kernel optionally.
571
572If neither of these options are selected, the platform does not support
573GPIOs through GPIO-lib and the code cannot be enabled by the user.
574
575Trivial implementations of those functions can directly use framework
576code, which always dispatches through the gpio_chip:
577
578 #define gpio_get_value __gpio_get_value
579 #define gpio_set_value __gpio_set_value
580 #define gpio_cansleep __gpio_cansleep
581
582Fancier implementations could instead define those as inline functions with
583logic optimizing access to specific SOC-based GPIOs. For example, if the
584referenced GPIO is the constant "12", getting or setting its value could
585cost as little as two or three instructions, never sleeping. When such an
586optimization is not possible those calls must delegate to the framework
587code, costing at least a few dozen instructions. For bitbanged I/O, such
588instruction savings can be significant.
589
590For SOCs, platform-specific code defines and registers gpio_chip instances
591for each bank of on-chip GPIOs. Those GPIOs should be numbered/labeled to
592match chip vendor documentation, and directly match board schematics. They
593may well start at zero and go up to a platform-specific limit. Such GPIOs
594are normally integrated into platform initialization to make them always be
595available, from arch_initcall() or earlier; they can often serve as IRQs.
596
597
598Board Support
599-------------
600For external GPIO controllers -- such as I2C or SPI expanders, ASICs, multi
601function devices, FPGAs or CPLDs -- most often board-specific code handles
602registering controller devices and ensures that their drivers know what GPIO
603numbers to use with gpiochip_add(). Their numbers often start right after
604platform-specific GPIOs.
605
606For example, board setup code could create structures identifying the range
607of GPIOs that chip will expose, and passes them to each GPIO expander chip
608using platform_data. Then the chip driver's probe() routine could pass that
609data to gpiochip_add().
610
611Initialization order can be important. For example, when a device relies on
612an I2C-based GPIO, its probe() routine should only be called after that GPIO
613becomes available. That may mean the device should not be registered until
614calls for that GPIO can work. One way to address such dependencies is for
615such gpio_chip controllers to provide setup() and teardown() callbacks to
616board specific code; those board specific callbacks would register devices
617once all the necessary resources are available, and remove them later when
618the GPIO controller device becomes unavailable.
619
620
621Sysfs Interface for Userspace (OPTIONAL)
622========================================
623Platforms which use the "gpiolib" implementors framework may choose to
624configure a sysfs user interface to GPIOs. This is different from the
625debugfs interface, since it provides control over GPIO direction and
626value instead of just showing a gpio state summary. Plus, it could be
627present on production systems without debugging support.
628
629Given appropriate hardware documentation for the system, userspace could
630know for example that GPIO #23 controls the write protect line used to
631protect boot loader segments in flash memory. System upgrade procedures
632may need to temporarily remove that protection, first importing a GPIO,
633then changing its output state, then updating the code before re-enabling
634the write protection. In normal use, GPIO #23 would never be touched,
635and the kernel would have no need to know about it.
636
637Again depending on appropriate hardware documentation, on some systems
638userspace GPIO can be used to determine system configuration data that
639standard kernels won't know about. And for some tasks, simple userspace
640GPIO drivers could be all that the system really needs.
641
642Note that standard kernel drivers exist for common "LEDs and Buttons"
643GPIO tasks: "leds-gpio" and "gpio_keys", respectively. Use those
644instead of talking directly to the GPIOs; they integrate with kernel
645frameworks better than your userspace code could.
646
647
648Paths in Sysfs
649--------------
650There are three kinds of entry in /sys/class/gpio:
651
652 - Control interfaces used to get userspace control over GPIOs;
653
654 - GPIOs themselves; and
655
656 - GPIO controllers ("gpio_chip" instances).
657
658That's in addition to standard files including the "device" symlink.
659
660The control interfaces are write-only:
661
662 /sys/class/gpio/
663
664 "export" ... Userspace may ask the kernel to export control of
665 a GPIO to userspace by writing its number to this file.
666
667 Example: "echo 19 > export" will create a "gpio19" node
668 for GPIO #19, if that's not requested by kernel code.
669
670 "unexport" ... Reverses the effect of exporting to userspace.
671
672 Example: "echo 19 > unexport" will remove a "gpio19"
673 node exported using the "export" file.
674
675GPIO signals have paths like /sys/class/gpio/gpio42/ (for GPIO #42)
676and have the following read/write attributes:
677
678 /sys/class/gpio/gpioN/
679
680 "direction" ... reads as either "in" or "out". This value may
681 normally be written. Writing as "out" defaults to
682 initializing the value as low. To ensure glitch free
683 operation, values "low" and "high" may be written to
684 configure the GPIO as an output with that initial value.
685
686 Note that this attribute *will not exist* if the kernel
687 doesn't support changing the direction of a GPIO, or
688 it was exported by kernel code that didn't explicitly
689 allow userspace to reconfigure this GPIO's direction.
690
691 "value" ... reads as either 0 (low) or 1 (high). If the GPIO
692 is configured as an output, this value may be written;
693 any nonzero value is treated as high.
694
695 If the pin can be configured as interrupt-generating interrupt
696 and if it has been configured to generate interrupts (see the
697 description of "edge"), you can poll(2) on that file and
698 poll(2) will return whenever the interrupt was triggered. If
699 you use poll(2), set the events POLLPRI and POLLERR. If you
700 use select(2), set the file descriptor in exceptfds. After
701 poll(2) returns, either lseek(2) to the beginning of the sysfs
702 file and read the new value or close the file and re-open it
703 to read the value.
704
705 "edge" ... reads as either "none", "rising", "falling", or
706 "both". Write these strings to select the signal edge(s)
707 that will make poll(2) on the "value" file return.
708
709 This file exists only if the pin can be configured as an
710 interrupt generating input pin.
711
712 "active_low" ... reads as either 0 (false) or 1 (true). Write
713 any nonzero value to invert the value attribute both
714 for reading and writing. Existing and subsequent
715 poll(2) support configuration via the edge attribute
716 for "rising" and "falling" edges will follow this
717 setting.
718
719GPIO controllers have paths like /sys/class/gpio/gpiochip42/ (for the
720controller implementing GPIOs starting at #42) and have the following
721read-only attributes:
722
723 /sys/class/gpio/gpiochipN/
724
725 "base" ... same as N, the first GPIO managed by this chip
726
727 "label" ... provided for diagnostics (not always unique)
728
729 "ngpio" ... how many GPIOs this manges (N to N + ngpio - 1)
730
731Board documentation should in most cases cover what GPIOs are used for
732what purposes. However, those numbers are not always stable; GPIOs on
733a daughtercard might be different depending on the base board being used,
734or other cards in the stack. In such cases, you may need to use the
735gpiochip nodes (possibly in conjunction with schematics) to determine
736the correct GPIO number to use for a given signal.
737
738
739Exporting from Kernel code
740--------------------------
741Kernel code can explicitly manage exports of GPIOs which have already been
742requested using gpio_request():
743
744 /* export the GPIO to userspace */
745 int gpio_export(unsigned gpio, bool direction_may_change);
746
747 /* reverse gpio_export() */
748 void gpio_unexport();
749
750 /* create a sysfs link to an exported GPIO node */
751 int gpio_export_link(struct device *dev, const char *name,
752 unsigned gpio)
753
754 /* change the polarity of a GPIO node in sysfs */
755 int gpio_sysfs_set_active_low(unsigned gpio, int value);
756
757After a kernel driver requests a GPIO, it may only be made available in
758the sysfs interface by gpio_export(). The driver can control whether the
759signal direction may change. This helps drivers prevent userspace code
760from accidentally clobbering important system state.
761
762This explicit exporting can help with debugging (by making some kinds
763of experiments easier), or can provide an always-there interface that's
764suitable for documenting as part of a board support package.
765
766After the GPIO has been exported, gpio_export_link() allows creating
767symlinks from elsewhere in sysfs to the GPIO sysfs node. Drivers can
768use this to provide the interface under their own device in sysfs with
769a descriptive name.
770
771Drivers can use gpio_sysfs_set_active_low() to hide GPIO line polarity
772differences between boards from user space. This only affects the
773sysfs interface. Polarity change can be done both before and after
774gpio_export(), and previously enabled poll(2) support for either
775rising or falling edge will be reconfigured to follow this setting.
diff --git a/Documentation/gpio/gpio.txt b/Documentation/gpio/gpio.txt
new file mode 100644
index 000000000000..cd9b356e88cd
--- /dev/null
+++ b/Documentation/gpio/gpio.txt
@@ -0,0 +1,119 @@
1GPIO Interfaces
2===============
3
4The documents in this directory give detailed instructions on how to access
5GPIOs in drivers, and how to write a driver for a device that provides GPIOs
6itself.
7
8Due to the history of GPIO interfaces in the kernel, there are two different
9ways to obtain and use GPIOs:
10
11 - The descriptor-based interface is the preferred way to manipulate GPIOs,
12and is described by all the files in this directory excepted gpio-legacy.txt.
13 - The legacy integer-based interface which is considered deprecated (but still
14usable for compatibility reasons) is documented in gpio-legacy.txt.
15
16The remainder of this document applies to the new descriptor-based interface.
17gpio-legacy.txt contains the same information applied to the legacy
18integer-based interface.
19
20
21What is a GPIO?
22===============
23
24A "General Purpose Input/Output" (GPIO) is a flexible software-controlled
25digital signal. They are provided from many kinds of chip, and are familiar
26to Linux developers working with embedded and custom hardware. Each GPIO
27represents a bit connected to a particular pin, or "ball" on Ball Grid Array
28(BGA) packages. Board schematics show which external hardware connects to
29which GPIOs. Drivers can be written generically, so that board setup code
30passes such pin configuration data to drivers.
31
32System-on-Chip (SOC) processors heavily rely on GPIOs. In some cases, every
33non-dedicated pin can be configured as a GPIO; and most chips have at least
34several dozen of them. Programmable logic devices (like FPGAs) can easily
35provide GPIOs; multifunction chips like power managers, and audio codecs
36often have a few such pins to help with pin scarcity on SOCs; and there are
37also "GPIO Expander" chips that connect using the I2C or SPI serial buses.
38Most PC southbridges have a few dozen GPIO-capable pins (with only the BIOS
39firmware knowing how they're used).
40
41The exact capabilities of GPIOs vary between systems. Common options:
42
43 - Output values are writable (high=1, low=0). Some chips also have
44 options about how that value is driven, so that for example only one
45 value might be driven, supporting "wire-OR" and similar schemes for the
46 other value (notably, "open drain" signaling).
47
48 - Input values are likewise readable (1, 0). Some chips support readback
49 of pins configured as "output", which is very useful in such "wire-OR"
50 cases (to support bidirectional signaling). GPIO controllers may have
51 input de-glitch/debounce logic, sometimes with software controls.
52
53 - Inputs can often be used as IRQ signals, often edge triggered but
54 sometimes level triggered. Such IRQs may be configurable as system
55 wakeup events, to wake the system from a low power state.
56
57 - Usually a GPIO will be configurable as either input or output, as needed
58 by different product boards; single direction ones exist too.
59
60 - Most GPIOs can be accessed while holding spinlocks, but those accessed
61 through a serial bus normally can't. Some systems support both types.
62
63On a given board each GPIO is used for one specific purpose like monitoring
64MMC/SD card insertion/removal, detecting card write-protect status, driving
65a LED, configuring a transceiver, bit-banging a serial bus, poking a hardware
66watchdog, sensing a switch, and so on.
67
68
69Common GPIO Properties
70======================
71
72These properties are met through all the other documents of the GPIO interface
73and it is useful to understand them, especially if you need to define GPIO
74mappings.
75
76Active-High and Active-Low
77--------------------------
78It is natural to assume that a GPIO is "active" when its output signal is 1
79("high"), and inactive when it is 0 ("low"). However in practice the signal of a
80GPIO may be inverted before is reaches its destination, or a device could decide
81to have different conventions about what "active" means. Such decisions should
82be transparent to device drivers, therefore it is possible to define a GPIO as
83being either active-high ("1" means "active", the default) or active-low ("0"
84means "active") so that drivers only need to worry about the logical signal and
85not about what happens at the line level.
86
87Open Drain and Open Source
88--------------------------
89Sometimes shared signals need to use "open drain" (where only the low signal
90level is actually driven), or "open source" (where only the high signal level is
91driven) signaling. That term applies to CMOS transistors; "open collector" is
92used for TTL. A pullup or pulldown resistor causes the high or low signal level.
93This is sometimes called a "wire-AND"; or more practically, from the negative
94logic (low=true) perspective this is a "wire-OR".
95
96One common example of an open drain signal is a shared active-low IRQ line.
97Also, bidirectional data bus signals sometimes use open drain signals.
98
99Some GPIO controllers directly support open drain and open source outputs; many
100don't. When you need open drain signaling but your hardware doesn't directly
101support it, there's a common idiom you can use to emulate it with any GPIO pin
102that can be used as either an input or an output:
103
104 LOW: gpiod_direction_output(gpio, 0) ... this drives the signal and overrides
105 the pullup.
106
107 HIGH: gpiod_direction_input(gpio) ... this turns off the output, so the pullup
108 (or some other device) controls the signal.
109
110The same logic can be applied to emulate open source signaling, by driving the
111high signal and configuring the GPIO as input for low. This open drain/open
112source emulation can be handled transparently by the GPIO framework.
113
114If you are "driving" the signal high but gpiod_get_value(gpio) reports a low
115value (after the appropriate rise time passes), you know some other component is
116driving the shared signal low. That's not necessarily an error. As one common
117example, that's how I2C clocks are stretched: a slave that needs a slower clock
118delays the rising edge of SCK, and the I2C master adjusts its signaling rate
119accordingly.
diff --git a/Documentation/gpio/sysfs.txt b/Documentation/gpio/sysfs.txt
new file mode 100644
index 000000000000..c2c3a97f8ff7
--- /dev/null
+++ b/Documentation/gpio/sysfs.txt
@@ -0,0 +1,155 @@
1GPIO Sysfs Interface for Userspace
2==================================
3
4Platforms which use the "gpiolib" implementors framework may choose to
5configure a sysfs user interface to GPIOs. This is different from the
6debugfs interface, since it provides control over GPIO direction and
7value instead of just showing a gpio state summary. Plus, it could be
8present on production systems without debugging support.
9
10Given appropriate hardware documentation for the system, userspace could
11know for example that GPIO #23 controls the write protect line used to
12protect boot loader segments in flash memory. System upgrade procedures
13may need to temporarily remove that protection, first importing a GPIO,
14then changing its output state, then updating the code before re-enabling
15the write protection. In normal use, GPIO #23 would never be touched,
16and the kernel would have no need to know about it.
17
18Again depending on appropriate hardware documentation, on some systems
19userspace GPIO can be used to determine system configuration data that
20standard kernels won't know about. And for some tasks, simple userspace
21GPIO drivers could be all that the system really needs.
22
23Note that standard kernel drivers exist for common "LEDs and Buttons"
24GPIO tasks: "leds-gpio" and "gpio_keys", respectively. Use those
25instead of talking directly to the GPIOs; they integrate with kernel
26frameworks better than your userspace code could.
27
28
29Paths in Sysfs
30--------------
31There are three kinds of entry in /sys/class/gpio:
32
33 - Control interfaces used to get userspace control over GPIOs;
34
35 - GPIOs themselves; and
36
37 - GPIO controllers ("gpio_chip" instances).
38
39That's in addition to standard files including the "device" symlink.
40
41The control interfaces are write-only:
42
43 /sys/class/gpio/
44
45 "export" ... Userspace may ask the kernel to export control of
46 a GPIO to userspace by writing its number to this file.
47
48 Example: "echo 19 > export" will create a "gpio19" node
49 for GPIO #19, if that's not requested by kernel code.
50
51 "unexport" ... Reverses the effect of exporting to userspace.
52
53 Example: "echo 19 > unexport" will remove a "gpio19"
54 node exported using the "export" file.
55
56GPIO signals have paths like /sys/class/gpio/gpio42/ (for GPIO #42)
57and have the following read/write attributes:
58
59 /sys/class/gpio/gpioN/
60
61 "direction" ... reads as either "in" or "out". This value may
62 normally be written. Writing as "out" defaults to
63 initializing the value as low. To ensure glitch free
64 operation, values "low" and "high" may be written to
65 configure the GPIO as an output with that initial value.
66
67 Note that this attribute *will not exist* if the kernel
68 doesn't support changing the direction of a GPIO, or
69 it was exported by kernel code that didn't explicitly
70 allow userspace to reconfigure this GPIO's direction.
71
72 "value" ... reads as either 0 (low) or 1 (high). If the GPIO
73 is configured as an output, this value may be written;
74 any nonzero value is treated as high.
75
76 If the pin can be configured as interrupt-generating interrupt
77 and if it has been configured to generate interrupts (see the
78 description of "edge"), you can poll(2) on that file and
79 poll(2) will return whenever the interrupt was triggered. If
80 you use poll(2), set the events POLLPRI and POLLERR. If you
81 use select(2), set the file descriptor in exceptfds. After
82 poll(2) returns, either lseek(2) to the beginning of the sysfs
83 file and read the new value or close the file and re-open it
84 to read the value.
85
86 "edge" ... reads as either "none", "rising", "falling", or
87 "both". Write these strings to select the signal edge(s)
88 that will make poll(2) on the "value" file return.
89
90 This file exists only if the pin can be configured as an
91 interrupt generating input pin.
92
93 "active_low" ... reads as either 0 (false) or 1 (true). Write
94 any nonzero value to invert the value attribute both
95 for reading and writing. Existing and subsequent
96 poll(2) support configuration via the edge attribute
97 for "rising" and "falling" edges will follow this
98 setting.
99
100GPIO controllers have paths like /sys/class/gpio/gpiochip42/ (for the
101controller implementing GPIOs starting at #42) and have the following
102read-only attributes:
103
104 /sys/class/gpio/gpiochipN/
105
106 "base" ... same as N, the first GPIO managed by this chip
107
108 "label" ... provided for diagnostics (not always unique)
109
110 "ngpio" ... how many GPIOs this manges (N to N + ngpio - 1)
111
112Board documentation should in most cases cover what GPIOs are used for
113what purposes. However, those numbers are not always stable; GPIOs on
114a daughtercard might be different depending on the base board being used,
115or other cards in the stack. In such cases, you may need to use the
116gpiochip nodes (possibly in conjunction with schematics) to determine
117the correct GPIO number to use for a given signal.
118
119
120Exporting from Kernel code
121--------------------------
122Kernel code can explicitly manage exports of GPIOs which have already been
123requested using gpio_request():
124
125 /* export the GPIO to userspace */
126 int gpiod_export(struct gpio_desc *desc, bool direction_may_change);
127
128 /* reverse gpio_export() */
129 void gpiod_unexport(struct gpio_desc *desc);
130
131 /* create a sysfs link to an exported GPIO node */
132 int gpiod_export_link(struct device *dev, const char *name,
133 struct gpio_desc *desc);
134
135 /* change the polarity of a GPIO node in sysfs */
136 int gpiod_sysfs_set_active_low(struct gpio_desc *desc, int value);
137
138After a kernel driver requests a GPIO, it may only be made available in
139the sysfs interface by gpiod_export(). The driver can control whether the
140signal direction may change. This helps drivers prevent userspace code
141from accidentally clobbering important system state.
142
143This explicit exporting can help with debugging (by making some kinds
144of experiments easier), or can provide an always-there interface that's
145suitable for documenting as part of a board support package.
146
147After the GPIO has been exported, gpiod_export_link() allows creating
148symlinks from elsewhere in sysfs to the GPIO sysfs node. Drivers can
149use this to provide the interface under their own device in sysfs with
150a descriptive name.
151
152Drivers can use gpiod_sysfs_set_active_low() to hide GPIO line polarity
153differences between boards from user space. Polarity change can be done both
154before and after gpiod_export(), and previously enabled poll(2) support for
155either rising or falling edge will be reconfigured to follow this setting.