aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/filesystems
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/filesystems')
-rw-r--r--Documentation/filesystems/debugfs.txt158
-rw-r--r--Documentation/filesystems/gfs2-glocks.txt2
-rw-r--r--Documentation/filesystems/gfs2.txt19
3 files changed, 170 insertions, 9 deletions
diff --git a/Documentation/filesystems/debugfs.txt b/Documentation/filesystems/debugfs.txt
new file mode 100644
index 000000000000..ed52af60c2d8
--- /dev/null
+++ b/Documentation/filesystems/debugfs.txt
@@ -0,0 +1,158 @@
1Copyright 2009 Jonathan Corbet <corbet@lwn.net>
2
3Debugfs exists as a simple way for kernel developers to make information
4available to user space. Unlike /proc, which is only meant for information
5about a process, or sysfs, which has strict one-value-per-file rules,
6debugfs has no rules at all. Developers can put any information they want
7there. The debugfs filesystem is also intended to not serve as a stable
8ABI to user space; in theory, there are no stability constraints placed on
9files exported there. The real world is not always so simple, though [1];
10even debugfs interfaces are best designed with the idea that they will need
11to be maintained forever.
12
13Debugfs is typically mounted with a command like:
14
15 mount -t debugfs none /sys/kernel/debug
16
17(Or an equivalent /etc/fstab line).
18
19Note that the debugfs API is exported GPL-only to modules.
20
21Code using debugfs should include <linux/debugfs.h>. Then, the first order
22of business will be to create at least one directory to hold a set of
23debugfs files:
24
25 struct dentry *debugfs_create_dir(const char *name, struct dentry *parent);
26
27This call, if successful, will make a directory called name underneath the
28indicated parent directory. If parent is NULL, the directory will be
29created in the debugfs root. On success, the return value is a struct
30dentry pointer which can be used to create files in the directory (and to
31clean it up at the end). A NULL return value indicates that something went
32wrong. If ERR_PTR(-ENODEV) is returned, that is an indication that the
33kernel has been built without debugfs support and none of the functions
34described below will work.
35
36The most general way to create a file within a debugfs directory is with:
37
38 struct dentry *debugfs_create_file(const char *name, mode_t mode,
39 struct dentry *parent, void *data,
40 const struct file_operations *fops);
41
42Here, name is the name of the file to create, mode describes the access
43permissions the file should have, parent indicates the directory which
44should hold the file, data will be stored in the i_private field of the
45resulting inode structure, and fops is a set of file operations which
46implement the file's behavior. At a minimum, the read() and/or write()
47operations should be provided; others can be included as needed. Again,
48the return value will be a dentry pointer to the created file, NULL for
49error, or ERR_PTR(-ENODEV) if debugfs support is missing.
50
51In a number of cases, the creation of a set of file operations is not
52actually necessary; the debugfs code provides a number of helper functions
53for simple situations. Files containing a single integer value can be
54created with any of:
55
56 struct dentry *debugfs_create_u8(const char *name, mode_t mode,
57 struct dentry *parent, u8 *value);
58 struct dentry *debugfs_create_u16(const char *name, mode_t mode,
59 struct dentry *parent, u16 *value);
60 struct dentry *debugfs_create_u32(const char *name, mode_t mode,
61 struct dentry *parent, u32 *value);
62 struct dentry *debugfs_create_u64(const char *name, mode_t mode,
63 struct dentry *parent, u64 *value);
64
65These files support both reading and writing the given value; if a specific
66file should not be written to, simply set the mode bits accordingly. The
67values in these files are in decimal; if hexadecimal is more appropriate,
68the following functions can be used instead:
69
70 struct dentry *debugfs_create_x8(const char *name, mode_t mode,
71 struct dentry *parent, u8 *value);
72 struct dentry *debugfs_create_x16(const char *name, mode_t mode,
73 struct dentry *parent, u16 *value);
74 struct dentry *debugfs_create_x32(const char *name, mode_t mode,
75 struct dentry *parent, u32 *value);
76
77Note that there is no debugfs_create_x64().
78
79These functions are useful as long as the developer knows the size of the
80value to be exported. Some types can have different widths on different
81architectures, though, complicating the situation somewhat. There is a
82function meant to help out in one special case:
83
84 struct dentry *debugfs_create_size_t(const char *name, mode_t mode,
85 struct dentry *parent,
86 size_t *value);
87
88As might be expected, this function will create a debugfs file to represent
89a variable of type size_t.
90
91Boolean values can be placed in debugfs with:
92
93 struct dentry *debugfs_create_bool(const char *name, mode_t mode,
94 struct dentry *parent, u32 *value);
95
96A read on the resulting file will yield either Y (for non-zero values) or
97N, followed by a newline. If written to, it will accept either upper- or
98lower-case values, or 1 or 0. Any other input will be silently ignored.
99
100Finally, a block of arbitrary binary data can be exported with:
101
102 struct debugfs_blob_wrapper {
103 void *data;
104 unsigned long size;
105 };
106
107 struct dentry *debugfs_create_blob(const char *name, mode_t mode,
108 struct dentry *parent,
109 struct debugfs_blob_wrapper *blob);
110
111A read of this file will return the data pointed to by the
112debugfs_blob_wrapper structure. Some drivers use "blobs" as a simple way
113to return several lines of (static) formatted text output. This function
114can be used to export binary information, but there does not appear to be
115any code which does so in the mainline. Note that all files created with
116debugfs_create_blob() are read-only.
117
118There are a couple of other directory-oriented helper functions:
119
120 struct dentry *debugfs_rename(struct dentry *old_dir,
121 struct dentry *old_dentry,
122 struct dentry *new_dir,
123 const char *new_name);
124
125 struct dentry *debugfs_create_symlink(const char *name,
126 struct dentry *parent,
127 const char *target);
128
129A call to debugfs_rename() will give a new name to an existing debugfs
130file, possibly in a different directory. The new_name must not exist prior
131to the call; the return value is old_dentry with updated information.
132Symbolic links can be created with debugfs_create_symlink().
133
134There is one important thing that all debugfs users must take into account:
135there is no automatic cleanup of any directories created in debugfs. If a
136module is unloaded without explicitly removing debugfs entries, the result
137will be a lot of stale pointers and no end of highly antisocial behavior.
138So all debugfs users - at least those which can be built as modules - must
139be prepared to remove all files and directories they create there. A file
140can be removed with:
141
142 void debugfs_remove(struct dentry *dentry);
143
144The dentry value can be NULL, in which case nothing will be removed.
145
146Once upon a time, debugfs users were required to remember the dentry
147pointer for every debugfs file they created so that all files could be
148cleaned up. We live in more civilized times now, though, and debugfs users
149can call:
150
151 void debugfs_remove_recursive(struct dentry *dentry);
152
153If this function is passed a pointer for the dentry corresponding to the
154top-level directory, the entire hierarchy below that directory will be
155removed.
156
157Notes:
158 [1] http://lwn.net/Articles/309298/
diff --git a/Documentation/filesystems/gfs2-glocks.txt b/Documentation/filesystems/gfs2-glocks.txt
index 4dae9a3840bf..0494f78d87e4 100644
--- a/Documentation/filesystems/gfs2-glocks.txt
+++ b/Documentation/filesystems/gfs2-glocks.txt
@@ -60,7 +60,7 @@ go_lock | Called for the first local holder of a lock
60go_unlock | Called on the final local unlock of a lock 60go_unlock | Called on the final local unlock of a lock
61go_dump | Called to print content of object for debugfs file, or on 61go_dump | Called to print content of object for debugfs file, or on
62 | error to dump glock to the log. 62 | error to dump glock to the log.
63go_type; | The type of the glock, LM_TYPE_..... 63go_type | The type of the glock, LM_TYPE_.....
64go_min_hold_time | The minimum hold time 64go_min_hold_time | The minimum hold time
65 65
66The minimum hold time for each lock is the time after a remote lock 66The minimum hold time for each lock is the time after a remote lock
diff --git a/Documentation/filesystems/gfs2.txt b/Documentation/filesystems/gfs2.txt
index 593004b6bbab..5e3ab8f3beff 100644
--- a/Documentation/filesystems/gfs2.txt
+++ b/Documentation/filesystems/gfs2.txt
@@ -11,18 +11,15 @@ their I/O so file system consistency is maintained. One of the nifty
11features of GFS is perfect consistency -- changes made to the file system 11features of GFS is perfect consistency -- changes made to the file system
12on one machine show up immediately on all other machines in the cluster. 12on one machine show up immediately on all other machines in the cluster.
13 13
14GFS uses interchangable inter-node locking mechanisms. Different lock 14GFS uses interchangable inter-node locking mechanisms, the currently
15modules can plug into GFS and each file system selects the appropriate 15supported mechanisms are:
16lock module at mount time. Lock modules include:
17 16
18 lock_nolock -- allows gfs to be used as a local file system 17 lock_nolock -- allows gfs to be used as a local file system
19 18
20 lock_dlm -- uses a distributed lock manager (dlm) for inter-node locking 19 lock_dlm -- uses a distributed lock manager (dlm) for inter-node locking
21 The dlm is found at linux/fs/dlm/ 20 The dlm is found at linux/fs/dlm/
22 21
23In addition to interfacing with an external locking manager, a gfs lock 22Lock_dlm depends on user space cluster management systems found
24module is responsible for interacting with external cluster management
25systems. Lock_dlm depends on user space cluster management systems found
26at the URL above. 23at the URL above.
27 24
28To use gfs as a local file system, no external clustering systems are 25To use gfs as a local file system, no external clustering systems are
@@ -31,13 +28,19 @@ needed, simply:
31 $ mkfs -t gfs2 -p lock_nolock -j 1 /dev/block_device 28 $ mkfs -t gfs2 -p lock_nolock -j 1 /dev/block_device
32 $ mount -t gfs2 /dev/block_device /dir 29 $ mount -t gfs2 /dev/block_device /dir
33 30
34GFS2 is not on-disk compatible with previous versions of GFS. 31If you are using Fedora, you need to install the gfs2-utils package
32and, for lock_dlm, you will also need to install the cman package
33and write a cluster.conf as per the documentation.
34
35GFS2 is not on-disk compatible with previous versions of GFS, but it
36is pretty close.
35 37
36The following man pages can be found at the URL above: 38The following man pages can be found at the URL above:
37 gfs2_fsck to repair a filesystem 39 fsck.gfs2 to repair a filesystem
38 gfs2_grow to expand a filesystem online 40 gfs2_grow to expand a filesystem online
39 gfs2_jadd to add journals to a filesystem online 41 gfs2_jadd to add journals to a filesystem online
40 gfs2_tool to manipulate, examine and tune a filesystem 42 gfs2_tool to manipulate, examine and tune a filesystem
41 gfs2_quota to examine and change quota values in a filesystem 43 gfs2_quota to examine and change quota values in a filesystem
44 gfs2_convert to convert a gfs filesystem to gfs2 in-place
42 mount.gfs2 to help mount(8) mount a filesystem 45 mount.gfs2 to help mount(8) mount a filesystem
43 mkfs.gfs2 to make a filesystem 46 mkfs.gfs2 to make a filesystem