diff options
Diffstat (limited to 'Documentation/filesystems/caching/fscache.txt')
-rw-r--r-- | Documentation/filesystems/caching/fscache.txt | 333 |
1 files changed, 333 insertions, 0 deletions
diff --git a/Documentation/filesystems/caching/fscache.txt b/Documentation/filesystems/caching/fscache.txt new file mode 100644 index 000000000000..9e94b9491d89 --- /dev/null +++ b/Documentation/filesystems/caching/fscache.txt | |||
@@ -0,0 +1,333 @@ | |||
1 | ========================== | ||
2 | General Filesystem Caching | ||
3 | ========================== | ||
4 | |||
5 | ======== | ||
6 | OVERVIEW | ||
7 | ======== | ||
8 | |||
9 | This facility is a general purpose cache for network filesystems, though it | ||
10 | could be used for caching other things such as ISO9660 filesystems too. | ||
11 | |||
12 | FS-Cache mediates between cache backends (such as CacheFS) and network | ||
13 | filesystems: | ||
14 | |||
15 | +---------+ | ||
16 | | | +--------------+ | ||
17 | | NFS |--+ | | | ||
18 | | | | +-->| CacheFS | | ||
19 | +---------+ | +----------+ | | /dev/hda5 | | ||
20 | | | | | +--------------+ | ||
21 | +---------+ +-->| | | | ||
22 | | | | |--+ | ||
23 | | AFS |----->| FS-Cache | | ||
24 | | | | |--+ | ||
25 | +---------+ +-->| | | | ||
26 | | | | | +--------------+ | ||
27 | +---------+ | +----------+ | | | | ||
28 | | | | +-->| CacheFiles | | ||
29 | | ISOFS |--+ | /var/cache | | ||
30 | | | +--------------+ | ||
31 | +---------+ | ||
32 | |||
33 | Or to look at it another way, FS-Cache is a module that provides a caching | ||
34 | facility to a network filesystem such that the cache is transparent to the | ||
35 | user: | ||
36 | |||
37 | +---------+ | ||
38 | | | | ||
39 | | Server | | ||
40 | | | | ||
41 | +---------+ | ||
42 | | NETWORK | ||
43 | ~~~~~|~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
44 | | | ||
45 | | +----------+ | ||
46 | V | | | ||
47 | +---------+ | | | ||
48 | | | | | | ||
49 | | NFS |----->| FS-Cache | | ||
50 | | | | |--+ | ||
51 | +---------+ | | | +--------------+ +--------------+ | ||
52 | | | | | | | | | | ||
53 | V +----------+ +-->| CacheFiles |-->| Ext3 | | ||
54 | +---------+ | /var/cache | | /dev/sda6 | | ||
55 | | | +--------------+ +--------------+ | ||
56 | | VFS | ^ ^ | ||
57 | | | | | | ||
58 | +---------+ +--------------+ | | ||
59 | | KERNEL SPACE | | | ||
60 | ~~~~~|~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~|~~~~~~|~~~~ | ||
61 | | USER SPACE | | | ||
62 | V | | | ||
63 | +---------+ +--------------+ | ||
64 | | | | | | ||
65 | | Process | | cachefilesd | | ||
66 | | | | | | ||
67 | +---------+ +--------------+ | ||
68 | |||
69 | |||
70 | FS-Cache does not follow the idea of completely loading every netfs file | ||
71 | opened in its entirety into a cache before permitting it to be accessed and | ||
72 | then serving the pages out of that cache rather than the netfs inode because: | ||
73 | |||
74 | (1) It must be practical to operate without a cache. | ||
75 | |||
76 | (2) The size of any accessible file must not be limited to the size of the | ||
77 | cache. | ||
78 | |||
79 | (3) The combined size of all opened files (this includes mapped libraries) | ||
80 | must not be limited to the size of the cache. | ||
81 | |||
82 | (4) The user should not be forced to download an entire file just to do a | ||
83 | one-off access of a small portion of it (such as might be done with the | ||
84 | "file" program). | ||
85 | |||
86 | It instead serves the cache out in PAGE_SIZE chunks as and when requested by | ||
87 | the netfs('s) using it. | ||
88 | |||
89 | |||
90 | FS-Cache provides the following facilities: | ||
91 | |||
92 | (1) More than one cache can be used at once. Caches can be selected | ||
93 | explicitly by use of tags. | ||
94 | |||
95 | (2) Caches can be added / removed at any time. | ||
96 | |||
97 | (3) The netfs is provided with an interface that allows either party to | ||
98 | withdraw caching facilities from a file (required for (2)). | ||
99 | |||
100 | (4) The interface to the netfs returns as few errors as possible, preferring | ||
101 | rather to let the netfs remain oblivious. | ||
102 | |||
103 | (5) Cookies are used to represent indices, files and other objects to the | ||
104 | netfs. The simplest cookie is just a NULL pointer - indicating nothing | ||
105 | cached there. | ||
106 | |||
107 | (6) The netfs is allowed to propose - dynamically - any index hierarchy it | ||
108 | desires, though it must be aware that the index search function is | ||
109 | recursive, stack space is limited, and indices can only be children of | ||
110 | indices. | ||
111 | |||
112 | (7) Data I/O is done direct to and from the netfs's pages. The netfs | ||
113 | indicates that page A is at index B of the data-file represented by cookie | ||
114 | C, and that it should be read or written. The cache backend may or may | ||
115 | not start I/O on that page, but if it does, a netfs callback will be | ||
116 | invoked to indicate completion. The I/O may be either synchronous or | ||
117 | asynchronous. | ||
118 | |||
119 | (8) Cookies can be "retired" upon release. At this point FS-Cache will mark | ||
120 | them as obsolete and the index hierarchy rooted at that point will get | ||
121 | recycled. | ||
122 | |||
123 | (9) The netfs provides a "match" function for index searches. In addition to | ||
124 | saying whether a match was made or not, this can also specify that an | ||
125 | entry should be updated or deleted. | ||
126 | |||
127 | (10) As much as possible is done asynchronously. | ||
128 | |||
129 | |||
130 | FS-Cache maintains a virtual indexing tree in which all indices, files, objects | ||
131 | and pages are kept. Bits of this tree may actually reside in one or more | ||
132 | caches. | ||
133 | |||
134 | FSDEF | ||
135 | | | ||
136 | +------------------------------------+ | ||
137 | | | | ||
138 | NFS AFS | ||
139 | | | | ||
140 | +--------------------------+ +-----------+ | ||
141 | | | | | | ||
142 | homedir mirror afs.org redhat.com | ||
143 | | | | | ||
144 | +------------+ +---------------+ +----------+ | ||
145 | | | | | | | | ||
146 | 00001 00002 00007 00125 vol00001 vol00002 | ||
147 | | | | | | | ||
148 | +---+---+ +-----+ +---+ +------+------+ +-----+----+ | ||
149 | | | | | | | | | | | | | | | ||
150 | PG0 PG1 PG2 PG0 XATTR PG0 PG1 DIRENT DIRENT DIRENT R/W R/O Bak | ||
151 | | | | ||
152 | PG0 +-------+ | ||
153 | | | | ||
154 | 00001 00003 | ||
155 | | | ||
156 | +---+---+ | ||
157 | | | | | ||
158 | PG0 PG1 PG2 | ||
159 | |||
160 | In the example above, you can see two netfs's being backed: NFS and AFS. These | ||
161 | have different index hierarchies: | ||
162 | |||
163 | (*) The NFS primary index contains per-server indices. Each server index is | ||
164 | indexed by NFS file handles to get data file objects. Each data file | ||
165 | objects can have an array of pages, but may also have further child | ||
166 | objects, such as extended attributes and directory entries. Extended | ||
167 | attribute objects themselves have page-array contents. | ||
168 | |||
169 | (*) The AFS primary index contains per-cell indices. Each cell index contains | ||
170 | per-logical-volume indices. Each of volume index contains up to three | ||
171 | indices for the read-write, read-only and backup mirrors of those volumes. | ||
172 | Each of these contains vnode data file objects, each of which contains an | ||
173 | array of pages. | ||
174 | |||
175 | The very top index is the FS-Cache master index in which individual netfs's | ||
176 | have entries. | ||
177 | |||
178 | Any index object may reside in more than one cache, provided it only has index | ||
179 | children. Any index with non-index object children will be assumed to only | ||
180 | reside in one cache. | ||
181 | |||
182 | |||
183 | The netfs API to FS-Cache can be found in: | ||
184 | |||
185 | Documentation/filesystems/caching/netfs-api.txt | ||
186 | |||
187 | The cache backend API to FS-Cache can be found in: | ||
188 | |||
189 | Documentation/filesystems/caching/backend-api.txt | ||
190 | |||
191 | A description of the internal representations and object state machine can be | ||
192 | found in: | ||
193 | |||
194 | Documentation/filesystems/caching/object.txt | ||
195 | |||
196 | |||
197 | ======================= | ||
198 | STATISTICAL INFORMATION | ||
199 | ======================= | ||
200 | |||
201 | If FS-Cache is compiled with the following options enabled: | ||
202 | |||
203 | CONFIG_FSCACHE_STATS=y | ||
204 | CONFIG_FSCACHE_HISTOGRAM=y | ||
205 | |||
206 | then it will gather certain statistics and display them through a number of | ||
207 | proc files. | ||
208 | |||
209 | (*) /proc/fs/fscache/stats | ||
210 | |||
211 | This shows counts of a number of events that can happen in FS-Cache: | ||
212 | |||
213 | CLASS EVENT MEANING | ||
214 | ======= ======= ======================================================= | ||
215 | Cookies idx=N Number of index cookies allocated | ||
216 | dat=N Number of data storage cookies allocated | ||
217 | spc=N Number of special cookies allocated | ||
218 | Objects alc=N Number of objects allocated | ||
219 | nal=N Number of object allocation failures | ||
220 | avl=N Number of objects that reached the available state | ||
221 | ded=N Number of objects that reached the dead state | ||
222 | ChkAux non=N Number of objects that didn't have a coherency check | ||
223 | ok=N Number of objects that passed a coherency check | ||
224 | upd=N Number of objects that needed a coherency data update | ||
225 | obs=N Number of objects that were declared obsolete | ||
226 | Pages mrk=N Number of pages marked as being cached | ||
227 | unc=N Number of uncache page requests seen | ||
228 | Acquire n=N Number of acquire cookie requests seen | ||
229 | nul=N Number of acq reqs given a NULL parent | ||
230 | noc=N Number of acq reqs rejected due to no cache available | ||
231 | ok=N Number of acq reqs succeeded | ||
232 | nbf=N Number of acq reqs rejected due to error | ||
233 | oom=N Number of acq reqs failed on ENOMEM | ||
234 | Lookups n=N Number of lookup calls made on cache backends | ||
235 | neg=N Number of negative lookups made | ||
236 | pos=N Number of positive lookups made | ||
237 | crt=N Number of objects created by lookup | ||
238 | Updates n=N Number of update cookie requests seen | ||
239 | nul=N Number of upd reqs given a NULL parent | ||
240 | run=N Number of upd reqs granted CPU time | ||
241 | Relinqs n=N Number of relinquish cookie requests seen | ||
242 | nul=N Number of rlq reqs given a NULL parent | ||
243 | wcr=N Number of rlq reqs waited on completion of creation | ||
244 | AttrChg n=N Number of attribute changed requests seen | ||
245 | ok=N Number of attr changed requests queued | ||
246 | nbf=N Number of attr changed rejected -ENOBUFS | ||
247 | oom=N Number of attr changed failed -ENOMEM | ||
248 | run=N Number of attr changed ops given CPU time | ||
249 | Allocs n=N Number of allocation requests seen | ||
250 | ok=N Number of successful alloc reqs | ||
251 | wt=N Number of alloc reqs that waited on lookup completion | ||
252 | nbf=N Number of alloc reqs rejected -ENOBUFS | ||
253 | ops=N Number of alloc reqs submitted | ||
254 | owt=N Number of alloc reqs waited for CPU time | ||
255 | Retrvls n=N Number of retrieval (read) requests seen | ||
256 | ok=N Number of successful retr reqs | ||
257 | wt=N Number of retr reqs that waited on lookup completion | ||
258 | nod=N Number of retr reqs returned -ENODATA | ||
259 | nbf=N Number of retr reqs rejected -ENOBUFS | ||
260 | int=N Number of retr reqs aborted -ERESTARTSYS | ||
261 | oom=N Number of retr reqs failed -ENOMEM | ||
262 | ops=N Number of retr reqs submitted | ||
263 | owt=N Number of retr reqs waited for CPU time | ||
264 | Stores n=N Number of storage (write) requests seen | ||
265 | ok=N Number of successful store reqs | ||
266 | agn=N Number of store reqs on a page already pending storage | ||
267 | nbf=N Number of store reqs rejected -ENOBUFS | ||
268 | oom=N Number of store reqs failed -ENOMEM | ||
269 | ops=N Number of store reqs submitted | ||
270 | run=N Number of store reqs granted CPU time | ||
271 | Ops pend=N Number of times async ops added to pending queues | ||
272 | run=N Number of times async ops given CPU time | ||
273 | enq=N Number of times async ops queued for processing | ||
274 | dfr=N Number of async ops queued for deferred release | ||
275 | rel=N Number of async ops released | ||
276 | gc=N Number of deferred-release async ops garbage collected | ||
277 | |||
278 | |||
279 | (*) /proc/fs/fscache/histogram | ||
280 | |||
281 | cat /proc/fs/fscache/histogram | ||
282 | JIFS SECS OBJ INST OP RUNS OBJ RUNS RETRV DLY RETRIEVLS | ||
283 | ===== ===== ========= ========= ========= ========= ========= | ||
284 | |||
285 | This shows the breakdown of the number of times each amount of time | ||
286 | between 0 jiffies and HZ-1 jiffies a variety of tasks took to run. The | ||
287 | columns are as follows: | ||
288 | |||
289 | COLUMN TIME MEASUREMENT | ||
290 | ======= ======================================================= | ||
291 | OBJ INST Length of time to instantiate an object | ||
292 | OP RUNS Length of time a call to process an operation took | ||
293 | OBJ RUNS Length of time a call to process an object event took | ||
294 | RETRV DLY Time between an requesting a read and lookup completing | ||
295 | RETRIEVLS Time between beginning and end of a retrieval | ||
296 | |||
297 | Each row shows the number of events that took a particular range of times. | ||
298 | Each step is 1 jiffy in size. The JIFS column indicates the particular | ||
299 | jiffy range covered, and the SECS field the equivalent number of seconds. | ||
300 | |||
301 | |||
302 | ========= | ||
303 | DEBUGGING | ||
304 | ========= | ||
305 | |||
306 | If CONFIG_FSCACHE_DEBUG is enabled, the FS-Cache facility can have runtime | ||
307 | debugging enabled by adjusting the value in: | ||
308 | |||
309 | /sys/module/fscache/parameters/debug | ||
310 | |||
311 | This is a bitmask of debugging streams to enable: | ||
312 | |||
313 | BIT VALUE STREAM POINT | ||
314 | ======= ======= =============================== ======================= | ||
315 | 0 1 Cache management Function entry trace | ||
316 | 1 2 Function exit trace | ||
317 | 2 4 General | ||
318 | 3 8 Cookie management Function entry trace | ||
319 | 4 16 Function exit trace | ||
320 | 5 32 General | ||
321 | 6 64 Page handling Function entry trace | ||
322 | 7 128 Function exit trace | ||
323 | 8 256 General | ||
324 | 9 512 Operation management Function entry trace | ||
325 | 10 1024 Function exit trace | ||
326 | 11 2048 General | ||
327 | |||
328 | The appropriate set of values should be OR'd together and the result written to | ||
329 | the control file. For example: | ||
330 | |||
331 | echo $((1|8|64)) >/sys/module/fscache/parameters/debug | ||
332 | |||
333 | will turn on all function entry debugging. | ||