aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/devicetree
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/devicetree')
-rw-r--r--Documentation/devicetree/bindings/ata/fsl-sata.txt29
-rw-r--r--Documentation/devicetree/bindings/eeprom.txt28
-rw-r--r--Documentation/devicetree/bindings/gpio/8xxx_gpio.txt60
-rw-r--r--Documentation/devicetree/bindings/gpio/gpio.txt50
-rw-r--r--Documentation/devicetree/bindings/gpio/led.txt58
-rw-r--r--Documentation/devicetree/bindings/i2c/fsl-i2c.txt64
-rw-r--r--Documentation/devicetree/bindings/marvell.txt521
-rw-r--r--Documentation/devicetree/bindings/mmc/fsl-esdhc.txt29
-rw-r--r--Documentation/devicetree/bindings/mmc/mmc-spi-slot.txt23
-rw-r--r--Documentation/devicetree/bindings/mtd/fsl-upm-nand.txt63
-rw-r--r--Documentation/devicetree/bindings/mtd/mtd-physmap.txt90
-rw-r--r--Documentation/devicetree/bindings/net/can/mpc5xxx-mscan.txt53
-rw-r--r--Documentation/devicetree/bindings/net/can/sja1000.txt53
-rw-r--r--Documentation/devicetree/bindings/net/fsl-tsec-phy.txt76
-rw-r--r--Documentation/devicetree/bindings/net/mdio-gpio.txt19
-rw-r--r--Documentation/devicetree/bindings/net/phy.txt25
-rw-r--r--Documentation/devicetree/bindings/pci/83xx-512x-pci.txt40
-rw-r--r--Documentation/devicetree/bindings/powerpc/4xx/cpm.txt52
-rw-r--r--Documentation/devicetree/bindings/powerpc/4xx/emac.txt148
-rw-r--r--Documentation/devicetree/bindings/powerpc/4xx/ndfc.txt39
-rw-r--r--Documentation/devicetree/bindings/powerpc/4xx/ppc440spe-adma.txt93
-rw-r--r--Documentation/devicetree/bindings/powerpc/4xx/reboot.txt18
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/board.txt63
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm.txt67
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm/brg.txt21
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm/i2c.txt41
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm/pic.txt18
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm/usb.txt15
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/gpio.txt38
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/network.txt45
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe.txt115
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/firmware.txt24
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/par_io.txt51
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/pincfg.txt60
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/ucc.txt70
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/usb.txt37
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/serial.txt32
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/diu.txt34
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/dma.txt144
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/ecm.txt64
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/gtm.txt31
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/guts.txt25
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/lbc.txt35
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/mcm.txt64
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/mcu-mpc8349emitx.txt17
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/mpc5121-psc.txt70
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/mpc5200.txt198
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/mpic.txt42
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/msi-pic.txt36
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/pmc.txt63
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/sec.txt68
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/ssi.txt73
-rw-r--r--Documentation/devicetree/bindings/powerpc/nintendo/gamecube.txt109
-rw-r--r--Documentation/devicetree/bindings/powerpc/nintendo/wii.txt184
-rw-r--r--Documentation/devicetree/bindings/spi/fsl-spi.txt53
-rw-r--r--Documentation/devicetree/bindings/spi/spi-bus.txt57
-rw-r--r--Documentation/devicetree/bindings/usb/fsl-usb.txt81
-rw-r--r--Documentation/devicetree/bindings/usb/usb-ehci.txt25
-rw-r--r--Documentation/devicetree/bindings/xilinx.txt306
-rw-r--r--Documentation/devicetree/booting-without-of.txt1447
60 files changed, 5554 insertions, 0 deletions
diff --git a/Documentation/devicetree/bindings/ata/fsl-sata.txt b/Documentation/devicetree/bindings/ata/fsl-sata.txt
new file mode 100644
index 000000000000..b46bcf46c3d8
--- /dev/null
+++ b/Documentation/devicetree/bindings/ata/fsl-sata.txt
@@ -0,0 +1,29 @@
1* Freescale 8xxx/3.0 Gb/s SATA nodes
2
3SATA nodes are defined to describe on-chip Serial ATA controllers.
4Each SATA port should have its own node.
5
6Required properties:
7- compatible : compatible list, contains 2 entries, first is
8 "fsl,CHIP-sata", where CHIP is the processor
9 (mpc8315, mpc8379, etc.) and the second is
10 "fsl,pq-sata"
11- interrupts : <interrupt mapping for SATA IRQ>
12- cell-index : controller index.
13 1 for controller @ 0x18000
14 2 for controller @ 0x19000
15 3 for controller @ 0x1a000
16 4 for controller @ 0x1b000
17
18Optional properties:
19- interrupt-parent : optional, if needed for interrupt mapping
20- reg : <registers mapping>
21
22Example:
23 sata@18000 {
24 compatible = "fsl,mpc8379-sata", "fsl,pq-sata";
25 reg = <0x18000 0x1000>;
26 cell-index = <1>;
27 interrupts = <2c 8>;
28 interrupt-parent = < &ipic >;
29 };
diff --git a/Documentation/devicetree/bindings/eeprom.txt b/Documentation/devicetree/bindings/eeprom.txt
new file mode 100644
index 000000000000..4342c10de1bf
--- /dev/null
+++ b/Documentation/devicetree/bindings/eeprom.txt
@@ -0,0 +1,28 @@
1EEPROMs (I2C)
2
3Required properties:
4
5 - compatible : should be "<manufacturer>,<type>"
6 If there is no specific driver for <manufacturer>, a generic
7 driver based on <type> is selected. Possible types are:
8 24c00, 24c01, 24c02, 24c04, 24c08, 24c16, 24c32, 24c64,
9 24c128, 24c256, 24c512, 24c1024, spd
10
11 - reg : the I2C address of the EEPROM
12
13Optional properties:
14
15 - pagesize : the length of the pagesize for writing. Please consult the
16 manual of your device, that value varies a lot. A wrong value
17 may result in data loss! If not specified, a safety value of
18 '1' is used which will be very slow.
19
20 - read-only: this parameterless property disables writes to the eeprom
21
22Example:
23
24eeprom@52 {
25 compatible = "atmel,24c32";
26 reg = <0x52>;
27 pagesize = <32>;
28};
diff --git a/Documentation/devicetree/bindings/gpio/8xxx_gpio.txt b/Documentation/devicetree/bindings/gpio/8xxx_gpio.txt
new file mode 100644
index 000000000000..b0019eb5330e
--- /dev/null
+++ b/Documentation/devicetree/bindings/gpio/8xxx_gpio.txt
@@ -0,0 +1,60 @@
1GPIO controllers on MPC8xxx SoCs
2
3This is for the non-QE/CPM/GUTs GPIO controllers as found on
48349, 8572, 8610 and compatible.
5
6Every GPIO controller node must have #gpio-cells property defined,
7this information will be used to translate gpio-specifiers.
8
9Required properties:
10- compatible : "fsl,<CHIP>-gpio" followed by "fsl,mpc8349-gpio" for
11 83xx, "fsl,mpc8572-gpio" for 85xx and "fsl,mpc8610-gpio" for 86xx.
12- #gpio-cells : Should be two. The first cell is the pin number and the
13 second cell is used to specify optional parameters (currently unused).
14 - interrupts : Interrupt mapping for GPIO IRQ.
15 - interrupt-parent : Phandle for the interrupt controller that
16 services interrupts for this device.
17- gpio-controller : Marks the port as GPIO controller.
18
19Example of gpio-controller nodes for a MPC8347 SoC:
20
21 gpio1: gpio-controller@c00 {
22 #gpio-cells = <2>;
23 compatible = "fsl,mpc8347-gpio", "fsl,mpc8349-gpio";
24 reg = <0xc00 0x100>;
25 interrupts = <74 0x8>;
26 interrupt-parent = <&ipic>;
27 gpio-controller;
28 };
29
30 gpio2: gpio-controller@d00 {
31 #gpio-cells = <2>;
32 compatible = "fsl,mpc8347-gpio", "fsl,mpc8349-gpio";
33 reg = <0xd00 0x100>;
34 interrupts = <75 0x8>;
35 interrupt-parent = <&ipic>;
36 gpio-controller;
37 };
38
39See booting-without-of.txt for details of how to specify GPIO
40information for devices.
41
42To use GPIO pins as interrupt sources for peripherals, specify the
43GPIO controller as the interrupt parent and define GPIO number +
44trigger mode using the interrupts property, which is defined like
45this:
46
47interrupts = <number trigger>, where:
48 - number: GPIO pin (0..31)
49 - trigger: trigger mode:
50 2 = trigger on falling edge
51 3 = trigger on both edges
52
53Example of device using this is:
54
55 funkyfpga@0 {
56 compatible = "funky-fpga";
57 ...
58 interrupts = <4 3>;
59 interrupt-parent = <&gpio1>;
60 };
diff --git a/Documentation/devicetree/bindings/gpio/gpio.txt b/Documentation/devicetree/bindings/gpio/gpio.txt
new file mode 100644
index 000000000000..edaa84d288a1
--- /dev/null
+++ b/Documentation/devicetree/bindings/gpio/gpio.txt
@@ -0,0 +1,50 @@
1Specifying GPIO information for devices
2============================================
3
41) gpios property
5-----------------
6
7Nodes that makes use of GPIOs should define them using `gpios' property,
8format of which is: <&gpio-controller1-phandle gpio1-specifier
9 &gpio-controller2-phandle gpio2-specifier
10 0 /* holes are permitted, means no GPIO 3 */
11 &gpio-controller4-phandle gpio4-specifier
12 ...>;
13
14Note that gpio-specifier length is controller dependent.
15
16gpio-specifier may encode: bank, pin position inside the bank,
17whether pin is open-drain and whether pin is logically inverted.
18
19Example of the node using GPIOs:
20
21 node {
22 gpios = <&qe_pio_e 18 0>;
23 };
24
25In this example gpio-specifier is "18 0" and encodes GPIO pin number,
26and empty GPIO flags as accepted by the "qe_pio_e" gpio-controller.
27
282) gpio-controller nodes
29------------------------
30
31Every GPIO controller node must have #gpio-cells property defined,
32this information will be used to translate gpio-specifiers.
33
34Example of two SOC GPIO banks defined as gpio-controller nodes:
35
36 qe_pio_a: gpio-controller@1400 {
37 #gpio-cells = <2>;
38 compatible = "fsl,qe-pario-bank-a", "fsl,qe-pario-bank";
39 reg = <0x1400 0x18>;
40 gpio-controller;
41 };
42
43 qe_pio_e: gpio-controller@1460 {
44 #gpio-cells = <2>;
45 compatible = "fsl,qe-pario-bank-e", "fsl,qe-pario-bank";
46 reg = <0x1460 0x18>;
47 gpio-controller;
48 };
49
50
diff --git a/Documentation/devicetree/bindings/gpio/led.txt b/Documentation/devicetree/bindings/gpio/led.txt
new file mode 100644
index 000000000000..064db928c3c1
--- /dev/null
+++ b/Documentation/devicetree/bindings/gpio/led.txt
@@ -0,0 +1,58 @@
1LEDs connected to GPIO lines
2
3Required properties:
4- compatible : should be "gpio-leds".
5
6Each LED is represented as a sub-node of the gpio-leds device. Each
7node's name represents the name of the corresponding LED.
8
9LED sub-node properties:
10- gpios : Should specify the LED's GPIO, see "Specifying GPIO information
11 for devices" in Documentation/powerpc/booting-without-of.txt. Active
12 low LEDs should be indicated using flags in the GPIO specifier.
13- label : (optional) The label for this LED. If omitted, the label is
14 taken from the node name (excluding the unit address).
15- linux,default-trigger : (optional) This parameter, if present, is a
16 string defining the trigger assigned to the LED. Current triggers are:
17 "backlight" - LED will act as a back-light, controlled by the framebuffer
18 system
19 "default-on" - LED will turn on, but see "default-state" below
20 "heartbeat" - LED "double" flashes at a load average based rate
21 "ide-disk" - LED indicates disk activity
22 "timer" - LED flashes at a fixed, configurable rate
23- default-state: (optional) The initial state of the LED. Valid
24 values are "on", "off", and "keep". If the LED is already on or off
25 and the default-state property is set the to same value, then no
26 glitch should be produced where the LED momentarily turns off (or
27 on). The "keep" setting will keep the LED at whatever its current
28 state is, without producing a glitch. The default is off if this
29 property is not present.
30
31Examples:
32
33leds {
34 compatible = "gpio-leds";
35 hdd {
36 label = "IDE Activity";
37 gpios = <&mcu_pio 0 1>; /* Active low */
38 linux,default-trigger = "ide-disk";
39 };
40
41 fault {
42 gpios = <&mcu_pio 1 0>;
43 /* Keep LED on if BIOS detected hardware fault */
44 default-state = "keep";
45 };
46};
47
48run-control {
49 compatible = "gpio-leds";
50 red {
51 gpios = <&mpc8572 6 0>;
52 default-state = "off";
53 };
54 green {
55 gpios = <&mpc8572 7 0>;
56 default-state = "on";
57 };
58}
diff --git a/Documentation/devicetree/bindings/i2c/fsl-i2c.txt b/Documentation/devicetree/bindings/i2c/fsl-i2c.txt
new file mode 100644
index 000000000000..1eacd6b20ed5
--- /dev/null
+++ b/Documentation/devicetree/bindings/i2c/fsl-i2c.txt
@@ -0,0 +1,64 @@
1* I2C
2
3Required properties :
4
5 - reg : Offset and length of the register set for the device
6 - compatible : should be "fsl,CHIP-i2c" where CHIP is the name of a
7 compatible processor, e.g. mpc8313, mpc8543, mpc8544, mpc5121,
8 mpc5200 or mpc5200b. For the mpc5121, an additional node
9 "fsl,mpc5121-i2c-ctrl" is required as shown in the example below.
10
11Recommended properties :
12
13 - interrupts : <a b> where a is the interrupt number and b is a
14 field that represents an encoding of the sense and level
15 information for the interrupt. This should be encoded based on
16 the information in section 2) depending on the type of interrupt
17 controller you have.
18 - interrupt-parent : the phandle for the interrupt controller that
19 services interrupts for this device.
20 - fsl,preserve-clocking : boolean; if defined, the clock settings
21 from the bootloader are preserved (not touched).
22 - clock-frequency : desired I2C bus clock frequency in Hz.
23 - fsl,timeout : I2C bus timeout in microseconds.
24
25Examples :
26
27 /* MPC5121 based board */
28 i2c@1740 {
29 #address-cells = <1>;
30 #size-cells = <0>;
31 compatible = "fsl,mpc5121-i2c", "fsl-i2c";
32 reg = <0x1740 0x20>;
33 interrupts = <11 0x8>;
34 interrupt-parent = <&ipic>;
35 clock-frequency = <100000>;
36 };
37
38 i2ccontrol@1760 {
39 compatible = "fsl,mpc5121-i2c-ctrl";
40 reg = <0x1760 0x8>;
41 };
42
43 /* MPC5200B based board */
44 i2c@3d00 {
45 #address-cells = <1>;
46 #size-cells = <0>;
47 compatible = "fsl,mpc5200b-i2c","fsl,mpc5200-i2c","fsl-i2c";
48 reg = <0x3d00 0x40>;
49 interrupts = <2 15 0>;
50 interrupt-parent = <&mpc5200_pic>;
51 fsl,preserve-clocking;
52 };
53
54 /* MPC8544 base board */
55 i2c@3100 {
56 #address-cells = <1>;
57 #size-cells = <0>;
58 compatible = "fsl,mpc8544-i2c", "fsl-i2c";
59 reg = <0x3100 0x100>;
60 interrupts = <43 2>;
61 interrupt-parent = <&mpic>;
62 clock-frequency = <400000>;
63 fsl,timeout = <10000>;
64 };
diff --git a/Documentation/devicetree/bindings/marvell.txt b/Documentation/devicetree/bindings/marvell.txt
new file mode 100644
index 000000000000..f1533d91953a
--- /dev/null
+++ b/Documentation/devicetree/bindings/marvell.txt
@@ -0,0 +1,521 @@
1Marvell Discovery mv64[345]6x System Controller chips
2===========================================================
3
4The Marvell mv64[345]60 series of system controller chips contain
5many of the peripherals needed to implement a complete computer
6system. In this section, we define device tree nodes to describe
7the system controller chip itself and each of the peripherals
8which it contains. Compatible string values for each node are
9prefixed with the string "marvell,", for Marvell Technology Group Ltd.
10
111) The /system-controller node
12
13 This node is used to represent the system-controller and must be
14 present when the system uses a system controller chip. The top-level
15 system-controller node contains information that is global to all
16 devices within the system controller chip. The node name begins
17 with "system-controller" followed by the unit address, which is
18 the base address of the memory-mapped register set for the system
19 controller chip.
20
21 Required properties:
22
23 - ranges : Describes the translation of system controller addresses
24 for memory mapped registers.
25 - clock-frequency: Contains the main clock frequency for the system
26 controller chip.
27 - reg : This property defines the address and size of the
28 memory-mapped registers contained within the system controller
29 chip. The address specified in the "reg" property should match
30 the unit address of the system-controller node.
31 - #address-cells : Address representation for system controller
32 devices. This field represents the number of cells needed to
33 represent the address of the memory-mapped registers of devices
34 within the system controller chip.
35 - #size-cells : Size representation for the memory-mapped
36 registers within the system controller chip.
37 - #interrupt-cells : Defines the width of cells used to represent
38 interrupts.
39
40 Optional properties:
41
42 - model : The specific model of the system controller chip. Such
43 as, "mv64360", "mv64460", or "mv64560".
44 - compatible : A string identifying the compatibility identifiers
45 of the system controller chip.
46
47 The system-controller node contains child nodes for each system
48 controller device that the platform uses. Nodes should not be created
49 for devices which exist on the system controller chip but are not used
50
51 Example Marvell Discovery mv64360 system-controller node:
52
53 system-controller@f1000000 { /* Marvell Discovery mv64360 */
54 #address-cells = <1>;
55 #size-cells = <1>;
56 model = "mv64360"; /* Default */
57 compatible = "marvell,mv64360";
58 clock-frequency = <133333333>;
59 reg = <0xf1000000 0x10000>;
60 virtual-reg = <0xf1000000>;
61 ranges = <0x88000000 0x88000000 0x1000000 /* PCI 0 I/O Space */
62 0x80000000 0x80000000 0x8000000 /* PCI 0 MEM Space */
63 0xa0000000 0xa0000000 0x4000000 /* User FLASH */
64 0x00000000 0xf1000000 0x0010000 /* Bridge's regs */
65 0xf2000000 0xf2000000 0x0040000>;/* Integrated SRAM */
66
67 [ child node definitions... ]
68 }
69
702) Child nodes of /system-controller
71
72 a) Marvell Discovery MDIO bus
73
74 The MDIO is a bus to which the PHY devices are connected. For each
75 device that exists on this bus, a child node should be created. See
76 the definition of the PHY node below for an example of how to define
77 a PHY.
78
79 Required properties:
80 - #address-cells : Should be <1>
81 - #size-cells : Should be <0>
82 - device_type : Should be "mdio"
83 - compatible : Should be "marvell,mv64360-mdio"
84
85 Example:
86
87 mdio {
88 #address-cells = <1>;
89 #size-cells = <0>;
90 device_type = "mdio";
91 compatible = "marvell,mv64360-mdio";
92
93 ethernet-phy@0 {
94 ......
95 };
96 };
97
98
99 b) Marvell Discovery ethernet controller
100
101 The Discover ethernet controller is described with two levels
102 of nodes. The first level describes an ethernet silicon block
103 and the second level describes up to 3 ethernet nodes within
104 that block. The reason for the multiple levels is that the
105 registers for the node are interleaved within a single set
106 of registers. The "ethernet-block" level describes the
107 shared register set, and the "ethernet" nodes describe ethernet
108 port-specific properties.
109
110 Ethernet block node
111
112 Required properties:
113 - #address-cells : <1>
114 - #size-cells : <0>
115 - compatible : "marvell,mv64360-eth-block"
116 - reg : Offset and length of the register set for this block
117
118 Example Discovery Ethernet block node:
119 ethernet-block@2000 {
120 #address-cells = <1>;
121 #size-cells = <0>;
122 compatible = "marvell,mv64360-eth-block";
123 reg = <0x2000 0x2000>;
124 ethernet@0 {
125 .......
126 };
127 };
128
129 Ethernet port node
130
131 Required properties:
132 - device_type : Should be "network".
133 - compatible : Should be "marvell,mv64360-eth".
134 - reg : Should be <0>, <1>, or <2>, according to which registers
135 within the silicon block the device uses.
136 - interrupts : <a> where a is the interrupt number for the port.
137 - interrupt-parent : the phandle for the interrupt controller
138 that services interrupts for this device.
139 - phy : the phandle for the PHY connected to this ethernet
140 controller.
141 - local-mac-address : 6 bytes, MAC address
142
143 Example Discovery Ethernet port node:
144 ethernet@0 {
145 device_type = "network";
146 compatible = "marvell,mv64360-eth";
147 reg = <0>;
148 interrupts = <32>;
149 interrupt-parent = <&PIC>;
150 phy = <&PHY0>;
151 local-mac-address = [ 00 00 00 00 00 00 ];
152 };
153
154
155
156 c) Marvell Discovery PHY nodes
157
158 Required properties:
159 - device_type : Should be "ethernet-phy"
160 - interrupts : <a> where a is the interrupt number for this phy.
161 - interrupt-parent : the phandle for the interrupt controller that
162 services interrupts for this device.
163 - reg : The ID number for the phy, usually a small integer
164
165 Example Discovery PHY node:
166 ethernet-phy@1 {
167 device_type = "ethernet-phy";
168 compatible = "broadcom,bcm5421";
169 interrupts = <76>; /* GPP 12 */
170 interrupt-parent = <&PIC>;
171 reg = <1>;
172 };
173
174
175 d) Marvell Discovery SDMA nodes
176
177 Represent DMA hardware associated with the MPSC (multiprotocol
178 serial controllers).
179
180 Required properties:
181 - compatible : "marvell,mv64360-sdma"
182 - reg : Offset and length of the register set for this device
183 - interrupts : <a> where a is the interrupt number for the DMA
184 device.
185 - interrupt-parent : the phandle for the interrupt controller
186 that services interrupts for this device.
187
188 Example Discovery SDMA node:
189 sdma@4000 {
190 compatible = "marvell,mv64360-sdma";
191 reg = <0x4000 0xc18>;
192 virtual-reg = <0xf1004000>;
193 interrupts = <36>;
194 interrupt-parent = <&PIC>;
195 };
196
197
198 e) Marvell Discovery BRG nodes
199
200 Represent baud rate generator hardware associated with the MPSC
201 (multiprotocol serial controllers).
202
203 Required properties:
204 - compatible : "marvell,mv64360-brg"
205 - reg : Offset and length of the register set for this device
206 - clock-src : A value from 0 to 15 which selects the clock
207 source for the baud rate generator. This value corresponds
208 to the CLKS value in the BRGx configuration register. See
209 the mv64x60 User's Manual.
210 - clock-frequence : The frequency (in Hz) of the baud rate
211 generator's input clock.
212 - current-speed : The current speed setting (presumably by
213 firmware) of the baud rate generator.
214
215 Example Discovery BRG node:
216 brg@b200 {
217 compatible = "marvell,mv64360-brg";
218 reg = <0xb200 0x8>;
219 clock-src = <8>;
220 clock-frequency = <133333333>;
221 current-speed = <9600>;
222 };
223
224
225 f) Marvell Discovery CUNIT nodes
226
227 Represent the Serial Communications Unit device hardware.
228
229 Required properties:
230 - reg : Offset and length of the register set for this device
231
232 Example Discovery CUNIT node:
233 cunit@f200 {
234 reg = <0xf200 0x200>;
235 };
236
237
238 g) Marvell Discovery MPSCROUTING nodes
239
240 Represent the Discovery's MPSC routing hardware
241
242 Required properties:
243 - reg : Offset and length of the register set for this device
244
245 Example Discovery CUNIT node:
246 mpscrouting@b500 {
247 reg = <0xb400 0xc>;
248 };
249
250
251 h) Marvell Discovery MPSCINTR nodes
252
253 Represent the Discovery's MPSC DMA interrupt hardware registers
254 (SDMA cause and mask registers).
255
256 Required properties:
257 - reg : Offset and length of the register set for this device
258
259 Example Discovery MPSCINTR node:
260 mpsintr@b800 {
261 reg = <0xb800 0x100>;
262 };
263
264
265 i) Marvell Discovery MPSC nodes
266
267 Represent the Discovery's MPSC (Multiprotocol Serial Controller)
268 serial port.
269
270 Required properties:
271 - device_type : "serial"
272 - compatible : "marvell,mv64360-mpsc"
273 - reg : Offset and length of the register set for this device
274 - sdma : the phandle for the SDMA node used by this port
275 - brg : the phandle for the BRG node used by this port
276 - cunit : the phandle for the CUNIT node used by this port
277 - mpscrouting : the phandle for the MPSCROUTING node used by this port
278 - mpscintr : the phandle for the MPSCINTR node used by this port
279 - cell-index : the hardware index of this cell in the MPSC core
280 - max_idle : value needed for MPSC CHR3 (Maximum Frame Length)
281 register
282 - interrupts : <a> where a is the interrupt number for the MPSC.
283 - interrupt-parent : the phandle for the interrupt controller
284 that services interrupts for this device.
285
286 Example Discovery MPSCINTR node:
287 mpsc@8000 {
288 device_type = "serial";
289 compatible = "marvell,mv64360-mpsc";
290 reg = <0x8000 0x38>;
291 virtual-reg = <0xf1008000>;
292 sdma = <&SDMA0>;
293 brg = <&BRG0>;
294 cunit = <&CUNIT>;
295 mpscrouting = <&MPSCROUTING>;
296 mpscintr = <&MPSCINTR>;
297 cell-index = <0>;
298 max_idle = <40>;
299 interrupts = <40>;
300 interrupt-parent = <&PIC>;
301 };
302
303
304 j) Marvell Discovery Watch Dog Timer nodes
305
306 Represent the Discovery's watchdog timer hardware
307
308 Required properties:
309 - compatible : "marvell,mv64360-wdt"
310 - reg : Offset and length of the register set for this device
311
312 Example Discovery Watch Dog Timer node:
313 wdt@b410 {
314 compatible = "marvell,mv64360-wdt";
315 reg = <0xb410 0x8>;
316 };
317
318
319 k) Marvell Discovery I2C nodes
320
321 Represent the Discovery's I2C hardware
322
323 Required properties:
324 - device_type : "i2c"
325 - compatible : "marvell,mv64360-i2c"
326 - reg : Offset and length of the register set for this device
327 - interrupts : <a> where a is the interrupt number for the I2C.
328 - interrupt-parent : the phandle for the interrupt controller
329 that services interrupts for this device.
330
331 Example Discovery I2C node:
332 compatible = "marvell,mv64360-i2c";
333 reg = <0xc000 0x20>;
334 virtual-reg = <0xf100c000>;
335 interrupts = <37>;
336 interrupt-parent = <&PIC>;
337 };
338
339
340 l) Marvell Discovery PIC (Programmable Interrupt Controller) nodes
341
342 Represent the Discovery's PIC hardware
343
344 Required properties:
345 - #interrupt-cells : <1>
346 - #address-cells : <0>
347 - compatible : "marvell,mv64360-pic"
348 - reg : Offset and length of the register set for this device
349 - interrupt-controller
350
351 Example Discovery PIC node:
352 pic {
353 #interrupt-cells = <1>;
354 #address-cells = <0>;
355 compatible = "marvell,mv64360-pic";
356 reg = <0x0 0x88>;
357 interrupt-controller;
358 };
359
360
361 m) Marvell Discovery MPP (Multipurpose Pins) multiplexing nodes
362
363 Represent the Discovery's MPP hardware
364
365 Required properties:
366 - compatible : "marvell,mv64360-mpp"
367 - reg : Offset and length of the register set for this device
368
369 Example Discovery MPP node:
370 mpp@f000 {
371 compatible = "marvell,mv64360-mpp";
372 reg = <0xf000 0x10>;
373 };
374
375
376 n) Marvell Discovery GPP (General Purpose Pins) nodes
377
378 Represent the Discovery's GPP hardware
379
380 Required properties:
381 - compatible : "marvell,mv64360-gpp"
382 - reg : Offset and length of the register set for this device
383
384 Example Discovery GPP node:
385 gpp@f000 {
386 compatible = "marvell,mv64360-gpp";
387 reg = <0xf100 0x20>;
388 };
389
390
391 o) Marvell Discovery PCI host bridge node
392
393 Represents the Discovery's PCI host bridge device. The properties
394 for this node conform to Rev 2.1 of the PCI Bus Binding to IEEE
395 1275-1994. A typical value for the compatible property is
396 "marvell,mv64360-pci".
397
398 Example Discovery PCI host bridge node
399 pci@80000000 {
400 #address-cells = <3>;
401 #size-cells = <2>;
402 #interrupt-cells = <1>;
403 device_type = "pci";
404 compatible = "marvell,mv64360-pci";
405 reg = <0xcf8 0x8>;
406 ranges = <0x01000000 0x0 0x0
407 0x88000000 0x0 0x01000000
408 0x02000000 0x0 0x80000000
409 0x80000000 0x0 0x08000000>;
410 bus-range = <0 255>;
411 clock-frequency = <66000000>;
412 interrupt-parent = <&PIC>;
413 interrupt-map-mask = <0xf800 0x0 0x0 0x7>;
414 interrupt-map = <
415 /* IDSEL 0x0a */
416 0x5000 0 0 1 &PIC 80
417 0x5000 0 0 2 &PIC 81
418 0x5000 0 0 3 &PIC 91
419 0x5000 0 0 4 &PIC 93
420
421 /* IDSEL 0x0b */
422 0x5800 0 0 1 &PIC 91
423 0x5800 0 0 2 &PIC 93
424 0x5800 0 0 3 &PIC 80
425 0x5800 0 0 4 &PIC 81
426
427 /* IDSEL 0x0c */
428 0x6000 0 0 1 &PIC 91
429 0x6000 0 0 2 &PIC 93
430 0x6000 0 0 3 &PIC 80
431 0x6000 0 0 4 &PIC 81
432
433 /* IDSEL 0x0d */
434 0x6800 0 0 1 &PIC 93
435 0x6800 0 0 2 &PIC 80
436 0x6800 0 0 3 &PIC 81
437 0x6800 0 0 4 &PIC 91
438 >;
439 };
440
441
442 p) Marvell Discovery CPU Error nodes
443
444 Represent the Discovery's CPU error handler device.
445
446 Required properties:
447 - compatible : "marvell,mv64360-cpu-error"
448 - reg : Offset and length of the register set for this device
449 - interrupts : the interrupt number for this device
450 - interrupt-parent : the phandle for the interrupt controller
451 that services interrupts for this device.
452
453 Example Discovery CPU Error node:
454 cpu-error@0070 {
455 compatible = "marvell,mv64360-cpu-error";
456 reg = <0x70 0x10 0x128 0x28>;
457 interrupts = <3>;
458 interrupt-parent = <&PIC>;
459 };
460
461
462 q) Marvell Discovery SRAM Controller nodes
463
464 Represent the Discovery's SRAM controller device.
465
466 Required properties:
467 - compatible : "marvell,mv64360-sram-ctrl"
468 - reg : Offset and length of the register set for this device
469 - interrupts : the interrupt number for this device
470 - interrupt-parent : the phandle for the interrupt controller
471 that services interrupts for this device.
472
473 Example Discovery SRAM Controller node:
474 sram-ctrl@0380 {
475 compatible = "marvell,mv64360-sram-ctrl";
476 reg = <0x380 0x80>;
477 interrupts = <13>;
478 interrupt-parent = <&PIC>;
479 };
480
481
482 r) Marvell Discovery PCI Error Handler nodes
483
484 Represent the Discovery's PCI error handler device.
485
486 Required properties:
487 - compatible : "marvell,mv64360-pci-error"
488 - reg : Offset and length of the register set for this device
489 - interrupts : the interrupt number for this device
490 - interrupt-parent : the phandle for the interrupt controller
491 that services interrupts for this device.
492
493 Example Discovery PCI Error Handler node:
494 pci-error@1d40 {
495 compatible = "marvell,mv64360-pci-error";
496 reg = <0x1d40 0x40 0xc28 0x4>;
497 interrupts = <12>;
498 interrupt-parent = <&PIC>;
499 };
500
501
502 s) Marvell Discovery Memory Controller nodes
503
504 Represent the Discovery's memory controller device.
505
506 Required properties:
507 - compatible : "marvell,mv64360-mem-ctrl"
508 - reg : Offset and length of the register set for this device
509 - interrupts : the interrupt number for this device
510 - interrupt-parent : the phandle for the interrupt controller
511 that services interrupts for this device.
512
513 Example Discovery Memory Controller node:
514 mem-ctrl@1400 {
515 compatible = "marvell,mv64360-mem-ctrl";
516 reg = <0x1400 0x60>;
517 interrupts = <17>;
518 interrupt-parent = <&PIC>;
519 };
520
521
diff --git a/Documentation/devicetree/bindings/mmc/fsl-esdhc.txt b/Documentation/devicetree/bindings/mmc/fsl-esdhc.txt
new file mode 100644
index 000000000000..64bcb8be973c
--- /dev/null
+++ b/Documentation/devicetree/bindings/mmc/fsl-esdhc.txt
@@ -0,0 +1,29 @@
1* Freescale Enhanced Secure Digital Host Controller (eSDHC)
2
3The Enhanced Secure Digital Host Controller provides an interface
4for MMC, SD, and SDIO types of memory cards.
5
6Required properties:
7 - compatible : should be
8 "fsl,<chip>-esdhc", "fsl,esdhc"
9 - reg : should contain eSDHC registers location and length.
10 - interrupts : should contain eSDHC interrupt.
11 - interrupt-parent : interrupt source phandle.
12 - clock-frequency : specifies eSDHC base clock frequency.
13 - sdhci,wp-inverted : (optional) specifies that eSDHC controller
14 reports inverted write-protect state;
15 - sdhci,1-bit-only : (optional) specifies that a controller can
16 only handle 1-bit data transfers.
17 - sdhci,auto-cmd12: (optional) specifies that a controller can
18 only handle auto CMD12.
19
20Example:
21
22sdhci@2e000 {
23 compatible = "fsl,mpc8378-esdhc", "fsl,esdhc";
24 reg = <0x2e000 0x1000>;
25 interrupts = <42 0x8>;
26 interrupt-parent = <&ipic>;
27 /* Filled in by U-Boot */
28 clock-frequency = <0>;
29};
diff --git a/Documentation/devicetree/bindings/mmc/mmc-spi-slot.txt b/Documentation/devicetree/bindings/mmc/mmc-spi-slot.txt
new file mode 100644
index 000000000000..c39ac2891951
--- /dev/null
+++ b/Documentation/devicetree/bindings/mmc/mmc-spi-slot.txt
@@ -0,0 +1,23 @@
1MMC/SD/SDIO slot directly connected to a SPI bus
2
3Required properties:
4- compatible : should be "mmc-spi-slot".
5- reg : should specify SPI address (chip-select number).
6- spi-max-frequency : maximum frequency for this device (Hz).
7- voltage-ranges : two cells are required, first cell specifies minimum
8 slot voltage (mV), second cell specifies maximum slot voltage (mV).
9 Several ranges could be specified.
10- gpios : (optional) may specify GPIOs in this order: Card-Detect GPIO,
11 Write-Protect GPIO.
12
13Example:
14
15 mmc-slot@0 {
16 compatible = "fsl,mpc8323rdb-mmc-slot",
17 "mmc-spi-slot";
18 reg = <0>;
19 gpios = <&qe_pio_d 14 1
20 &qe_pio_d 15 0>;
21 voltage-ranges = <3300 3300>;
22 spi-max-frequency = <50000000>;
23 };
diff --git a/Documentation/devicetree/bindings/mtd/fsl-upm-nand.txt b/Documentation/devicetree/bindings/mtd/fsl-upm-nand.txt
new file mode 100644
index 000000000000..a48b2cadc7f0
--- /dev/null
+++ b/Documentation/devicetree/bindings/mtd/fsl-upm-nand.txt
@@ -0,0 +1,63 @@
1Freescale Localbus UPM programmed to work with NAND flash
2
3Required properties:
4- compatible : "fsl,upm-nand".
5- reg : should specify localbus chip select and size used for the chip.
6- fsl,upm-addr-offset : UPM pattern offset for the address latch.
7- fsl,upm-cmd-offset : UPM pattern offset for the command latch.
8
9Optional properties:
10- fsl,upm-wait-flags : add chip-dependent short delays after running the
11 UPM pattern (0x1), after writing a data byte (0x2) or after
12 writing out a buffer (0x4).
13- fsl,upm-addr-line-cs-offsets : address offsets for multi-chip support.
14 The corresponding address lines are used to select the chip.
15- gpios : may specify optional GPIOs connected to the Ready-Not-Busy pins
16 (R/B#). For multi-chip devices, "n" GPIO definitions are required
17 according to the number of chips.
18- chip-delay : chip dependent delay for transfering data from array to
19 read registers (tR). Required if property "gpios" is not used
20 (R/B# pins not connected).
21
22Examples:
23
24upm@1,0 {
25 compatible = "fsl,upm-nand";
26 reg = <1 0 1>;
27 fsl,upm-addr-offset = <16>;
28 fsl,upm-cmd-offset = <8>;
29 gpios = <&qe_pio_e 18 0>;
30
31 flash {
32 #address-cells = <1>;
33 #size-cells = <1>;
34 compatible = "...";
35
36 partition@0 {
37 ...
38 };
39 };
40};
41
42upm@3,0 {
43 #address-cells = <0>;
44 #size-cells = <0>;
45 compatible = "tqc,tqm8548-upm-nand", "fsl,upm-nand";
46 reg = <3 0x0 0x800>;
47 fsl,upm-addr-offset = <0x10>;
48 fsl,upm-cmd-offset = <0x08>;
49 /* Multi-chip NAND device */
50 fsl,upm-addr-line-cs-offsets = <0x0 0x200>;
51 fsl,upm-wait-flags = <0x5>;
52 chip-delay = <25>; // in micro-seconds
53
54 nand@0 {
55 #address-cells = <1>;
56 #size-cells = <1>;
57
58 partition@0 {
59 label = "fs";
60 reg = <0x00000000 0x10000000>;
61 };
62 };
63};
diff --git a/Documentation/devicetree/bindings/mtd/mtd-physmap.txt b/Documentation/devicetree/bindings/mtd/mtd-physmap.txt
new file mode 100644
index 000000000000..80152cb567d9
--- /dev/null
+++ b/Documentation/devicetree/bindings/mtd/mtd-physmap.txt
@@ -0,0 +1,90 @@
1CFI or JEDEC memory-mapped NOR flash, MTD-RAM (NVRAM...)
2
3Flash chips (Memory Technology Devices) are often used for solid state
4file systems on embedded devices.
5
6 - compatible : should contain the specific model of mtd chip(s)
7 used, if known, followed by either "cfi-flash", "jedec-flash"
8 or "mtd-ram".
9 - reg : Address range(s) of the mtd chip(s)
10 It's possible to (optionally) define multiple "reg" tuples so that
11 non-identical chips can be described in one node.
12 - bank-width : Width (in bytes) of the bank. Equal to the
13 device width times the number of interleaved chips.
14 - device-width : (optional) Width of a single mtd chip. If
15 omitted, assumed to be equal to 'bank-width'.
16 - #address-cells, #size-cells : Must be present if the device has
17 sub-nodes representing partitions (see below). In this case
18 both #address-cells and #size-cells must be equal to 1.
19
20For JEDEC compatible devices, the following additional properties
21are defined:
22
23 - vendor-id : Contains the flash chip's vendor id (1 byte).
24 - device-id : Contains the flash chip's device id (1 byte).
25
26In addition to the information on the mtd bank itself, the
27device tree may optionally contain additional information
28describing partitions of the address space. This can be
29used on platforms which have strong conventions about which
30portions of a flash are used for what purposes, but which don't
31use an on-flash partition table such as RedBoot.
32
33Each partition is represented as a sub-node of the mtd device.
34Each node's name represents the name of the corresponding
35partition of the mtd device.
36
37Flash partitions
38 - reg : The partition's offset and size within the mtd bank.
39 - label : (optional) The label / name for this partition.
40 If omitted, the label is taken from the node name (excluding
41 the unit address).
42 - read-only : (optional) This parameter, if present, is a hint to
43 Linux that this partition should only be mounted
44 read-only. This is usually used for flash partitions
45 containing early-boot firmware images or data which should not
46 be clobbered.
47
48Example:
49
50 flash@ff000000 {
51 compatible = "amd,am29lv128ml", "cfi-flash";
52 reg = <ff000000 01000000>;
53 bank-width = <4>;
54 device-width = <1>;
55 #address-cells = <1>;
56 #size-cells = <1>;
57 fs@0 {
58 label = "fs";
59 reg = <0 f80000>;
60 };
61 firmware@f80000 {
62 label ="firmware";
63 reg = <f80000 80000>;
64 read-only;
65 };
66 };
67
68Here an example with multiple "reg" tuples:
69
70 flash@f0000000,0 {
71 #address-cells = <1>;
72 #size-cells = <1>;
73 compatible = "intel,PC48F4400P0VB", "cfi-flash";
74 reg = <0 0x00000000 0x02000000
75 0 0x02000000 0x02000000>;
76 bank-width = <2>;
77 partition@0 {
78 label = "test-part1";
79 reg = <0 0x04000000>;
80 };
81 };
82
83An example using SRAM:
84
85 sram@2,0 {
86 compatible = "samsung,k6f1616u6a", "mtd-ram";
87 reg = <2 0 0x00200000>;
88 bank-width = <2>;
89 };
90
diff --git a/Documentation/devicetree/bindings/net/can/mpc5xxx-mscan.txt b/Documentation/devicetree/bindings/net/can/mpc5xxx-mscan.txt
new file mode 100644
index 000000000000..2fa4fcd38fd6
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/can/mpc5xxx-mscan.txt
@@ -0,0 +1,53 @@
1CAN Device Tree Bindings
2------------------------
3
4(c) 2006-2009 Secret Lab Technologies Ltd
5Grant Likely <grant.likely@secretlab.ca>
6
7fsl,mpc5200-mscan nodes
8-----------------------
9In addition to the required compatible-, reg- and interrupt-properties, you can
10also specify which clock source shall be used for the controller:
11
12- fsl,mscan-clock-source : a string describing the clock source. Valid values
13 are: "ip" for ip bus clock
14 "ref" for reference clock (XTAL)
15 "ref" is default in case this property is not
16 present.
17
18fsl,mpc5121-mscan nodes
19-----------------------
20In addition to the required compatible-, reg- and interrupt-properties, you can
21also specify which clock source and divider shall be used for the controller:
22
23- fsl,mscan-clock-source : a string describing the clock source. Valid values
24 are: "ip" for ip bus clock
25 "ref" for reference clock
26 "sys" for system clock
27 If this property is not present, an optimal CAN
28 clock source and frequency based on the system
29 clock will be selected. If this is not possible,
30 the reference clock will be used.
31
32- fsl,mscan-clock-divider: for the reference and system clock, an additional
33 clock divider can be specified. By default, a
34 value of 1 is used.
35
36Note that the MPC5121 Rev. 1 processor is not supported.
37
38Examples:
39 can@1300 {
40 compatible = "fsl,mpc5121-mscan";
41 interrupts = <12 0x8>;
42 interrupt-parent = <&ipic>;
43 reg = <0x1300 0x80>;
44 };
45
46 can@1380 {
47 compatible = "fsl,mpc5121-mscan";
48 interrupts = <13 0x8>;
49 interrupt-parent = <&ipic>;
50 reg = <0x1380 0x80>;
51 fsl,mscan-clock-source = "ref";
52 fsl,mscan-clock-divider = <3>;
53 };
diff --git a/Documentation/devicetree/bindings/net/can/sja1000.txt b/Documentation/devicetree/bindings/net/can/sja1000.txt
new file mode 100644
index 000000000000..d6d209ded937
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/can/sja1000.txt
@@ -0,0 +1,53 @@
1Memory mapped SJA1000 CAN controller from NXP (formerly Philips)
2
3Required properties:
4
5- compatible : should be "nxp,sja1000".
6
7- reg : should specify the chip select, address offset and size required
8 to map the registers of the SJA1000. The size is usually 0x80.
9
10- interrupts: property with a value describing the interrupt source
11 (number and sensitivity) required for the SJA1000.
12
13Optional properties:
14
15- nxp,external-clock-frequency : Frequency of the external oscillator
16 clock in Hz. Note that the internal clock frequency used by the
17 SJA1000 is half of that value. If not specified, a default value
18 of 16000000 (16 MHz) is used.
19
20- nxp,tx-output-mode : operation mode of the TX output control logic:
21 <0x0> : bi-phase output mode
22 <0x1> : normal output mode (default)
23 <0x2> : test output mode
24 <0x3> : clock output mode
25
26- nxp,tx-output-config : TX output pin configuration:
27 <0x01> : TX0 invert
28 <0x02> : TX0 pull-down (default)
29 <0x04> : TX0 pull-up
30 <0x06> : TX0 push-pull
31 <0x08> : TX1 invert
32 <0x10> : TX1 pull-down
33 <0x20> : TX1 pull-up
34 <0x30> : TX1 push-pull
35
36- nxp,clock-out-frequency : clock frequency in Hz on the CLKOUT pin.
37 If not specified or if the specified value is 0, the CLKOUT pin
38 will be disabled.
39
40- nxp,no-comparator-bypass : Allows to disable the CAN input comperator.
41
42For futher information, please have a look to the SJA1000 data sheet.
43
44Examples:
45
46can@3,100 {
47 compatible = "nxp,sja1000";
48 reg = <3 0x100 0x80>;
49 interrupts = <2 0>;
50 interrupt-parent = <&mpic>;
51 nxp,external-clock-frequency = <16000000>;
52};
53
diff --git a/Documentation/devicetree/bindings/net/fsl-tsec-phy.txt b/Documentation/devicetree/bindings/net/fsl-tsec-phy.txt
new file mode 100644
index 000000000000..edb7ae19e868
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/fsl-tsec-phy.txt
@@ -0,0 +1,76 @@
1* MDIO IO device
2
3The MDIO is a bus to which the PHY devices are connected. For each
4device that exists on this bus, a child node should be created. See
5the definition of the PHY node in booting-without-of.txt for an example
6of how to define a PHY.
7
8Required properties:
9 - reg : Offset and length of the register set for the device
10 - compatible : Should define the compatible device type for the
11 mdio. Currently, this is most likely to be "fsl,gianfar-mdio"
12
13Example:
14
15 mdio@24520 {
16 reg = <24520 20>;
17 compatible = "fsl,gianfar-mdio";
18
19 ethernet-phy@0 {
20 ......
21 };
22 };
23
24* TBI Internal MDIO bus
25
26As of this writing, every tsec is associated with an internal TBI PHY.
27This PHY is accessed through the local MDIO bus. These buses are defined
28similarly to the mdio buses, except they are compatible with "fsl,gianfar-tbi".
29The TBI PHYs underneath them are similar to normal PHYs, but the reg property
30is considered instructive, rather than descriptive. The reg property should
31be chosen so it doesn't interfere with other PHYs on the bus.
32
33* Gianfar-compatible ethernet nodes
34
35Properties:
36
37 - device_type : Should be "network"
38 - model : Model of the device. Can be "TSEC", "eTSEC", or "FEC"
39 - compatible : Should be "gianfar"
40 - reg : Offset and length of the register set for the device
41 - local-mac-address : List of bytes representing the ethernet address of
42 this controller
43 - interrupts : For FEC devices, the first interrupt is the device's
44 interrupt. For TSEC and eTSEC devices, the first interrupt is
45 transmit, the second is receive, and the third is error.
46 - phy-handle : The phandle for the PHY connected to this ethernet
47 controller.
48 - fixed-link : <a b c d e> where a is emulated phy id - choose any,
49 but unique to the all specified fixed-links, b is duplex - 0 half,
50 1 full, c is link speed - d#10/d#100/d#1000, d is pause - 0 no
51 pause, 1 pause, e is asym_pause - 0 no asym_pause, 1 asym_pause.
52 - phy-connection-type : a string naming the controller/PHY interface type,
53 i.e., "mii" (default), "rmii", "gmii", "rgmii", "rgmii-id", "sgmii",
54 "tbi", or "rtbi". This property is only really needed if the connection
55 is of type "rgmii-id", as all other connection types are detected by
56 hardware.
57 - fsl,magic-packet : If present, indicates that the hardware supports
58 waking up via magic packet.
59 - bd-stash : If present, indicates that the hardware supports stashing
60 buffer descriptors in the L2.
61 - rx-stash-len : Denotes the number of bytes of a received buffer to stash
62 in the L2.
63 - rx-stash-idx : Denotes the index of the first byte from the received
64 buffer to stash in the L2.
65
66Example:
67 ethernet@24000 {
68 device_type = "network";
69 model = "TSEC";
70 compatible = "gianfar";
71 reg = <0x24000 0x1000>;
72 local-mac-address = [ 00 E0 0C 00 73 00 ];
73 interrupts = <29 2 30 2 34 2>;
74 interrupt-parent = <&mpic>;
75 phy-handle = <&phy0>
76 };
diff --git a/Documentation/devicetree/bindings/net/mdio-gpio.txt b/Documentation/devicetree/bindings/net/mdio-gpio.txt
new file mode 100644
index 000000000000..bc9549529014
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/mdio-gpio.txt
@@ -0,0 +1,19 @@
1MDIO on GPIOs
2
3Currently defined compatibles:
4- virtual,gpio-mdio
5
6MDC and MDIO lines connected to GPIO controllers are listed in the
7gpios property as described in section VIII.1 in the following order:
8
9MDC, MDIO.
10
11Example:
12
13mdio {
14 compatible = "virtual,mdio-gpio";
15 #address-cells = <1>;
16 #size-cells = <0>;
17 gpios = <&qe_pio_a 11
18 &qe_pio_c 6>;
19};
diff --git a/Documentation/devicetree/bindings/net/phy.txt b/Documentation/devicetree/bindings/net/phy.txt
new file mode 100644
index 000000000000..bb8c742eb8c5
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/phy.txt
@@ -0,0 +1,25 @@
1PHY nodes
2
3Required properties:
4
5 - device_type : Should be "ethernet-phy"
6 - interrupts : <a b> where a is the interrupt number and b is a
7 field that represents an encoding of the sense and level
8 information for the interrupt. This should be encoded based on
9 the information in section 2) depending on the type of interrupt
10 controller you have.
11 - interrupt-parent : the phandle for the interrupt controller that
12 services interrupts for this device.
13 - reg : The ID number for the phy, usually a small integer
14 - linux,phandle : phandle for this node; likely referenced by an
15 ethernet controller node.
16
17Example:
18
19ethernet-phy@0 {
20 linux,phandle = <2452000>
21 interrupt-parent = <40000>;
22 interrupts = <35 1>;
23 reg = <0>;
24 device_type = "ethernet-phy";
25};
diff --git a/Documentation/devicetree/bindings/pci/83xx-512x-pci.txt b/Documentation/devicetree/bindings/pci/83xx-512x-pci.txt
new file mode 100644
index 000000000000..35a465362408
--- /dev/null
+++ b/Documentation/devicetree/bindings/pci/83xx-512x-pci.txt
@@ -0,0 +1,40 @@
1* Freescale 83xx and 512x PCI bridges
2
3Freescale 83xx and 512x SOCs include the same pci bridge core.
4
583xx/512x specific notes:
6- reg: should contain two address length tuples
7 The first is for the internal pci bridge registers
8 The second is for the pci config space access registers
9
10Example (MPC8313ERDB)
11 pci0: pci@e0008500 {
12 cell-index = <1>;
13 interrupt-map-mask = <0xf800 0x0 0x0 0x7>;
14 interrupt-map = <
15 /* IDSEL 0x0E -mini PCI */
16 0x7000 0x0 0x0 0x1 &ipic 18 0x8
17 0x7000 0x0 0x0 0x2 &ipic 18 0x8
18 0x7000 0x0 0x0 0x3 &ipic 18 0x8
19 0x7000 0x0 0x0 0x4 &ipic 18 0x8
20
21 /* IDSEL 0x0F - PCI slot */
22 0x7800 0x0 0x0 0x1 &ipic 17 0x8
23 0x7800 0x0 0x0 0x2 &ipic 18 0x8
24 0x7800 0x0 0x0 0x3 &ipic 17 0x8
25 0x7800 0x0 0x0 0x4 &ipic 18 0x8>;
26 interrupt-parent = <&ipic>;
27 interrupts = <66 0x8>;
28 bus-range = <0x0 0x0>;
29 ranges = <0x02000000 0x0 0x90000000 0x90000000 0x0 0x10000000
30 0x42000000 0x0 0x80000000 0x80000000 0x0 0x10000000
31 0x01000000 0x0 0x00000000 0xe2000000 0x0 0x00100000>;
32 clock-frequency = <66666666>;
33 #interrupt-cells = <1>;
34 #size-cells = <2>;
35 #address-cells = <3>;
36 reg = <0xe0008500 0x100 /* internal registers */
37 0xe0008300 0x8>; /* config space access registers */
38 compatible = "fsl,mpc8349-pci";
39 device_type = "pci";
40 };
diff --git a/Documentation/devicetree/bindings/powerpc/4xx/cpm.txt b/Documentation/devicetree/bindings/powerpc/4xx/cpm.txt
new file mode 100644
index 000000000000..ee459806d35e
--- /dev/null
+++ b/Documentation/devicetree/bindings/powerpc/4xx/cpm.txt
@@ -0,0 +1,52 @@
1PPC4xx Clock Power Management (CPM) node
2
3Required properties:
4 - compatible : compatible list, currently only "ibm,cpm"
5 - dcr-access-method : "native"
6 - dcr-reg : < DCR register range >
7
8Optional properties:
9 - er-offset : All 4xx SoCs with a CPM controller have
10 one of two different order for the CPM
11 registers. Some have the CPM registers
12 in the following order (ER,FR,SR). The
13 others have them in the following order
14 (SR,ER,FR). For the second case set
15 er-offset = <1>.
16 - unused-units : specifier consist of one cell. For each
17 bit in the cell, the corresponding bit
18 in CPM will be set to turn off unused
19 devices.
20 - idle-doze : specifier consist of one cell. For each
21 bit in the cell, the corresponding bit
22 in CPM will be set to turn off unused
23 devices. This is usually just CPM[CPU].
24 - standby : specifier consist of one cell. For each
25 bit in the cell, the corresponding bit
26 in CPM will be set on standby and
27 restored on resume.
28 - suspend : specifier consist of one cell. For each
29 bit in the cell, the corresponding bit
30 in CPM will be set on suspend (mem) and
31 restored on resume. Note, for standby
32 and suspend the corresponding bits can
33 be different or the same. Usually for
34 standby only class 2 and 3 units are set.
35 However, the interface does not care.
36 If they are the same, the additional
37 power saving will be seeing if support
38 is available to put the DDR in self
39 refresh mode and any additional power
40 saving techniques for the specific SoC.
41
42Example:
43 CPM0: cpm {
44 compatible = "ibm,cpm";
45 dcr-access-method = "native";
46 dcr-reg = <0x160 0x003>;
47 er-offset = <0>;
48 unused-units = <0x00000100>;
49 idle-doze = <0x02000000>;
50 standby = <0xfeff0000>;
51 suspend = <0xfeff791d>;
52};
diff --git a/Documentation/devicetree/bindings/powerpc/4xx/emac.txt b/Documentation/devicetree/bindings/powerpc/4xx/emac.txt
new file mode 100644
index 000000000000..2161334a7ca5
--- /dev/null
+++ b/Documentation/devicetree/bindings/powerpc/4xx/emac.txt
@@ -0,0 +1,148 @@
1 4xx/Axon EMAC ethernet nodes
2
3 The EMAC ethernet controller in IBM and AMCC 4xx chips, and also
4 the Axon bridge. To operate this needs to interact with a ths
5 special McMAL DMA controller, and sometimes an RGMII or ZMII
6 interface. In addition to the nodes and properties described
7 below, the node for the OPB bus on which the EMAC sits must have a
8 correct clock-frequency property.
9
10 i) The EMAC node itself
11
12 Required properties:
13 - device_type : "network"
14
15 - compatible : compatible list, contains 2 entries, first is
16 "ibm,emac-CHIP" where CHIP is the host ASIC (440gx,
17 405gp, Axon) and second is either "ibm,emac" or
18 "ibm,emac4". For Axon, thus, we have: "ibm,emac-axon",
19 "ibm,emac4"
20 - interrupts : <interrupt mapping for EMAC IRQ and WOL IRQ>
21 - interrupt-parent : optional, if needed for interrupt mapping
22 - reg : <registers mapping>
23 - local-mac-address : 6 bytes, MAC address
24 - mal-device : phandle of the associated McMAL node
25 - mal-tx-channel : 1 cell, index of the tx channel on McMAL associated
26 with this EMAC
27 - mal-rx-channel : 1 cell, index of the rx channel on McMAL associated
28 with this EMAC
29 - cell-index : 1 cell, hardware index of the EMAC cell on a given
30 ASIC (typically 0x0 and 0x1 for EMAC0 and EMAC1 on
31 each Axon chip)
32 - max-frame-size : 1 cell, maximum frame size supported in bytes
33 - rx-fifo-size : 1 cell, Rx fifo size in bytes for 10 and 100 Mb/sec
34 operations.
35 For Axon, 2048
36 - tx-fifo-size : 1 cell, Tx fifo size in bytes for 10 and 100 Mb/sec
37 operations.
38 For Axon, 2048.
39 - fifo-entry-size : 1 cell, size of a fifo entry (used to calculate
40 thresholds).
41 For Axon, 0x00000010
42 - mal-burst-size : 1 cell, MAL burst size (used to calculate thresholds)
43 in bytes.
44 For Axon, 0x00000100 (I think ...)
45 - phy-mode : string, mode of operations of the PHY interface.
46 Supported values are: "mii", "rmii", "smii", "rgmii",
47 "tbi", "gmii", rtbi", "sgmii".
48 For Axon on CAB, it is "rgmii"
49 - mdio-device : 1 cell, required iff using shared MDIO registers
50 (440EP). phandle of the EMAC to use to drive the
51 MDIO lines for the PHY used by this EMAC.
52 - zmii-device : 1 cell, required iff connected to a ZMII. phandle of
53 the ZMII device node
54 - zmii-channel : 1 cell, required iff connected to a ZMII. Which ZMII
55 channel or 0xffffffff if ZMII is only used for MDIO.
56 - rgmii-device : 1 cell, required iff connected to an RGMII. phandle
57 of the RGMII device node.
58 For Axon: phandle of plb5/plb4/opb/rgmii
59 - rgmii-channel : 1 cell, required iff connected to an RGMII. Which
60 RGMII channel is used by this EMAC.
61 Fox Axon: present, whatever value is appropriate for each
62 EMAC, that is the content of the current (bogus) "phy-port"
63 property.
64
65 Optional properties:
66 - phy-address : 1 cell, optional, MDIO address of the PHY. If absent,
67 a search is performed.
68 - phy-map : 1 cell, optional, bitmap of addresses to probe the PHY
69 for, used if phy-address is absent. bit 0x00000001 is
70 MDIO address 0.
71 For Axon it can be absent, though my current driver
72 doesn't handle phy-address yet so for now, keep
73 0x00ffffff in it.
74 - rx-fifo-size-gige : 1 cell, Rx fifo size in bytes for 1000 Mb/sec
75 operations (if absent the value is the same as
76 rx-fifo-size). For Axon, either absent or 2048.
77 - tx-fifo-size-gige : 1 cell, Tx fifo size in bytes for 1000 Mb/sec
78 operations (if absent the value is the same as
79 tx-fifo-size). For Axon, either absent or 2048.
80 - tah-device : 1 cell, optional. If connected to a TAH engine for
81 offload, phandle of the TAH device node.
82 - tah-channel : 1 cell, optional. If appropriate, channel used on the
83 TAH engine.
84
85 Example:
86
87 EMAC0: ethernet@40000800 {
88 device_type = "network";
89 compatible = "ibm,emac-440gp", "ibm,emac";
90 interrupt-parent = <&UIC1>;
91 interrupts = <1c 4 1d 4>;
92 reg = <40000800 70>;
93 local-mac-address = [00 04 AC E3 1B 1E];
94 mal-device = <&MAL0>;
95 mal-tx-channel = <0 1>;
96 mal-rx-channel = <0>;
97 cell-index = <0>;
98 max-frame-size = <5dc>;
99 rx-fifo-size = <1000>;
100 tx-fifo-size = <800>;
101 phy-mode = "rmii";
102 phy-map = <00000001>;
103 zmii-device = <&ZMII0>;
104 zmii-channel = <0>;
105 };
106
107 ii) McMAL node
108
109 Required properties:
110 - device_type : "dma-controller"
111 - compatible : compatible list, containing 2 entries, first is
112 "ibm,mcmal-CHIP" where CHIP is the host ASIC (like
113 emac) and the second is either "ibm,mcmal" or
114 "ibm,mcmal2".
115 For Axon, "ibm,mcmal-axon","ibm,mcmal2"
116 - interrupts : <interrupt mapping for the MAL interrupts sources:
117 5 sources: tx_eob, rx_eob, serr, txde, rxde>.
118 For Axon: This is _different_ from the current
119 firmware. We use the "delayed" interrupts for txeob
120 and rxeob. Thus we end up with mapping those 5 MPIC
121 interrupts, all level positive sensitive: 10, 11, 32,
122 33, 34 (in decimal)
123 - dcr-reg : < DCR registers range >
124 - dcr-parent : if needed for dcr-reg
125 - num-tx-chans : 1 cell, number of Tx channels
126 - num-rx-chans : 1 cell, number of Rx channels
127
128 iii) ZMII node
129
130 Required properties:
131 - compatible : compatible list, containing 2 entries, first is
132 "ibm,zmii-CHIP" where CHIP is the host ASIC (like
133 EMAC) and the second is "ibm,zmii".
134 For Axon, there is no ZMII node.
135 - reg : <registers mapping>
136
137 iv) RGMII node
138
139 Required properties:
140 - compatible : compatible list, containing 2 entries, first is
141 "ibm,rgmii-CHIP" where CHIP is the host ASIC (like
142 EMAC) and the second is "ibm,rgmii".
143 For Axon, "ibm,rgmii-axon","ibm,rgmii"
144 - reg : <registers mapping>
145 - revision : as provided by the RGMII new version register if
146 available.
147 For Axon: 0x0000012a
148
diff --git a/Documentation/devicetree/bindings/powerpc/4xx/ndfc.txt b/Documentation/devicetree/bindings/powerpc/4xx/ndfc.txt
new file mode 100644
index 000000000000..869f0b5f16e8
--- /dev/null
+++ b/Documentation/devicetree/bindings/powerpc/4xx/ndfc.txt
@@ -0,0 +1,39 @@
1AMCC NDFC (NanD Flash Controller)
2
3Required properties:
4- compatible : "ibm,ndfc".
5- reg : should specify chip select and size used for the chip (0x2000).
6
7Optional properties:
8- ccr : NDFC config and control register value (default 0).
9- bank-settings : NDFC bank configuration register value (default 0).
10
11Notes:
12- partition(s) - follows the OF MTD standard for partitions
13
14Example:
15
16ndfc@1,0 {
17 compatible = "ibm,ndfc";
18 reg = <0x00000001 0x00000000 0x00002000>;
19 ccr = <0x00001000>;
20 bank-settings = <0x80002222>;
21 #address-cells = <1>;
22 #size-cells = <1>;
23
24 nand {
25 #address-cells = <1>;
26 #size-cells = <1>;
27
28 partition@0 {
29 label = "kernel";
30 reg = <0x00000000 0x00200000>;
31 };
32 partition@200000 {
33 label = "root";
34 reg = <0x00200000 0x03E00000>;
35 };
36 };
37};
38
39
diff --git a/Documentation/devicetree/bindings/powerpc/4xx/ppc440spe-adma.txt b/Documentation/devicetree/bindings/powerpc/4xx/ppc440spe-adma.txt
new file mode 100644
index 000000000000..515ebcf1b97d
--- /dev/null
+++ b/Documentation/devicetree/bindings/powerpc/4xx/ppc440spe-adma.txt
@@ -0,0 +1,93 @@
1PPC440SPe DMA/XOR (DMA Controller and XOR Accelerator)
2
3Device nodes needed for operation of the ppc440spe-adma driver
4are specified hereby. These are I2O/DMA, DMA and XOR nodes
5for DMA engines and Memory Queue Module node. The latter is used
6by ADMA driver for configuration of RAID-6 H/W capabilities of
7the PPC440SPe. In addition to the nodes and properties described
8below, the ranges property of PLB node must specify ranges for
9DMA devices.
10
11 i) The I2O node
12
13 Required properties:
14
15 - compatible : "ibm,i2o-440spe";
16 - reg : <registers mapping>
17 - dcr-reg : <DCR registers range>
18
19 Example:
20
21 I2O: i2o@400100000 {
22 compatible = "ibm,i2o-440spe";
23 reg = <0x00000004 0x00100000 0x100>;
24 dcr-reg = <0x060 0x020>;
25 };
26
27
28 ii) The DMA node
29
30 Required properties:
31
32 - compatible : "ibm,dma-440spe";
33 - cell-index : 1 cell, hardware index of the DMA engine
34 (typically 0x0 and 0x1 for DMA0 and DMA1)
35 - reg : <registers mapping>
36 - dcr-reg : <DCR registers range>
37 - interrupts : <interrupt mapping for DMA0/1 interrupts sources:
38 2 sources: DMAx CS FIFO Needs Service IRQ (on UIC0)
39 and DMA Error IRQ (on UIC1). The latter is common
40 for both DMA engines>.
41 - interrupt-parent : needed for interrupt mapping
42
43 Example:
44
45 DMA0: dma0@400100100 {
46 compatible = "ibm,dma-440spe";
47 cell-index = <0>;
48 reg = <0x00000004 0x00100100 0x100>;
49 dcr-reg = <0x060 0x020>;
50 interrupt-parent = <&DMA0>;
51 interrupts = <0 1>;
52 #interrupt-cells = <1>;
53 #address-cells = <0>;
54 #size-cells = <0>;
55 interrupt-map = <
56 0 &UIC0 0x14 4
57 1 &UIC1 0x16 4>;
58 };
59
60
61 iii) XOR Accelerator node
62
63 Required properties:
64
65 - compatible : "amcc,xor-accelerator";
66 - reg : <registers mapping>
67 - interrupts : <interrupt mapping for XOR interrupt source>
68 - interrupt-parent : for interrupt mapping
69
70 Example:
71
72 xor-accel@400200000 {
73 compatible = "amcc,xor-accelerator";
74 reg = <0x00000004 0x00200000 0x400>;
75 interrupt-parent = <&UIC1>;
76 interrupts = <0x1f 4>;
77 };
78
79
80 iv) Memory Queue Module node
81
82 Required properties:
83
84 - compatible : "ibm,mq-440spe";
85 - dcr-reg : <DCR registers range>
86
87 Example:
88
89 MQ0: mq {
90 compatible = "ibm,mq-440spe";
91 dcr-reg = <0x040 0x020>;
92 };
93
diff --git a/Documentation/devicetree/bindings/powerpc/4xx/reboot.txt b/Documentation/devicetree/bindings/powerpc/4xx/reboot.txt
new file mode 100644
index 000000000000..d7217260589c
--- /dev/null
+++ b/Documentation/devicetree/bindings/powerpc/4xx/reboot.txt
@@ -0,0 +1,18 @@
1Reboot property to control system reboot on PPC4xx systems:
2
3By setting "reset_type" to one of the following values, the default
4software reset mechanism may be overidden. Here the possible values of
5"reset_type":
6
7 1 - PPC4xx core reset
8 2 - PPC4xx chip reset
9 3 - PPC4xx system reset (default)
10
11Example:
12
13 cpu@0 {
14 device_type = "cpu";
15 model = "PowerPC,440SPe";
16 ...
17 reset-type = <2>; /* Use chip-reset */
18 };
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/board.txt b/Documentation/devicetree/bindings/powerpc/fsl/board.txt
new file mode 100644
index 000000000000..39e941515a36
--- /dev/null
+++ b/Documentation/devicetree/bindings/powerpc/fsl/board.txt
@@ -0,0 +1,63 @@
1* Board Control and Status (BCSR)
2
3Required properties:
4
5 - compatible : Should be "fsl,<board>-bcsr"
6 - reg : Offset and length of the register set for the device
7
8Example:
9
10 bcsr@f8000000 {
11 compatible = "fsl,mpc8360mds-bcsr";
12 reg = <f8000000 8000>;
13 };
14
15* Freescale on board FPGA
16
17This is the memory-mapped registers for on board FPGA.
18
19Required properities:
20- compatible : should be "fsl,fpga-pixis".
21- reg : should contain the address and the length of the FPPGA register
22 set.
23- interrupt-parent: should specify phandle for the interrupt controller.
24- interrupts : should specify event (wakeup) IRQ.
25
26Example (MPC8610HPCD):
27
28 board-control@e8000000 {
29 compatible = "fsl,fpga-pixis";
30 reg = <0xe8000000 32>;
31 interrupt-parent = <&mpic>;
32 interrupts = <8 8>;
33 };
34
35* Freescale BCSR GPIO banks
36
37Some BCSR registers act as simple GPIO controllers, each such
38register can be represented by the gpio-controller node.
39
40Required properities:
41- compatible : Should be "fsl,<board>-bcsr-gpio".
42- reg : Should contain the address and the length of the GPIO bank
43 register.
44- #gpio-cells : Should be two. The first cell is the pin number and the
45 second cell is used to specify optional parameters (currently unused).
46- gpio-controller : Marks the port as GPIO controller.
47
48Example:
49
50 bcsr@1,0 {
51 #address-cells = <1>;
52 #size-cells = <1>;
53 compatible = "fsl,mpc8360mds-bcsr";
54 reg = <1 0 0x8000>;
55 ranges = <0 1 0 0x8000>;
56
57 bcsr13: gpio-controller@d {
58 #gpio-cells = <2>;
59 compatible = "fsl,mpc8360mds-bcsr-gpio";
60 reg = <0xd 1>;
61 gpio-controller;
62 };
63 };
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm.txt b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm.txt
new file mode 100644
index 000000000000..160c752484b4
--- /dev/null
+++ b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm.txt
@@ -0,0 +1,67 @@
1* Freescale Communications Processor Module
2
3NOTE: This is an interim binding, and will likely change slightly,
4as more devices are supported. The QE bindings especially are
5incomplete.
6
7* Root CPM node
8
9Properties:
10- compatible : "fsl,cpm1", "fsl,cpm2", or "fsl,qe".
11- reg : A 48-byte region beginning with CPCR.
12
13Example:
14 cpm@119c0 {
15 #address-cells = <1>;
16 #size-cells = <1>;
17 #interrupt-cells = <2>;
18 compatible = "fsl,mpc8272-cpm", "fsl,cpm2";
19 reg = <119c0 30>;
20 }
21
22* Properties common to multiple CPM/QE devices
23
24- fsl,cpm-command : This value is ORed with the opcode and command flag
25 to specify the device on which a CPM command operates.
26
27- fsl,cpm-brg : Indicates which baud rate generator the device
28 is associated with. If absent, an unused BRG
29 should be dynamically allocated. If zero, the
30 device uses an external clock rather than a BRG.
31
32- reg : Unless otherwise specified, the first resource represents the
33 scc/fcc/ucc registers, and the second represents the device's
34 parameter RAM region (if it has one).
35
36* Multi-User RAM (MURAM)
37
38The multi-user/dual-ported RAM is expressed as a bus under the CPM node.
39
40Ranges must be set up subject to the following restrictions:
41
42- Children's reg nodes must be offsets from the start of all muram, even
43 if the user-data area does not begin at zero.
44- If multiple range entries are used, the difference between the parent
45 address and the child address must be the same in all, so that a single
46 mapping can cover them all while maintaining the ability to determine
47 CPM-side offsets with pointer subtraction. It is recommended that
48 multiple range entries not be used.
49- A child address of zero must be translatable, even if no reg resources
50 contain it.
51
52A child "data" node must exist, compatible with "fsl,cpm-muram-data", to
53indicate the portion of muram that is usable by the OS for arbitrary
54purposes. The data node may have an arbitrary number of reg resources,
55all of which contribute to the allocatable muram pool.
56
57Example, based on mpc8272:
58 muram@0 {
59 #address-cells = <1>;
60 #size-cells = <1>;
61 ranges = <0 0 10000>;
62
63 data@0 {
64 compatible = "fsl,cpm-muram-data";
65 reg = <0 2000 9800 800>;
66 };
67 };
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm/brg.txt b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm/brg.txt
new file mode 100644
index 000000000000..4c7d45eaf025
--- /dev/null
+++ b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm/brg.txt
@@ -0,0 +1,21 @@
1* Baud Rate Generators
2
3Currently defined compatibles:
4fsl,cpm-brg
5fsl,cpm1-brg
6fsl,cpm2-brg
7
8Properties:
9- reg : There may be an arbitrary number of reg resources; BRG
10 numbers are assigned to these in order.
11- clock-frequency : Specifies the base frequency driving
12 the BRG.
13
14Example:
15 brg@119f0 {
16 compatible = "fsl,mpc8272-brg",
17 "fsl,cpm2-brg",
18 "fsl,cpm-brg";
19 reg = <119f0 10 115f0 10>;
20 clock-frequency = <d#25000000>;
21 };
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm/i2c.txt b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm/i2c.txt
new file mode 100644
index 000000000000..87bc6048667e
--- /dev/null
+++ b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm/i2c.txt
@@ -0,0 +1,41 @@
1* I2C
2
3The I2C controller is expressed as a bus under the CPM node.
4
5Properties:
6- compatible : "fsl,cpm1-i2c", "fsl,cpm2-i2c"
7- reg : On CPM2 devices, the second resource doesn't specify the I2C
8 Parameter RAM itself, but the I2C_BASE field of the CPM2 Parameter RAM
9 (typically 0x8afc 0x2).
10- #address-cells : Should be one. The cell is the i2c device address with
11 the r/w bit set to zero.
12- #size-cells : Should be zero.
13- clock-frequency : Can be used to set the i2c clock frequency. If
14 unspecified, a default frequency of 60kHz is being used.
15The following two properties are deprecated. They are only used by legacy
16i2c drivers to find the bus to probe:
17- linux,i2c-index : Can be used to hard code an i2c bus number. By default,
18 the bus number is dynamically assigned by the i2c core.
19- linux,i2c-class : Can be used to override the i2c class. The class is used
20 by legacy i2c device drivers to find a bus in a specific context like
21 system management, video or sound. By default, I2C_CLASS_HWMON (1) is
22 being used. The definition of the classes can be found in
23 include/i2c/i2c.h
24
25Example, based on mpc823:
26
27 i2c@860 {
28 compatible = "fsl,mpc823-i2c",
29 "fsl,cpm1-i2c";
30 reg = <0x860 0x20 0x3c80 0x30>;
31 interrupts = <16>;
32 interrupt-parent = <&CPM_PIC>;
33 fsl,cpm-command = <0x10>;
34 #address-cells = <1>;
35 #size-cells = <0>;
36
37 rtc@68 {
38 compatible = "dallas,ds1307";
39 reg = <0x68>;
40 };
41 };
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm/pic.txt b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm/pic.txt
new file mode 100644
index 000000000000..8e3ee1681618
--- /dev/null
+++ b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm/pic.txt
@@ -0,0 +1,18 @@
1* Interrupt Controllers
2
3Currently defined compatibles:
4- fsl,cpm1-pic
5 - only one interrupt cell
6- fsl,pq1-pic
7- fsl,cpm2-pic
8 - second interrupt cell is level/sense:
9 - 2 is falling edge
10 - 8 is active low
11
12Example:
13 interrupt-controller@10c00 {
14 #interrupt-cells = <2>;
15 interrupt-controller;
16 reg = <10c00 80>;
17 compatible = "mpc8272-pic", "fsl,cpm2-pic";
18 };
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm/usb.txt b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm/usb.txt
new file mode 100644
index 000000000000..74bfda4bb824
--- /dev/null
+++ b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/cpm/usb.txt
@@ -0,0 +1,15 @@
1* USB (Universal Serial Bus Controller)
2
3Properties:
4- compatible : "fsl,cpm1-usb", "fsl,cpm2-usb", "fsl,qe-usb"
5
6Example:
7 usb@11bc0 {
8 #address-cells = <1>;
9 #size-cells = <0>;
10 compatible = "fsl,cpm2-usb";
11 reg = <11b60 18 8b00 100>;
12 interrupts = <b 8>;
13 interrupt-parent = <&PIC>;
14 fsl,cpm-command = <2e600000>;
15 };
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/gpio.txt b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/gpio.txt
new file mode 100644
index 000000000000..349f79fd7076
--- /dev/null
+++ b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/gpio.txt
@@ -0,0 +1,38 @@
1Every GPIO controller node must have #gpio-cells property defined,
2this information will be used to translate gpio-specifiers.
3
4On CPM1 devices, all ports are using slightly different register layouts.
5Ports A, C and D are 16bit ports and Ports B and E are 32bit ports.
6
7On CPM2 devices, all ports are 32bit ports and use a common register layout.
8
9Required properties:
10- compatible : "fsl,cpm1-pario-bank-a", "fsl,cpm1-pario-bank-b",
11 "fsl,cpm1-pario-bank-c", "fsl,cpm1-pario-bank-d",
12 "fsl,cpm1-pario-bank-e", "fsl,cpm2-pario-bank"
13- #gpio-cells : Should be two. The first cell is the pin number and the
14 second cell is used to specify optional parameters (currently unused).
15- gpio-controller : Marks the port as GPIO controller.
16
17Example of three SOC GPIO banks defined as gpio-controller nodes:
18
19 CPM1_PIO_A: gpio-controller@950 {
20 #gpio-cells = <2>;
21 compatible = "fsl,cpm1-pario-bank-a";
22 reg = <0x950 0x10>;
23 gpio-controller;
24 };
25
26 CPM1_PIO_B: gpio-controller@ab8 {
27 #gpio-cells = <2>;
28 compatible = "fsl,cpm1-pario-bank-b";
29 reg = <0xab8 0x10>;
30 gpio-controller;
31 };
32
33 CPM1_PIO_E: gpio-controller@ac8 {
34 #gpio-cells = <2>;
35 compatible = "fsl,cpm1-pario-bank-e";
36 reg = <0xac8 0x18>;
37 gpio-controller;
38 };
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/network.txt b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/network.txt
new file mode 100644
index 000000000000..0e4269446580
--- /dev/null
+++ b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/network.txt
@@ -0,0 +1,45 @@
1* Network
2
3Currently defined compatibles:
4- fsl,cpm1-scc-enet
5- fsl,cpm2-scc-enet
6- fsl,cpm1-fec-enet
7- fsl,cpm2-fcc-enet (third resource is GFEMR)
8- fsl,qe-enet
9
10Example:
11
12 ethernet@11300 {
13 device_type = "network";
14 compatible = "fsl,mpc8272-fcc-enet",
15 "fsl,cpm2-fcc-enet";
16 reg = <11300 20 8400 100 11390 1>;
17 local-mac-address = [ 00 00 00 00 00 00 ];
18 interrupts = <20 8>;
19 interrupt-parent = <&PIC>;
20 phy-handle = <&PHY0>;
21 fsl,cpm-command = <12000300>;
22 };
23
24* MDIO
25
26Currently defined compatibles:
27fsl,pq1-fec-mdio (reg is same as first resource of FEC device)
28fsl,cpm2-mdio-bitbang (reg is port C registers)
29
30Properties for fsl,cpm2-mdio-bitbang:
31fsl,mdio-pin : pin of port C controlling mdio data
32fsl,mdc-pin : pin of port C controlling mdio clock
33
34Example:
35 mdio@10d40 {
36 device_type = "mdio";
37 compatible = "fsl,mpc8272ads-mdio-bitbang",
38 "fsl,mpc8272-mdio-bitbang",
39 "fsl,cpm2-mdio-bitbang";
40 reg = <10d40 14>;
41 #address-cells = <1>;
42 #size-cells = <0>;
43 fsl,mdio-pin = <12>;
44 fsl,mdc-pin = <13>;
45 };
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe.txt b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe.txt
new file mode 100644
index 000000000000..4f8930263dd9
--- /dev/null
+++ b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe.txt
@@ -0,0 +1,115 @@
1* Freescale QUICC Engine module (QE)
2This represents qe module that is installed on PowerQUICC II Pro.
3
4NOTE: This is an interim binding; it should be updated to fit
5in with the CPM binding later in this document.
6
7Basically, it is a bus of devices, that could act more or less
8as a complete entity (UCC, USB etc ). All of them should be siblings on
9the "root" qe node, using the common properties from there.
10The description below applies to the qe of MPC8360 and
11more nodes and properties would be extended in the future.
12
13i) Root QE device
14
15Required properties:
16- compatible : should be "fsl,qe";
17- model : precise model of the QE, Can be "QE", "CPM", or "CPM2"
18- reg : offset and length of the device registers.
19- bus-frequency : the clock frequency for QUICC Engine.
20- fsl,qe-num-riscs: define how many RISC engines the QE has.
21- fsl,qe-num-snums: define how many serial number(SNUM) the QE can use for the
22 threads.
23
24Optional properties:
25- fsl,firmware-phandle:
26 Usage: required only if there is no fsl,qe-firmware child node
27 Value type: <phandle>
28 Definition: Points to a firmware node (see "QE Firmware Node" below)
29 that contains the firmware that should be uploaded for this QE.
30 The compatible property for the firmware node should say,
31 "fsl,qe-firmware".
32
33Recommended properties
34- brg-frequency : the internal clock source frequency for baud-rate
35 generators in Hz.
36
37Example:
38 qe@e0100000 {
39 #address-cells = <1>;
40 #size-cells = <1>;
41 #interrupt-cells = <2>;
42 compatible = "fsl,qe";
43 ranges = <0 e0100000 00100000>;
44 reg = <e0100000 480>;
45 brg-frequency = <0>;
46 bus-frequency = <179A7B00>;
47 }
48
49* Multi-User RAM (MURAM)
50
51Required properties:
52- compatible : should be "fsl,qe-muram", "fsl,cpm-muram".
53- mode : the could be "host" or "slave".
54- ranges : Should be defined as specified in 1) to describe the
55 translation of MURAM addresses.
56- data-only : sub-node which defines the address area under MURAM
57 bus that can be allocated as data/parameter
58
59Example:
60
61 muram@10000 {
62 compatible = "fsl,qe-muram", "fsl,cpm-muram";
63 ranges = <0 00010000 0000c000>;
64
65 data-only@0{
66 compatible = "fsl,qe-muram-data",
67 "fsl,cpm-muram-data";
68 reg = <0 c000>;
69 };
70 };
71
72* QE Firmware Node
73
74This node defines a firmware binary that is embedded in the device tree, for
75the purpose of passing the firmware from bootloader to the kernel, or from
76the hypervisor to the guest.
77
78The firmware node itself contains the firmware binary contents, a compatible
79property, and any firmware-specific properties. The node should be placed
80inside a QE node that needs it. Doing so eliminates the need for a
81fsl,firmware-phandle property. Other QE nodes that need the same firmware
82should define an fsl,firmware-phandle property that points to the firmware node
83in the first QE node.
84
85The fsl,firmware property can be specified in the DTS (possibly using incbin)
86or can be inserted by the boot loader at boot time.
87
88Required properties:
89 - compatible
90 Usage: required
91 Value type: <string>
92 Definition: A standard property. Specify a string that indicates what
93 kind of firmware it is. For QE, this should be "fsl,qe-firmware".
94
95 - fsl,firmware
96 Usage: required
97 Value type: <prop-encoded-array>, encoded as an array of bytes
98 Definition: A standard property. This property contains the firmware
99 binary "blob".
100
101Example:
102 qe1@e0080000 {
103 compatible = "fsl,qe";
104 qe_firmware:qe-firmware {
105 compatible = "fsl,qe-firmware";
106 fsl,firmware = [0x70 0xcd 0x00 0x00 0x01 0x46 0x45 ...];
107 };
108 ...
109 };
110
111 qe2@e0090000 {
112 compatible = "fsl,qe";
113 fsl,firmware-phandle = <&qe_firmware>;
114 ...
115 };
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/firmware.txt b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/firmware.txt
new file mode 100644
index 000000000000..249db3a15d15
--- /dev/null
+++ b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/firmware.txt
@@ -0,0 +1,24 @@
1* Uploaded QE firmware
2
3 If a new firmware has been uploaded to the QE (usually by the
4 boot loader), then a 'firmware' child node should be added to the QE
5 node. This node provides information on the uploaded firmware that
6 device drivers may need.
7
8 Required properties:
9 - id: The string name of the firmware. This is taken from the 'id'
10 member of the qe_firmware structure of the uploaded firmware.
11 Device drivers can search this string to determine if the
12 firmware they want is already present.
13 - extended-modes: The Extended Modes bitfield, taken from the
14 firmware binary. It is a 64-bit number represented
15 as an array of two 32-bit numbers.
16 - virtual-traps: The virtual traps, taken from the firmware binary.
17 It is an array of 8 32-bit numbers.
18
19Example:
20 firmware {
21 id = "Soft-UART";
22 extended-modes = <0 0>;
23 virtual-traps = <0 0 0 0 0 0 0 0>;
24 };
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/par_io.txt b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/par_io.txt
new file mode 100644
index 000000000000..60984260207b
--- /dev/null
+++ b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/par_io.txt
@@ -0,0 +1,51 @@
1* Parallel I/O Ports
2
3This node configures Parallel I/O ports for CPUs with QE support.
4The node should reside in the "soc" node of the tree. For each
5device that using parallel I/O ports, a child node should be created.
6See the definition of the Pin configuration nodes below for more
7information.
8
9Required properties:
10- device_type : should be "par_io".
11- reg : offset to the register set and its length.
12- num-ports : number of Parallel I/O ports
13
14Example:
15par_io@1400 {
16 reg = <1400 100>;
17 #address-cells = <1>;
18 #size-cells = <0>;
19 device_type = "par_io";
20 num-ports = <7>;
21 ucc_pin@01 {
22 ......
23 };
24
25Note that "par_io" nodes are obsolete, and should not be used for
26the new device trees. Instead, each Par I/O bank should be represented
27via its own gpio-controller node:
28
29Required properties:
30- #gpio-cells : should be "2".
31- compatible : should be "fsl,<chip>-qe-pario-bank",
32 "fsl,mpc8323-qe-pario-bank".
33- reg : offset to the register set and its length.
34- gpio-controller : node to identify gpio controllers.
35
36Example:
37 qe_pio_a: gpio-controller@1400 {
38 #gpio-cells = <2>;
39 compatible = "fsl,mpc8360-qe-pario-bank",
40 "fsl,mpc8323-qe-pario-bank";
41 reg = <0x1400 0x18>;
42 gpio-controller;
43 };
44
45 qe_pio_e: gpio-controller@1460 {
46 #gpio-cells = <2>;
47 compatible = "fsl,mpc8360-qe-pario-bank",
48 "fsl,mpc8323-qe-pario-bank";
49 reg = <0x1460 0x18>;
50 gpio-controller;
51 };
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/pincfg.txt b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/pincfg.txt
new file mode 100644
index 000000000000..c5b43061db3a
--- /dev/null
+++ b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/pincfg.txt
@@ -0,0 +1,60 @@
1* Pin configuration nodes
2
3Required properties:
4- linux,phandle : phandle of this node; likely referenced by a QE
5 device.
6- pio-map : array of pin configurations. Each pin is defined by 6
7 integers. The six numbers are respectively: port, pin, dir,
8 open_drain, assignment, has_irq.
9 - port : port number of the pin; 0-6 represent port A-G in UM.
10 - pin : pin number in the port.
11 - dir : direction of the pin, should encode as follows:
12
13 0 = The pin is disabled
14 1 = The pin is an output
15 2 = The pin is an input
16 3 = The pin is I/O
17
18 - open_drain : indicates the pin is normal or wired-OR:
19
20 0 = The pin is actively driven as an output
21 1 = The pin is an open-drain driver. As an output, the pin is
22 driven active-low, otherwise it is three-stated.
23
24 - assignment : function number of the pin according to the Pin Assignment
25 tables in User Manual. Each pin can have up to 4 possible functions in
26 QE and two options for CPM.
27 - has_irq : indicates if the pin is used as source of external
28 interrupts.
29
30Example:
31 ucc_pin@01 {
32 linux,phandle = <140001>;
33 pio-map = <
34 /* port pin dir open_drain assignment has_irq */
35 0 3 1 0 1 0 /* TxD0 */
36 0 4 1 0 1 0 /* TxD1 */
37 0 5 1 0 1 0 /* TxD2 */
38 0 6 1 0 1 0 /* TxD3 */
39 1 6 1 0 3 0 /* TxD4 */
40 1 7 1 0 1 0 /* TxD5 */
41 1 9 1 0 2 0 /* TxD6 */
42 1 a 1 0 2 0 /* TxD7 */
43 0 9 2 0 1 0 /* RxD0 */
44 0 a 2 0 1 0 /* RxD1 */
45 0 b 2 0 1 0 /* RxD2 */
46 0 c 2 0 1 0 /* RxD3 */
47 0 d 2 0 1 0 /* RxD4 */
48 1 1 2 0 2 0 /* RxD5 */
49 1 0 2 0 2 0 /* RxD6 */
50 1 4 2 0 2 0 /* RxD7 */
51 0 7 1 0 1 0 /* TX_EN */
52 0 8 1 0 1 0 /* TX_ER */
53 0 f 2 0 1 0 /* RX_DV */
54 0 10 2 0 1 0 /* RX_ER */
55 0 0 2 0 1 0 /* RX_CLK */
56 2 9 1 0 3 0 /* GTX_CLK - CLK10 */
57 2 8 2 0 1 0>; /* GTX125 - CLK9 */
58 };
59
60
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/ucc.txt b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/ucc.txt
new file mode 100644
index 000000000000..e47734bee3f0
--- /dev/null
+++ b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/ucc.txt
@@ -0,0 +1,70 @@
1* UCC (Unified Communications Controllers)
2
3Required properties:
4- device_type : should be "network", "hldc", "uart", "transparent"
5 "bisync", "atm", or "serial".
6- compatible : could be "ucc_geth" or "fsl_atm" and so on.
7- cell-index : the ucc number(1-8), corresponding to UCCx in UM.
8- reg : Offset and length of the register set for the device
9- interrupts : <a b> where a is the interrupt number and b is a
10 field that represents an encoding of the sense and level
11 information for the interrupt. This should be encoded based on
12 the information in section 2) depending on the type of interrupt
13 controller you have.
14- interrupt-parent : the phandle for the interrupt controller that
15 services interrupts for this device.
16- pio-handle : The phandle for the Parallel I/O port configuration.
17- port-number : for UART drivers, the port number to use, between 0 and 3.
18 This usually corresponds to the /dev/ttyQE device, e.g. <0> = /dev/ttyQE0.
19 The port number is added to the minor number of the device. Unlike the
20 CPM UART driver, the port-number is required for the QE UART driver.
21- soft-uart : for UART drivers, if specified this means the QE UART device
22 driver should use "Soft-UART" mode, which is needed on some SOCs that have
23 broken UART hardware. Soft-UART is provided via a microcode upload.
24- rx-clock-name: the UCC receive clock source
25 "none": clock source is disabled
26 "brg1" through "brg16": clock source is BRG1-BRG16, respectively
27 "clk1" through "clk24": clock source is CLK1-CLK24, respectively
28- tx-clock-name: the UCC transmit clock source
29 "none": clock source is disabled
30 "brg1" through "brg16": clock source is BRG1-BRG16, respectively
31 "clk1" through "clk24": clock source is CLK1-CLK24, respectively
32The following two properties are deprecated. rx-clock has been replaced
33with rx-clock-name, and tx-clock has been replaced with tx-clock-name.
34Drivers that currently use the deprecated properties should continue to
35do so, in order to support older device trees, but they should be updated
36to check for the new properties first.
37- rx-clock : represents the UCC receive clock source.
38 0x00 : clock source is disabled;
39 0x1~0x10 : clock source is BRG1~BRG16 respectively;
40 0x11~0x28: clock source is QE_CLK1~QE_CLK24 respectively.
41- tx-clock: represents the UCC transmit clock source;
42 0x00 : clock source is disabled;
43 0x1~0x10 : clock source is BRG1~BRG16 respectively;
44 0x11~0x28: clock source is QE_CLK1~QE_CLK24 respectively.
45
46Required properties for network device_type:
47- mac-address : list of bytes representing the ethernet address.
48- phy-handle : The phandle for the PHY connected to this controller.
49
50Recommended properties:
51- phy-connection-type : a string naming the controller/PHY interface type,
52 i.e., "mii" (default), "rmii", "gmii", "rgmii", "rgmii-id" (Internal
53 Delay), "rgmii-txid" (delay on TX only), "rgmii-rxid" (delay on RX only),
54 "tbi", or "rtbi".
55
56Example:
57 ucc@2000 {
58 device_type = "network";
59 compatible = "ucc_geth";
60 cell-index = <1>;
61 reg = <2000 200>;
62 interrupts = <a0 0>;
63 interrupt-parent = <700>;
64 mac-address = [ 00 04 9f 00 23 23 ];
65 rx-clock = "none";
66 tx-clock = "clk9";
67 phy-handle = <212000>;
68 phy-connection-type = "gmii";
69 pio-handle = <140001>;
70 };
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/usb.txt b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/usb.txt
new file mode 100644
index 000000000000..9ccd5f30405b
--- /dev/null
+++ b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/qe/usb.txt
@@ -0,0 +1,37 @@
1Freescale QUICC Engine USB Controller
2
3Required properties:
4- compatible : should be "fsl,<chip>-qe-usb", "fsl,mpc8323-qe-usb".
5- reg : the first two cells should contain usb registers location and
6 length, the next two two cells should contain PRAM location and
7 length.
8- interrupts : should contain USB interrupt.
9- interrupt-parent : interrupt source phandle.
10- fsl,fullspeed-clock : specifies the full speed USB clock source:
11 "none": clock source is disabled
12 "brg1" through "brg16": clock source is BRG1-BRG16, respectively
13 "clk1" through "clk24": clock source is CLK1-CLK24, respectively
14- fsl,lowspeed-clock : specifies the low speed USB clock source:
15 "none": clock source is disabled
16 "brg1" through "brg16": clock source is BRG1-BRG16, respectively
17 "clk1" through "clk24": clock source is CLK1-CLK24, respectively
18- hub-power-budget : USB power budget for the root hub, in mA.
19- gpios : should specify GPIOs in this order: USBOE, USBTP, USBTN, USBRP,
20 USBRN, SPEED (optional), and POWER (optional).
21
22Example:
23
24usb@6c0 {
25 compatible = "fsl,mpc8360-qe-usb", "fsl,mpc8323-qe-usb";
26 reg = <0x6c0 0x40 0x8b00 0x100>;
27 interrupts = <11>;
28 interrupt-parent = <&qeic>;
29 fsl,fullspeed-clock = "clk21";
30 gpios = <&qe_pio_b 2 0 /* USBOE */
31 &qe_pio_b 3 0 /* USBTP */
32 &qe_pio_b 8 0 /* USBTN */
33 &qe_pio_b 9 0 /* USBRP */
34 &qe_pio_b 11 0 /* USBRN */
35 &qe_pio_e 20 0 /* SPEED */
36 &qe_pio_e 21 0 /* POWER */>;
37};
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/serial.txt b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/serial.txt
new file mode 100644
index 000000000000..2ea76d9d137c
--- /dev/null
+++ b/Documentation/devicetree/bindings/powerpc/fsl/cpm_qe/serial.txt
@@ -0,0 +1,32 @@
1* Serial
2
3Currently defined compatibles:
4- fsl,cpm1-smc-uart
5- fsl,cpm2-smc-uart
6- fsl,cpm1-scc-uart
7- fsl,cpm2-scc-uart
8- fsl,qe-uart
9
10Modem control lines connected to GPIO controllers are listed in the gpios
11property as described in booting-without-of.txt, section IX.1 in the following
12order:
13
14CTS, RTS, DCD, DSR, DTR, and RI.
15
16The gpios property is optional and can be left out when control lines are
17not used.
18
19Example:
20
21 serial@11a00 {
22 device_type = "serial";
23 compatible = "fsl,mpc8272-scc-uart",
24 "fsl,cpm2-scc-uart";
25 reg = <11a00 20 8000 100>;
26 interrupts = <28 8>;
27 interrupt-parent = <&PIC>;
28 fsl,cpm-brg = <1>;
29 fsl,cpm-command = <00800000>;
30 gpios = <&gpio_c 15 0
31 &gpio_d 29 0>;
32 };
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/diu.txt b/Documentation/devicetree/bindings/powerpc/fsl/diu.txt
new file mode 100644
index 000000000000..b66cb6d31d69
--- /dev/null
+++ b/Documentation/devicetree/bindings/powerpc/fsl/diu.txt
@@ -0,0 +1,34 @@
1* Freescale Display Interface Unit
2
3The Freescale DIU is a LCD controller, with proper hardware, it can also
4drive DVI monitors.
5
6Required properties:
7- compatible : should be "fsl,diu" or "fsl,mpc5121-diu".
8- reg : should contain at least address and length of the DIU register
9 set.
10- interrupts : one DIU interrupt should be described here.
11- interrupt-parent : the phandle for the interrupt controller that
12 services interrupts for this device.
13
14Optional properties:
15- edid : verbatim EDID data block describing attached display.
16 Data from the detailed timing descriptor will be used to
17 program the display controller.
18
19Example (MPC8610HPCD):
20 display@2c000 {
21 compatible = "fsl,diu";
22 reg = <0x2c000 100>;
23 interrupts = <72 2>;
24 interrupt-parent = <&mpic>;
25 };
26
27Example for MPC5121:
28 display@2100 {
29 compatible = "fsl,mpc5121-diu";
30 reg = <0x2100 0x100>;
31 interrupts = <64 0x8>;
32 interrupt-parent = <&ipic>;
33 edid = [edid-data];
34 };
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/dma.txt b/Documentation/devicetree/bindings/powerpc/fsl/dma.txt
new file mode 100644
index 000000000000..2a4b4bce6110
--- /dev/null
+++ b/Documentation/devicetree/bindings/powerpc/fsl/dma.txt
@@ -0,0 +1,144 @@
1* Freescale 83xx DMA Controller
2
3Freescale PowerPC 83xx have on chip general purpose DMA controllers.
4
5Required properties:
6
7- compatible : compatible list, contains 2 entries, first is
8 "fsl,CHIP-dma", where CHIP is the processor
9 (mpc8349, mpc8360, etc.) and the second is
10 "fsl,elo-dma"
11- reg : <registers mapping for DMA general status reg>
12- ranges : Should be defined as specified in 1) to describe the
13 DMA controller channels.
14- cell-index : controller index. 0 for controller @ 0x8100
15- interrupts : <interrupt mapping for DMA IRQ>
16- interrupt-parent : optional, if needed for interrupt mapping
17
18
19- DMA channel nodes:
20 - compatible : compatible list, contains 2 entries, first is
21 "fsl,CHIP-dma-channel", where CHIP is the processor
22 (mpc8349, mpc8350, etc.) and the second is
23 "fsl,elo-dma-channel". However, see note below.
24 - reg : <registers mapping for channel>
25 - cell-index : dma channel index starts at 0.
26
27Optional properties:
28 - interrupts : <interrupt mapping for DMA channel IRQ>
29 (on 83xx this is expected to be identical to
30 the interrupts property of the parent node)
31 - interrupt-parent : optional, if needed for interrupt mapping
32
33Example:
34 dma@82a8 {
35 #address-cells = <1>;
36 #size-cells = <1>;
37 compatible = "fsl,mpc8349-dma", "fsl,elo-dma";
38 reg = <0x82a8 4>;
39 ranges = <0 0x8100 0x1a4>;
40 interrupt-parent = <&ipic>;
41 interrupts = <71 8>;
42 cell-index = <0>;
43 dma-channel@0 {
44 compatible = "fsl,mpc8349-dma-channel", "fsl,elo-dma-channel";
45 cell-index = <0>;
46 reg = <0 0x80>;
47 interrupt-parent = <&ipic>;
48 interrupts = <71 8>;
49 };
50 dma-channel@80 {
51 compatible = "fsl,mpc8349-dma-channel", "fsl,elo-dma-channel";
52 cell-index = <1>;
53 reg = <0x80 0x80>;
54 interrupt-parent = <&ipic>;
55 interrupts = <71 8>;
56 };
57 dma-channel@100 {
58 compatible = "fsl,mpc8349-dma-channel", "fsl,elo-dma-channel";
59 cell-index = <2>;
60 reg = <0x100 0x80>;
61 interrupt-parent = <&ipic>;
62 interrupts = <71 8>;
63 };
64 dma-channel@180 {
65 compatible = "fsl,mpc8349-dma-channel", "fsl,elo-dma-channel";
66 cell-index = <3>;
67 reg = <0x180 0x80>;
68 interrupt-parent = <&ipic>;
69 interrupts = <71 8>;
70 };
71 };
72
73* Freescale 85xx/86xx DMA Controller
74
75Freescale PowerPC 85xx/86xx have on chip general purpose DMA controllers.
76
77Required properties:
78
79- compatible : compatible list, contains 2 entries, first is
80 "fsl,CHIP-dma", where CHIP is the processor
81 (mpc8540, mpc8540, etc.) and the second is
82 "fsl,eloplus-dma"
83- reg : <registers mapping for DMA general status reg>
84- cell-index : controller index. 0 for controller @ 0x21000,
85 1 for controller @ 0xc000
86- ranges : Should be defined as specified in 1) to describe the
87 DMA controller channels.
88
89- DMA channel nodes:
90 - compatible : compatible list, contains 2 entries, first is
91 "fsl,CHIP-dma-channel", where CHIP is the processor
92 (mpc8540, mpc8560, etc.) and the second is
93 "fsl,eloplus-dma-channel". However, see note below.
94 - cell-index : dma channel index starts at 0.
95 - reg : <registers mapping for channel>
96 - interrupts : <interrupt mapping for DMA channel IRQ>
97 - interrupt-parent : optional, if needed for interrupt mapping
98
99Example:
100 dma@21300 {
101 #address-cells = <1>;
102 #size-cells = <1>;
103 compatible = "fsl,mpc8540-dma", "fsl,eloplus-dma";
104 reg = <0x21300 4>;
105 ranges = <0 0x21100 0x200>;
106 cell-index = <0>;
107 dma-channel@0 {
108 compatible = "fsl,mpc8540-dma-channel", "fsl,eloplus-dma-channel";
109 reg = <0 0x80>;
110 cell-index = <0>;
111 interrupt-parent = <&mpic>;
112 interrupts = <20 2>;
113 };
114 dma-channel@80 {
115 compatible = "fsl,mpc8540-dma-channel", "fsl,eloplus-dma-channel";
116 reg = <0x80 0x80>;
117 cell-index = <1>;
118 interrupt-parent = <&mpic>;
119 interrupts = <21 2>;
120 };
121 dma-channel@100 {
122 compatible = "fsl,mpc8540-dma-channel", "fsl,eloplus-dma-channel";
123 reg = <0x100 0x80>;
124 cell-index = <2>;
125 interrupt-parent = <&mpic>;
126 interrupts = <22 2>;
127 };
128 dma-channel@180 {
129 compatible = "fsl,mpc8540-dma-channel", "fsl,eloplus-dma-channel";
130 reg = <0x180 0x80>;
131 cell-index = <3>;
132 interrupt-parent = <&mpic>;
133 interrupts = <23 2>;
134 };
135 };
136
137Note on DMA channel compatible properties: The compatible property must say
138"fsl,elo-dma-channel" or "fsl,eloplus-dma-channel" to be used by the Elo DMA
139driver (fsldma). Any DMA channel used by fsldma cannot be used by another
140DMA driver, such as the SSI sound drivers for the MPC8610. Therefore, any DMA
141channel that should be used for another driver should not use
142"fsl,elo-dma-channel" or "fsl,eloplus-dma-channel". For the SSI drivers, for
143example, the compatible property should be "fsl,ssi-dma-channel". See ssi.txt
144for more information.
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/ecm.txt b/Documentation/devicetree/bindings/powerpc/fsl/ecm.txt
new file mode 100644
index 000000000000..f514f29c67d6
--- /dev/null
+++ b/Documentation/devicetree/bindings/powerpc/fsl/ecm.txt
@@ -0,0 +1,64 @@
1=====================================================================
2E500 LAW & Coherency Module Device Tree Binding
3Copyright (C) 2009 Freescale Semiconductor Inc.
4=====================================================================
5
6Local Access Window (LAW) Node
7
8The LAW node represents the region of CCSR space where local access
9windows are configured. For ECM based devices this is the first 4k
10of CCSR space that includes CCSRBAR, ALTCBAR, ALTCAR, BPTR, and some
11number of local access windows as specified by fsl,num-laws.
12
13PROPERTIES
14
15 - compatible
16 Usage: required
17 Value type: <string>
18 Definition: Must include "fsl,ecm-law"
19
20 - reg
21 Usage: required
22 Value type: <prop-encoded-array>
23 Definition: A standard property. The value specifies the
24 physical address offset and length of the CCSR space
25 registers.
26
27 - fsl,num-laws
28 Usage: required
29 Value type: <u32>
30 Definition: The value specifies the number of local access
31 windows for this device.
32
33=====================================================================
34
35E500 Coherency Module Node
36
37The E500 LAW node represents the region of CCSR space where ECM config
38and error reporting registers exist, this is the second 4k (0x1000)
39of CCSR space.
40
41PROPERTIES
42
43 - compatible
44 Usage: required
45 Value type: <string>
46 Definition: Must include "fsl,CHIP-ecm", "fsl,ecm" where
47 CHIP is the processor (mpc8572, mpc8544, etc.)
48
49 - reg
50 Usage: required
51 Value type: <prop-encoded-array>
52 Definition: A standard property. The value specifies the
53 physical address offset and length of the CCSR space
54 registers.
55
56 - interrupts
57 Usage: required
58 Value type: <prop-encoded-array>
59
60 - interrupt-parent
61 Usage: required
62 Value type: <phandle>
63
64=====================================================================
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/gtm.txt b/Documentation/devicetree/bindings/powerpc/fsl/gtm.txt
new file mode 100644
index 000000000000..9a33efded4bc
--- /dev/null
+++ b/Documentation/devicetree/bindings/powerpc/fsl/gtm.txt
@@ -0,0 +1,31 @@
1* Freescale General-purpose Timers Module
2
3Required properties:
4 - compatible : should be
5 "fsl,<chip>-gtm", "fsl,gtm" for SOC GTMs
6 "fsl,<chip>-qe-gtm", "fsl,qe-gtm", "fsl,gtm" for QE GTMs
7 "fsl,<chip>-cpm2-gtm", "fsl,cpm2-gtm", "fsl,gtm" for CPM2 GTMs
8 - reg : should contain gtm registers location and length (0x40).
9 - interrupts : should contain four interrupts.
10 - interrupt-parent : interrupt source phandle.
11 - clock-frequency : specifies the frequency driving the timer.
12
13Example:
14
15timer@500 {
16 compatible = "fsl,mpc8360-gtm", "fsl,gtm";
17 reg = <0x500 0x40>;
18 interrupts = <90 8 78 8 84 8 72 8>;
19 interrupt-parent = <&ipic>;
20 /* filled by u-boot */
21 clock-frequency = <0>;
22};
23
24timer@440 {
25 compatible = "fsl,mpc8360-qe-gtm", "fsl,qe-gtm", "fsl,gtm";
26 reg = <0x440 0x40>;
27 interrupts = <12 13 14 15>;
28 interrupt-parent = <&qeic>;
29 /* filled by u-boot */
30 clock-frequency = <0>;
31};
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/guts.txt b/Documentation/devicetree/bindings/powerpc/fsl/guts.txt
new file mode 100644
index 000000000000..9e7a2417dac5
--- /dev/null
+++ b/Documentation/devicetree/bindings/powerpc/fsl/guts.txt
@@ -0,0 +1,25 @@
1* Global Utilities Block
2
3The global utilities block controls power management, I/O device
4enabling, power-on-reset configuration monitoring, general-purpose
5I/O signal configuration, alternate function selection for multiplexed
6signals, and clock control.
7
8Required properties:
9
10 - compatible : Should define the compatible device type for
11 global-utilities.
12 - reg : Offset and length of the register set for the device.
13
14Recommended properties:
15
16 - fsl,has-rstcr : Indicates that the global utilities register set
17 contains a functioning "reset control register" (i.e. the board
18 is wired to reset upon setting the HRESET_REQ bit in this register).
19
20Example:
21 global-utilities@e0000 { /* global utilities block */
22 compatible = "fsl,mpc8548-guts";
23 reg = <e0000 1000>;
24 fsl,has-rstcr;
25 };
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/lbc.txt b/Documentation/devicetree/bindings/powerpc/fsl/lbc.txt
new file mode 100644
index 000000000000..3300fec501c5
--- /dev/null
+++ b/Documentation/devicetree/bindings/powerpc/fsl/lbc.txt
@@ -0,0 +1,35 @@
1* Chipselect/Local Bus
2
3Properties:
4- name : Should be localbus
5- #address-cells : Should be either two or three. The first cell is the
6 chipselect number, and the remaining cells are the
7 offset into the chipselect.
8- #size-cells : Either one or two, depending on how large each chipselect
9 can be.
10- ranges : Each range corresponds to a single chipselect, and cover
11 the entire access window as configured.
12
13Example:
14 localbus@f0010100 {
15 compatible = "fsl,mpc8272-localbus",
16 "fsl,pq2-localbus";
17 #address-cells = <2>;
18 #size-cells = <1>;
19 reg = <f0010100 40>;
20
21 ranges = <0 0 fe000000 02000000
22 1 0 f4500000 00008000>;
23
24 flash@0,0 {
25 compatible = "jedec-flash";
26 reg = <0 0 2000000>;
27 bank-width = <4>;
28 device-width = <1>;
29 };
30
31 board-control@1,0 {
32 reg = <1 0 20>;
33 compatible = "fsl,mpc8272ads-bcsr";
34 };
35 };
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/mcm.txt b/Documentation/devicetree/bindings/powerpc/fsl/mcm.txt
new file mode 100644
index 000000000000..4ceda9b3b413
--- /dev/null
+++ b/Documentation/devicetree/bindings/powerpc/fsl/mcm.txt
@@ -0,0 +1,64 @@
1=====================================================================
2MPX LAW & Coherency Module Device Tree Binding
3Copyright (C) 2009 Freescale Semiconductor Inc.
4=====================================================================
5
6Local Access Window (LAW) Node
7
8The LAW node represents the region of CCSR space where local access
9windows are configured. For MCM based devices this is the first 4k
10of CCSR space that includes CCSRBAR, ALTCBAR, ALTCAR, BPTR, and some
11number of local access windows as specified by fsl,num-laws.
12
13PROPERTIES
14
15 - compatible
16 Usage: required
17 Value type: <string>
18 Definition: Must include "fsl,mcm-law"
19
20 - reg
21 Usage: required
22 Value type: <prop-encoded-array>
23 Definition: A standard property. The value specifies the
24 physical address offset and length of the CCSR space
25 registers.
26
27 - fsl,num-laws
28 Usage: required
29 Value type: <u32>
30 Definition: The value specifies the number of local access
31 windows for this device.
32
33=====================================================================
34
35MPX Coherency Module Node
36
37The MPX LAW node represents the region of CCSR space where MCM config
38and error reporting registers exist, this is the second 4k (0x1000)
39of CCSR space.
40
41PROPERTIES
42
43 - compatible
44 Usage: required
45 Value type: <string>
46 Definition: Must include "fsl,CHIP-mcm", "fsl,mcm" where
47 CHIP is the processor (mpc8641, mpc8610, etc.)
48
49 - reg
50 Usage: required
51 Value type: <prop-encoded-array>
52 Definition: A standard property. The value specifies the
53 physical address offset and length of the CCSR space
54 registers.
55
56 - interrupts
57 Usage: required
58 Value type: <prop-encoded-array>
59
60 - interrupt-parent
61 Usage: required
62 Value type: <phandle>
63
64=====================================================================
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/mcu-mpc8349emitx.txt b/Documentation/devicetree/bindings/powerpc/fsl/mcu-mpc8349emitx.txt
new file mode 100644
index 000000000000..0f766333b6eb
--- /dev/null
+++ b/Documentation/devicetree/bindings/powerpc/fsl/mcu-mpc8349emitx.txt
@@ -0,0 +1,17 @@
1Freescale MPC8349E-mITX-compatible Power Management Micro Controller Unit (MCU)
2
3Required properties:
4- compatible : "fsl,<mcu-chip>-<board>", "fsl,mcu-mpc8349emitx".
5- reg : should specify I2C address (0x0a).
6- #gpio-cells : should be 2.
7- gpio-controller : should be present.
8
9Example:
10
11mcu@0a {
12 #gpio-cells = <2>;
13 compatible = "fsl,mc9s08qg8-mpc8349emitx",
14 "fsl,mcu-mpc8349emitx";
15 reg = <0x0a>;
16 gpio-controller;
17};
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/mpc5121-psc.txt b/Documentation/devicetree/bindings/powerpc/fsl/mpc5121-psc.txt
new file mode 100644
index 000000000000..8832e8798912
--- /dev/null
+++ b/Documentation/devicetree/bindings/powerpc/fsl/mpc5121-psc.txt
@@ -0,0 +1,70 @@
1MPC5121 PSC Device Tree Bindings
2
3PSC in UART mode
4----------------
5
6For PSC in UART mode the needed PSC serial devices
7are specified by fsl,mpc5121-psc-uart nodes in the
8fsl,mpc5121-immr SoC node. Additionally the PSC FIFO
9Controller node fsl,mpc5121-psc-fifo is requered there:
10
11fsl,mpc5121-psc-uart nodes
12--------------------------
13
14Required properties :
15 - compatible : Should contain "fsl,mpc5121-psc-uart" and "fsl,mpc5121-psc"
16 - cell-index : Index of the PSC in hardware
17 - reg : Offset and length of the register set for the PSC device
18 - interrupts : <a b> where a is the interrupt number of the
19 PSC FIFO Controller and b is a field that represents an
20 encoding of the sense and level information for the interrupt.
21 - interrupt-parent : the phandle for the interrupt controller that
22 services interrupts for this device.
23
24Recommended properties :
25 - fsl,rx-fifo-size : the size of the RX fifo slice (a multiple of 4)
26 - fsl,tx-fifo-size : the size of the TX fifo slice (a multiple of 4)
27
28
29fsl,mpc5121-psc-fifo node
30-------------------------
31
32Required properties :
33 - compatible : Should be "fsl,mpc5121-psc-fifo"
34 - reg : Offset and length of the register set for the PSC
35 FIFO Controller
36 - interrupts : <a b> where a is the interrupt number of the
37 PSC FIFO Controller and b is a field that represents an
38 encoding of the sense and level information for the interrupt.
39 - interrupt-parent : the phandle for the interrupt controller that
40 services interrupts for this device.
41
42
43Example for a board using PSC0 and PSC1 devices in serial mode:
44
45serial@11000 {
46 compatible = "fsl,mpc5121-psc-uart", "fsl,mpc5121-psc";
47 cell-index = <0>;
48 reg = <0x11000 0x100>;
49 interrupts = <40 0x8>;
50 interrupt-parent = < &ipic >;
51 fsl,rx-fifo-size = <16>;
52 fsl,tx-fifo-size = <16>;
53};
54
55serial@11100 {
56 compatible = "fsl,mpc5121-psc-uart", "fsl,mpc5121-psc";
57 cell-index = <1>;
58 reg = <0x11100 0x100>;
59 interrupts = <40 0x8>;
60 interrupt-parent = < &ipic >;
61 fsl,rx-fifo-size = <16>;
62 fsl,tx-fifo-size = <16>;
63};
64
65pscfifo@11f00 {
66 compatible = "fsl,mpc5121-psc-fifo";
67 reg = <0x11f00 0x100>;
68 interrupts = <40 0x8>;
69 interrupt-parent = < &ipic >;
70};
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/mpc5200.txt b/Documentation/devicetree/bindings/powerpc/fsl/mpc5200.txt
new file mode 100644
index 000000000000..4ccb2cd5df94
--- /dev/null
+++ b/Documentation/devicetree/bindings/powerpc/fsl/mpc5200.txt
@@ -0,0 +1,198 @@
1MPC5200 Device Tree Bindings
2----------------------------
3
4(c) 2006-2009 Secret Lab Technologies Ltd
5Grant Likely <grant.likely@secretlab.ca>
6
7Naming conventions
8------------------
9For mpc5200 on-chip devices, the format for each compatible value is
10<chip>-<device>[-<mode>]. The OS should be able to match a device driver
11to the device based solely on the compatible value. If two drivers
12match on the compatible list; the 'most compatible' driver should be
13selected.
14
15The split between the MPC5200 and the MPC5200B leaves a bit of a
16conundrum. How should the compatible property be set up to provide
17maximum compatibility information; but still accurately describe the
18chip? For the MPC5200; the answer is easy. Most of the SoC devices
19originally appeared on the MPC5200. Since they didn't exist anywhere
20else; the 5200 compatible properties will contain only one item;
21"fsl,mpc5200-<device>".
22
23The 5200B is almost the same as the 5200, but not quite. It fixes
24silicon bugs and it adds a small number of enhancements. Most of the
25devices either provide exactly the same interface as on the 5200. A few
26devices have extra functions but still have a backwards compatible mode.
27To express this information as completely as possible, 5200B device trees
28should have two items in the compatible list:
29 compatible = "fsl,mpc5200b-<device>","fsl,mpc5200-<device>";
30
31It is *strongly* recommended that 5200B device trees follow this convention
32(instead of only listing the base mpc5200 item).
33
34ie. ethernet on mpc5200: compatible = "fsl,mpc5200-fec";
35 ethernet on mpc5200b: compatible = "fsl,mpc5200b-fec", "fsl,mpc5200-fec";
36
37Modal devices, like PSCs, also append the configured function to the
38end of the compatible field. ie. A PSC in i2s mode would specify
39"fsl,mpc5200-psc-i2s", not "fsl,mpc5200-i2s". This convention is chosen to
40avoid naming conflicts with non-psc devices providing the same
41function. For example, "fsl,mpc5200-spi" and "fsl,mpc5200-psc-spi" describe
42the mpc5200 simple spi device and a PSC spi mode respectively.
43
44At the time of writing, exact chip may be either 'fsl,mpc5200' or
45'fsl,mpc5200b'.
46
47The soc node
48------------
49This node describes the on chip SOC peripherals. Every mpc5200 based
50board will have this node, and as such there is a common naming
51convention for SOC devices.
52
53Required properties:
54name description
55---- -----------
56ranges Memory range of the internal memory mapped registers.
57 Should be <0 [baseaddr] 0xc000>
58reg Should be <[baseaddr] 0x100>
59compatible mpc5200: "fsl,mpc5200-immr"
60 mpc5200b: "fsl,mpc5200b-immr"
61system-frequency 'fsystem' frequency in Hz; XLB, IPB, USB and PCI
62 clocks are derived from the fsystem clock.
63bus-frequency IPB bus frequency in Hz. Clock rate
64 used by most of the soc devices.
65
66soc child nodes
67---------------
68Any on chip SOC devices available to Linux must appear as soc5200 child nodes.
69
70Note: The tables below show the value for the mpc5200. A mpc5200b device
71tree should use the "fsl,mpc5200b-<device>","fsl,mpc5200-<device>" form.
72
73Required soc5200 child nodes:
74name compatible Description
75---- ---------- -----------
76cdm@<addr> fsl,mpc5200-cdm Clock Distribution
77interrupt-controller@<addr> fsl,mpc5200-pic need an interrupt
78 controller to boot
79bestcomm@<addr> fsl,mpc5200-bestcomm Bestcomm DMA controller
80
81Recommended soc5200 child nodes; populate as needed for your board
82name compatible Description
83---- ---------- -----------
84timer@<addr> fsl,mpc5200-gpt General purpose timers
85gpio@<addr> fsl,mpc5200-gpio MPC5200 simple gpio controller
86gpio@<addr> fsl,mpc5200-gpio-wkup MPC5200 wakeup gpio controller
87rtc@<addr> fsl,mpc5200-rtc Real time clock
88mscan@<addr> fsl,mpc5200-mscan CAN bus controller
89pci@<addr> fsl,mpc5200-pci PCI bridge
90serial@<addr> fsl,mpc5200-psc-uart PSC in serial mode
91i2s@<addr> fsl,mpc5200-psc-i2s PSC in i2s mode
92ac97@<addr> fsl,mpc5200-psc-ac97 PSC in ac97 mode
93spi@<addr> fsl,mpc5200-psc-spi PSC in spi mode
94irda@<addr> fsl,mpc5200-psc-irda PSC in IrDA mode
95spi@<addr> fsl,mpc5200-spi MPC5200 spi device
96ethernet@<addr> fsl,mpc5200-fec MPC5200 ethernet device
97ata@<addr> fsl,mpc5200-ata IDE ATA interface
98i2c@<addr> fsl,mpc5200-i2c I2C controller
99usb@<addr> fsl,mpc5200-ohci,ohci-be USB controller
100xlb@<addr> fsl,mpc5200-xlb XLB arbitrator
101
102fsl,mpc5200-gpt nodes
103---------------------
104On the mpc5200 and 5200b, GPT0 has a watchdog timer function. If the board
105design supports the internal wdt, then the device node for GPT0 should
106include the empty property 'fsl,has-wdt'. Note that this does not activate
107the watchdog. The timer will function as a GPT if the timer api is used, and
108it will function as watchdog if the watchdog device is used. The watchdog
109mode has priority over the gpt mode, i.e. if the watchdog is activated, any
110gpt api call to this timer will fail with -EBUSY.
111
112If you add the property
113 fsl,wdt-on-boot = <n>;
114GPT0 will be marked as in-use watchdog, i.e. blocking every gpt access to it.
115If n>0, the watchdog is started with a timeout of n seconds. If n=0, the
116configuration of the watchdog is not touched. This is useful in two cases:
117- just mark GPT0 as watchdog, blocking gpt accesses, and configure it later;
118- do not touch a configuration assigned by the boot loader which supervises
119 the boot process itself.
120
121The watchdog will respect the CONFIG_WATCHDOG_NOWAYOUT option.
122
123An mpc5200-gpt can be used as a single line GPIO controller. To do so,
124add the following properties to the gpt node:
125 gpio-controller;
126 #gpio-cells = <2>;
127When referencing the GPIO line from another node, the first cell must always
128be zero and the second cell represents the gpio flags and described in the
129gpio device tree binding.
130
131An mpc5200-gpt can be used as a single line edge sensitive interrupt
132controller. To do so, add the following properties to the gpt node:
133 interrupt-controller;
134 #interrupt-cells = <1>;
135When referencing the IRQ line from another node, the cell represents the
136sense mode; 1 for edge rising, 2 for edge falling.
137
138fsl,mpc5200-psc nodes
139---------------------
140The PSCs should include a cell-index which is the index of the PSC in
141hardware. cell-index is used to determine which shared SoC registers to
142use when setting up PSC clocking. cell-index number starts at '0'. ie:
143 PSC1 has 'cell-index = <0>'
144 PSC4 has 'cell-index = <3>'
145
146PSC in i2s mode: The mpc5200 and mpc5200b PSCs are not compatible when in
147i2s mode. An 'mpc5200b-psc-i2s' node cannot include 'mpc5200-psc-i2s' in the
148compatible field.
149
150
151fsl,mpc5200-gpio and fsl,mpc5200-gpio-wkup nodes
152------------------------------------------------
153Each GPIO controller node should have the empty property gpio-controller and
154#gpio-cells set to 2. First cell is the GPIO number which is interpreted
155according to the bit numbers in the GPIO control registers. The second cell
156is for flags which is currently unused.
157
158fsl,mpc5200-fec nodes
159---------------------
160The FEC node can specify one of the following properties to configure
161the MII link:
162- fsl,7-wire-mode - An empty property that specifies the link uses 7-wire
163 mode instead of MII
164- current-speed - Specifies that the MII should be configured for a fixed
165 speed. This property should contain two cells. The
166 first cell specifies the speed in Mbps and the second
167 should be '0' for half duplex and '1' for full duplex
168- phy-handle - Contains a phandle to an Ethernet PHY.
169
170Interrupt controller (fsl,mpc5200-pic) node
171-------------------------------------------
172The mpc5200 pic binding splits hardware IRQ numbers into two levels. The
173split reflects the layout of the PIC hardware itself, which groups
174interrupts into one of three groups; CRIT, MAIN or PERP. Also, the
175Bestcomm dma engine has it's own set of interrupt sources which are
176cascaded off of peripheral interrupt 0, which the driver interprets as a
177fourth group, SDMA.
178
179The interrupts property for device nodes using the mpc5200 pic consists
180of three cells; <L1 L2 level>
181
182 L1 := [CRIT=0, MAIN=1, PERP=2, SDMA=3]
183 L2 := interrupt number; directly mapped from the value in the
184 "ICTL PerStat, MainStat, CritStat Encoded Register"
185 level := [LEVEL_HIGH=0, EDGE_RISING=1, EDGE_FALLING=2, LEVEL_LOW=3]
186
187For external IRQs, use the following interrupt property values (how to
188specify external interrupts is a frequently asked question):
189External interrupts:
190 external irq0: interrupts = <0 0 n>;
191 external irq1: interrupts = <1 1 n>;
192 external irq2: interrupts = <1 2 n>;
193 external irq3: interrupts = <1 3 n>;
194'n' is sense (0: level high, 1: edge rising, 2: edge falling 3: level low)
195
196fsl,mpc5200-mscan nodes
197-----------------------
198See file can.txt in this directory.
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/mpic.txt b/Documentation/devicetree/bindings/powerpc/fsl/mpic.txt
new file mode 100644
index 000000000000..71e39cf3215b
--- /dev/null
+++ b/Documentation/devicetree/bindings/powerpc/fsl/mpic.txt
@@ -0,0 +1,42 @@
1* OpenPIC and its interrupt numbers on Freescale's e500/e600 cores
2
3The OpenPIC specification does not specify which interrupt source has to
4become which interrupt number. This is up to the software implementation
5of the interrupt controller. The only requirement is that every
6interrupt source has to have an unique interrupt number / vector number.
7To accomplish this the current implementation assigns the number zero to
8the first source, the number one to the second source and so on until
9all interrupt sources have their unique number.
10Usually the assigned vector number equals the interrupt number mentioned
11in the documentation for a given core / CPU. This is however not true
12for the e500 cores (MPC85XX CPUs) where the documentation distinguishes
13between internal and external interrupt sources and starts counting at
14zero for both of them.
15
16So what to write for external interrupt source X or internal interrupt
17source Y into the device tree? Here is an example:
18
19The memory map for the interrupt controller in the MPC8544[0] shows,
20that the first interrupt source starts at 0x5_0000 (PIC Register Address
21Map-Interrupt Source Configuration Registers). This source becomes the
22number zero therefore:
23 External interrupt 0 = interrupt number 0
24 External interrupt 1 = interrupt number 1
25 External interrupt 2 = interrupt number 2
26 ...
27Every interrupt number allocates 0x20 bytes register space. So to get
28its number it is sufficient to shift the lower 16bits to right by five.
29So for the external interrupt 10 we have:
30 0x0140 >> 5 = 10
31
32After the external sources, the internal sources follow. The in core I2C
33controller on the MPC8544 for instance has the internal source number
3427. Oo obtain its interrupt number we take the lower 16bits of its memory
35address (0x5_0560) and shift it right:
36 0x0560 >> 5 = 43
37
38Therefore the I2C device node for the MPC8544 CPU has to have the
39interrupt number 43 specified in the device tree.
40
41[0] MPC8544E PowerQUICCTM III, Integrated Host Processor Family Reference Manual
42 MPC8544ERM Rev. 1 10/2007
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/msi-pic.txt b/Documentation/devicetree/bindings/powerpc/fsl/msi-pic.txt
new file mode 100644
index 000000000000..bcc30bac6831
--- /dev/null
+++ b/Documentation/devicetree/bindings/powerpc/fsl/msi-pic.txt
@@ -0,0 +1,36 @@
1* Freescale MSI interrupt controller
2
3Required properties:
4- compatible : compatible list, contains 2 entries,
5 first is "fsl,CHIP-msi", where CHIP is the processor(mpc8610, mpc8572,
6 etc.) and the second is "fsl,mpic-msi" or "fsl,ipic-msi" depending on
7 the parent type.
8- reg : should contain the address and the length of the shared message
9 interrupt register set.
10- msi-available-ranges: use <start count> style section to define which
11 msi interrupt can be used in the 256 msi interrupts. This property is
12 optional, without this, all the 256 MSI interrupts can be used.
13- interrupts : each one of the interrupts here is one entry per 32 MSIs,
14 and routed to the host interrupt controller. the interrupts should
15 be set as edge sensitive.
16- interrupt-parent: the phandle for the interrupt controller
17 that services interrupts for this device. for 83xx cpu, the interrupts
18 are routed to IPIC, and for 85xx/86xx cpu the interrupts are routed
19 to MPIC.
20
21Example:
22 msi@41600 {
23 compatible = "fsl,mpc8610-msi", "fsl,mpic-msi";
24 reg = <0x41600 0x80>;
25 msi-available-ranges = <0 0x100>;
26 interrupts = <
27 0xe0 0
28 0xe1 0
29 0xe2 0
30 0xe3 0
31 0xe4 0
32 0xe5 0
33 0xe6 0
34 0xe7 0>;
35 interrupt-parent = <&mpic>;
36 };
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/pmc.txt b/Documentation/devicetree/bindings/powerpc/fsl/pmc.txt
new file mode 100644
index 000000000000..07256b7ffcaa
--- /dev/null
+++ b/Documentation/devicetree/bindings/powerpc/fsl/pmc.txt
@@ -0,0 +1,63 @@
1* Power Management Controller
2
3Properties:
4- compatible: "fsl,<chip>-pmc".
5
6 "fsl,mpc8349-pmc" should be listed for any chip whose PMC is
7 compatible. "fsl,mpc8313-pmc" should also be listed for any chip
8 whose PMC is compatible, and implies deep-sleep capability.
9
10 "fsl,mpc8548-pmc" should be listed for any chip whose PMC is
11 compatible. "fsl,mpc8536-pmc" should also be listed for any chip
12 whose PMC is compatible, and implies deep-sleep capability.
13
14 "fsl,mpc8641d-pmc" should be listed for any chip whose PMC is
15 compatible; all statements below that apply to "fsl,mpc8548-pmc" also
16 apply to "fsl,mpc8641d-pmc".
17
18 Compatibility does not include bit assignments in SCCR/PMCDR/DEVDISR; these
19 bit assignments are indicated via the sleep specifier in each device's
20 sleep property.
21
22- reg: For devices compatible with "fsl,mpc8349-pmc", the first resource
23 is the PMC block, and the second resource is the Clock Configuration
24 block.
25
26 For devices compatible with "fsl,mpc8548-pmc", the first resource
27 is a 32-byte block beginning with DEVDISR.
28
29- interrupts: For "fsl,mpc8349-pmc"-compatible devices, the first
30 resource is the PMC block interrupt.
31
32- fsl,mpc8313-wakeup-timer: For "fsl,mpc8313-pmc"-compatible devices,
33 this is a phandle to an "fsl,gtm" node on which timer 4 can be used as
34 a wakeup source from deep sleep.
35
36Sleep specifiers:
37
38 fsl,mpc8349-pmc: Sleep specifiers consist of one cell. For each bit
39 that is set in the cell, the corresponding bit in SCCR will be saved
40 and cleared on suspend, and restored on resume. This sleep controller
41 supports disabling and resuming devices at any time.
42
43 fsl,mpc8536-pmc: Sleep specifiers consist of three cells, the third of
44 which will be ORed into PMCDR upon suspend, and cleared from PMCDR
45 upon resume. The first two cells are as described for fsl,mpc8578-pmc.
46 This sleep controller only supports disabling devices during system
47 sleep, or permanently.
48
49 fsl,mpc8548-pmc: Sleep specifiers consist of one or two cells, the
50 first of which will be ORed into DEVDISR (and the second into
51 DEVDISR2, if present -- this cell should be zero or absent if the
52 hardware does not have DEVDISR2) upon a request for permanent device
53 disabling. This sleep controller does not support configuring devices
54 to disable during system sleep (unless supported by another compatible
55 match), or dynamically.
56
57Example:
58
59 power@b00 {
60 compatible = "fsl,mpc8313-pmc", "fsl,mpc8349-pmc";
61 reg = <0xb00 0x100 0xa00 0x100>;
62 interrupts = <80 8>;
63 };
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/sec.txt b/Documentation/devicetree/bindings/powerpc/fsl/sec.txt
new file mode 100644
index 000000000000..2b6f2d45c45a
--- /dev/null
+++ b/Documentation/devicetree/bindings/powerpc/fsl/sec.txt
@@ -0,0 +1,68 @@
1Freescale SoC SEC Security Engines
2
3Required properties:
4
5- compatible : Should contain entries for this and backward compatible
6 SEC versions, high to low, e.g., "fsl,sec2.1", "fsl,sec2.0"
7- reg : Offset and length of the register set for the device
8- interrupts : the SEC's interrupt number
9- fsl,num-channels : An integer representing the number of channels
10 available.
11- fsl,channel-fifo-len : An integer representing the number of
12 descriptor pointers each channel fetch fifo can hold.
13- fsl,exec-units-mask : The bitmask representing what execution units
14 (EUs) are available. It's a single 32-bit cell. EU information
15 should be encoded following the SEC's Descriptor Header Dword
16 EU_SEL0 field documentation, i.e. as follows:
17
18 bit 0 = reserved - should be 0
19 bit 1 = set if SEC has the ARC4 EU (AFEU)
20 bit 2 = set if SEC has the DES/3DES EU (DEU)
21 bit 3 = set if SEC has the message digest EU (MDEU/MDEU-A)
22 bit 4 = set if SEC has the random number generator EU (RNG)
23 bit 5 = set if SEC has the public key EU (PKEU)
24 bit 6 = set if SEC has the AES EU (AESU)
25 bit 7 = set if SEC has the Kasumi EU (KEU)
26 bit 8 = set if SEC has the CRC EU (CRCU)
27 bit 11 = set if SEC has the message digest EU extended alg set (MDEU-B)
28
29remaining bits are reserved for future SEC EUs.
30
31- fsl,descriptor-types-mask : The bitmask representing what descriptors
32 are available. It's a single 32-bit cell. Descriptor type information
33 should be encoded following the SEC's Descriptor Header Dword DESC_TYPE
34 field documentation, i.e. as follows:
35
36 bit 0 = set if SEC supports the aesu_ctr_nonsnoop desc. type
37 bit 1 = set if SEC supports the ipsec_esp descriptor type
38 bit 2 = set if SEC supports the common_nonsnoop desc. type
39 bit 3 = set if SEC supports the 802.11i AES ccmp desc. type
40 bit 4 = set if SEC supports the hmac_snoop_no_afeu desc. type
41 bit 5 = set if SEC supports the srtp descriptor type
42 bit 6 = set if SEC supports the non_hmac_snoop_no_afeu desc.type
43 bit 7 = set if SEC supports the pkeu_assemble descriptor type
44 bit 8 = set if SEC supports the aesu_key_expand_output desc.type
45 bit 9 = set if SEC supports the pkeu_ptmul descriptor type
46 bit 10 = set if SEC supports the common_nonsnoop_afeu desc. type
47 bit 11 = set if SEC supports the pkeu_ptadd_dbl descriptor type
48
49 ..and so on and so forth.
50
51Optional properties:
52
53- interrupt-parent : the phandle for the interrupt controller that
54 services interrupts for this device.
55
56Example:
57
58 /* MPC8548E */
59 crypto@30000 {
60 compatible = "fsl,sec2.1", "fsl,sec2.0";
61 reg = <0x30000 0x10000>;
62 interrupts = <29 2>;
63 interrupt-parent = <&mpic>;
64 fsl,num-channels = <4>;
65 fsl,channel-fifo-len = <24>;
66 fsl,exec-units-mask = <0xfe>;
67 fsl,descriptor-types-mask = <0x12b0ebf>;
68 };
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/ssi.txt b/Documentation/devicetree/bindings/powerpc/fsl/ssi.txt
new file mode 100644
index 000000000000..5ff76c9c57d2
--- /dev/null
+++ b/Documentation/devicetree/bindings/powerpc/fsl/ssi.txt
@@ -0,0 +1,73 @@
1Freescale Synchronous Serial Interface
2
3The SSI is a serial device that communicates with audio codecs. It can
4be programmed in AC97, I2S, left-justified, or right-justified modes.
5
6Required properties:
7- compatible: Compatible list, contains "fsl,ssi".
8- cell-index: The SSI, <0> = SSI1, <1> = SSI2, and so on.
9- reg: Offset and length of the register set for the device.
10- interrupts: <a b> where a is the interrupt number and b is a
11 field that represents an encoding of the sense and
12 level information for the interrupt. This should be
13 encoded based on the information in section 2)
14 depending on the type of interrupt controller you
15 have.
16- interrupt-parent: The phandle for the interrupt controller that
17 services interrupts for this device.
18- fsl,mode: The operating mode for the SSI interface.
19 "i2s-slave" - I2S mode, SSI is clock slave
20 "i2s-master" - I2S mode, SSI is clock master
21 "lj-slave" - left-justified mode, SSI is clock slave
22 "lj-master" - l.j. mode, SSI is clock master
23 "rj-slave" - right-justified mode, SSI is clock slave
24 "rj-master" - r.j., SSI is clock master
25 "ac97-slave" - AC97 mode, SSI is clock slave
26 "ac97-master" - AC97 mode, SSI is clock master
27- fsl,playback-dma: Phandle to a node for the DMA channel to use for
28 playback of audio. This is typically dictated by SOC
29 design. See the notes below.
30- fsl,capture-dma: Phandle to a node for the DMA channel to use for
31 capture (recording) of audio. This is typically dictated
32 by SOC design. See the notes below.
33- fsl,fifo-depth: The number of elements in the transmit and receive FIFOs.
34 This number is the maximum allowed value for SFCSR[TFWM0].
35- fsl,ssi-asynchronous:
36 If specified, the SSI is to be programmed in asynchronous
37 mode. In this mode, pins SRCK, STCK, SRFS, and STFS must
38 all be connected to valid signals. In synchronous mode,
39 SRCK and SRFS are ignored. Asynchronous mode allows
40 playback and capture to use different sample sizes and
41 sample rates. Some drivers may require that SRCK and STCK
42 be connected together, and SRFS and STFS be connected
43 together. This would still allow different sample sizes,
44 but not different sample rates.
45
46Optional properties:
47- codec-handle: Phandle to a 'codec' node that defines an audio
48 codec connected to this SSI. This node is typically
49 a child of an I2C or other control node.
50
51Child 'codec' node required properties:
52- compatible: Compatible list, contains the name of the codec
53
54Child 'codec' node optional properties:
55- clock-frequency: The frequency of the input clock, which typically comes
56 from an on-board dedicated oscillator.
57
58Notes on fsl,playback-dma and fsl,capture-dma:
59
60On SOCs that have an SSI, specific DMA channels are hard-wired for playback
61and capture. On the MPC8610, for example, SSI1 must use DMA channel 0 for
62playback and DMA channel 1 for capture. SSI2 must use DMA channel 2 for
63playback and DMA channel 3 for capture. The developer can choose which
64DMA controller to use, but the channels themselves are hard-wired. The
65purpose of these two properties is to represent this hardware design.
66
67The device tree nodes for the DMA channels that are referenced by
68"fsl,playback-dma" and "fsl,capture-dma" must be marked as compatible with
69"fsl,ssi-dma-channel". The SOC-specific compatible string (e.g.
70"fsl,mpc8610-dma-channel") can remain. If these nodes are left as
71"fsl,elo-dma-channel" or "fsl,eloplus-dma-channel", then the generic Elo DMA
72drivers (fsldma) will attempt to use them, and it will conflict with the
73sound drivers.
diff --git a/Documentation/devicetree/bindings/powerpc/nintendo/gamecube.txt b/Documentation/devicetree/bindings/powerpc/nintendo/gamecube.txt
new file mode 100644
index 000000000000..b558585b1aaf
--- /dev/null
+++ b/Documentation/devicetree/bindings/powerpc/nintendo/gamecube.txt
@@ -0,0 +1,109 @@
1
2Nintendo GameCube device tree
3=============================
4
51) The "flipper" node
6
7 This node represents the multi-function "Flipper" chip, which packages
8 many of the devices found in the Nintendo GameCube.
9
10 Required properties:
11
12 - compatible : Should be "nintendo,flipper"
13
141.a) The Video Interface (VI) node
15
16 Represents the interface between the graphics processor and a external
17 video encoder.
18
19 Required properties:
20
21 - compatible : should be "nintendo,flipper-vi"
22 - reg : should contain the VI registers location and length
23 - interrupts : should contain the VI interrupt
24
251.b) The Processor Interface (PI) node
26
27 Represents the data and control interface between the main processor
28 and graphics and audio processor.
29
30 Required properties:
31
32 - compatible : should be "nintendo,flipper-pi"
33 - reg : should contain the PI registers location and length
34
351.b.i) The "Flipper" interrupt controller node
36
37 Represents the interrupt controller within the "Flipper" chip.
38 The node for the "Flipper" interrupt controller must be placed under
39 the PI node.
40
41 Required properties:
42
43 - compatible : should be "nintendo,flipper-pic"
44
451.c) The Digital Signal Procesor (DSP) node
46
47 Represents the digital signal processor interface, designed to offload
48 audio related tasks.
49
50 Required properties:
51
52 - compatible : should be "nintendo,flipper-dsp"
53 - reg : should contain the DSP registers location and length
54 - interrupts : should contain the DSP interrupt
55
561.c.i) The Auxiliary RAM (ARAM) node
57
58 Represents the non cpu-addressable ram designed mainly to store audio
59 related information.
60 The ARAM node must be placed under the DSP node.
61
62 Required properties:
63
64 - compatible : should be "nintendo,flipper-aram"
65 - reg : should contain the ARAM start (zero-based) and length
66
671.d) The Disk Interface (DI) node
68
69 Represents the interface used to communicate with mass storage devices.
70
71 Required properties:
72
73 - compatible : should be "nintendo,flipper-di"
74 - reg : should contain the DI registers location and length
75 - interrupts : should contain the DI interrupt
76
771.e) The Audio Interface (AI) node
78
79 Represents the interface to the external 16-bit stereo digital-to-analog
80 converter.
81
82 Required properties:
83
84 - compatible : should be "nintendo,flipper-ai"
85 - reg : should contain the AI registers location and length
86 - interrupts : should contain the AI interrupt
87
881.f) The Serial Interface (SI) node
89
90 Represents the interface to the four single bit serial interfaces.
91 The SI is a proprietary serial interface used normally to control gamepads.
92 It's NOT a RS232-type interface.
93
94 Required properties:
95
96 - compatible : should be "nintendo,flipper-si"
97 - reg : should contain the SI registers location and length
98 - interrupts : should contain the SI interrupt
99
1001.g) The External Interface (EXI) node
101
102 Represents the multi-channel SPI-like interface.
103
104 Required properties:
105
106 - compatible : should be "nintendo,flipper-exi"
107 - reg : should contain the EXI registers location and length
108 - interrupts : should contain the EXI interrupt
109
diff --git a/Documentation/devicetree/bindings/powerpc/nintendo/wii.txt b/Documentation/devicetree/bindings/powerpc/nintendo/wii.txt
new file mode 100644
index 000000000000..a7e155a023b8
--- /dev/null
+++ b/Documentation/devicetree/bindings/powerpc/nintendo/wii.txt
@@ -0,0 +1,184 @@
1
2Nintendo Wii device tree
3========================
4
50) The root node
6
7 This node represents the Nintendo Wii video game console.
8
9 Required properties:
10
11 - model : Should be "nintendo,wii"
12 - compatible : Should be "nintendo,wii"
13
141) The "hollywood" node
15
16 This node represents the multi-function "Hollywood" chip, which packages
17 many of the devices found in the Nintendo Wii.
18
19 Required properties:
20
21 - compatible : Should be "nintendo,hollywood"
22
231.a) The Video Interface (VI) node
24
25 Represents the interface between the graphics processor and a external
26 video encoder.
27
28 Required properties:
29
30 - compatible : should be "nintendo,hollywood-vi","nintendo,flipper-vi"
31 - reg : should contain the VI registers location and length
32 - interrupts : should contain the VI interrupt
33
341.b) The Processor Interface (PI) node
35
36 Represents the data and control interface between the main processor
37 and graphics and audio processor.
38
39 Required properties:
40
41 - compatible : should be "nintendo,hollywood-pi","nintendo,flipper-pi"
42 - reg : should contain the PI registers location and length
43
441.b.i) The "Flipper" interrupt controller node
45
46 Represents the "Flipper" interrupt controller within the "Hollywood" chip.
47 The node for the "Flipper" interrupt controller must be placed under
48 the PI node.
49
50 Required properties:
51
52 - #interrupt-cells : <1>
53 - compatible : should be "nintendo,flipper-pic"
54 - interrupt-controller
55
561.c) The Digital Signal Procesor (DSP) node
57
58 Represents the digital signal processor interface, designed to offload
59 audio related tasks.
60
61 Required properties:
62
63 - compatible : should be "nintendo,hollywood-dsp","nintendo,flipper-dsp"
64 - reg : should contain the DSP registers location and length
65 - interrupts : should contain the DSP interrupt
66
671.d) The Serial Interface (SI) node
68
69 Represents the interface to the four single bit serial interfaces.
70 The SI is a proprietary serial interface used normally to control gamepads.
71 It's NOT a RS232-type interface.
72
73 Required properties:
74
75 - compatible : should be "nintendo,hollywood-si","nintendo,flipper-si"
76 - reg : should contain the SI registers location and length
77 - interrupts : should contain the SI interrupt
78
791.e) The Audio Interface (AI) node
80
81 Represents the interface to the external 16-bit stereo digital-to-analog
82 converter.
83
84 Required properties:
85
86 - compatible : should be "nintendo,hollywood-ai","nintendo,flipper-ai"
87 - reg : should contain the AI registers location and length
88 - interrupts : should contain the AI interrupt
89
901.f) The External Interface (EXI) node
91
92 Represents the multi-channel SPI-like interface.
93
94 Required properties:
95
96 - compatible : should be "nintendo,hollywood-exi","nintendo,flipper-exi"
97 - reg : should contain the EXI registers location and length
98 - interrupts : should contain the EXI interrupt
99
1001.g) The Open Host Controller Interface (OHCI) nodes
101
102 Represent the USB 1.x Open Host Controller Interfaces.
103
104 Required properties:
105
106 - compatible : should be "nintendo,hollywood-usb-ohci","usb-ohci"
107 - reg : should contain the OHCI registers location and length
108 - interrupts : should contain the OHCI interrupt
109
1101.h) The Enhanced Host Controller Interface (EHCI) node
111
112 Represents the USB 2.0 Enhanced Host Controller Interface.
113
114 Required properties:
115
116 - compatible : should be "nintendo,hollywood-usb-ehci","usb-ehci"
117 - reg : should contain the EHCI registers location and length
118 - interrupts : should contain the EHCI interrupt
119
1201.i) The Secure Digital Host Controller Interface (SDHCI) nodes
121
122 Represent the Secure Digital Host Controller Interfaces.
123
124 Required properties:
125
126 - compatible : should be "nintendo,hollywood-sdhci","sdhci"
127 - reg : should contain the SDHCI registers location and length
128 - interrupts : should contain the SDHCI interrupt
129
1301.j) The Inter-Processsor Communication (IPC) node
131
132 Represent the Inter-Processor Communication interface. This interface
133 enables communications between the Broadway and the Starlet processors.
134
135 - compatible : should be "nintendo,hollywood-ipc"
136 - reg : should contain the IPC registers location and length
137 - interrupts : should contain the IPC interrupt
138
1391.k) The "Hollywood" interrupt controller node
140
141 Represents the "Hollywood" interrupt controller within the
142 "Hollywood" chip.
143
144 Required properties:
145
146 - #interrupt-cells : <1>
147 - compatible : should be "nintendo,hollywood-pic"
148 - reg : should contain the controller registers location and length
149 - interrupt-controller
150 - interrupts : should contain the cascade interrupt of the "flipper" pic
151 - interrupt-parent: should contain the phandle of the "flipper" pic
152
1531.l) The General Purpose I/O (GPIO) controller node
154
155 Represents the dual access 32 GPIO controller interface.
156
157 Required properties:
158
159 - #gpio-cells : <2>
160 - compatible : should be "nintendo,hollywood-gpio"
161 - reg : should contain the IPC registers location and length
162 - gpio-controller
163
1641.m) The control node
165
166 Represents the control interface used to setup several miscellaneous
167 settings of the "Hollywood" chip like boot memory mappings, resets,
168 disk interface mode, etc.
169
170 Required properties:
171
172 - compatible : should be "nintendo,hollywood-control"
173 - reg : should contain the control registers location and length
174
1751.n) The Disk Interface (DI) node
176
177 Represents the interface used to communicate with mass storage devices.
178
179 Required properties:
180
181 - compatible : should be "nintendo,hollywood-di"
182 - reg : should contain the DI registers location and length
183 - interrupts : should contain the DI interrupt
184
diff --git a/Documentation/devicetree/bindings/spi/fsl-spi.txt b/Documentation/devicetree/bindings/spi/fsl-spi.txt
new file mode 100644
index 000000000000..777abd7399d5
--- /dev/null
+++ b/Documentation/devicetree/bindings/spi/fsl-spi.txt
@@ -0,0 +1,53 @@
1* SPI (Serial Peripheral Interface)
2
3Required properties:
4- cell-index : QE SPI subblock index.
5 0: QE subblock SPI1
6 1: QE subblock SPI2
7- compatible : should be "fsl,spi".
8- mode : the SPI operation mode, it can be "cpu" or "cpu-qe".
9- reg : Offset and length of the register set for the device
10- interrupts : <a b> where a is the interrupt number and b is a
11 field that represents an encoding of the sense and level
12 information for the interrupt. This should be encoded based on
13 the information in section 2) depending on the type of interrupt
14 controller you have.
15- interrupt-parent : the phandle for the interrupt controller that
16 services interrupts for this device.
17
18Optional properties:
19- gpios : specifies the gpio pins to be used for chipselects.
20 The gpios will be referred to as reg = <index> in the SPI child nodes.
21 If unspecified, a single SPI device without a chip select can be used.
22
23Example:
24 spi@4c0 {
25 cell-index = <0>;
26 compatible = "fsl,spi";
27 reg = <4c0 40>;
28 interrupts = <82 0>;
29 interrupt-parent = <700>;
30 mode = "cpu";
31 gpios = <&gpio 18 1 // device reg=<0>
32 &gpio 19 1>; // device reg=<1>
33 };
34
35
36* eSPI (Enhanced Serial Peripheral Interface)
37
38Required properties:
39- compatible : should be "fsl,mpc8536-espi".
40- reg : Offset and length of the register set for the device.
41- interrupts : should contain eSPI interrupt, the device has one interrupt.
42- fsl,espi-num-chipselects : the number of the chipselect signals.
43
44Example:
45 spi@110000 {
46 #address-cells = <1>;
47 #size-cells = <0>;
48 compatible = "fsl,mpc8536-espi";
49 reg = <0x110000 0x1000>;
50 interrupts = <53 0x2>;
51 interrupt-parent = <&mpic>;
52 fsl,espi-num-chipselects = <4>;
53 };
diff --git a/Documentation/devicetree/bindings/spi/spi-bus.txt b/Documentation/devicetree/bindings/spi/spi-bus.txt
new file mode 100644
index 000000000000..e782add2e457
--- /dev/null
+++ b/Documentation/devicetree/bindings/spi/spi-bus.txt
@@ -0,0 +1,57 @@
1SPI (Serial Peripheral Interface) busses
2
3SPI busses can be described with a node for the SPI master device
4and a set of child nodes for each SPI slave on the bus. For this
5discussion, it is assumed that the system's SPI controller is in
6SPI master mode. This binding does not describe SPI controllers
7in slave mode.
8
9The SPI master node requires the following properties:
10- #address-cells - number of cells required to define a chip select
11 address on the SPI bus.
12- #size-cells - should be zero.
13- compatible - name of SPI bus controller following generic names
14 recommended practice.
15No other properties are required in the SPI bus node. It is assumed
16that a driver for an SPI bus device will understand that it is an SPI bus.
17However, the binding does not attempt to define the specific method for
18assigning chip select numbers. Since SPI chip select configuration is
19flexible and non-standardized, it is left out of this binding with the
20assumption that board specific platform code will be used to manage
21chip selects. Individual drivers can define additional properties to
22support describing the chip select layout.
23
24SPI slave nodes must be children of the SPI master node and can
25contain the following properties.
26- reg - (required) chip select address of device.
27- compatible - (required) name of SPI device following generic names
28 recommended practice
29- spi-max-frequency - (required) Maximum SPI clocking speed of device in Hz
30- spi-cpol - (optional) Empty property indicating device requires
31 inverse clock polarity (CPOL) mode
32- spi-cpha - (optional) Empty property indicating device requires
33 shifted clock phase (CPHA) mode
34- spi-cs-high - (optional) Empty property indicating device requires
35 chip select active high
36
37SPI example for an MPC5200 SPI bus:
38 spi@f00 {
39 #address-cells = <1>;
40 #size-cells = <0>;
41 compatible = "fsl,mpc5200b-spi","fsl,mpc5200-spi";
42 reg = <0xf00 0x20>;
43 interrupts = <2 13 0 2 14 0>;
44 interrupt-parent = <&mpc5200_pic>;
45
46 ethernet-switch@0 {
47 compatible = "micrel,ks8995m";
48 spi-max-frequency = <1000000>;
49 reg = <0>;
50 };
51
52 codec@1 {
53 compatible = "ti,tlv320aic26";
54 spi-max-frequency = <100000>;
55 reg = <1>;
56 };
57 };
diff --git a/Documentation/devicetree/bindings/usb/fsl-usb.txt b/Documentation/devicetree/bindings/usb/fsl-usb.txt
new file mode 100644
index 000000000000..bd5723f0b67e
--- /dev/null
+++ b/Documentation/devicetree/bindings/usb/fsl-usb.txt
@@ -0,0 +1,81 @@
1Freescale SOC USB controllers
2
3The device node for a USB controller that is part of a Freescale
4SOC is as described in the document "Open Firmware Recommended
5Practice : Universal Serial Bus" with the following modifications
6and additions :
7
8Required properties :
9 - compatible : Should be "fsl-usb2-mph" for multi port host USB
10 controllers, or "fsl-usb2-dr" for dual role USB controllers
11 or "fsl,mpc5121-usb2-dr" for dual role USB controllers of MPC5121
12 - phy_type : For multi port host USB controllers, should be one of
13 "ulpi", or "serial". For dual role USB controllers, should be
14 one of "ulpi", "utmi", "utmi_wide", or "serial".
15 - reg : Offset and length of the register set for the device
16 - port0 : boolean; if defined, indicates port0 is connected for
17 fsl-usb2-mph compatible controllers. Either this property or
18 "port1" (or both) must be defined for "fsl-usb2-mph" compatible
19 controllers.
20 - port1 : boolean; if defined, indicates port1 is connected for
21 fsl-usb2-mph compatible controllers. Either this property or
22 "port0" (or both) must be defined for "fsl-usb2-mph" compatible
23 controllers.
24 - dr_mode : indicates the working mode for "fsl-usb2-dr" compatible
25 controllers. Can be "host", "peripheral", or "otg". Default to
26 "host" if not defined for backward compatibility.
27
28Recommended properties :
29 - interrupts : <a b> where a is the interrupt number and b is a
30 field that represents an encoding of the sense and level
31 information for the interrupt. This should be encoded based on
32 the information in section 2) depending on the type of interrupt
33 controller you have.
34 - interrupt-parent : the phandle for the interrupt controller that
35 services interrupts for this device.
36
37Optional properties :
38 - fsl,invert-drvvbus : boolean; for MPC5121 USB0 only. Indicates the
39 port power polarity of internal PHY signal DRVVBUS is inverted.
40 - fsl,invert-pwr-fault : boolean; for MPC5121 USB0 only. Indicates
41 the PWR_FAULT signal polarity is inverted.
42
43Example multi port host USB controller device node :
44 usb@22000 {
45 compatible = "fsl-usb2-mph";
46 reg = <22000 1000>;
47 #address-cells = <1>;
48 #size-cells = <0>;
49 interrupt-parent = <700>;
50 interrupts = <27 1>;
51 phy_type = "ulpi";
52 port0;
53 port1;
54 };
55
56Example dual role USB controller device node :
57 usb@23000 {
58 compatible = "fsl-usb2-dr";
59 reg = <23000 1000>;
60 #address-cells = <1>;
61 #size-cells = <0>;
62 interrupt-parent = <700>;
63 interrupts = <26 1>;
64 dr_mode = "otg";
65 phy = "ulpi";
66 };
67
68Example dual role USB controller device node for MPC5121ADS:
69
70 usb@4000 {
71 compatible = "fsl,mpc5121-usb2-dr";
72 reg = <0x4000 0x1000>;
73 #address-cells = <1>;
74 #size-cells = <0>;
75 interrupt-parent = < &ipic >;
76 interrupts = <44 0x8>;
77 dr_mode = "otg";
78 phy_type = "utmi_wide";
79 fsl,invert-drvvbus;
80 fsl,invert-pwr-fault;
81 };
diff --git a/Documentation/devicetree/bindings/usb/usb-ehci.txt b/Documentation/devicetree/bindings/usb/usb-ehci.txt
new file mode 100644
index 000000000000..fa18612f757b
--- /dev/null
+++ b/Documentation/devicetree/bindings/usb/usb-ehci.txt
@@ -0,0 +1,25 @@
1USB EHCI controllers
2
3Required properties:
4 - compatible : should be "usb-ehci".
5 - reg : should contain at least address and length of the standard EHCI
6 register set for the device. Optional platform-dependent registers
7 (debug-port or other) can be also specified here, but only after
8 definition of standard EHCI registers.
9 - interrupts : one EHCI interrupt should be described here.
10If device registers are implemented in big endian mode, the device
11node should have "big-endian-regs" property.
12If controller implementation operates with big endian descriptors,
13"big-endian-desc" property should be specified.
14If both big endian registers and descriptors are used by the controller
15implementation, "big-endian" property can be specified instead of having
16both "big-endian-regs" and "big-endian-desc".
17
18Example (Sequoia 440EPx):
19 ehci@e0000300 {
20 compatible = "ibm,usb-ehci-440epx", "usb-ehci";
21 interrupt-parent = <&UIC0>;
22 interrupts = <1a 4>;
23 reg = <0 e0000300 90 0 e0000390 70>;
24 big-endian;
25 };
diff --git a/Documentation/devicetree/bindings/xilinx.txt b/Documentation/devicetree/bindings/xilinx.txt
new file mode 100644
index 000000000000..299d0923537b
--- /dev/null
+++ b/Documentation/devicetree/bindings/xilinx.txt
@@ -0,0 +1,306 @@
1 d) Xilinx IP cores
2
3 The Xilinx EDK toolchain ships with a set of IP cores (devices) for use
4 in Xilinx Spartan and Virtex FPGAs. The devices cover the whole range
5 of standard device types (network, serial, etc.) and miscellaneous
6 devices (gpio, LCD, spi, etc). Also, since these devices are
7 implemented within the fpga fabric every instance of the device can be
8 synthesised with different options that change the behaviour.
9
10 Each IP-core has a set of parameters which the FPGA designer can use to
11 control how the core is synthesized. Historically, the EDK tool would
12 extract the device parameters relevant to device drivers and copy them
13 into an 'xparameters.h' in the form of #define symbols. This tells the
14 device drivers how the IP cores are configured, but it requires the kernel
15 to be recompiled every time the FPGA bitstream is resynthesized.
16
17 The new approach is to export the parameters into the device tree and
18 generate a new device tree each time the FPGA bitstream changes. The
19 parameters which used to be exported as #defines will now become
20 properties of the device node. In general, device nodes for IP-cores
21 will take the following form:
22
23 (name): (generic-name)@(base-address) {
24 compatible = "xlnx,(ip-core-name)-(HW_VER)"
25 [, (list of compatible devices), ...];
26 reg = <(baseaddr) (size)>;
27 interrupt-parent = <&interrupt-controller-phandle>;
28 interrupts = < ... >;
29 xlnx,(parameter1) = "(string-value)";
30 xlnx,(parameter2) = <(int-value)>;
31 };
32
33 (generic-name): an open firmware-style name that describes the
34 generic class of device. Preferably, this is one word, such
35 as 'serial' or 'ethernet'.
36 (ip-core-name): the name of the ip block (given after the BEGIN
37 directive in system.mhs). Should be in lowercase
38 and all underscores '_' converted to dashes '-'.
39 (name): is derived from the "PARAMETER INSTANCE" value.
40 (parameter#): C_* parameters from system.mhs. The C_ prefix is
41 dropped from the parameter name, the name is converted
42 to lowercase and all underscore '_' characters are
43 converted to dashes '-'.
44 (baseaddr): the baseaddr parameter value (often named C_BASEADDR).
45 (HW_VER): from the HW_VER parameter.
46 (size): the address range size (often C_HIGHADDR - C_BASEADDR + 1).
47
48 Typically, the compatible list will include the exact IP core version
49 followed by an older IP core version which implements the same
50 interface or any other device with the same interface.
51
52 'reg', 'interrupt-parent' and 'interrupts' are all optional properties.
53
54 For example, the following block from system.mhs:
55
56 BEGIN opb_uartlite
57 PARAMETER INSTANCE = opb_uartlite_0
58 PARAMETER HW_VER = 1.00.b
59 PARAMETER C_BAUDRATE = 115200
60 PARAMETER C_DATA_BITS = 8
61 PARAMETER C_ODD_PARITY = 0
62 PARAMETER C_USE_PARITY = 0
63 PARAMETER C_CLK_FREQ = 50000000
64 PARAMETER C_BASEADDR = 0xEC100000
65 PARAMETER C_HIGHADDR = 0xEC10FFFF
66 BUS_INTERFACE SOPB = opb_7
67 PORT OPB_Clk = CLK_50MHz
68 PORT Interrupt = opb_uartlite_0_Interrupt
69 PORT RX = opb_uartlite_0_RX
70 PORT TX = opb_uartlite_0_TX
71 PORT OPB_Rst = sys_bus_reset_0
72 END
73
74 becomes the following device tree node:
75
76 opb_uartlite_0: serial@ec100000 {
77 device_type = "serial";
78 compatible = "xlnx,opb-uartlite-1.00.b";
79 reg = <ec100000 10000>;
80 interrupt-parent = <&opb_intc_0>;
81 interrupts = <1 0>; // got this from the opb_intc parameters
82 current-speed = <d#115200>; // standard serial device prop
83 clock-frequency = <d#50000000>; // standard serial device prop
84 xlnx,data-bits = <8>;
85 xlnx,odd-parity = <0>;
86 xlnx,use-parity = <0>;
87 };
88
89 Some IP cores actually implement 2 or more logical devices. In
90 this case, the device should still describe the whole IP core with
91 a single node and add a child node for each logical device. The
92 ranges property can be used to translate from parent IP-core to the
93 registers of each device. In addition, the parent node should be
94 compatible with the bus type 'xlnx,compound', and should contain
95 #address-cells and #size-cells, as with any other bus. (Note: this
96 makes the assumption that both logical devices have the same bus
97 binding. If this is not true, then separate nodes should be used
98 for each logical device). The 'cell-index' property can be used to
99 enumerate logical devices within an IP core. For example, the
100 following is the system.mhs entry for the dual ps2 controller found
101 on the ml403 reference design.
102
103 BEGIN opb_ps2_dual_ref
104 PARAMETER INSTANCE = opb_ps2_dual_ref_0
105 PARAMETER HW_VER = 1.00.a
106 PARAMETER C_BASEADDR = 0xA9000000
107 PARAMETER C_HIGHADDR = 0xA9001FFF
108 BUS_INTERFACE SOPB = opb_v20_0
109 PORT Sys_Intr1 = ps2_1_intr
110 PORT Sys_Intr2 = ps2_2_intr
111 PORT Clkin1 = ps2_clk_rx_1
112 PORT Clkin2 = ps2_clk_rx_2
113 PORT Clkpd1 = ps2_clk_tx_1
114 PORT Clkpd2 = ps2_clk_tx_2
115 PORT Rx1 = ps2_d_rx_1
116 PORT Rx2 = ps2_d_rx_2
117 PORT Txpd1 = ps2_d_tx_1
118 PORT Txpd2 = ps2_d_tx_2
119 END
120
121 It would result in the following device tree nodes:
122
123 opb_ps2_dual_ref_0: opb-ps2-dual-ref@a9000000 {
124 #address-cells = <1>;
125 #size-cells = <1>;
126 compatible = "xlnx,compound";
127 ranges = <0 a9000000 2000>;
128 // If this device had extra parameters, then they would
129 // go here.
130 ps2@0 {
131 compatible = "xlnx,opb-ps2-dual-ref-1.00.a";
132 reg = <0 40>;
133 interrupt-parent = <&opb_intc_0>;
134 interrupts = <3 0>;
135 cell-index = <0>;
136 };
137 ps2@1000 {
138 compatible = "xlnx,opb-ps2-dual-ref-1.00.a";
139 reg = <1000 40>;
140 interrupt-parent = <&opb_intc_0>;
141 interrupts = <3 0>;
142 cell-index = <0>;
143 };
144 };
145
146 Also, the system.mhs file defines bus attachments from the processor
147 to the devices. The device tree structure should reflect the bus
148 attachments. Again an example; this system.mhs fragment:
149
150 BEGIN ppc405_virtex4
151 PARAMETER INSTANCE = ppc405_0
152 PARAMETER HW_VER = 1.01.a
153 BUS_INTERFACE DPLB = plb_v34_0
154 BUS_INTERFACE IPLB = plb_v34_0
155 END
156
157 BEGIN opb_intc
158 PARAMETER INSTANCE = opb_intc_0
159 PARAMETER HW_VER = 1.00.c
160 PARAMETER C_BASEADDR = 0xD1000FC0
161 PARAMETER C_HIGHADDR = 0xD1000FDF
162 BUS_INTERFACE SOPB = opb_v20_0
163 END
164
165 BEGIN opb_uart16550
166 PARAMETER INSTANCE = opb_uart16550_0
167 PARAMETER HW_VER = 1.00.d
168 PARAMETER C_BASEADDR = 0xa0000000
169 PARAMETER C_HIGHADDR = 0xa0001FFF
170 BUS_INTERFACE SOPB = opb_v20_0
171 END
172
173 BEGIN plb_v34
174 PARAMETER INSTANCE = plb_v34_0
175 PARAMETER HW_VER = 1.02.a
176 END
177
178 BEGIN plb_bram_if_cntlr
179 PARAMETER INSTANCE = plb_bram_if_cntlr_0
180 PARAMETER HW_VER = 1.00.b
181 PARAMETER C_BASEADDR = 0xFFFF0000
182 PARAMETER C_HIGHADDR = 0xFFFFFFFF
183 BUS_INTERFACE SPLB = plb_v34_0
184 END
185
186 BEGIN plb2opb_bridge
187 PARAMETER INSTANCE = plb2opb_bridge_0
188 PARAMETER HW_VER = 1.01.a
189 PARAMETER C_RNG0_BASEADDR = 0x20000000
190 PARAMETER C_RNG0_HIGHADDR = 0x3FFFFFFF
191 PARAMETER C_RNG1_BASEADDR = 0x60000000
192 PARAMETER C_RNG1_HIGHADDR = 0x7FFFFFFF
193 PARAMETER C_RNG2_BASEADDR = 0x80000000
194 PARAMETER C_RNG2_HIGHADDR = 0xBFFFFFFF
195 PARAMETER C_RNG3_BASEADDR = 0xC0000000
196 PARAMETER C_RNG3_HIGHADDR = 0xDFFFFFFF
197 BUS_INTERFACE SPLB = plb_v34_0
198 BUS_INTERFACE MOPB = opb_v20_0
199 END
200
201 Gives this device tree (some properties removed for clarity):
202
203 plb@0 {
204 #address-cells = <1>;
205 #size-cells = <1>;
206 compatible = "xlnx,plb-v34-1.02.a";
207 device_type = "ibm,plb";
208 ranges; // 1:1 translation
209
210 plb_bram_if_cntrl_0: bram@ffff0000 {
211 reg = <ffff0000 10000>;
212 }
213
214 opb@20000000 {
215 #address-cells = <1>;
216 #size-cells = <1>;
217 ranges = <20000000 20000000 20000000
218 60000000 60000000 20000000
219 80000000 80000000 40000000
220 c0000000 c0000000 20000000>;
221
222 opb_uart16550_0: serial@a0000000 {
223 reg = <a00000000 2000>;
224 };
225
226 opb_intc_0: interrupt-controller@d1000fc0 {
227 reg = <d1000fc0 20>;
228 };
229 };
230 };
231
232 That covers the general approach to binding xilinx IP cores into the
233 device tree. The following are bindings for specific devices:
234
235 i) Xilinx ML300 Framebuffer
236
237 Simple framebuffer device from the ML300 reference design (also on the
238 ML403 reference design as well as others).
239
240 Optional properties:
241 - resolution = <xres yres> : pixel resolution of framebuffer. Some
242 implementations use a different resolution.
243 Default is <d#640 d#480>
244 - virt-resolution = <xvirt yvirt> : Size of framebuffer in memory.
245 Default is <d#1024 d#480>.
246 - rotate-display (empty) : rotate display 180 degrees.
247
248 ii) Xilinx SystemACE
249
250 The Xilinx SystemACE device is used to program FPGAs from an FPGA
251 bitstream stored on a CF card. It can also be used as a generic CF
252 interface device.
253
254 Optional properties:
255 - 8-bit (empty) : Set this property for SystemACE in 8 bit mode
256
257 iii) Xilinx EMAC and Xilinx TEMAC
258
259 Xilinx Ethernet devices. In addition to general xilinx properties
260 listed above, nodes for these devices should include a phy-handle
261 property, and may include other common network device properties
262 like local-mac-address.
263
264 iv) Xilinx Uartlite
265
266 Xilinx uartlite devices are simple fixed speed serial ports.
267
268 Required properties:
269 - current-speed : Baud rate of uartlite
270
271 v) Xilinx hwicap
272
273 Xilinx hwicap devices provide access to the configuration logic
274 of the FPGA through the Internal Configuration Access Port
275 (ICAP). The ICAP enables partial reconfiguration of the FPGA,
276 readback of the configuration information, and some control over
277 'warm boots' of the FPGA fabric.
278
279 Required properties:
280 - xlnx,family : The family of the FPGA, necessary since the
281 capabilities of the underlying ICAP hardware
282 differ between different families. May be
283 'virtex2p', 'virtex4', or 'virtex5'.
284
285 vi) Xilinx Uart 16550
286
287 Xilinx UART 16550 devices are very similar to the NS16550 but with
288 different register spacing and an offset from the base address.
289
290 Required properties:
291 - clock-frequency : Frequency of the clock input
292 - reg-offset : A value of 3 is required
293 - reg-shift : A value of 2 is required
294
295 vii) Xilinx USB Host controller
296
297 The Xilinx USB host controller is EHCI compatible but with a different
298 base address for the EHCI registers, and it is always a big-endian
299 USB Host controller. The hardware can be configured as high speed only,
300 or high speed/full speed hybrid.
301
302 Required properties:
303 - xlnx,support-usb-fs: A value 0 means the core is built as high speed
304 only. A value 1 means the core also supports
305 full speed devices.
306
diff --git a/Documentation/devicetree/booting-without-of.txt b/Documentation/devicetree/booting-without-of.txt
new file mode 100644
index 000000000000..7400d7555dc3
--- /dev/null
+++ b/Documentation/devicetree/booting-without-of.txt
@@ -0,0 +1,1447 @@
1 Booting the Linux/ppc kernel without Open Firmware
2 --------------------------------------------------
3
4(c) 2005 Benjamin Herrenschmidt <benh at kernel.crashing.org>,
5 IBM Corp.
6(c) 2005 Becky Bruce <becky.bruce at freescale.com>,
7 Freescale Semiconductor, FSL SOC and 32-bit additions
8(c) 2006 MontaVista Software, Inc.
9 Flash chip node definition
10
11Table of Contents
12=================
13
14 I - Introduction
15 1) Entry point for arch/powerpc
16 2) Board support
17
18 II - The DT block format
19 1) Header
20 2) Device tree generalities
21 3) Device tree "structure" block
22 4) Device tree "strings" block
23
24 III - Required content of the device tree
25 1) Note about cells and address representation
26 2) Note about "compatible" properties
27 3) Note about "name" properties
28 4) Note about node and property names and character set
29 5) Required nodes and properties
30 a) The root node
31 b) The /cpus node
32 c) The /cpus/* nodes
33 d) the /memory node(s)
34 e) The /chosen node
35 f) the /soc<SOCname> node
36
37 IV - "dtc", the device tree compiler
38
39 V - Recommendations for a bootloader
40
41 VI - System-on-a-chip devices and nodes
42 1) Defining child nodes of an SOC
43 2) Representing devices without a current OF specification
44 a) PHY nodes
45 b) Interrupt controllers
46 c) 4xx/Axon EMAC ethernet nodes
47 d) Xilinx IP cores
48 e) USB EHCI controllers
49 f) MDIO on GPIOs
50 g) SPI busses
51
52 VII - Specifying interrupt information for devices
53 1) interrupts property
54 2) interrupt-parent property
55 3) OpenPIC Interrupt Controllers
56 4) ISA Interrupt Controllers
57
58 VIII - Specifying device power management information (sleep property)
59
60 Appendix A - Sample SOC node for MPC8540
61
62
63Revision Information
64====================
65
66 May 18, 2005: Rev 0.1 - Initial draft, no chapter III yet.
67
68 May 19, 2005: Rev 0.2 - Add chapter III and bits & pieces here or
69 clarifies the fact that a lot of things are
70 optional, the kernel only requires a very
71 small device tree, though it is encouraged
72 to provide an as complete one as possible.
73
74 May 24, 2005: Rev 0.3 - Precise that DT block has to be in RAM
75 - Misc fixes
76 - Define version 3 and new format version 16
77 for the DT block (version 16 needs kernel
78 patches, will be fwd separately).
79 String block now has a size, and full path
80 is replaced by unit name for more
81 compactness.
82 linux,phandle is made optional, only nodes
83 that are referenced by other nodes need it.
84 "name" property is now automatically
85 deduced from the unit name
86
87 June 1, 2005: Rev 0.4 - Correct confusion between OF_DT_END and
88 OF_DT_END_NODE in structure definition.
89 - Change version 16 format to always align
90 property data to 4 bytes. Since tokens are
91 already aligned, that means no specific
92 required alignment between property size
93 and property data. The old style variable
94 alignment would make it impossible to do
95 "simple" insertion of properties using
96 memmove (thanks Milton for
97 noticing). Updated kernel patch as well
98 - Correct a few more alignment constraints
99 - Add a chapter about the device-tree
100 compiler and the textural representation of
101 the tree that can be "compiled" by dtc.
102
103 November 21, 2005: Rev 0.5
104 - Additions/generalizations for 32-bit
105 - Changed to reflect the new arch/powerpc
106 structure
107 - Added chapter VI
108
109
110 ToDo:
111 - Add some definitions of interrupt tree (simple/complex)
112 - Add some definitions for PCI host bridges
113 - Add some common address format examples
114 - Add definitions for standard properties and "compatible"
115 names for cells that are not already defined by the existing
116 OF spec.
117 - Compare FSL SOC use of PCI to standard and make sure no new
118 node definition required.
119 - Add more information about node definitions for SOC devices
120 that currently have no standard, like the FSL CPM.
121
122
123I - Introduction
124================
125
126During the recent development of the Linux/ppc64 kernel, and more
127specifically, the addition of new platform types outside of the old
128IBM pSeries/iSeries pair, it was decided to enforce some strict rules
129regarding the kernel entry and bootloader <-> kernel interfaces, in
130order to avoid the degeneration that had become the ppc32 kernel entry
131point and the way a new platform should be added to the kernel. The
132legacy iSeries platform breaks those rules as it predates this scheme,
133but no new board support will be accepted in the main tree that
134doesn't follow them properly. In addition, since the advent of the
135arch/powerpc merged architecture for ppc32 and ppc64, new 32-bit
136platforms and 32-bit platforms which move into arch/powerpc will be
137required to use these rules as well.
138
139The main requirement that will be defined in more detail below is
140the presence of a device-tree whose format is defined after Open
141Firmware specification. However, in order to make life easier
142to embedded board vendors, the kernel doesn't require the device-tree
143to represent every device in the system and only requires some nodes
144and properties to be present. This will be described in detail in
145section III, but, for example, the kernel does not require you to
146create a node for every PCI device in the system. It is a requirement
147to have a node for PCI host bridges in order to provide interrupt
148routing informations and memory/IO ranges, among others. It is also
149recommended to define nodes for on chip devices and other busses that
150don't specifically fit in an existing OF specification. This creates a
151great flexibility in the way the kernel can then probe those and match
152drivers to device, without having to hard code all sorts of tables. It
153also makes it more flexible for board vendors to do minor hardware
154upgrades without significantly impacting the kernel code or cluttering
155it with special cases.
156
157
1581) Entry point for arch/powerpc
159-------------------------------
160
161 There is one and one single entry point to the kernel, at the start
162 of the kernel image. That entry point supports two calling
163 conventions:
164
165 a) Boot from Open Firmware. If your firmware is compatible
166 with Open Firmware (IEEE 1275) or provides an OF compatible
167 client interface API (support for "interpret" callback of
168 forth words isn't required), you can enter the kernel with:
169
170 r5 : OF callback pointer as defined by IEEE 1275
171 bindings to powerpc. Only the 32-bit client interface
172 is currently supported
173
174 r3, r4 : address & length of an initrd if any or 0
175
176 The MMU is either on or off; the kernel will run the
177 trampoline located in arch/powerpc/kernel/prom_init.c to
178 extract the device-tree and other information from open
179 firmware and build a flattened device-tree as described
180 in b). prom_init() will then re-enter the kernel using
181 the second method. This trampoline code runs in the
182 context of the firmware, which is supposed to handle all
183 exceptions during that time.
184
185 b) Direct entry with a flattened device-tree block. This entry
186 point is called by a) after the OF trampoline and can also be
187 called directly by a bootloader that does not support the Open
188 Firmware client interface. It is also used by "kexec" to
189 implement "hot" booting of a new kernel from a previous
190 running one. This method is what I will describe in more
191 details in this document, as method a) is simply standard Open
192 Firmware, and thus should be implemented according to the
193 various standard documents defining it and its binding to the
194 PowerPC platform. The entry point definition then becomes:
195
196 r3 : physical pointer to the device-tree block
197 (defined in chapter II) in RAM
198
199 r4 : physical pointer to the kernel itself. This is
200 used by the assembly code to properly disable the MMU
201 in case you are entering the kernel with MMU enabled
202 and a non-1:1 mapping.
203
204 r5 : NULL (as to differentiate with method a)
205
206 Note about SMP entry: Either your firmware puts your other
207 CPUs in some sleep loop or spin loop in ROM where you can get
208 them out via a soft reset or some other means, in which case
209 you don't need to care, or you'll have to enter the kernel
210 with all CPUs. The way to do that with method b) will be
211 described in a later revision of this document.
212
213
2142) Board support
215----------------
216
21764-bit kernels:
218
219 Board supports (platforms) are not exclusive config options. An
220 arbitrary set of board supports can be built in a single kernel
221 image. The kernel will "know" what set of functions to use for a
222 given platform based on the content of the device-tree. Thus, you
223 should:
224
225 a) add your platform support as a _boolean_ option in
226 arch/powerpc/Kconfig, following the example of PPC_PSERIES,
227 PPC_PMAC and PPC_MAPLE. The later is probably a good
228 example of a board support to start from.
229
230 b) create your main platform file as
231 "arch/powerpc/platforms/myplatform/myboard_setup.c" and add it
232 to the Makefile under the condition of your CONFIG_
233 option. This file will define a structure of type "ppc_md"
234 containing the various callbacks that the generic code will
235 use to get to your platform specific code
236
237 c) Add a reference to your "ppc_md" structure in the
238 "machines" table in arch/powerpc/kernel/setup_64.c if you are
239 a 64-bit platform.
240
241 d) request and get assigned a platform number (see PLATFORM_*
242 constants in arch/powerpc/include/asm/processor.h
243
24432-bit embedded kernels:
245
246 Currently, board support is essentially an exclusive config option.
247 The kernel is configured for a single platform. Part of the reason
248 for this is to keep kernels on embedded systems small and efficient;
249 part of this is due to the fact the code is already that way. In the
250 future, a kernel may support multiple platforms, but only if the
251 platforms feature the same core architecture. A single kernel build
252 cannot support both configurations with Book E and configurations
253 with classic Powerpc architectures.
254
255 32-bit embedded platforms that are moved into arch/powerpc using a
256 flattened device tree should adopt the merged tree practice of
257 setting ppc_md up dynamically, even though the kernel is currently
258 built with support for only a single platform at a time. This allows
259 unification of the setup code, and will make it easier to go to a
260 multiple-platform-support model in the future.
261
262NOTE: I believe the above will be true once Ben's done with the merge
263of the boot sequences.... someone speak up if this is wrong!
264
265 To add a 32-bit embedded platform support, follow the instructions
266 for 64-bit platforms above, with the exception that the Kconfig
267 option should be set up such that the kernel builds exclusively for
268 the platform selected. The processor type for the platform should
269 enable another config option to select the specific board
270 supported.
271
272NOTE: If Ben doesn't merge the setup files, may need to change this to
273point to setup_32.c
274
275
276 I will describe later the boot process and various callbacks that
277 your platform should implement.
278
279
280II - The DT block format
281========================
282
283
284This chapter defines the actual format of the flattened device-tree
285passed to the kernel. The actual content of it and kernel requirements
286are described later. You can find example of code manipulating that
287format in various places, including arch/powerpc/kernel/prom_init.c
288which will generate a flattened device-tree from the Open Firmware
289representation, or the fs2dt utility which is part of the kexec tools
290which will generate one from a filesystem representation. It is
291expected that a bootloader like uboot provides a bit more support,
292that will be discussed later as well.
293
294Note: The block has to be in main memory. It has to be accessible in
295both real mode and virtual mode with no mapping other than main
296memory. If you are writing a simple flash bootloader, it should copy
297the block to RAM before passing it to the kernel.
298
299
3001) Header
301---------
302
303 The kernel is entered with r3 pointing to an area of memory that is
304 roughly described in arch/powerpc/include/asm/prom.h by the structure
305 boot_param_header:
306
307struct boot_param_header {
308 u32 magic; /* magic word OF_DT_HEADER */
309 u32 totalsize; /* total size of DT block */
310 u32 off_dt_struct; /* offset to structure */
311 u32 off_dt_strings; /* offset to strings */
312 u32 off_mem_rsvmap; /* offset to memory reserve map
313 */
314 u32 version; /* format version */
315 u32 last_comp_version; /* last compatible version */
316
317 /* version 2 fields below */
318 u32 boot_cpuid_phys; /* Which physical CPU id we're
319 booting on */
320 /* version 3 fields below */
321 u32 size_dt_strings; /* size of the strings block */
322
323 /* version 17 fields below */
324 u32 size_dt_struct; /* size of the DT structure block */
325};
326
327 Along with the constants:
328
329/* Definitions used by the flattened device tree */
330#define OF_DT_HEADER 0xd00dfeed /* 4: version,
331 4: total size */
332#define OF_DT_BEGIN_NODE 0x1 /* Start node: full name
333 */
334#define OF_DT_END_NODE 0x2 /* End node */
335#define OF_DT_PROP 0x3 /* Property: name off,
336 size, content */
337#define OF_DT_END 0x9
338
339 All values in this header are in big endian format, the various
340 fields in this header are defined more precisely below. All
341 "offset" values are in bytes from the start of the header; that is
342 from the value of r3.
343
344 - magic
345
346 This is a magic value that "marks" the beginning of the
347 device-tree block header. It contains the value 0xd00dfeed and is
348 defined by the constant OF_DT_HEADER
349
350 - totalsize
351
352 This is the total size of the DT block including the header. The
353 "DT" block should enclose all data structures defined in this
354 chapter (who are pointed to by offsets in this header). That is,
355 the device-tree structure, strings, and the memory reserve map.
356
357 - off_dt_struct
358
359 This is an offset from the beginning of the header to the start
360 of the "structure" part the device tree. (see 2) device tree)
361
362 - off_dt_strings
363
364 This is an offset from the beginning of the header to the start
365 of the "strings" part of the device-tree
366
367 - off_mem_rsvmap
368
369 This is an offset from the beginning of the header to the start
370 of the reserved memory map. This map is a list of pairs of 64-
371 bit integers. Each pair is a physical address and a size. The
372 list is terminated by an entry of size 0. This map provides the
373 kernel with a list of physical memory areas that are "reserved"
374 and thus not to be used for memory allocations, especially during
375 early initialization. The kernel needs to allocate memory during
376 boot for things like un-flattening the device-tree, allocating an
377 MMU hash table, etc... Those allocations must be done in such a
378 way to avoid overriding critical things like, on Open Firmware
379 capable machines, the RTAS instance, or on some pSeries, the TCE
380 tables used for the iommu. Typically, the reserve map should
381 contain _at least_ this DT block itself (header,total_size). If
382 you are passing an initrd to the kernel, you should reserve it as
383 well. You do not need to reserve the kernel image itself. The map
384 should be 64-bit aligned.
385
386 - version
387
388 This is the version of this structure. Version 1 stops
389 here. Version 2 adds an additional field boot_cpuid_phys.
390 Version 3 adds the size of the strings block, allowing the kernel
391 to reallocate it easily at boot and free up the unused flattened
392 structure after expansion. Version 16 introduces a new more
393 "compact" format for the tree itself that is however not backward
394 compatible. Version 17 adds an additional field, size_dt_struct,
395 allowing it to be reallocated or moved more easily (this is
396 particularly useful for bootloaders which need to make
397 adjustments to a device tree based on probed information). You
398 should always generate a structure of the highest version defined
399 at the time of your implementation. Currently that is version 17,
400 unless you explicitly aim at being backward compatible.
401
402 - last_comp_version
403
404 Last compatible version. This indicates down to what version of
405 the DT block you are backward compatible. For example, version 2
406 is backward compatible with version 1 (that is, a kernel build
407 for version 1 will be able to boot with a version 2 format). You
408 should put a 1 in this field if you generate a device tree of
409 version 1 to 3, or 16 if you generate a tree of version 16 or 17
410 using the new unit name format.
411
412 - boot_cpuid_phys
413
414 This field only exist on version 2 headers. It indicate which
415 physical CPU ID is calling the kernel entry point. This is used,
416 among others, by kexec. If you are on an SMP system, this value
417 should match the content of the "reg" property of the CPU node in
418 the device-tree corresponding to the CPU calling the kernel entry
419 point (see further chapters for more informations on the required
420 device-tree contents)
421
422 - size_dt_strings
423
424 This field only exists on version 3 and later headers. It
425 gives the size of the "strings" section of the device tree (which
426 starts at the offset given by off_dt_strings).
427
428 - size_dt_struct
429
430 This field only exists on version 17 and later headers. It gives
431 the size of the "structure" section of the device tree (which
432 starts at the offset given by off_dt_struct).
433
434 So the typical layout of a DT block (though the various parts don't
435 need to be in that order) looks like this (addresses go from top to
436 bottom):
437
438
439 ------------------------------
440 r3 -> | struct boot_param_header |
441 ------------------------------
442 | (alignment gap) (*) |
443 ------------------------------
444 | memory reserve map |
445 ------------------------------
446 | (alignment gap) |
447 ------------------------------
448 | |
449 | device-tree structure |
450 | |
451 ------------------------------
452 | (alignment gap) |
453 ------------------------------
454 | |
455 | device-tree strings |
456 | |
457 -----> ------------------------------
458 |
459 |
460 --- (r3 + totalsize)
461
462 (*) The alignment gaps are not necessarily present; their presence
463 and size are dependent on the various alignment requirements of
464 the individual data blocks.
465
466
4672) Device tree generalities
468---------------------------
469
470This device-tree itself is separated in two different blocks, a
471structure block and a strings block. Both need to be aligned to a 4
472byte boundary.
473
474First, let's quickly describe the device-tree concept before detailing
475the storage format. This chapter does _not_ describe the detail of the
476required types of nodes & properties for the kernel, this is done
477later in chapter III.
478
479The device-tree layout is strongly inherited from the definition of
480the Open Firmware IEEE 1275 device-tree. It's basically a tree of
481nodes, each node having two or more named properties. A property can
482have a value or not.
483
484It is a tree, so each node has one and only one parent except for the
485root node who has no parent.
486
487A node has 2 names. The actual node name is generally contained in a
488property of type "name" in the node property list whose value is a
489zero terminated string and is mandatory for version 1 to 3 of the
490format definition (as it is in Open Firmware). Version 16 makes it
491optional as it can generate it from the unit name defined below.
492
493There is also a "unit name" that is used to differentiate nodes with
494the same name at the same level, it is usually made of the node
495names, the "@" sign, and a "unit address", which definition is
496specific to the bus type the node sits on.
497
498The unit name doesn't exist as a property per-se but is included in
499the device-tree structure. It is typically used to represent "path" in
500the device-tree. More details about the actual format of these will be
501below.
502
503The kernel powerpc generic code does not make any formal use of the
504unit address (though some board support code may do) so the only real
505requirement here for the unit address is to ensure uniqueness of
506the node unit name at a given level of the tree. Nodes with no notion
507of address and no possible sibling of the same name (like /memory or
508/cpus) may omit the unit address in the context of this specification,
509or use the "@0" default unit address. The unit name is used to define
510a node "full path", which is the concatenation of all parent node
511unit names separated with "/".
512
513The root node doesn't have a defined name, and isn't required to have
514a name property either if you are using version 3 or earlier of the
515format. It also has no unit address (no @ symbol followed by a unit
516address). The root node unit name is thus an empty string. The full
517path to the root node is "/".
518
519Every node which actually represents an actual device (that is, a node
520which isn't only a virtual "container" for more nodes, like "/cpus"
521is) is also required to have a "device_type" property indicating the
522type of node .
523
524Finally, every node that can be referenced from a property in another
525node is required to have a "linux,phandle" property. Real open
526firmware implementations provide a unique "phandle" value for every
527node that the "prom_init()" trampoline code turns into
528"linux,phandle" properties. However, this is made optional if the
529flattened device tree is used directly. An example of a node
530referencing another node via "phandle" is when laying out the
531interrupt tree which will be described in a further version of this
532document.
533
534This "linux, phandle" property is a 32-bit value that uniquely
535identifies a node. You are free to use whatever values or system of
536values, internal pointers, or whatever to generate these, the only
537requirement is that every node for which you provide that property has
538a unique value for it.
539
540Here is an example of a simple device-tree. In this example, an "o"
541designates a node followed by the node unit name. Properties are
542presented with their name followed by their content. "content"
543represents an ASCII string (zero terminated) value, while <content>
544represents a 32-bit hexadecimal value. The various nodes in this
545example will be discussed in a later chapter. At this point, it is
546only meant to give you a idea of what a device-tree looks like. I have
547purposefully kept the "name" and "linux,phandle" properties which
548aren't necessary in order to give you a better idea of what the tree
549looks like in practice.
550
551 / o device-tree
552 |- name = "device-tree"
553 |- model = "MyBoardName"
554 |- compatible = "MyBoardFamilyName"
555 |- #address-cells = <2>
556 |- #size-cells = <2>
557 |- linux,phandle = <0>
558 |
559 o cpus
560 | | - name = "cpus"
561 | | - linux,phandle = <1>
562 | | - #address-cells = <1>
563 | | - #size-cells = <0>
564 | |
565 | o PowerPC,970@0
566 | |- name = "PowerPC,970"
567 | |- device_type = "cpu"
568 | |- reg = <0>
569 | |- clock-frequency = <5f5e1000>
570 | |- 64-bit
571 | |- linux,phandle = <2>
572 |
573 o memory@0
574 | |- name = "memory"
575 | |- device_type = "memory"
576 | |- reg = <00000000 00000000 00000000 20000000>
577 | |- linux,phandle = <3>
578 |
579 o chosen
580 |- name = "chosen"
581 |- bootargs = "root=/dev/sda2"
582 |- linux,phandle = <4>
583
584This tree is almost a minimal tree. It pretty much contains the
585minimal set of required nodes and properties to boot a linux kernel;
586that is, some basic model informations at the root, the CPUs, and the
587physical memory layout. It also includes misc information passed
588through /chosen, like in this example, the platform type (mandatory)
589and the kernel command line arguments (optional).
590
591The /cpus/PowerPC,970@0/64-bit property is an example of a
592property without a value. All other properties have a value. The
593significance of the #address-cells and #size-cells properties will be
594explained in chapter IV which defines precisely the required nodes and
595properties and their content.
596
597
5983) Device tree "structure" block
599
600The structure of the device tree is a linearized tree structure. The
601"OF_DT_BEGIN_NODE" token starts a new node, and the "OF_DT_END_NODE"
602ends that node definition. Child nodes are simply defined before
603"OF_DT_END_NODE" (that is nodes within the node). A 'token' is a 32
604bit value. The tree has to be "finished" with a OF_DT_END token
605
606Here's the basic structure of a single node:
607
608 * token OF_DT_BEGIN_NODE (that is 0x00000001)
609 * for version 1 to 3, this is the node full path as a zero
610 terminated string, starting with "/". For version 16 and later,
611 this is the node unit name only (or an empty string for the
612 root node)
613 * [align gap to next 4 bytes boundary]
614 * for each property:
615 * token OF_DT_PROP (that is 0x00000003)
616 * 32-bit value of property value size in bytes (or 0 if no
617 value)
618 * 32-bit value of offset in string block of property name
619 * property value data if any
620 * [align gap to next 4 bytes boundary]
621 * [child nodes if any]
622 * token OF_DT_END_NODE (that is 0x00000002)
623
624So the node content can be summarized as a start token, a full path,
625a list of properties, a list of child nodes, and an end token. Every
626child node is a full node structure itself as defined above.
627
628NOTE: The above definition requires that all property definitions for
629a particular node MUST precede any subnode definitions for that node.
630Although the structure would not be ambiguous if properties and
631subnodes were intermingled, the kernel parser requires that the
632properties come first (up until at least 2.6.22). Any tools
633manipulating a flattened tree must take care to preserve this
634constraint.
635
6364) Device tree "strings" block
637
638In order to save space, property names, which are generally redundant,
639are stored separately in the "strings" block. This block is simply the
640whole bunch of zero terminated strings for all property names
641concatenated together. The device-tree property definitions in the
642structure block will contain offset values from the beginning of the
643strings block.
644
645
646III - Required content of the device tree
647=========================================
648
649WARNING: All "linux,*" properties defined in this document apply only
650to a flattened device-tree. If your platform uses a real
651implementation of Open Firmware or an implementation compatible with
652the Open Firmware client interface, those properties will be created
653by the trampoline code in the kernel's prom_init() file. For example,
654that's where you'll have to add code to detect your board model and
655set the platform number. However, when using the flattened device-tree
656entry point, there is no prom_init() pass, and thus you have to
657provide those properties yourself.
658
659
6601) Note about cells and address representation
661----------------------------------------------
662
663The general rule is documented in the various Open Firmware
664documentations. If you choose to describe a bus with the device-tree
665and there exist an OF bus binding, then you should follow the
666specification. However, the kernel does not require every single
667device or bus to be described by the device tree.
668
669In general, the format of an address for a device is defined by the
670parent bus type, based on the #address-cells and #size-cells
671properties. Note that the parent's parent definitions of #address-cells
672and #size-cells are not inherited so every node with children must specify
673them. The kernel requires the root node to have those properties defining
674addresses format for devices directly mapped on the processor bus.
675
676Those 2 properties define 'cells' for representing an address and a
677size. A "cell" is a 32-bit number. For example, if both contain 2
678like the example tree given above, then an address and a size are both
679composed of 2 cells, and each is a 64-bit number (cells are
680concatenated and expected to be in big endian format). Another example
681is the way Apple firmware defines them, with 2 cells for an address
682and one cell for a size. Most 32-bit implementations should define
683#address-cells and #size-cells to 1, which represents a 32-bit value.
684Some 32-bit processors allow for physical addresses greater than 32
685bits; these processors should define #address-cells as 2.
686
687"reg" properties are always a tuple of the type "address size" where
688the number of cells of address and size is specified by the bus
689#address-cells and #size-cells. When a bus supports various address
690spaces and other flags relative to a given address allocation (like
691prefetchable, etc...) those flags are usually added to the top level
692bits of the physical address. For example, a PCI physical address is
693made of 3 cells, the bottom two containing the actual address itself
694while the top cell contains address space indication, flags, and pci
695bus & device numbers.
696
697For busses that support dynamic allocation, it's the accepted practice
698to then not provide the address in "reg" (keep it 0) though while
699providing a flag indicating the address is dynamically allocated, and
700then, to provide a separate "assigned-addresses" property that
701contains the fully allocated addresses. See the PCI OF bindings for
702details.
703
704In general, a simple bus with no address space bits and no dynamic
705allocation is preferred if it reflects your hardware, as the existing
706kernel address parsing functions will work out of the box. If you
707define a bus type with a more complex address format, including things
708like address space bits, you'll have to add a bus translator to the
709prom_parse.c file of the recent kernels for your bus type.
710
711The "reg" property only defines addresses and sizes (if #size-cells is
712non-0) within a given bus. In order to translate addresses upward
713(that is into parent bus addresses, and possibly into CPU physical
714addresses), all busses must contain a "ranges" property. If the
715"ranges" property is missing at a given level, it's assumed that
716translation isn't possible, i.e., the registers are not visible on the
717parent bus. The format of the "ranges" property for a bus is a list
718of:
719
720 bus address, parent bus address, size
721
722"bus address" is in the format of the bus this bus node is defining,
723that is, for a PCI bridge, it would be a PCI address. Thus, (bus
724address, size) defines a range of addresses for child devices. "parent
725bus address" is in the format of the parent bus of this bus. For
726example, for a PCI host controller, that would be a CPU address. For a
727PCI<->ISA bridge, that would be a PCI address. It defines the base
728address in the parent bus where the beginning of that range is mapped.
729
730For a new 64-bit powerpc board, I recommend either the 2/2 format or
731Apple's 2/1 format which is slightly more compact since sizes usually
732fit in a single 32-bit word. New 32-bit powerpc boards should use a
7331/1 format, unless the processor supports physical addresses greater
734than 32-bits, in which case a 2/1 format is recommended.
735
736Alternatively, the "ranges" property may be empty, indicating that the
737registers are visible on the parent bus using an identity mapping
738translation. In other words, the parent bus address space is the same
739as the child bus address space.
740
7412) Note about "compatible" properties
742-------------------------------------
743
744These properties are optional, but recommended in devices and the root
745node. The format of a "compatible" property is a list of concatenated
746zero terminated strings. They allow a device to express its
747compatibility with a family of similar devices, in some cases,
748allowing a single driver to match against several devices regardless
749of their actual names.
750
7513) Note about "name" properties
752-------------------------------
753
754While earlier users of Open Firmware like OldWorld macintoshes tended
755to use the actual device name for the "name" property, it's nowadays
756considered a good practice to use a name that is closer to the device
757class (often equal to device_type). For example, nowadays, ethernet
758controllers are named "ethernet", an additional "model" property
759defining precisely the chip type/model, and "compatible" property
760defining the family in case a single driver can driver more than one
761of these chips. However, the kernel doesn't generally put any
762restriction on the "name" property; it is simply considered good
763practice to follow the standard and its evolutions as closely as
764possible.
765
766Note also that the new format version 16 makes the "name" property
767optional. If it's absent for a node, then the node's unit name is then
768used to reconstruct the name. That is, the part of the unit name
769before the "@" sign is used (or the entire unit name if no "@" sign
770is present).
771
7724) Note about node and property names and character set
773-------------------------------------------------------
774
775While open firmware provides more flexible usage of 8859-1, this
776specification enforces more strict rules. Nodes and properties should
777be comprised only of ASCII characters 'a' to 'z', '0' to
778'9', ',', '.', '_', '+', '#', '?', and '-'. Node names additionally
779allow uppercase characters 'A' to 'Z' (property names should be
780lowercase. The fact that vendors like Apple don't respect this rule is
781irrelevant here). Additionally, node and property names should always
782begin with a character in the range 'a' to 'z' (or 'A' to 'Z' for node
783names).
784
785The maximum number of characters for both nodes and property names
786is 31. In the case of node names, this is only the leftmost part of
787a unit name (the pure "name" property), it doesn't include the unit
788address which can extend beyond that limit.
789
790
7915) Required nodes and properties
792--------------------------------
793 These are all that are currently required. However, it is strongly
794 recommended that you expose PCI host bridges as documented in the
795 PCI binding to open firmware, and your interrupt tree as documented
796 in OF interrupt tree specification.
797
798 a) The root node
799
800 The root node requires some properties to be present:
801
802 - model : this is your board name/model
803 - #address-cells : address representation for "root" devices
804 - #size-cells: the size representation for "root" devices
805 - device_type : This property shouldn't be necessary. However, if
806 you decide to create a device_type for your root node, make sure it
807 is _not_ "chrp" unless your platform is a pSeries or PAPR compliant
808 one for 64-bit, or a CHRP-type machine for 32-bit as this will
809 matched by the kernel this way.
810
811 Additionally, some recommended properties are:
812
813 - compatible : the board "family" generally finds its way here,
814 for example, if you have 2 board models with a similar layout,
815 that typically get driven by the same platform code in the
816 kernel, you would use a different "model" property but put a
817 value in "compatible". The kernel doesn't directly use that
818 value but it is generally useful.
819
820 The root node is also generally where you add additional properties
821 specific to your board like the serial number if any, that sort of
822 thing. It is recommended that if you add any "custom" property whose
823 name may clash with standard defined ones, you prefix them with your
824 vendor name and a comma.
825
826 b) The /cpus node
827
828 This node is the parent of all individual CPU nodes. It doesn't
829 have any specific requirements, though it's generally good practice
830 to have at least:
831
832 #address-cells = <00000001>
833 #size-cells = <00000000>
834
835 This defines that the "address" for a CPU is a single cell, and has
836 no meaningful size. This is not necessary but the kernel will assume
837 that format when reading the "reg" properties of a CPU node, see
838 below
839
840 c) The /cpus/* nodes
841
842 So under /cpus, you are supposed to create a node for every CPU on
843 the machine. There is no specific restriction on the name of the
844 CPU, though It's common practice to call it PowerPC,<name>. For
845 example, Apple uses PowerPC,G5 while IBM uses PowerPC,970FX.
846
847 Required properties:
848
849 - device_type : has to be "cpu"
850 - reg : This is the physical CPU number, it's a single 32-bit cell
851 and is also used as-is as the unit number for constructing the
852 unit name in the full path. For example, with 2 CPUs, you would
853 have the full path:
854 /cpus/PowerPC,970FX@0
855 /cpus/PowerPC,970FX@1
856 (unit addresses do not require leading zeroes)
857 - d-cache-block-size : one cell, L1 data cache block size in bytes (*)
858 - i-cache-block-size : one cell, L1 instruction cache block size in
859 bytes
860 - d-cache-size : one cell, size of L1 data cache in bytes
861 - i-cache-size : one cell, size of L1 instruction cache in bytes
862
863(*) The cache "block" size is the size on which the cache management
864instructions operate. Historically, this document used the cache
865"line" size here which is incorrect. The kernel will prefer the cache
866block size and will fallback to cache line size for backward
867compatibility.
868
869 Recommended properties:
870
871 - timebase-frequency : a cell indicating the frequency of the
872 timebase in Hz. This is not directly used by the generic code,
873 but you are welcome to copy/paste the pSeries code for setting
874 the kernel timebase/decrementer calibration based on this
875 value.
876 - clock-frequency : a cell indicating the CPU core clock frequency
877 in Hz. A new property will be defined for 64-bit values, but if
878 your frequency is < 4Ghz, one cell is enough. Here as well as
879 for the above, the common code doesn't use that property, but
880 you are welcome to re-use the pSeries or Maple one. A future
881 kernel version might provide a common function for this.
882 - d-cache-line-size : one cell, L1 data cache line size in bytes
883 if different from the block size
884 - i-cache-line-size : one cell, L1 instruction cache line size in
885 bytes if different from the block size
886
887 You are welcome to add any property you find relevant to your board,
888 like some information about the mechanism used to soft-reset the
889 CPUs. For example, Apple puts the GPIO number for CPU soft reset
890 lines in there as a "soft-reset" property since they start secondary
891 CPUs by soft-resetting them.
892
893
894 d) the /memory node(s)
895
896 To define the physical memory layout of your board, you should
897 create one or more memory node(s). You can either create a single
898 node with all memory ranges in its reg property, or you can create
899 several nodes, as you wish. The unit address (@ part) used for the
900 full path is the address of the first range of memory defined by a
901 given node. If you use a single memory node, this will typically be
902 @0.
903
904 Required properties:
905
906 - device_type : has to be "memory"
907 - reg : This property contains all the physical memory ranges of
908 your board. It's a list of addresses/sizes concatenated
909 together, with the number of cells of each defined by the
910 #address-cells and #size-cells of the root node. For example,
911 with both of these properties being 2 like in the example given
912 earlier, a 970 based machine with 6Gb of RAM could typically
913 have a "reg" property here that looks like:
914
915 00000000 00000000 00000000 80000000
916 00000001 00000000 00000001 00000000
917
918 That is a range starting at 0 of 0x80000000 bytes and a range
919 starting at 0x100000000 and of 0x100000000 bytes. You can see
920 that there is no memory covering the IO hole between 2Gb and
921 4Gb. Some vendors prefer splitting those ranges into smaller
922 segments, but the kernel doesn't care.
923
924 e) The /chosen node
925
926 This node is a bit "special". Normally, that's where open firmware
927 puts some variable environment information, like the arguments, or
928 the default input/output devices.
929
930 This specification makes a few of these mandatory, but also defines
931 some linux-specific properties that would be normally constructed by
932 the prom_init() trampoline when booting with an OF client interface,
933 but that you have to provide yourself when using the flattened format.
934
935 Recommended properties:
936
937 - bootargs : This zero-terminated string is passed as the kernel
938 command line
939 - linux,stdout-path : This is the full path to your standard
940 console device if any. Typically, if you have serial devices on
941 your board, you may want to put the full path to the one set as
942 the default console in the firmware here, for the kernel to pick
943 it up as its own default console. If you look at the function
944 set_preferred_console() in arch/ppc64/kernel/setup.c, you'll see
945 that the kernel tries to find out the default console and has
946 knowledge of various types like 8250 serial ports. You may want
947 to extend this function to add your own.
948
949 Note that u-boot creates and fills in the chosen node for platforms
950 that use it.
951
952 (Note: a practice that is now obsolete was to include a property
953 under /chosen called interrupt-controller which had a phandle value
954 that pointed to the main interrupt controller)
955
956 f) the /soc<SOCname> node
957
958 This node is used to represent a system-on-a-chip (SOC) and must be
959 present if the processor is a SOC. The top-level soc node contains
960 information that is global to all devices on the SOC. The node name
961 should contain a unit address for the SOC, which is the base address
962 of the memory-mapped register set for the SOC. The name of an soc
963 node should start with "soc", and the remainder of the name should
964 represent the part number for the soc. For example, the MPC8540's
965 soc node would be called "soc8540".
966
967 Required properties:
968
969 - device_type : Should be "soc"
970 - ranges : Should be defined as specified in 1) to describe the
971 translation of SOC addresses for memory mapped SOC registers.
972 - bus-frequency: Contains the bus frequency for the SOC node.
973 Typically, the value of this field is filled in by the boot
974 loader.
975
976
977 Recommended properties:
978
979 - reg : This property defines the address and size of the
980 memory-mapped registers that are used for the SOC node itself.
981 It does not include the child device registers - these will be
982 defined inside each child node. The address specified in the
983 "reg" property should match the unit address of the SOC node.
984 - #address-cells : Address representation for "soc" devices. The
985 format of this field may vary depending on whether or not the
986 device registers are memory mapped. For memory mapped
987 registers, this field represents the number of cells needed to
988 represent the address of the registers. For SOCs that do not
989 use MMIO, a special address format should be defined that
990 contains enough cells to represent the required information.
991 See 1) above for more details on defining #address-cells.
992 - #size-cells : Size representation for "soc" devices
993 - #interrupt-cells : Defines the width of cells used to represent
994 interrupts. Typically this value is <2>, which includes a
995 32-bit number that represents the interrupt number, and a
996 32-bit number that represents the interrupt sense and level.
997 This field is only needed if the SOC contains an interrupt
998 controller.
999
1000 The SOC node may contain child nodes for each SOC device that the
1001 platform uses. Nodes should not be created for devices which exist
1002 on the SOC but are not used by a particular platform. See chapter VI
1003 for more information on how to specify devices that are part of a SOC.
1004
1005 Example SOC node for the MPC8540:
1006
1007 soc8540@e0000000 {
1008 #address-cells = <1>;
1009 #size-cells = <1>;
1010 #interrupt-cells = <2>;
1011 device_type = "soc";
1012 ranges = <00000000 e0000000 00100000>
1013 reg = <e0000000 00003000>;
1014 bus-frequency = <0>;
1015 }
1016
1017
1018
1019IV - "dtc", the device tree compiler
1020====================================
1021
1022
1023dtc source code can be found at
1024<http://git.jdl.com/gitweb/?p=dtc.git>
1025
1026WARNING: This version is still in early development stage; the
1027resulting device-tree "blobs" have not yet been validated with the
1028kernel. The current generated block lacks a useful reserve map (it will
1029be fixed to generate an empty one, it's up to the bootloader to fill
1030it up) among others. The error handling needs work, bugs are lurking,
1031etc...
1032
1033dtc basically takes a device-tree in a given format and outputs a
1034device-tree in another format. The currently supported formats are:
1035
1036 Input formats:
1037 -------------
1038
1039 - "dtb": "blob" format, that is a flattened device-tree block
1040 with
1041 header all in a binary blob.
1042 - "dts": "source" format. This is a text file containing a
1043 "source" for a device-tree. The format is defined later in this
1044 chapter.
1045 - "fs" format. This is a representation equivalent to the
1046 output of /proc/device-tree, that is nodes are directories and
1047 properties are files
1048
1049 Output formats:
1050 ---------------
1051
1052 - "dtb": "blob" format
1053 - "dts": "source" format
1054 - "asm": assembly language file. This is a file that can be
1055 sourced by gas to generate a device-tree "blob". That file can
1056 then simply be added to your Makefile. Additionally, the
1057 assembly file exports some symbols that can be used.
1058
1059
1060The syntax of the dtc tool is
1061
1062 dtc [-I <input-format>] [-O <output-format>]
1063 [-o output-filename] [-V output_version] input_filename
1064
1065
1066The "output_version" defines what version of the "blob" format will be
1067generated. Supported versions are 1,2,3 and 16. The default is
1068currently version 3 but that may change in the future to version 16.
1069
1070Additionally, dtc performs various sanity checks on the tree, like the
1071uniqueness of linux, phandle properties, validity of strings, etc...
1072
1073The format of the .dts "source" file is "C" like, supports C and C++
1074style comments.
1075
1076/ {
1077}
1078
1079The above is the "device-tree" definition. It's the only statement
1080supported currently at the toplevel.
1081
1082/ {
1083 property1 = "string_value"; /* define a property containing a 0
1084 * terminated string
1085 */
1086
1087 property2 = <1234abcd>; /* define a property containing a
1088 * numerical 32-bit value (hexadecimal)
1089 */
1090
1091 property3 = <12345678 12345678 deadbeef>;
1092 /* define a property containing 3
1093 * numerical 32-bit values (cells) in
1094 * hexadecimal
1095 */
1096 property4 = [0a 0b 0c 0d de ea ad be ef];
1097 /* define a property whose content is
1098 * an arbitrary array of bytes
1099 */
1100
1101 childnode@address { /* define a child node named "childnode"
1102 * whose unit name is "childnode at
1103 * address"
1104 */
1105
1106 childprop = "hello\n"; /* define a property "childprop" of
1107 * childnode (in this case, a string)
1108 */
1109 };
1110};
1111
1112Nodes can contain other nodes etc... thus defining the hierarchical
1113structure of the tree.
1114
1115Strings support common escape sequences from C: "\n", "\t", "\r",
1116"\(octal value)", "\x(hex value)".
1117
1118It is also suggested that you pipe your source file through cpp (gcc
1119preprocessor) so you can use #include's, #define for constants, etc...
1120
1121Finally, various options are planned but not yet implemented, like
1122automatic generation of phandles, labels (exported to the asm file so
1123you can point to a property content and change it easily from whatever
1124you link the device-tree with), label or path instead of numeric value
1125in some cells to "point" to a node (replaced by a phandle at compile
1126time), export of reserve map address to the asm file, ability to
1127specify reserve map content at compile time, etc...
1128
1129We may provide a .h include file with common definitions of that
1130proves useful for some properties (like building PCI properties or
1131interrupt maps) though it may be better to add a notion of struct
1132definitions to the compiler...
1133
1134
1135V - Recommendations for a bootloader
1136====================================
1137
1138
1139Here are some various ideas/recommendations that have been proposed
1140while all this has been defined and implemented.
1141
1142 - The bootloader may want to be able to use the device-tree itself
1143 and may want to manipulate it (to add/edit some properties,
1144 like physical memory size or kernel arguments). At this point, 2
1145 choices can be made. Either the bootloader works directly on the
1146 flattened format, or the bootloader has its own internal tree
1147 representation with pointers (similar to the kernel one) and
1148 re-flattens the tree when booting the kernel. The former is a bit
1149 more difficult to edit/modify, the later requires probably a bit
1150 more code to handle the tree structure. Note that the structure
1151 format has been designed so it's relatively easy to "insert"
1152 properties or nodes or delete them by just memmoving things
1153 around. It contains no internal offsets or pointers for this
1154 purpose.
1155
1156 - An example of code for iterating nodes & retrieving properties
1157 directly from the flattened tree format can be found in the kernel
1158 file arch/ppc64/kernel/prom.c, look at scan_flat_dt() function,
1159 its usage in early_init_devtree(), and the corresponding various
1160 early_init_dt_scan_*() callbacks. That code can be re-used in a
1161 GPL bootloader, and as the author of that code, I would be happy
1162 to discuss possible free licensing to any vendor who wishes to
1163 integrate all or part of this code into a non-GPL bootloader.
1164
1165
1166
1167VI - System-on-a-chip devices and nodes
1168=======================================
1169
1170Many companies are now starting to develop system-on-a-chip
1171processors, where the processor core (CPU) and many peripheral devices
1172exist on a single piece of silicon. For these SOCs, an SOC node
1173should be used that defines child nodes for the devices that make
1174up the SOC. While platforms are not required to use this model in
1175order to boot the kernel, it is highly encouraged that all SOC
1176implementations define as complete a flat-device-tree as possible to
1177describe the devices on the SOC. This will allow for the
1178genericization of much of the kernel code.
1179
1180
11811) Defining child nodes of an SOC
1182---------------------------------
1183
1184Each device that is part of an SOC may have its own node entry inside
1185the SOC node. For each device that is included in the SOC, the unit
1186address property represents the address offset for this device's
1187memory-mapped registers in the parent's address space. The parent's
1188address space is defined by the "ranges" property in the top-level soc
1189node. The "reg" property for each node that exists directly under the
1190SOC node should contain the address mapping from the child address space
1191to the parent SOC address space and the size of the device's
1192memory-mapped register file.
1193
1194For many devices that may exist inside an SOC, there are predefined
1195specifications for the format of the device tree node. All SOC child
1196nodes should follow these specifications, except where noted in this
1197document.
1198
1199See appendix A for an example partial SOC node definition for the
1200MPC8540.
1201
1202
12032) Representing devices without a current OF specification
1204----------------------------------------------------------
1205
1206Currently, there are many devices on SOCs that do not have a standard
1207representation pre-defined as part of the open firmware
1208specifications, mainly because the boards that contain these SOCs are
1209not currently booted using open firmware. This section contains
1210descriptions for the SOC devices for which new nodes have been
1211defined; this list will expand as more and more SOC-containing
1212platforms are moved over to use the flattened-device-tree model.
1213
1214VII - Specifying interrupt information for devices
1215===================================================
1216
1217The device tree represents the busses and devices of a hardware
1218system in a form similar to the physical bus topology of the
1219hardware.
1220
1221In addition, a logical 'interrupt tree' exists which represents the
1222hierarchy and routing of interrupts in the hardware.
1223
1224The interrupt tree model is fully described in the
1225document "Open Firmware Recommended Practice: Interrupt
1226Mapping Version 0.9". The document is available at:
1227<http://playground.sun.com/1275/practice>.
1228
12291) interrupts property
1230----------------------
1231
1232Devices that generate interrupts to a single interrupt controller
1233should use the conventional OF representation described in the
1234OF interrupt mapping documentation.
1235
1236Each device which generates interrupts must have an 'interrupt'
1237property. The interrupt property value is an arbitrary number of
1238of 'interrupt specifier' values which describe the interrupt or
1239interrupts for the device.
1240
1241The encoding of an interrupt specifier is determined by the
1242interrupt domain in which the device is located in the
1243interrupt tree. The root of an interrupt domain specifies in
1244its #interrupt-cells property the number of 32-bit cells
1245required to encode an interrupt specifier. See the OF interrupt
1246mapping documentation for a detailed description of domains.
1247
1248For example, the binding for the OpenPIC interrupt controller
1249specifies an #interrupt-cells value of 2 to encode the interrupt
1250number and level/sense information. All interrupt children in an
1251OpenPIC interrupt domain use 2 cells per interrupt in their interrupts
1252property.
1253
1254The PCI bus binding specifies a #interrupt-cell value of 1 to encode
1255which interrupt pin (INTA,INTB,INTC,INTD) is used.
1256
12572) interrupt-parent property
1258----------------------------
1259
1260The interrupt-parent property is specified to define an explicit
1261link between a device node and its interrupt parent in
1262the interrupt tree. The value of interrupt-parent is the
1263phandle of the parent node.
1264
1265If the interrupt-parent property is not defined for a node, its
1266interrupt parent is assumed to be an ancestor in the node's
1267_device tree_ hierarchy.
1268
12693) OpenPIC Interrupt Controllers
1270--------------------------------
1271
1272OpenPIC interrupt controllers require 2 cells to encode
1273interrupt information. The first cell defines the interrupt
1274number. The second cell defines the sense and level
1275information.
1276
1277Sense and level information should be encoded as follows:
1278
1279 0 = low to high edge sensitive type enabled
1280 1 = active low level sensitive type enabled
1281 2 = active high level sensitive type enabled
1282 3 = high to low edge sensitive type enabled
1283
12844) ISA Interrupt Controllers
1285----------------------------
1286
1287ISA PIC interrupt controllers require 2 cells to encode
1288interrupt information. The first cell defines the interrupt
1289number. The second cell defines the sense and level
1290information.
1291
1292ISA PIC interrupt controllers should adhere to the ISA PIC
1293encodings listed below:
1294
1295 0 = active low level sensitive type enabled
1296 1 = active high level sensitive type enabled
1297 2 = high to low edge sensitive type enabled
1298 3 = low to high edge sensitive type enabled
1299
1300VIII - Specifying Device Power Management Information (sleep property)
1301===================================================================
1302
1303Devices on SOCs often have mechanisms for placing devices into low-power
1304states that are decoupled from the devices' own register blocks. Sometimes,
1305this information is more complicated than a cell-index property can
1306reasonably describe. Thus, each device controlled in such a manner
1307may contain a "sleep" property which describes these connections.
1308
1309The sleep property consists of one or more sleep resources, each of
1310which consists of a phandle to a sleep controller, followed by a
1311controller-specific sleep specifier of zero or more cells.
1312
1313The semantics of what type of low power modes are possible are defined
1314by the sleep controller. Some examples of the types of low power modes
1315that may be supported are:
1316
1317 - Dynamic: The device may be disabled or enabled at any time.
1318 - System Suspend: The device may request to be disabled or remain
1319 awake during system suspend, but will not be disabled until then.
1320 - Permanent: The device is disabled permanently (until the next hard
1321 reset).
1322
1323Some devices may share a clock domain with each other, such that they should
1324only be suspended when none of the devices are in use. Where reasonable,
1325such nodes should be placed on a virtual bus, where the bus has the sleep
1326property. If the clock domain is shared among devices that cannot be
1327reasonably grouped in this manner, then create a virtual sleep controller
1328(similar to an interrupt nexus, except that defining a standardized
1329sleep-map should wait until its necessity is demonstrated).
1330
1331Appendix A - Sample SOC node for MPC8540
1332========================================
1333
1334 soc@e0000000 {
1335 #address-cells = <1>;
1336 #size-cells = <1>;
1337 compatible = "fsl,mpc8540-ccsr", "simple-bus";
1338 device_type = "soc";
1339 ranges = <0x00000000 0xe0000000 0x00100000>
1340 bus-frequency = <0>;
1341 interrupt-parent = <&pic>;
1342
1343 ethernet@24000 {
1344 #address-cells = <1>;
1345 #size-cells = <1>;
1346 device_type = "network";
1347 model = "TSEC";
1348 compatible = "gianfar", "simple-bus";
1349 reg = <0x24000 0x1000>;
1350 local-mac-address = [ 00 E0 0C 00 73 00 ];
1351 interrupts = <29 2 30 2 34 2>;
1352 phy-handle = <&phy0>;
1353 sleep = <&pmc 00000080>;
1354 ranges;
1355
1356 mdio@24520 {
1357 reg = <0x24520 0x20>;
1358 compatible = "fsl,gianfar-mdio";
1359
1360 phy0: ethernet-phy@0 {
1361 interrupts = <5 1>;
1362 reg = <0>;
1363 device_type = "ethernet-phy";
1364 };
1365
1366 phy1: ethernet-phy@1 {
1367 interrupts = <5 1>;
1368 reg = <1>;
1369 device_type = "ethernet-phy";
1370 };
1371
1372 phy3: ethernet-phy@3 {
1373 interrupts = <7 1>;
1374 reg = <3>;
1375 device_type = "ethernet-phy";
1376 };
1377 };
1378 };
1379
1380 ethernet@25000 {
1381 device_type = "network";
1382 model = "TSEC";
1383 compatible = "gianfar";
1384 reg = <0x25000 0x1000>;
1385 local-mac-address = [ 00 E0 0C 00 73 01 ];
1386 interrupts = <13 2 14 2 18 2>;
1387 phy-handle = <&phy1>;
1388 sleep = <&pmc 00000040>;
1389 };
1390
1391 ethernet@26000 {
1392 device_type = "network";
1393 model = "FEC";
1394 compatible = "gianfar";
1395 reg = <0x26000 0x1000>;
1396 local-mac-address = [ 00 E0 0C 00 73 02 ];
1397 interrupts = <41 2>;
1398 phy-handle = <&phy3>;
1399 sleep = <&pmc 00000020>;
1400 };
1401
1402 serial@4500 {
1403 #address-cells = <1>;
1404 #size-cells = <1>;
1405 compatible = "fsl,mpc8540-duart", "simple-bus";
1406 sleep = <&pmc 00000002>;
1407 ranges;
1408
1409 serial@4500 {
1410 device_type = "serial";
1411 compatible = "ns16550";
1412 reg = <0x4500 0x100>;
1413 clock-frequency = <0>;
1414 interrupts = <42 2>;
1415 };
1416
1417 serial@4600 {
1418 device_type = "serial";
1419 compatible = "ns16550";
1420 reg = <0x4600 0x100>;
1421 clock-frequency = <0>;
1422 interrupts = <42 2>;
1423 };
1424 };
1425
1426 pic: pic@40000 {
1427 interrupt-controller;
1428 #address-cells = <0>;
1429 #interrupt-cells = <2>;
1430 reg = <0x40000 0x40000>;
1431 compatible = "chrp,open-pic";
1432 device_type = "open-pic";
1433 };
1434
1435 i2c@3000 {
1436 interrupts = <43 2>;
1437 reg = <0x3000 0x100>;
1438 compatible = "fsl-i2c";
1439 dfsrr;
1440 sleep = <&pmc 00000004>;
1441 };
1442
1443 pmc: power@e0070 {
1444 compatible = "fsl,mpc8540-pmc", "fsl,mpc8548-pmc";
1445 reg = <0xe0070 0x20>;
1446 };
1447 };