aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/devicetree/bindings
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/devicetree/bindings')
-rw-r--r--Documentation/devicetree/bindings/arm/fsl.txt8
-rw-r--r--Documentation/devicetree/bindings/arm/gic.txt4
-rw-r--r--Documentation/devicetree/bindings/arm/insignal-boards.txt8
-rw-r--r--Documentation/devicetree/bindings/arm/samsung-boards.txt8
-rw-r--r--Documentation/devicetree/bindings/arm/tegra.txt14
-rw-r--r--Documentation/devicetree/bindings/arm/vic.txt29
-rw-r--r--Documentation/devicetree/bindings/c6x/clocks.txt40
-rw-r--r--Documentation/devicetree/bindings/c6x/dscr.txt127
-rw-r--r--Documentation/devicetree/bindings/c6x/emifa.txt62
-rw-r--r--Documentation/devicetree/bindings/c6x/interrupt.txt104
-rw-r--r--Documentation/devicetree/bindings/c6x/soc.txt28
-rw-r--r--Documentation/devicetree/bindings/c6x/timer64.txt26
-rw-r--r--Documentation/devicetree/bindings/dma/arm-pl330.txt30
-rw-r--r--Documentation/devicetree/bindings/gpio/gpio-samsung.txt40
-rw-r--r--Documentation/devicetree/bindings/i2c/i2c-designware.txt22
-rw-r--r--Documentation/devicetree/bindings/i2c/trivial-devices.txt58
-rw-r--r--Documentation/devicetree/bindings/input/samsung-keypad.txt88
-rw-r--r--Documentation/devicetree/bindings/input/tegra-kbc.txt18
-rw-r--r--Documentation/devicetree/bindings/mtd/gpio-control-nand.txt44
-rw-r--r--Documentation/devicetree/bindings/net/calxeda-xgmac.txt15
-rw-r--r--Documentation/devicetree/bindings/net/can/cc770.txt53
-rw-r--r--Documentation/devicetree/bindings/net/macb.txt25
-rw-r--r--Documentation/devicetree/bindings/nvec/nvec_nvidia.txt9
-rw-r--r--Documentation/devicetree/bindings/power_supply/olpc_battery.txt5
-rw-r--r--Documentation/devicetree/bindings/power_supply/sbs_sbs-battery.txt23
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/srio-rmu.txt163
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/srio.txt103
-rw-r--r--Documentation/devicetree/bindings/regulator/fixed-regulator.txt29
-rw-r--r--Documentation/devicetree/bindings/regulator/regulator.txt54
-rw-r--r--Documentation/devicetree/bindings/rtc/s3c-rtc.txt20
-rw-r--r--Documentation/devicetree/bindings/rtc/twl-rtc.txt12
-rw-r--r--Documentation/devicetree/bindings/serial/omap_serial.txt10
-rw-r--r--Documentation/devicetree/bindings/serial/samsung_uart.txt14
-rw-r--r--Documentation/devicetree/bindings/sound/tegra-audio-wm8903.txt71
-rw-r--r--Documentation/devicetree/bindings/sound/tegra20-das.txt12
-rw-r--r--Documentation/devicetree/bindings/sound/tegra20-i2s.txt17
-rw-r--r--Documentation/devicetree/bindings/sound/wm8903.txt50
-rw-r--r--Documentation/devicetree/bindings/usb/tegra-usb.txt13
-rw-r--r--Documentation/devicetree/bindings/vendor-prefixes.txt5
39 files changed, 1459 insertions, 2 deletions
diff --git a/Documentation/devicetree/bindings/arm/fsl.txt b/Documentation/devicetree/bindings/arm/fsl.txt
index c9848ad0e2e3..54bdddadf1cf 100644
--- a/Documentation/devicetree/bindings/arm/fsl.txt
+++ b/Documentation/devicetree/bindings/arm/fsl.txt
@@ -21,6 +21,10 @@ i.MX53 Smart Mobile Reference Design Board
21Required root node properties: 21Required root node properties:
22 - compatible = "fsl,imx53-smd", "fsl,imx53"; 22 - compatible = "fsl,imx53-smd", "fsl,imx53";
23 23
24i.MX6 Quad SABRE Automotive Board 24i.MX6 Quad Armadillo2 Board
25Required root node properties: 25Required root node properties:
26 - compatible = "fsl,imx6q-sabreauto", "fsl,imx6q"; 26 - compatible = "fsl,imx6q-arm2", "fsl,imx6q";
27
28i.MX6 Quad SABRE Lite Board
29Required root node properties:
30 - compatible = "fsl,imx6q-sabrelite", "fsl,imx6q";
diff --git a/Documentation/devicetree/bindings/arm/gic.txt b/Documentation/devicetree/bindings/arm/gic.txt
index 52916b4aa1fe..9b4b82a721b6 100644
--- a/Documentation/devicetree/bindings/arm/gic.txt
+++ b/Documentation/devicetree/bindings/arm/gic.txt
@@ -42,6 +42,10 @@ Optional
42- interrupts : Interrupt source of the parent interrupt controller. Only 42- interrupts : Interrupt source of the parent interrupt controller. Only
43 present on secondary GICs. 43 present on secondary GICs.
44 44
45- cpu-offset : per-cpu offset within the distributor and cpu interface
46 regions, used when the GIC doesn't have banked registers. The offset is
47 cpu-offset * cpu-nr.
48
45Example: 49Example:
46 50
47 intc: interrupt-controller@fff11000 { 51 intc: interrupt-controller@fff11000 {
diff --git a/Documentation/devicetree/bindings/arm/insignal-boards.txt b/Documentation/devicetree/bindings/arm/insignal-boards.txt
new file mode 100644
index 000000000000..524c3dc5d808
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/insignal-boards.txt
@@ -0,0 +1,8 @@
1* Insignal's Exynos4210 based Origen evaluation board
2
3Origen low-cost evaluation board is based on Samsung's Exynos4210 SoC.
4
5Required root node properties:
6 - compatible = should be one or more of the following.
7 (a) "samsung,smdkv310" - for Samsung's SMDKV310 eval board.
8 (b) "samsung,exynos4210" - for boards based on Exynos4210 SoC.
diff --git a/Documentation/devicetree/bindings/arm/samsung-boards.txt b/Documentation/devicetree/bindings/arm/samsung-boards.txt
new file mode 100644
index 000000000000..0bf68be56fd1
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/samsung-boards.txt
@@ -0,0 +1,8 @@
1* Samsung's Exynos4210 based SMDKV310 evaluation board
2
3SMDKV310 evaluation board is based on Samsung's Exynos4210 SoC.
4
5Required root node properties:
6 - compatible = should be one or more of the following.
7 (a) "samsung,smdkv310" - for Samsung's SMDKV310 eval board.
8 (b) "samsung,exynos4210" - for boards based on Exynos4210 SoC.
diff --git a/Documentation/devicetree/bindings/arm/tegra.txt b/Documentation/devicetree/bindings/arm/tegra.txt
new file mode 100644
index 000000000000..6e69d2e5e766
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/tegra.txt
@@ -0,0 +1,14 @@
1NVIDIA Tegra device tree bindings
2-------------------------------------------
3
4Boards with the tegra20 SoC shall have the following properties:
5
6Required root node property:
7
8compatible = "nvidia,tegra20";
9
10Boards with the tegra30 SoC shall have the following properties:
11
12Required root node property:
13
14compatible = "nvidia,tegra30";
diff --git a/Documentation/devicetree/bindings/arm/vic.txt b/Documentation/devicetree/bindings/arm/vic.txt
new file mode 100644
index 000000000000..266716b23437
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/vic.txt
@@ -0,0 +1,29 @@
1* ARM Vectored Interrupt Controller
2
3One or more Vectored Interrupt Controllers (VIC's) can be connected in an ARM
4system for interrupt routing. For multiple controllers they can either be
5nested or have the outputs wire-OR'd together.
6
7Required properties:
8
9- compatible : should be one of
10 "arm,pl190-vic"
11 "arm,pl192-vic"
12- interrupt-controller : Identifies the node as an interrupt controller
13- #interrupt-cells : The number of cells to define the interrupts. Must be 1 as
14 the VIC has no configuration options for interrupt sources. The cell is a u32
15 and defines the interrupt number.
16- reg : The register bank for the VIC.
17
18Optional properties:
19
20- interrupts : Interrupt source for parent controllers if the VIC is nested.
21
22Example:
23
24 vic0: interrupt-controller@60000 {
25 compatible = "arm,pl192-vic";
26 interrupt-controller;
27 #interrupt-cells = <1>;
28 reg = <0x60000 0x1000>;
29 };
diff --git a/Documentation/devicetree/bindings/c6x/clocks.txt b/Documentation/devicetree/bindings/c6x/clocks.txt
new file mode 100644
index 000000000000..a04f5fd30122
--- /dev/null
+++ b/Documentation/devicetree/bindings/c6x/clocks.txt
@@ -0,0 +1,40 @@
1C6X PLL Clock Controllers
2-------------------------
3
4This is a first-cut support for the SoC clock controllers. This is still
5under development and will probably change as the common device tree
6clock support is added to the kernel.
7
8Required properties:
9
10- compatible: "ti,c64x+pll"
11 May also have SoC-specific value to support SoC-specific initialization
12 in the driver. One of:
13 "ti,c6455-pll"
14 "ti,c6457-pll"
15 "ti,c6472-pll"
16 "ti,c6474-pll"
17
18- reg: base address and size of register area
19- clock-frequency: input clock frequency in hz
20
21
22Optional properties:
23
24- ti,c64x+pll-bypass-delay: CPU cycles to delay when entering bypass mode
25
26- ti,c64x+pll-reset-delay: CPU cycles to delay after PLL reset
27
28- ti,c64x+pll-lock-delay: CPU cycles to delay after PLL frequency change
29
30Example:
31
32 clock-controller@29a0000 {
33 compatible = "ti,c6472-pll", "ti,c64x+pll";
34 reg = <0x029a0000 0x200>;
35 clock-frequency = <25000000>;
36
37 ti,c64x+pll-bypass-delay = <200>;
38 ti,c64x+pll-reset-delay = <12000>;
39 ti,c64x+pll-lock-delay = <80000>;
40 };
diff --git a/Documentation/devicetree/bindings/c6x/dscr.txt b/Documentation/devicetree/bindings/c6x/dscr.txt
new file mode 100644
index 000000000000..d847758f2b20
--- /dev/null
+++ b/Documentation/devicetree/bindings/c6x/dscr.txt
@@ -0,0 +1,127 @@
1Device State Configuration Registers
2------------------------------------
3
4TI C6X SoCs contain a region of miscellaneous registers which provide various
5function for SoC control or status. Details vary considerably among from SoC
6to SoC with no two being alike.
7
8In general, the Device State Configuraion Registers (DSCR) will provide one or
9more configuration registers often protected by a lock register where one or
10more key values must be written to a lock register in order to unlock the
11configuration register for writes. These configuration register may be used to
12enable (and disable in some cases) SoC pin drivers, select peripheral clock
13sources (internal or pin), etc. In some cases, a configuration register is
14write once or the individual bits are write once. In addition to device config,
15the DSCR block may provide registers which which are used to reset peripherals,
16provide device ID information, provide ethernet MAC addresses, as well as other
17miscellaneous functions.
18
19For device state control (enable/disable), each device control is assigned an
20id which is used by individual device drivers to control the state as needed.
21
22Required properties:
23
24- compatible: must be "ti,c64x+dscr"
25- reg: register area base and size
26
27Optional properties:
28
29 NOTE: These are optional in that not all SoCs will have all properties. For
30 SoCs which do support a given property, leaving the property out of the
31 device tree will result in reduced functionality or possibly driver
32 failure.
33
34- ti,dscr-devstat
35 offset of the devstat register
36
37- ti,dscr-silicon-rev
38 offset, start bit, and bitsize of silicon revision field
39
40- ti,dscr-rmii-resets
41 offset and bitmask of RMII reset field. May have multiple tuples if more
42 than one ethernet port is available.
43
44- ti,dscr-locked-regs
45 possibly multiple tuples describing registers which are write protected by
46 a lock register. Each tuple consists of the register offset, lock register
47 offsset, and the key value used to unlock the register.
48
49- ti,dscr-kick-regs
50 offset and key values of two "kick" registers used to write protect other
51 registers in DSCR. On SoCs using kick registers, the first key must be
52 written to the first kick register and the second key must be written to
53 the second register before other registers in the area are write-enabled.
54
55- ti,dscr-mac-fuse-regs
56 MAC addresses are contained in two registers. Each element of a MAC address
57 is contained in a single byte. This property has two tuples. Each tuple has
58 a register offset and four cells representing bytes in the register from
59 most significant to least. The value of these four cells is the MAC byte
60 index (1-6) of the byte within the register. A value of 0 means the byte
61 is unused in the MAC address.
62
63- ti,dscr-devstate-ctl-regs
64 This property describes the bitfields used to control the state of devices.
65 Each tuple describes a range of identical bitfields used to control one or
66 more devices (one bitfield per device). The layout of each tuple is:
67
68 start_id num_ids reg enable disable start_bit nbits
69
70 Where:
71 start_id is device id for the first device control in the range
72 num_ids is the number of device controls in the range
73 reg is the offset of the register holding the control bits
74 enable is the value to enable a device
75 disable is the value to disable a device (0xffffffff if cannot disable)
76 start_bit is the bit number of the first bit in the range
77 nbits is the number of bits per device control
78
79- ti,dscr-devstate-stat-regs
80 This property describes the bitfields used to provide device state status
81 for device states controlled by the DSCR. Each tuple describes a range of
82 identical bitfields used to provide status for one or more devices (one
83 bitfield per device). The layout of each tuple is:
84
85 start_id num_ids reg enable disable start_bit nbits
86
87 Where:
88 start_id is device id for the first device status in the range
89 num_ids is the number of devices covered by the range
90 reg is the offset of the register holding the status bits
91 enable is the value indicating device is enabled
92 disable is the value indicating device is disabled
93 start_bit is the bit number of the first bit in the range
94 nbits is the number of bits per device status
95
96- ti,dscr-privperm
97 Offset and default value for register used to set access privilege for
98 some SoC devices.
99
100
101Example:
102
103 device-state-config-regs@2a80000 {
104 compatible = "ti,c64x+dscr";
105 reg = <0x02a80000 0x41000>;
106
107 ti,dscr-devstat = <0>;
108 ti,dscr-silicon-rev = <8 28 0xf>;
109 ti,dscr-rmii-resets = <0x40020 0x00040000>;
110
111 ti,dscr-locked-regs = <0x40008 0x40004 0x0f0a0b00>;
112 ti,dscr-devstate-ctl-regs =
113 <0 12 0x40008 1 0 0 2
114 12 1 0x40008 3 0 30 2
115 13 2 0x4002c 1 0xffffffff 0 1>;
116 ti,dscr-devstate-stat-regs =
117 <0 10 0x40014 1 0 0 3
118 10 2 0x40018 1 0 0 3>;
119
120 ti,dscr-mac-fuse-regs = <0x700 1 2 3 4
121 0x704 5 6 0 0>;
122
123 ti,dscr-privperm = <0x41c 0xaaaaaaaa>;
124
125 ti,dscr-kick-regs = <0x38 0x83E70B13
126 0x3c 0x95A4F1E0>;
127 };
diff --git a/Documentation/devicetree/bindings/c6x/emifa.txt b/Documentation/devicetree/bindings/c6x/emifa.txt
new file mode 100644
index 000000000000..0ff6e9b9a13f
--- /dev/null
+++ b/Documentation/devicetree/bindings/c6x/emifa.txt
@@ -0,0 +1,62 @@
1External Memory Interface
2-------------------------
3
4The emifa node describes a simple external bus controller found on some C6X
5SoCs. This interface provides external busses with a number of chip selects.
6
7Required properties:
8
9- compatible: must be "ti,c64x+emifa", "simple-bus"
10- reg: register area base and size
11- #address-cells: must be 2 (chip-select + offset)
12- #size-cells: must be 1
13- ranges: mapping from EMIFA space to parent space
14
15
16Optional properties:
17
18- ti,dscr-dev-enable: Device ID if EMIF is enabled/disabled from DSCR
19
20- ti,emifa-burst-priority:
21 Number of memory transfers after which the EMIF will elevate the priority
22 of the oldest command in the command FIFO. Setting this field to 255
23 disables this feature, thereby allowing old commands to stay in the FIFO
24 indefinitely.
25
26- ti,emifa-ce-config:
27 Configuration values for each of the supported chip selects.
28
29Example:
30
31 emifa@70000000 {
32 compatible = "ti,c64x+emifa", "simple-bus";
33 #address-cells = <2>;
34 #size-cells = <1>;
35 reg = <0x70000000 0x100>;
36 ranges = <0x2 0x0 0xa0000000 0x00000008
37 0x3 0x0 0xb0000000 0x00400000
38 0x4 0x0 0xc0000000 0x10000000
39 0x5 0x0 0xD0000000 0x10000000>;
40
41 ti,dscr-dev-enable = <13>;
42 ti,emifa-burst-priority = <255>;
43 ti,emifa-ce-config = <0x00240120
44 0x00240120
45 0x00240122
46 0x00240122>;
47
48 flash@3,0 {
49 #address-cells = <1>;
50 #size-cells = <1>;
51 compatible = "cfi-flash";
52 reg = <0x3 0x0 0x400000>;
53 bank-width = <1>;
54 device-width = <1>;
55 partition@0 {
56 reg = <0x0 0x400000>;
57 label = "NOR";
58 };
59 };
60 };
61
62This shows a flash chip attached to chip select 3.
diff --git a/Documentation/devicetree/bindings/c6x/interrupt.txt b/Documentation/devicetree/bindings/c6x/interrupt.txt
new file mode 100644
index 000000000000..42bb796cc4ad
--- /dev/null
+++ b/Documentation/devicetree/bindings/c6x/interrupt.txt
@@ -0,0 +1,104 @@
1C6X Interrupt Chips
2-------------------
3
4* C64X+ Core Interrupt Controller
5
6 The core interrupt controller provides 16 prioritized interrupts to the
7 C64X+ core. Priority 0 and 1 are used for reset and NMI respectively.
8 Priority 2 and 3 are reserved. Priority 4-15 are used for interrupt
9 sources coming from outside the core.
10
11 Required properties:
12 --------------------
13 - compatible: Should be "ti,c64x+core-pic";
14 - #interrupt-cells: <1>
15
16 Interrupt Specifier Definition
17 ------------------------------
18 Single cell specifying the core interrupt priority level (4-15) where
19 4 is highest priority and 15 is lowest priority.
20
21 Example
22 -------
23 core_pic: interrupt-controller@0 {
24 interrupt-controller;
25 #interrupt-cells = <1>;
26 compatible = "ti,c64x+core-pic";
27 };
28
29
30
31* C64x+ Megamodule Interrupt Controller
32
33 The megamodule PIC consists of four interrupt mupliplexers each of which
34 combine up to 32 interrupt inputs into a single interrupt output which
35 may be cascaded into the core interrupt controller. The megamodule PIC
36 has a total of 12 outputs cascading into the core interrupt controller.
37 One for each core interrupt priority level. In addition to the combined
38 interrupt sources, individual megamodule interrupts may be cascaded to
39 the core interrupt controller. When an individual interrupt is cascaded,
40 it is no longer handled through a megamodule interrupt combiner and is
41 considered to have the core interrupt controller as the parent.
42
43 Required properties:
44 --------------------
45 - compatible: "ti,c64x+megamod-pic"
46 - interrupt-controller
47 - #interrupt-cells: <1>
48 - reg: base address and size of register area
49 - interrupt-parent: must be core interrupt controller
50 - interrupts: This should have four cells; one for each interrupt combiner.
51 The cells contain the core priority interrupt to which the
52 corresponding combiner output is wired.
53
54 Optional properties:
55 --------------------
56 - ti,c64x+megamod-pic-mux: Array of 12 cells correspnding to the 12 core
57 priority interrupts. The first cell corresponds to
58 core priority 4 and the last cell corresponds to
59 core priority 15. The value of each cell is the
60 megamodule interrupt source which is MUXed to
61 the core interrupt corresponding to the cell
62 position. Allowed values are 4 - 127. Mapping for
63 interrupts 0 - 3 (combined interrupt sources) are
64 ignored.
65
66 Interrupt Specifier Definition
67 ------------------------------
68 Single cell specifying the megamodule interrupt source (4-127). Note that
69 interrupts mapped directly to the core with "ti,c64x+megamod-pic-mux" will
70 use the core interrupt controller as their parent and the specifier will
71 be the core priority level, not the megamodule interrupt number.
72
73 Examples
74 --------
75 megamod_pic: interrupt-controller@1800000 {
76 compatible = "ti,c64x+megamod-pic";
77 interrupt-controller;
78 #interrupt-cells = <1>;
79 reg = <0x1800000 0x1000>;
80 interrupt-parent = <&core_pic>;
81 interrupts = < 12 13 14 15 >;
82 };
83
84 This is a minimal example where all individual interrupts go through a
85 combiner. Combiner-0 is mapped to core interrupt 12, combiner-1 is mapped
86 to interrupt 13, etc.
87
88
89 megamod_pic: interrupt-controller@1800000 {
90 compatible = "ti,c64x+megamod-pic";
91 interrupt-controller;
92 #interrupt-cells = <1>;
93 reg = <0x1800000 0x1000>;
94 interrupt-parent = <&core_pic>;
95 interrupts = < 12 13 14 15 >;
96 ti,c64x+megamod-pic-mux = < 0 0 0 0
97 32 0 0 0
98 0 0 0 0 >;
99 };
100
101 This the same as the first example except that megamodule interrupt 32 is
102 mapped directly to core priority interrupt 8. The node using this interrupt
103 must set the core controller as its interrupt parent and use 8 in the
104 interrupt specifier value.
diff --git a/Documentation/devicetree/bindings/c6x/soc.txt b/Documentation/devicetree/bindings/c6x/soc.txt
new file mode 100644
index 000000000000..b1e4973b5769
--- /dev/null
+++ b/Documentation/devicetree/bindings/c6x/soc.txt
@@ -0,0 +1,28 @@
1C6X System-on-Chip
2------------------
3
4Required properties:
5
6- compatible: "simple-bus"
7- #address-cells: must be 1
8- #size-cells: must be 1
9- ranges
10
11Optional properties:
12
13- model: specific SoC model
14
15- nodes for IP blocks within SoC
16
17
18Example:
19
20 soc {
21 compatible = "simple-bus";
22 model = "tms320c6455";
23 #address-cells = <1>;
24 #size-cells = <1>;
25 ranges;
26
27 ...
28 };
diff --git a/Documentation/devicetree/bindings/c6x/timer64.txt b/Documentation/devicetree/bindings/c6x/timer64.txt
new file mode 100644
index 000000000000..95911fe70224
--- /dev/null
+++ b/Documentation/devicetree/bindings/c6x/timer64.txt
@@ -0,0 +1,26 @@
1Timer64
2-------
3
4The timer64 node describes C6X event timers.
5
6Required properties:
7
8- compatible: must be "ti,c64x+timer64"
9- reg: base address and size of register region
10- interrupt-parent: interrupt controller
11- interrupts: interrupt id
12
13Optional properties:
14
15- ti,dscr-dev-enable: Device ID used to enable timer IP through DSCR interface.
16
17- ti,core-mask: on multi-core SoCs, bitmask of cores allowed to use this timer.
18
19Example:
20 timer0: timer@25e0000 {
21 compatible = "ti,c64x+timer64";
22 ti,core-mask = < 0x01 >;
23 reg = <0x25e0000 0x40>;
24 interrupt-parent = <&megamod_pic>;
25 interrupts = < 16 >;
26 };
diff --git a/Documentation/devicetree/bindings/dma/arm-pl330.txt b/Documentation/devicetree/bindings/dma/arm-pl330.txt
new file mode 100644
index 000000000000..a4cd273b2a67
--- /dev/null
+++ b/Documentation/devicetree/bindings/dma/arm-pl330.txt
@@ -0,0 +1,30 @@
1* ARM PrimeCell PL330 DMA Controller
2
3The ARM PrimeCell PL330 DMA controller can move blocks of memory contents
4between memory and peripherals or memory to memory.
5
6Required properties:
7 - compatible: should include both "arm,pl330" and "arm,primecell".
8 - reg: physical base address of the controller and length of memory mapped
9 region.
10 - interrupts: interrupt number to the cpu.
11
12Example:
13
14 pdma0: pdma@12680000 {
15 compatible = "arm,pl330", "arm,primecell";
16 reg = <0x12680000 0x1000>;
17 interrupts = <99>;
18 };
19
20Client drivers (device nodes requiring dma transfers from dev-to-mem or
21mem-to-dev) should specify the DMA channel numbers using a two-value pair
22as shown below.
23
24 [property name] = <[phandle of the dma controller] [dma request id]>;
25
26 where 'dma request id' is the dma request number which is connected
27 to the client controller. The 'property name' is recommended to be
28 of the form <name>-dma-channel.
29
30 Example: tx-dma-channel = <&pdma0 12>;
diff --git a/Documentation/devicetree/bindings/gpio/gpio-samsung.txt b/Documentation/devicetree/bindings/gpio/gpio-samsung.txt
new file mode 100644
index 000000000000..8f50fe5e6c42
--- /dev/null
+++ b/Documentation/devicetree/bindings/gpio/gpio-samsung.txt
@@ -0,0 +1,40 @@
1Samsung Exynos4 GPIO Controller
2
3Required properties:
4- compatible: Compatible property value should be "samsung,exynos4-gpio>".
5
6- reg: Physical base address of the controller and length of memory mapped
7 region.
8
9- #gpio-cells: Should be 4. The syntax of the gpio specifier used by client nodes
10 should be the following with values derived from the SoC user manual.
11 <[phandle of the gpio controller node]
12 [pin number within the gpio controller]
13 [mux function]
14 [pull up/down]
15 [drive strength]>
16
17 Values for gpio specifier:
18 - Pin number: is a value between 0 to 7.
19 - Pull Up/Down: 0 - Pull Up/Down Disabled.
20 1 - Pull Down Enabled.
21 3 - Pull Up Enabled.
22 - Drive Strength: 0 - 1x,
23 1 - 3x,
24 2 - 2x,
25 3 - 4x
26
27- gpio-controller: Specifies that the node is a gpio controller.
28- #address-cells: should be 1.
29- #size-cells: should be 1.
30
31Example:
32
33 gpa0: gpio-controller@11400000 {
34 #address-cells = <1>;
35 #size-cells = <1>;
36 compatible = "samsung,exynos4-gpio";
37 reg = <0x11400000 0x20>;
38 #gpio-cells = <4>;
39 gpio-controller;
40 };
diff --git a/Documentation/devicetree/bindings/i2c/i2c-designware.txt b/Documentation/devicetree/bindings/i2c/i2c-designware.txt
new file mode 100644
index 000000000000..e42a2ee233e6
--- /dev/null
+++ b/Documentation/devicetree/bindings/i2c/i2c-designware.txt
@@ -0,0 +1,22 @@
1* Synopsys DesignWare I2C
2
3Required properties :
4
5 - compatible : should be "snps,designware-i2c"
6 - reg : Offset and length of the register set for the device
7 - interrupts : <IRQ> where IRQ is the interrupt number.
8
9Recommended properties :
10
11 - clock-frequency : desired I2C bus clock frequency in Hz.
12
13Example :
14
15 i2c@f0000 {
16 #address-cells = <1>;
17 #size-cells = <0>;
18 compatible = "snps,designware-i2c";
19 reg = <0xf0000 0x1000>;
20 interrupts = <11>;
21 clock-frequency = <400000>;
22 };
diff --git a/Documentation/devicetree/bindings/i2c/trivial-devices.txt b/Documentation/devicetree/bindings/i2c/trivial-devices.txt
new file mode 100644
index 000000000000..1a85f986961b
--- /dev/null
+++ b/Documentation/devicetree/bindings/i2c/trivial-devices.txt
@@ -0,0 +1,58 @@
1This is a list of trivial i2c devices that have simple device tree
2bindings, consisting only of a compatible field, an address and
3possibly an interrupt line.
4
5If a device needs more specific bindings, such as properties to
6describe some aspect of it, there needs to be a specific binding
7document for it just like any other devices.
8
9
10Compatible Vendor / Chip
11========== =============
12ad,ad7414 SMBus/I2C Digital Temperature Sensor in 6-Pin SOT with SMBus Alert and Over Temperature Pin
13ad,adm9240 ADM9240: Complete System Hardware Monitor for uProcessor-Based Systems
14adi,adt7461 +/-1C TDM Extended Temp Range I.C
15adt7461 +/-1C TDM Extended Temp Range I.C
16at,24c08 i2c serial eeprom (24cxx)
17atmel,24c02 i2c serial eeprom (24cxx)
18catalyst,24c32 i2c serial eeprom
19dallas,ds1307 64 x 8, Serial, I2C Real-Time Clock
20dallas,ds1338 I2C RTC with 56-Byte NV RAM
21dallas,ds1339 I2C Serial Real-Time Clock
22dallas,ds1340 I2C RTC with Trickle Charger
23dallas,ds1374 I2C, 32-Bit Binary Counter Watchdog RTC with Trickle Charger and Reset Input/Output
24dallas,ds1631 High-Precision Digital Thermometer
25dallas,ds1682 Total-Elapsed-Time Recorder with Alarm
26dallas,ds1775 Tiny Digital Thermometer and Thermostat
27dallas,ds3232 Extremely Accurate I²C RTC with Integrated Crystal and SRAM
28dallas,ds4510 CPU Supervisor with Nonvolatile Memory and Programmable I/O
29dallas,ds75 Digital Thermometer and Thermostat
30dialog,da9053 DA9053: flexible system level PMIC with multicore support
31epson,rx8025 High-Stability. I2C-Bus INTERFACE REAL TIME CLOCK MODULE
32epson,rx8581 I2C-BUS INTERFACE REAL TIME CLOCK MODULE
33fsl,mag3110 MAG3110: Xtrinsic High Accuracy, 3D Magnetometer
34fsl,mc13892 MC13892: Power Management Integrated Circuit (PMIC) for i.MX35/51
35fsl,mma8450 MMA8450Q: Xtrinsic Low-power, 3-axis Xtrinsic Accelerometer
36fsl,mpr121 MPR121: Proximity Capacitive Touch Sensor Controller
37fsl,sgtl5000 SGTL5000: Ultra Low-Power Audio Codec
38maxim,ds1050 5 Bit Programmable, Pulse-Width Modulator
39maxim,max1237 Low-Power, 4-/12-Channel, 2-Wire Serial, 12-Bit ADCs
40maxim,max6625 9-Bit/12-Bit Temperature Sensors with I²C-Compatible Serial Interface
41mc,rv3029c2 Real Time Clock Module with I2C-Bus
42national,lm75 I2C TEMP SENSOR
43national,lm80 Serial Interface ACPI-Compatible Microprocessor System Hardware Monitor
44national,lm92 ±0.33°C Accurate, 12-Bit + Sign Temperature Sensor and Thermal Window Comparator with Two-Wire Interface
45nxp,pca9556 Octal SMBus and I2C registered interface
46nxp,pca9557 8-bit I2C-bus and SMBus I/O port with reset
47nxp,pcf8563 Real-time clock/calendar
48ovti,ov5642 OV5642: Color CMOS QSXGA (5-megapixel) Image Sensor with OmniBSI and Embedded TrueFocus
49pericom,pt7c4338 Real-time Clock Module
50plx,pex8648 48-Lane, 12-Port PCI Express Gen 2 (5.0 GT/s) Switch
51ramtron,24c64 i2c serial eeprom (24cxx)
52ricoh,rs5c372a I2C bus SERIAL INTERFACE REAL-TIME CLOCK IC
53samsung,24ad0xd1 S524AD0XF1 (128K/256K-bit Serial EEPROM for Low Power)
54st-micro,24c256 i2c serial eeprom (24cxx)
55stm,m41t00 Serial Access TIMEKEEPER
56stm,m41t62 Serial real-time clock (RTC) with alarm
57stm,m41t80 M41T80 - SERIAL ACCESS RTC WITH ALARMS
58ti,tsc2003 I2C Touch-Screen Controller
diff --git a/Documentation/devicetree/bindings/input/samsung-keypad.txt b/Documentation/devicetree/bindings/input/samsung-keypad.txt
new file mode 100644
index 000000000000..ce3e394c0e64
--- /dev/null
+++ b/Documentation/devicetree/bindings/input/samsung-keypad.txt
@@ -0,0 +1,88 @@
1* Samsung's Keypad Controller device tree bindings
2
3Samsung's Keypad controller is used to interface a SoC with a matrix-type
4keypad device. The keypad controller supports multiple row and column lines.
5A key can be placed at each intersection of a unique row and a unique column.
6The keypad controller can sense a key-press and key-release and report the
7event using a interrupt to the cpu.
8
9Required SoC Specific Properties:
10- compatible: should be one of the following
11 - "samsung,s3c6410-keypad": For controllers compatible with s3c6410 keypad
12 controller.
13 - "samsung,s5pv210-keypad": For controllers compatible with s5pv210 keypad
14 controller.
15
16- reg: physical base address of the controller and length of memory mapped
17 region.
18
19- interrupts: The interrupt number to the cpu.
20
21Required Board Specific Properties:
22- samsung,keypad-num-rows: Number of row lines connected to the keypad
23 controller.
24
25- samsung,keypad-num-columns: Number of column lines connected to the
26 keypad controller.
27
28- row-gpios: List of gpios used as row lines. The gpio specifier for
29 this property depends on the gpio controller to which these row lines
30 are connected.
31
32- col-gpios: List of gpios used as column lines. The gpio specifier for
33 this property depends on the gpio controller to which these column
34 lines are connected.
35
36- Keys represented as child nodes: Each key connected to the keypad
37 controller is represented as a child node to the keypad controller
38 device node and should include the following properties.
39 - keypad,row: the row number to which the key is connected.
40 - keypad,column: the column number to which the key is connected.
41 - linux,code: the key-code to be reported when the key is pressed
42 and released.
43
44Optional Properties specific to linux:
45- linux,keypad-no-autorepeat: do no enable autorepeat feature.
46- linux,keypad-wakeup: use any event on keypad as wakeup event.
47
48
49Example:
50 keypad@100A0000 {
51 compatible = "samsung,s5pv210-keypad";
52 reg = <0x100A0000 0x100>;
53 interrupts = <173>;
54 samsung,keypad-num-rows = <2>;
55 samsung,keypad-num-columns = <8>;
56 linux,input-no-autorepeat;
57 linux,input-wakeup;
58
59 row-gpios = <&gpx2 0 3 3 0
60 &gpx2 1 3 3 0>;
61
62 col-gpios = <&gpx1 0 3 0 0
63 &gpx1 1 3 0 0
64 &gpx1 2 3 0 0
65 &gpx1 3 3 0 0
66 &gpx1 4 3 0 0
67 &gpx1 5 3 0 0
68 &gpx1 6 3 0 0
69 &gpx1 7 3 0 0>;
70
71 key_1 {
72 keypad,row = <0>;
73 keypad,column = <3>;
74 linux,code = <2>;
75 };
76
77 key_2 {
78 keypad,row = <0>;
79 keypad,column = <4>;
80 linux,code = <3>;
81 };
82
83 key_3 {
84 keypad,row = <0>;
85 keypad,column = <5>;
86 linux,code = <4>;
87 };
88 };
diff --git a/Documentation/devicetree/bindings/input/tegra-kbc.txt b/Documentation/devicetree/bindings/input/tegra-kbc.txt
new file mode 100644
index 000000000000..5ecfa99089b4
--- /dev/null
+++ b/Documentation/devicetree/bindings/input/tegra-kbc.txt
@@ -0,0 +1,18 @@
1* Tegra keyboard controller
2
3Required properties:
4- compatible: "nvidia,tegra20-kbc"
5
6Optional properties:
7- debounce-delay: delay in milliseconds per row scan for debouncing
8- repeat-delay: delay in milliseconds before repeat starts
9- ghost-filter: enable ghost filtering for this device
10- wakeup-source: configure keyboard as a wakeup source for suspend/resume
11
12Example:
13
14keyboard: keyboard {
15 compatible = "nvidia,tegra20-kbc";
16 reg = <0x7000e200 0x100>;
17 ghost-filter;
18};
diff --git a/Documentation/devicetree/bindings/mtd/gpio-control-nand.txt b/Documentation/devicetree/bindings/mtd/gpio-control-nand.txt
new file mode 100644
index 000000000000..719f4dc58df7
--- /dev/null
+++ b/Documentation/devicetree/bindings/mtd/gpio-control-nand.txt
@@ -0,0 +1,44 @@
1GPIO assisted NAND flash
2
3The GPIO assisted NAND flash uses a memory mapped interface to
4read/write the NAND commands and data and GPIO pins for the control
5signals.
6
7Required properties:
8- compatible : "gpio-control-nand"
9- reg : should specify localbus chip select and size used for the chip. The
10 resource describes the data bus connected to the NAND flash and all accesses
11 are made in native endianness.
12- #address-cells, #size-cells : Must be present if the device has sub-nodes
13 representing partitions.
14- gpios : specifies the gpio pins to control the NAND device. nwp is an
15 optional gpio and may be set to 0 if not present.
16
17Optional properties:
18- bank-width : Width (in bytes) of the device. If not present, the width
19 defaults to 1 byte.
20- chip-delay : chip dependent delay for transferring data from array to
21 read registers (tR). If not present then a default of 20us is used.
22- gpio-control-nand,io-sync-reg : A 64-bit physical address for a read
23 location used to guard against bus reordering with regards to accesses to
24 the GPIO's and the NAND flash data bus. If present, then after changing
25 GPIO state and before and after command byte writes, this register will be
26 read to ensure that the GPIO accesses have completed.
27
28Examples:
29
30gpio-nand@1,0 {
31 compatible = "gpio-control-nand";
32 reg = <1 0x0000 0x2>;
33 #address-cells = <1>;
34 #size-cells = <1>;
35 gpios = <&banka 1 0 /* rdy */
36 &banka 2 0 /* nce */
37 &banka 3 0 /* ale */
38 &banka 4 0 /* cle */
39 0 /* nwp */>;
40
41 partition@0 {
42 ...
43 };
44};
diff --git a/Documentation/devicetree/bindings/net/calxeda-xgmac.txt b/Documentation/devicetree/bindings/net/calxeda-xgmac.txt
new file mode 100644
index 000000000000..411727a3f82d
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/calxeda-xgmac.txt
@@ -0,0 +1,15 @@
1* Calxeda Highbank 10Gb XGMAC Ethernet
2
3Required properties:
4- compatible : Should be "calxeda,hb-xgmac"
5- reg : Address and length of the register set for the device
6- interrupts : Should contain 3 xgmac interrupts. The 1st is main interrupt.
7 The 2nd is pwr mgt interrupt. The 3rd is low power state interrupt.
8
9Example:
10
11ethernet@fff50000 {
12 compatible = "calxeda,hb-xgmac";
13 reg = <0xfff50000 0x1000>;
14 interrupts = <0 77 4 0 78 4 0 79 4>;
15};
diff --git a/Documentation/devicetree/bindings/net/can/cc770.txt b/Documentation/devicetree/bindings/net/can/cc770.txt
new file mode 100644
index 000000000000..77027bf6460a
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/can/cc770.txt
@@ -0,0 +1,53 @@
1Memory mapped Bosch CC770 and Intel AN82527 CAN controller
2
3Note: The CC770 is a CAN controller from Bosch, which is 100%
4compatible with the old AN82527 from Intel, but with "bugs" being fixed.
5
6Required properties:
7
8- compatible : should be "bosch,cc770" for the CC770 and "intc,82527"
9 for the AN82527.
10
11- reg : should specify the chip select, address offset and size required
12 to map the registers of the controller. The size is usually 0x80.
13
14- interrupts : property with a value describing the interrupt source
15 (number and sensitivity) required for the controller.
16
17Optional properties:
18
19- bosch,external-clock-frequency : frequency of the external oscillator
20 clock in Hz. Note that the internal clock frequency used by the
21 controller is half of that value. If not specified, a default
22 value of 16000000 (16 MHz) is used.
23
24- bosch,clock-out-frequency : slock frequency in Hz on the CLKOUT pin.
25 If not specified or if the specified value is 0, the CLKOUT pin
26 will be disabled.
27
28- bosch,slew-rate : slew rate of the CLKOUT signal. If not specified,
29 a resonable value will be calculated.
30
31- bosch,disconnect-rx0-input : see data sheet.
32
33- bosch,disconnect-rx1-input : see data sheet.
34
35- bosch,disconnect-tx1-output : see data sheet.
36
37- bosch,polarity-dominant : see data sheet.
38
39- bosch,divide-memory-clock : see data sheet.
40
41- bosch,iso-low-speed-mux : see data sheet.
42
43For further information, please have a look to the CC770 or AN82527.
44
45Examples:
46
47can@3,100 {
48 compatible = "bosch,cc770";
49 reg = <3 0x100 0x80>;
50 interrupts = <2 0>;
51 interrupt-parent = <&mpic>;
52 bosch,external-clock-frequency = <16000000>;
53};
diff --git a/Documentation/devicetree/bindings/net/macb.txt b/Documentation/devicetree/bindings/net/macb.txt
new file mode 100644
index 000000000000..44afa0e5057d
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/macb.txt
@@ -0,0 +1,25 @@
1* Cadence MACB/GEM Ethernet controller
2
3Required properties:
4- compatible: Should be "cdns,[<chip>-]{macb|gem}"
5 Use "cdns,at91sam9260-macb" Atmel at91sam9260 and at91sam9263 SoCs.
6 Use "cdns,at32ap7000-macb" for other 10/100 usage or use the generic form: "cdns,macb".
7 Use "cnds,pc302-gem" for Picochip picoXcell pc302 and later devices based on
8 the Cadence GEM, or the generic form: "cdns,gem".
9- reg: Address and length of the register set for the device
10- interrupts: Should contain macb interrupt
11- phy-mode: String, operation mode of the PHY interface.
12 Supported values are: "mii", "rmii", "gmii", "rgmii".
13
14Optional properties:
15- local-mac-address: 6 bytes, mac address
16
17Examples:
18
19 macb0: ethernet@fffc4000 {
20 compatible = "cdns,at32ap7000-macb";
21 reg = <0xfffc4000 0x4000>;
22 interrupts = <21>;
23 phy-mode = "rmii";
24 local-mac-address = [3a 0e 03 04 05 06];
25 };
diff --git a/Documentation/devicetree/bindings/nvec/nvec_nvidia.txt b/Documentation/devicetree/bindings/nvec/nvec_nvidia.txt
new file mode 100644
index 000000000000..5aeee53ff9f4
--- /dev/null
+++ b/Documentation/devicetree/bindings/nvec/nvec_nvidia.txt
@@ -0,0 +1,9 @@
1NVIDIA compliant embedded controller
2
3Required properties:
4- compatible : should be "nvidia,nvec".
5- reg : the iomem of the i2c slave controller
6- interrupts : the interrupt line of the i2c slave controller
7- clock-frequency : the frequency of the i2c bus
8- gpios : the gpio used for ec request
9- slave-addr: the i2c address of the slave controller
diff --git a/Documentation/devicetree/bindings/power_supply/olpc_battery.txt b/Documentation/devicetree/bindings/power_supply/olpc_battery.txt
new file mode 100644
index 000000000000..c8901b3992d9
--- /dev/null
+++ b/Documentation/devicetree/bindings/power_supply/olpc_battery.txt
@@ -0,0 +1,5 @@
1OLPC battery
2~~~~~~~~~~~~
3
4Required properties:
5 - compatible : "olpc,xo1-battery"
diff --git a/Documentation/devicetree/bindings/power_supply/sbs_sbs-battery.txt b/Documentation/devicetree/bindings/power_supply/sbs_sbs-battery.txt
new file mode 100644
index 000000000000..c40e8926facf
--- /dev/null
+++ b/Documentation/devicetree/bindings/power_supply/sbs_sbs-battery.txt
@@ -0,0 +1,23 @@
1SBS sbs-battery
2~~~~~~~~~~
3
4Required properties :
5 - compatible : "sbs,sbs-battery"
6
7Optional properties :
8 - sbs,i2c-retry-count : The number of times to retry i2c transactions on i2c
9 IO failure.
10 - sbs,poll-retry-count : The number of times to try looking for new status
11 after an external change notification.
12 - sbs,battery-detect-gpios : The gpio which signals battery detection and
13 a flag specifying its polarity.
14
15Example:
16
17 bq20z75@b {
18 compatible = "sbs,sbs-battery";
19 reg = < 0xb >;
20 sbs,i2c-retry-count = <2>;
21 sbs,poll-retry-count = <10>;
22 sbs,battery-detect-gpios = <&gpio-controller 122 1>;
23 }
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/srio-rmu.txt b/Documentation/devicetree/bindings/powerpc/fsl/srio-rmu.txt
new file mode 100644
index 000000000000..b9a8a2bcfae7
--- /dev/null
+++ b/Documentation/devicetree/bindings/powerpc/fsl/srio-rmu.txt
@@ -0,0 +1,163 @@
1Message unit node:
2
3For SRIO controllers that implement the message unit as part of the controller
4this node is required. For devices with RMAN this node should NOT exist. The
5node is composed of three types of sub-nodes ("fsl-srio-msg-unit",
6"fsl-srio-dbell-unit" and "fsl-srio-port-write-unit").
7
8See srio.txt for more details about generic SRIO controller details.
9
10 - compatible
11 Usage: required
12 Value type: <string>
13 Definition: Must include "fsl,srio-rmu-vX.Y", "fsl,srio-rmu".
14
15 The version X.Y should match the general SRIO controller's IP Block
16 revision register's Major(X) and Minor (Y) value.
17
18 - reg
19 Usage: required
20 Value type: <prop-encoded-array>
21 Definition: A standard property. Specifies the physical address and
22 length of the SRIO configuration registers for message units
23 and doorbell units.
24
25 - fsl,liodn
26 Usage: optional-but-recommended (for devices with PAMU)
27 Value type: <prop-encoded-array>
28 Definition: The logical I/O device number for the PAMU (IOMMU) to be
29 correctly configured for SRIO accesses. The property should
30 not exist on devices that do not support PAMU.
31
32 The LIODN value is associated with all RMU transactions
33 (msg-unit, doorbell, port-write).
34
35Sub-Nodes for RMU: The RMU node is composed of multiple sub-nodes that
36correspond to the actual sub-controllers in the RMU. The manual for a given
37SoC will detail which and how many of these sub-controllers are implemented.
38
39Message Unit:
40
41 - compatible
42 Usage: required
43 Value type: <string>
44 Definition: Must include "fsl,srio-msg-unit-vX.Y", "fsl,srio-msg-unit".
45
46 The version X.Y should match the general SRIO controller's IP Block
47 revision register's Major(X) and Minor (Y) value.
48
49 - reg
50 Usage: required
51 Value type: <prop-encoded-array>
52 Definition: A standard property. Specifies the physical address and
53 length of the SRIO configuration registers for message units
54 and doorbell units.
55
56 - interrupts
57 Usage: required
58 Value type: <prop_encoded-array>
59 Definition: Specifies the interrupts generated by this device. The
60 value of the interrupts property consists of one interrupt
61 specifier. The format of the specifier is defined by the
62 binding document describing the node's interrupt parent.
63
64 A pair of IRQs are specified in this property. The first
65 element is associated with the transmit (TX) interrupt and the
66 second element is associated with the receive (RX) interrupt.
67
68Doorbell Unit:
69
70 - compatible
71 Usage: required
72 Value type: <string>
73 Definition: Must include:
74 "fsl,srio-dbell-unit-vX.Y", "fsl,srio-dbell-unit"
75
76 The version X.Y should match the general SRIO controller's IP Block
77 revision register's Major(X) and Minor (Y) value.
78
79 - reg
80 Usage: required
81 Value type: <prop-encoded-array>
82 Definition: A standard property. Specifies the physical address and
83 length of the SRIO configuration registers for message units
84 and doorbell units.
85
86 - interrupts
87 Usage: required
88 Value type: <prop_encoded-array>
89 Definition: Specifies the interrupts generated by this device. The
90 value of the interrupts property consists of one interrupt
91 specifier. The format of the specifier is defined by the
92 binding document describing the node's interrupt parent.
93
94 A pair of IRQs are specified in this property. The first
95 element is associated with the transmit (TX) interrupt and the
96 second element is associated with the receive (RX) interrupt.
97
98Port-Write Unit:
99
100 - compatible
101 Usage: required
102 Value type: <string>
103 Definition: Must include:
104 "fsl,srio-port-write-unit-vX.Y", "fsl,srio-port-write-unit"
105
106 The version X.Y should match the general SRIO controller's IP Block
107 revision register's Major(X) and Minor (Y) value.
108
109 - reg
110 Usage: required
111 Value type: <prop-encoded-array>
112 Definition: A standard property. Specifies the physical address and
113 length of the SRIO configuration registers for message units
114 and doorbell units.
115
116 - interrupts
117 Usage: required
118 Value type: <prop_encoded-array>
119 Definition: Specifies the interrupts generated by this device. The
120 value of the interrupts property consists of one interrupt
121 specifier. The format of the specifier is defined by the
122 binding document describing the node's interrupt parent.
123
124 A single IRQ that handles port-write conditions is
125 specified by this property. (Typically shared with error).
126
127 Note: All other standard properties (see the ePAPR) are allowed
128 but are optional.
129
130Example:
131 rmu: rmu@d3000 {
132 compatible = "fsl,srio-rmu";
133 reg = <0xd3000 0x400>;
134 ranges = <0x0 0xd3000 0x400>;
135 fsl,liodn = <0xc8>;
136
137 message-unit@0 {
138 compatible = "fsl,srio-msg-unit";
139 reg = <0x0 0x100>;
140 interrupts = <
141 60 2 0 0 /* msg1_tx_irq */
142 61 2 0 0>;/* msg1_rx_irq */
143 };
144 message-unit@100 {
145 compatible = "fsl,srio-msg-unit";
146 reg = <0x100 0x100>;
147 interrupts = <
148 62 2 0 0 /* msg2_tx_irq */
149 63 2 0 0>;/* msg2_rx_irq */
150 };
151 doorbell-unit@400 {
152 compatible = "fsl,srio-dbell-unit";
153 reg = <0x400 0x80>;
154 interrupts = <
155 56 2 0 0 /* bell_outb_irq */
156 57 2 0 0>;/* bell_inb_irq */
157 };
158 port-write-unit@4e0 {
159 compatible = "fsl,srio-port-write-unit";
160 reg = <0x4e0 0x20>;
161 interrupts = <16 2 1 11>;
162 };
163 };
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/srio.txt b/Documentation/devicetree/bindings/powerpc/fsl/srio.txt
new file mode 100644
index 000000000000..b039bcbee134
--- /dev/null
+++ b/Documentation/devicetree/bindings/powerpc/fsl/srio.txt
@@ -0,0 +1,103 @@
1* Freescale Serial RapidIO (SRIO) Controller
2
3RapidIO port node:
4Properties:
5 - compatible
6 Usage: required
7 Value type: <string>
8 Definition: Must include "fsl,srio" for IP blocks with IP Block
9 Revision Register (SRIO IPBRR1) Major ID equal to 0x01c0.
10
11 Optionally, a compatiable string of "fsl,srio-vX.Y" where X is Major
12 version in IP Block Revision Register and Y is Minor version. If this
13 compatiable is provided it should be ordered before "fsl,srio".
14
15 - reg
16 Usage: required
17 Value type: <prop-encoded-array>
18 Definition: A standard property. Specifies the physical address and
19 length of the SRIO configuration registers. The size should
20 be set to 0x11000.
21
22 - interrupts
23 Usage: required
24 Value type: <prop_encoded-array>
25 Definition: Specifies the interrupts generated by this device. The
26 value of the interrupts property consists of one interrupt
27 specifier. The format of the specifier is defined by the
28 binding document describing the node's interrupt parent.
29
30 A single IRQ that handles error conditions is specified by this
31 property. (Typically shared with port-write).
32
33 - fsl,srio-rmu-handle:
34 Usage: required if rmu node is defined
35 Value type: <phandle>
36 Definition: A single <phandle> value that points to the RMU.
37 (See srio-rmu.txt for more details on RMU node binding)
38
39Port Child Nodes: There should a port child node for each port that exists in
40the controller. The ports are numbered starting at one (1) and should have
41the following properties:
42
43 - cell-index
44 Usage: required
45 Value type: <u32>
46 Definition: A standard property. Matches the port id.
47
48 - ranges
49 Usage: required if local access windows preset
50 Value type: <prop-encoded-array>
51 Definition: A standard property. Utilized to describe the memory mapped
52 IO space utilized by the controller. This corresponds to the
53 setting of the local access windows that are targeted to this
54 SRIO port.
55
56 - fsl,liodn
57 Usage: optional-but-recommended (for devices with PAMU)
58 Value type: <prop-encoded-array>
59 Definition: The logical I/O device number for the PAMU (IOMMU) to be
60 correctly configured for SRIO accesses. The property should
61 not exist on devices that do not support PAMU.
62
63 For HW (ie, the P4080) that only supports a LIODN for both
64 memory and maintenance transactions then a single LIODN is
65 represented in the property for both transactions.
66
67 For HW (ie, the P304x/P5020, etc) that supports an LIODN for
68 memory transactions and a unique LIODN for maintenance
69 transactions then a pair of LIODNs are represented in the
70 property. Within the pair, the first element represents the
71 LIODN associated with memory transactions and the second element
72 represents the LIODN associated with maintenance transactions
73 for the port.
74
75Note: All other standard properties (see ePAPR) are allowed but are optional.
76
77Example:
78
79 rapidio: rapidio@ffe0c0000 {
80 #address-cells = <2>;
81 #size-cells = <2>;
82 reg = <0xf 0xfe0c0000 0 0x11000>;
83 compatible = "fsl,srio";
84 interrupts = <16 2 1 11>; /* err_irq */
85 fsl,srio-rmu-handle = <&rmu>;
86 ranges;
87
88 port1 {
89 cell-index = <1>;
90 #address-cells = <2>;
91 #size-cells = <2>;
92 fsl,liodn = <34>;
93 ranges = <0 0 0xc 0x20000000 0 0x10000000>;
94 };
95
96 port2 {
97 cell-index = <2>;
98 #address-cells = <2>;
99 #size-cells = <2>;
100 fsl,liodn = <48>;
101 ranges = <0 0 0xc 0x30000000 0 0x10000000>;
102 };
103 };
diff --git a/Documentation/devicetree/bindings/regulator/fixed-regulator.txt b/Documentation/devicetree/bindings/regulator/fixed-regulator.txt
new file mode 100644
index 000000000000..9cf57fd042d2
--- /dev/null
+++ b/Documentation/devicetree/bindings/regulator/fixed-regulator.txt
@@ -0,0 +1,29 @@
1Fixed Voltage regulators
2
3Required properties:
4- compatible: Must be "regulator-fixed";
5
6Optional properties:
7- gpio: gpio to use for enable control
8- startup-delay-us: startup time in microseconds
9- enable-active-high: Polarity of GPIO is Active high
10If this property is missing, the default assumed is Active low.
11
12Any property defined as part of the core regulator
13binding, defined in regulator.txt, can also be used.
14However a fixed voltage regulator is expected to have the
15regulator-min-microvolt and regulator-max-microvolt
16to be the same.
17
18Example:
19
20 abc: fixedregulator@0 {
21 compatible = "regulator-fixed";
22 regulator-name = "fixed-supply";
23 regulator-min-microvolt = <1800000>;
24 regulator-max-microvolt = <1800000>;
25 gpio = <&gpio1 16 0>;
26 startup-delay-us = <70000>;
27 enable-active-high;
28 regulator-boot-on
29 };
diff --git a/Documentation/devicetree/bindings/regulator/regulator.txt b/Documentation/devicetree/bindings/regulator/regulator.txt
new file mode 100644
index 000000000000..5b7a408acdaa
--- /dev/null
+++ b/Documentation/devicetree/bindings/regulator/regulator.txt
@@ -0,0 +1,54 @@
1Voltage/Current Regulators
2
3Optional properties:
4- regulator-name: A string used as a descriptive name for regulator outputs
5- regulator-min-microvolt: smallest voltage consumers may set
6- regulator-max-microvolt: largest voltage consumers may set
7- regulator-microvolt-offset: Offset applied to voltages to compensate for voltage drops
8- regulator-min-microamp: smallest current consumers may set
9- regulator-max-microamp: largest current consumers may set
10- regulator-always-on: boolean, regulator should never be disabled
11- regulator-boot-on: bootloader/firmware enabled regulator
12- <name>-supply: phandle to the parent supply/regulator node
13
14Example:
15
16 xyzreg: regulator@0 {
17 regulator-min-microvolt = <1000000>;
18 regulator-max-microvolt = <2500000>;
19 regulator-always-on;
20 vin-supply = <&vin>;
21 };
22
23Regulator Consumers:
24Consumer nodes can reference one or more of its supplies/
25regulators using the below bindings.
26
27- <name>-supply: phandle to the regulator node
28
29These are the same bindings that a regulator in the above
30example used to reference its own supply, in which case
31its just seen as a special case of a regulator being a
32consumer itself.
33
34Example of a consumer device node (mmc) referencing two
35regulators (twl_reg1 and twl_reg2),
36
37 twl_reg1: regulator@0 {
38 ...
39 ...
40 ...
41 };
42
43 twl_reg2: regulator@1 {
44 ...
45 ...
46 ...
47 };
48
49 mmc: mmc@0x0 {
50 ...
51 ...
52 vmmc-supply = <&twl_reg1>;
53 vmmcaux-supply = <&twl_reg2>;
54 };
diff --git a/Documentation/devicetree/bindings/rtc/s3c-rtc.txt b/Documentation/devicetree/bindings/rtc/s3c-rtc.txt
new file mode 100644
index 000000000000..90ec45fd33ec
--- /dev/null
+++ b/Documentation/devicetree/bindings/rtc/s3c-rtc.txt
@@ -0,0 +1,20 @@
1* Samsung's S3C Real Time Clock controller
2
3Required properties:
4- compatible: should be one of the following.
5 * "samsung,s3c2410-rtc" - for controllers compatible with s3c2410 rtc.
6 * "samsung,s3c6410-rtc" - for controllers compatible with s3c6410 rtc.
7- reg: physical base address of the controller and length of memory mapped
8 region.
9- interrupts: Two interrupt numbers to the cpu should be specified. First
10 interrupt number is the rtc alarm interupt and second interrupt number
11 is the rtc tick interrupt. The number of cells representing a interrupt
12 depends on the parent interrupt controller.
13
14Example:
15
16 rtc@10070000 {
17 compatible = "samsung,s3c6410-rtc";
18 reg = <0x10070000 0x100>;
19 interrupts = <44 0 45 0>;
20 };
diff --git a/Documentation/devicetree/bindings/rtc/twl-rtc.txt b/Documentation/devicetree/bindings/rtc/twl-rtc.txt
new file mode 100644
index 000000000000..596e0c97be7a
--- /dev/null
+++ b/Documentation/devicetree/bindings/rtc/twl-rtc.txt
@@ -0,0 +1,12 @@
1* TI twl RTC
2
3The TWL family (twl4030/6030) contains a RTC.
4
5Required properties:
6- compatible : Should be twl4030-rtc
7
8Examples:
9
10rtc@0 {
11 compatible = "ti,twl4030-rtc";
12};
diff --git a/Documentation/devicetree/bindings/serial/omap_serial.txt b/Documentation/devicetree/bindings/serial/omap_serial.txt
new file mode 100644
index 000000000000..342eedd10050
--- /dev/null
+++ b/Documentation/devicetree/bindings/serial/omap_serial.txt
@@ -0,0 +1,10 @@
1OMAP UART controller
2
3Required properties:
4- compatible : should be "ti,omap2-uart" for OMAP2 controllers
5- compatible : should be "ti,omap3-uart" for OMAP3 controllers
6- compatible : should be "ti,omap4-uart" for OMAP4 controllers
7- ti,hwmods : Must be "uart<n>", n being the instance number (1-based)
8
9Optional properties:
10- clock-frequency : frequency of the clock input to the UART
diff --git a/Documentation/devicetree/bindings/serial/samsung_uart.txt b/Documentation/devicetree/bindings/serial/samsung_uart.txt
new file mode 100644
index 000000000000..2c8a17cf5cb5
--- /dev/null
+++ b/Documentation/devicetree/bindings/serial/samsung_uart.txt
@@ -0,0 +1,14 @@
1* Samsung's UART Controller
2
3The Samsung's UART controller is used for interfacing SoC with serial communicaion
4devices.
5
6Required properties:
7- compatible: should be
8 - "samsung,exynos4210-uart", for UART's compatible with Exynos4210 uart ports.
9
10- reg: base physical address of the controller and length of memory mapped
11 region.
12
13- interrupts: interrupt number to the cpu. The interrupt specifier format depends
14 on the interrupt controller parent.
diff --git a/Documentation/devicetree/bindings/sound/tegra-audio-wm8903.txt b/Documentation/devicetree/bindings/sound/tegra-audio-wm8903.txt
new file mode 100644
index 000000000000..d5b0da8bf1d8
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/tegra-audio-wm8903.txt
@@ -0,0 +1,71 @@
1NVIDIA Tegra audio complex
2
3Required properties:
4- compatible : "nvidia,tegra-audio-wm8903"
5- nvidia,model : The user-visible name of this sound complex.
6- nvidia,audio-routing : A list of the connections between audio components.
7 Each entry is a pair of strings, the first being the connection's sink,
8 the second being the connection's source. Valid names for sources and
9 sinks are the WM8903's pins, and the jacks on the board:
10
11 WM8903 pins:
12
13 * IN1L
14 * IN1R
15 * IN2L
16 * IN2R
17 * IN3L
18 * IN3R
19 * DMICDAT
20 * HPOUTL
21 * HPOUTR
22 * LINEOUTL
23 * LINEOUTR
24 * LOP
25 * LON
26 * ROP
27 * RON
28 * MICBIAS
29
30 Board connectors:
31
32 * Headphone Jack
33 * Int Spk
34 * Mic Jack
35
36- nvidia,i2s-controller : The phandle of the Tegra I2S1 controller
37- nvidia,audio-codec : The phandle of the WM8903 audio codec
38
39Optional properties:
40- nvidia,spkr-en-gpios : The GPIO that enables the speakers
41- nvidia,hp-mute-gpios : The GPIO that mutes the headphones
42- nvidia,hp-det-gpios : The GPIO that detect headphones are plugged in
43- nvidia,int-mic-en-gpios : The GPIO that enables the internal microphone
44- nvidia,ext-mic-en-gpios : The GPIO that enables the external microphone
45
46Example:
47
48sound {
49 compatible = "nvidia,tegra-audio-wm8903-harmony",
50 "nvidia,tegra-audio-wm8903"
51 nvidia,model = "tegra-wm8903-harmony";
52
53 nvidia,audio-routing =
54 "Headphone Jack", "HPOUTR",
55 "Headphone Jack", "HPOUTL",
56 "Int Spk", "ROP",
57 "Int Spk", "RON",
58 "Int Spk", "LOP",
59 "Int Spk", "LON",
60 "Mic Jack", "MICBIAS",
61 "IN1L", "Mic Jack";
62
63 nvidia,i2s-controller = <&i2s1>;
64 nvidia,audio-codec = <&wm8903>;
65
66 nvidia,spkr-en-gpios = <&codec 2 0>;
67 nvidia,hp-det-gpios = <&gpio 178 0>; /* gpio PW2 */
68 nvidia,int-mic-en-gpios = <&gpio 184 0>; /*gpio PX0 */
69 nvidia,ext-mic-en-gpios = <&gpio 185 0>; /* gpio PX1 */
70};
71
diff --git a/Documentation/devicetree/bindings/sound/tegra20-das.txt b/Documentation/devicetree/bindings/sound/tegra20-das.txt
new file mode 100644
index 000000000000..6de3a7ee4efb
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/tegra20-das.txt
@@ -0,0 +1,12 @@
1NVIDIA Tegra 20 DAS (Digital Audio Switch) controller
2
3Required properties:
4- compatible : "nvidia,tegra20-das"
5- reg : Should contain DAS registers location and length
6
7Example:
8
9das@70000c00 {
10 compatible = "nvidia,tegra20-das";
11 reg = <0x70000c00 0x80>;
12};
diff --git a/Documentation/devicetree/bindings/sound/tegra20-i2s.txt b/Documentation/devicetree/bindings/sound/tegra20-i2s.txt
new file mode 100644
index 000000000000..0df2b5c816e3
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/tegra20-i2s.txt
@@ -0,0 +1,17 @@
1NVIDIA Tegra 20 I2S controller
2
3Required properties:
4- compatible : "nvidia,tegra20-i2s"
5- reg : Should contain I2S registers location and length
6- interrupts : Should contain I2S interrupt
7- nvidia,dma-request-selector : The Tegra DMA controller's phandle and
8 request selector for this I2S controller
9
10Example:
11
12i2s@70002800 {
13 compatible = "nvidia,tegra20-i2s";
14 reg = <0x70002800 0x200>;
15 interrupts = < 45 >;
16 nvidia,dma-request-selector = < &apbdma 2 >;
17};
diff --git a/Documentation/devicetree/bindings/sound/wm8903.txt b/Documentation/devicetree/bindings/sound/wm8903.txt
new file mode 100644
index 000000000000..f102cbc42694
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/wm8903.txt
@@ -0,0 +1,50 @@
1WM8903 audio CODEC
2
3This device supports I2C only.
4
5Required properties:
6
7 - compatible : "wlf,wm8903"
8
9 - reg : the I2C address of the device.
10
11 - gpio-controller : Indicates this device is a GPIO controller.
12
13 - #gpio-cells : Should be two. The first cell is the pin number and the
14 second cell is used to specify optional parameters (currently unused).
15
16Optional properties:
17
18 - interrupts : The interrupt line the codec is connected to.
19
20 - micdet-cfg : Default register value for R6 (Mic Bias). If absent, the
21 default is 0.
22
23 - micdet-delay : The debounce delay for microphone detection in mS. If
24 absent, the default is 100.
25
26 - gpio-cfg : A list of GPIO configuration register values. The list must
27 be 5 entries long. If absent, no configuration of these registers is
28 performed. If any entry has the value 0xffffffff, that GPIO's
29 configuration will not be modified.
30
31Example:
32
33codec: wm8903@1a {
34 compatible = "wlf,wm8903";
35 reg = <0x1a>;
36 interrupts = < 347 >;
37
38 gpio-controller;
39 #gpio-cells = <2>;
40
41 micdet-cfg = <0>;
42 micdet-delay = <100>;
43 gpio-cfg = <
44 0x0600 /* DMIC_LR, output */
45 0x0680 /* DMIC_DAT, input */
46 0x0000 /* GPIO, output, low */
47 0x0200 /* Interrupt, output */
48 0x01a0 /* BCLK, input, active high */
49 >;
50};
diff --git a/Documentation/devicetree/bindings/usb/tegra-usb.txt b/Documentation/devicetree/bindings/usb/tegra-usb.txt
new file mode 100644
index 000000000000..035d63d5646d
--- /dev/null
+++ b/Documentation/devicetree/bindings/usb/tegra-usb.txt
@@ -0,0 +1,13 @@
1Tegra SOC USB controllers
2
3The device node for a USB controller that is part of a Tegra
4SOC is as described in the document "Open Firmware Recommended
5Practice : Universal Serial Bus" with the following modifications
6and additions :
7
8Required properties :
9 - compatible : Should be "nvidia,tegra20-ehci" for USB controllers
10 used in host mode.
11 - phy_type : Should be one of "ulpi" or "utmi".
12 - nvidia,vbus-gpio : If present, specifies a gpio that needs to be
13 activated for the bus to be powered.
diff --git a/Documentation/devicetree/bindings/vendor-prefixes.txt b/Documentation/devicetree/bindings/vendor-prefixes.txt
index 874921e97802..ecc6a6cd26c1 100644
--- a/Documentation/devicetree/bindings/vendor-prefixes.txt
+++ b/Documentation/devicetree/bindings/vendor-prefixes.txt
@@ -8,7 +8,9 @@ amcc Applied Micro Circuits Corporation (APM, formally AMCC)
8apm Applied Micro Circuits Corporation (APM) 8apm Applied Micro Circuits Corporation (APM)
9arm ARM Ltd. 9arm ARM Ltd.
10atmel Atmel Corporation 10atmel Atmel Corporation
11cavium Cavium, Inc.
11chrp Common Hardware Reference Platform 12chrp Common Hardware Reference Platform
13cortina Cortina Systems, Inc.
12dallas Maxim Integrated Products (formerly Dallas Semiconductor) 14dallas Maxim Integrated Products (formerly Dallas Semiconductor)
13denx Denx Software Engineering 15denx Denx Software Engineering
14epson Seiko Epson Corp. 16epson Seiko Epson Corp.
@@ -32,10 +34,13 @@ powervr Imagination Technologies
32qcom Qualcomm, Inc. 34qcom Qualcomm, Inc.
33ramtron Ramtron International 35ramtron Ramtron International
34samsung Samsung Semiconductor 36samsung Samsung Semiconductor
37sbs Smart Battery System
35schindler Schindler 38schindler Schindler
36sil Silicon Image 39sil Silicon Image
37simtek 40simtek
38sirf SiRF Technology, Inc. 41sirf SiRF Technology, Inc.
42st STMicroelectronics
39stericsson ST-Ericsson 43stericsson ST-Ericsson
40ti Texas Instruments 44ti Texas Instruments
45wlf Wolfson Microelectronics
41xlnx Xilinx 46xlnx Xilinx