aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/devicetree/bindings/xilinx.txt
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/devicetree/bindings/xilinx.txt')
-rw-r--r--Documentation/devicetree/bindings/xilinx.txt306
1 files changed, 306 insertions, 0 deletions
diff --git a/Documentation/devicetree/bindings/xilinx.txt b/Documentation/devicetree/bindings/xilinx.txt
new file mode 100644
index 000000000000..299d0923537b
--- /dev/null
+++ b/Documentation/devicetree/bindings/xilinx.txt
@@ -0,0 +1,306 @@
1 d) Xilinx IP cores
2
3 The Xilinx EDK toolchain ships with a set of IP cores (devices) for use
4 in Xilinx Spartan and Virtex FPGAs. The devices cover the whole range
5 of standard device types (network, serial, etc.) and miscellaneous
6 devices (gpio, LCD, spi, etc). Also, since these devices are
7 implemented within the fpga fabric every instance of the device can be
8 synthesised with different options that change the behaviour.
9
10 Each IP-core has a set of parameters which the FPGA designer can use to
11 control how the core is synthesized. Historically, the EDK tool would
12 extract the device parameters relevant to device drivers and copy them
13 into an 'xparameters.h' in the form of #define symbols. This tells the
14 device drivers how the IP cores are configured, but it requires the kernel
15 to be recompiled every time the FPGA bitstream is resynthesized.
16
17 The new approach is to export the parameters into the device tree and
18 generate a new device tree each time the FPGA bitstream changes. The
19 parameters which used to be exported as #defines will now become
20 properties of the device node. In general, device nodes for IP-cores
21 will take the following form:
22
23 (name): (generic-name)@(base-address) {
24 compatible = "xlnx,(ip-core-name)-(HW_VER)"
25 [, (list of compatible devices), ...];
26 reg = <(baseaddr) (size)>;
27 interrupt-parent = <&interrupt-controller-phandle>;
28 interrupts = < ... >;
29 xlnx,(parameter1) = "(string-value)";
30 xlnx,(parameter2) = <(int-value)>;
31 };
32
33 (generic-name): an open firmware-style name that describes the
34 generic class of device. Preferably, this is one word, such
35 as 'serial' or 'ethernet'.
36 (ip-core-name): the name of the ip block (given after the BEGIN
37 directive in system.mhs). Should be in lowercase
38 and all underscores '_' converted to dashes '-'.
39 (name): is derived from the "PARAMETER INSTANCE" value.
40 (parameter#): C_* parameters from system.mhs. The C_ prefix is
41 dropped from the parameter name, the name is converted
42 to lowercase and all underscore '_' characters are
43 converted to dashes '-'.
44 (baseaddr): the baseaddr parameter value (often named C_BASEADDR).
45 (HW_VER): from the HW_VER parameter.
46 (size): the address range size (often C_HIGHADDR - C_BASEADDR + 1).
47
48 Typically, the compatible list will include the exact IP core version
49 followed by an older IP core version which implements the same
50 interface or any other device with the same interface.
51
52 'reg', 'interrupt-parent' and 'interrupts' are all optional properties.
53
54 For example, the following block from system.mhs:
55
56 BEGIN opb_uartlite
57 PARAMETER INSTANCE = opb_uartlite_0
58 PARAMETER HW_VER = 1.00.b
59 PARAMETER C_BAUDRATE = 115200
60 PARAMETER C_DATA_BITS = 8
61 PARAMETER C_ODD_PARITY = 0
62 PARAMETER C_USE_PARITY = 0
63 PARAMETER C_CLK_FREQ = 50000000
64 PARAMETER C_BASEADDR = 0xEC100000
65 PARAMETER C_HIGHADDR = 0xEC10FFFF
66 BUS_INTERFACE SOPB = opb_7
67 PORT OPB_Clk = CLK_50MHz
68 PORT Interrupt = opb_uartlite_0_Interrupt
69 PORT RX = opb_uartlite_0_RX
70 PORT TX = opb_uartlite_0_TX
71 PORT OPB_Rst = sys_bus_reset_0
72 END
73
74 becomes the following device tree node:
75
76 opb_uartlite_0: serial@ec100000 {
77 device_type = "serial";
78 compatible = "xlnx,opb-uartlite-1.00.b";
79 reg = <ec100000 10000>;
80 interrupt-parent = <&opb_intc_0>;
81 interrupts = <1 0>; // got this from the opb_intc parameters
82 current-speed = <d#115200>; // standard serial device prop
83 clock-frequency = <d#50000000>; // standard serial device prop
84 xlnx,data-bits = <8>;
85 xlnx,odd-parity = <0>;
86 xlnx,use-parity = <0>;
87 };
88
89 Some IP cores actually implement 2 or more logical devices. In
90 this case, the device should still describe the whole IP core with
91 a single node and add a child node for each logical device. The
92 ranges property can be used to translate from parent IP-core to the
93 registers of each device. In addition, the parent node should be
94 compatible with the bus type 'xlnx,compound', and should contain
95 #address-cells and #size-cells, as with any other bus. (Note: this
96 makes the assumption that both logical devices have the same bus
97 binding. If this is not true, then separate nodes should be used
98 for each logical device). The 'cell-index' property can be used to
99 enumerate logical devices within an IP core. For example, the
100 following is the system.mhs entry for the dual ps2 controller found
101 on the ml403 reference design.
102
103 BEGIN opb_ps2_dual_ref
104 PARAMETER INSTANCE = opb_ps2_dual_ref_0
105 PARAMETER HW_VER = 1.00.a
106 PARAMETER C_BASEADDR = 0xA9000000
107 PARAMETER C_HIGHADDR = 0xA9001FFF
108 BUS_INTERFACE SOPB = opb_v20_0
109 PORT Sys_Intr1 = ps2_1_intr
110 PORT Sys_Intr2 = ps2_2_intr
111 PORT Clkin1 = ps2_clk_rx_1
112 PORT Clkin2 = ps2_clk_rx_2
113 PORT Clkpd1 = ps2_clk_tx_1
114 PORT Clkpd2 = ps2_clk_tx_2
115 PORT Rx1 = ps2_d_rx_1
116 PORT Rx2 = ps2_d_rx_2
117 PORT Txpd1 = ps2_d_tx_1
118 PORT Txpd2 = ps2_d_tx_2
119 END
120
121 It would result in the following device tree nodes:
122
123 opb_ps2_dual_ref_0: opb-ps2-dual-ref@a9000000 {
124 #address-cells = <1>;
125 #size-cells = <1>;
126 compatible = "xlnx,compound";
127 ranges = <0 a9000000 2000>;
128 // If this device had extra parameters, then they would
129 // go here.
130 ps2@0 {
131 compatible = "xlnx,opb-ps2-dual-ref-1.00.a";
132 reg = <0 40>;
133 interrupt-parent = <&opb_intc_0>;
134 interrupts = <3 0>;
135 cell-index = <0>;
136 };
137 ps2@1000 {
138 compatible = "xlnx,opb-ps2-dual-ref-1.00.a";
139 reg = <1000 40>;
140 interrupt-parent = <&opb_intc_0>;
141 interrupts = <3 0>;
142 cell-index = <0>;
143 };
144 };
145
146 Also, the system.mhs file defines bus attachments from the processor
147 to the devices. The device tree structure should reflect the bus
148 attachments. Again an example; this system.mhs fragment:
149
150 BEGIN ppc405_virtex4
151 PARAMETER INSTANCE = ppc405_0
152 PARAMETER HW_VER = 1.01.a
153 BUS_INTERFACE DPLB = plb_v34_0
154 BUS_INTERFACE IPLB = plb_v34_0
155 END
156
157 BEGIN opb_intc
158 PARAMETER INSTANCE = opb_intc_0
159 PARAMETER HW_VER = 1.00.c
160 PARAMETER C_BASEADDR = 0xD1000FC0
161 PARAMETER C_HIGHADDR = 0xD1000FDF
162 BUS_INTERFACE SOPB = opb_v20_0
163 END
164
165 BEGIN opb_uart16550
166 PARAMETER INSTANCE = opb_uart16550_0
167 PARAMETER HW_VER = 1.00.d
168 PARAMETER C_BASEADDR = 0xa0000000
169 PARAMETER C_HIGHADDR = 0xa0001FFF
170 BUS_INTERFACE SOPB = opb_v20_0
171 END
172
173 BEGIN plb_v34
174 PARAMETER INSTANCE = plb_v34_0
175 PARAMETER HW_VER = 1.02.a
176 END
177
178 BEGIN plb_bram_if_cntlr
179 PARAMETER INSTANCE = plb_bram_if_cntlr_0
180 PARAMETER HW_VER = 1.00.b
181 PARAMETER C_BASEADDR = 0xFFFF0000
182 PARAMETER C_HIGHADDR = 0xFFFFFFFF
183 BUS_INTERFACE SPLB = plb_v34_0
184 END
185
186 BEGIN plb2opb_bridge
187 PARAMETER INSTANCE = plb2opb_bridge_0
188 PARAMETER HW_VER = 1.01.a
189 PARAMETER C_RNG0_BASEADDR = 0x20000000
190 PARAMETER C_RNG0_HIGHADDR = 0x3FFFFFFF
191 PARAMETER C_RNG1_BASEADDR = 0x60000000
192 PARAMETER C_RNG1_HIGHADDR = 0x7FFFFFFF
193 PARAMETER C_RNG2_BASEADDR = 0x80000000
194 PARAMETER C_RNG2_HIGHADDR = 0xBFFFFFFF
195 PARAMETER C_RNG3_BASEADDR = 0xC0000000
196 PARAMETER C_RNG3_HIGHADDR = 0xDFFFFFFF
197 BUS_INTERFACE SPLB = plb_v34_0
198 BUS_INTERFACE MOPB = opb_v20_0
199 END
200
201 Gives this device tree (some properties removed for clarity):
202
203 plb@0 {
204 #address-cells = <1>;
205 #size-cells = <1>;
206 compatible = "xlnx,plb-v34-1.02.a";
207 device_type = "ibm,plb";
208 ranges; // 1:1 translation
209
210 plb_bram_if_cntrl_0: bram@ffff0000 {
211 reg = <ffff0000 10000>;
212 }
213
214 opb@20000000 {
215 #address-cells = <1>;
216 #size-cells = <1>;
217 ranges = <20000000 20000000 20000000
218 60000000 60000000 20000000
219 80000000 80000000 40000000
220 c0000000 c0000000 20000000>;
221
222 opb_uart16550_0: serial@a0000000 {
223 reg = <a00000000 2000>;
224 };
225
226 opb_intc_0: interrupt-controller@d1000fc0 {
227 reg = <d1000fc0 20>;
228 };
229 };
230 };
231
232 That covers the general approach to binding xilinx IP cores into the
233 device tree. The following are bindings for specific devices:
234
235 i) Xilinx ML300 Framebuffer
236
237 Simple framebuffer device from the ML300 reference design (also on the
238 ML403 reference design as well as others).
239
240 Optional properties:
241 - resolution = <xres yres> : pixel resolution of framebuffer. Some
242 implementations use a different resolution.
243 Default is <d#640 d#480>
244 - virt-resolution = <xvirt yvirt> : Size of framebuffer in memory.
245 Default is <d#1024 d#480>.
246 - rotate-display (empty) : rotate display 180 degrees.
247
248 ii) Xilinx SystemACE
249
250 The Xilinx SystemACE device is used to program FPGAs from an FPGA
251 bitstream stored on a CF card. It can also be used as a generic CF
252 interface device.
253
254 Optional properties:
255 - 8-bit (empty) : Set this property for SystemACE in 8 bit mode
256
257 iii) Xilinx EMAC and Xilinx TEMAC
258
259 Xilinx Ethernet devices. In addition to general xilinx properties
260 listed above, nodes for these devices should include a phy-handle
261 property, and may include other common network device properties
262 like local-mac-address.
263
264 iv) Xilinx Uartlite
265
266 Xilinx uartlite devices are simple fixed speed serial ports.
267
268 Required properties:
269 - current-speed : Baud rate of uartlite
270
271 v) Xilinx hwicap
272
273 Xilinx hwicap devices provide access to the configuration logic
274 of the FPGA through the Internal Configuration Access Port
275 (ICAP). The ICAP enables partial reconfiguration of the FPGA,
276 readback of the configuration information, and some control over
277 'warm boots' of the FPGA fabric.
278
279 Required properties:
280 - xlnx,family : The family of the FPGA, necessary since the
281 capabilities of the underlying ICAP hardware
282 differ between different families. May be
283 'virtex2p', 'virtex4', or 'virtex5'.
284
285 vi) Xilinx Uart 16550
286
287 Xilinx UART 16550 devices are very similar to the NS16550 but with
288 different register spacing and an offset from the base address.
289
290 Required properties:
291 - clock-frequency : Frequency of the clock input
292 - reg-offset : A value of 3 is required
293 - reg-shift : A value of 2 is required
294
295 vii) Xilinx USB Host controller
296
297 The Xilinx USB host controller is EHCI compatible but with a different
298 base address for the EHCI registers, and it is always a big-endian
299 USB Host controller. The hardware can be configured as high speed only,
300 or high speed/full speed hybrid.
301
302 Required properties:
303 - xlnx,support-usb-fs: A value 0 means the core is built as high speed
304 only. A value 1 means the core also supports
305 full speed devices.
306