aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/accounting
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/accounting')
-rw-r--r--Documentation/accounting/delay-accounting.txt110
-rw-r--r--Documentation/accounting/getdelays.c396
-rw-r--r--Documentation/accounting/taskstats.txt181
3 files changed, 687 insertions, 0 deletions
diff --git a/Documentation/accounting/delay-accounting.txt b/Documentation/accounting/delay-accounting.txt
new file mode 100644
index 000000000000..be215e58423b
--- /dev/null
+++ b/Documentation/accounting/delay-accounting.txt
@@ -0,0 +1,110 @@
1Delay accounting
2----------------
3
4Tasks encounter delays in execution when they wait
5for some kernel resource to become available e.g. a
6runnable task may wait for a free CPU to run on.
7
8The per-task delay accounting functionality measures
9the delays experienced by a task while
10
11a) waiting for a CPU (while being runnable)
12b) completion of synchronous block I/O initiated by the task
13c) swapping in pages
14
15and makes these statistics available to userspace through
16the taskstats interface.
17
18Such delays provide feedback for setting a task's cpu priority,
19io priority and rss limit values appropriately. Long delays for
20important tasks could be a trigger for raising its corresponding priority.
21
22The functionality, through its use of the taskstats interface, also provides
23delay statistics aggregated for all tasks (or threads) belonging to a
24thread group (corresponding to a traditional Unix process). This is a commonly
25needed aggregation that is more efficiently done by the kernel.
26
27Userspace utilities, particularly resource management applications, can also
28aggregate delay statistics into arbitrary groups. To enable this, delay
29statistics of a task are available both during its lifetime as well as on its
30exit, ensuring continuous and complete monitoring can be done.
31
32
33Interface
34---------
35
36Delay accounting uses the taskstats interface which is described
37in detail in a separate document in this directory. Taskstats returns a
38generic data structure to userspace corresponding to per-pid and per-tgid
39statistics. The delay accounting functionality populates specific fields of
40this structure. See
41 include/linux/taskstats.h
42for a description of the fields pertaining to delay accounting.
43It will generally be in the form of counters returning the cumulative
44delay seen for cpu, sync block I/O, swapin etc.
45
46Taking the difference of two successive readings of a given
47counter (say cpu_delay_total) for a task will give the delay
48experienced by the task waiting for the corresponding resource
49in that interval.
50
51When a task exits, records containing the per-task statistics
52are sent to userspace without requiring a command. If it is the last exiting
53task of a thread group, the per-tgid statistics are also sent. More details
54are given in the taskstats interface description.
55
56The getdelays.c userspace utility in this directory allows simple commands to
57be run and the corresponding delay statistics to be displayed. It also serves
58as an example of using the taskstats interface.
59
60Usage
61-----
62
63Compile the kernel with
64 CONFIG_TASK_DELAY_ACCT=y
65 CONFIG_TASKSTATS=y
66
67Enable the accounting at boot time by adding
68the following to the kernel boot options
69 delayacct
70
71and after the system has booted up, use a utility
72similar to getdelays.c to access the delays
73seen by a given task or a task group (tgid).
74The utility also allows a given command to be
75executed and the corresponding delays to be
76seen.
77
78General format of the getdelays command
79
80getdelays [-t tgid] [-p pid] [-c cmd...]
81
82
83Get delays, since system boot, for pid 10
84# ./getdelays -p 10
85(output similar to next case)
86
87Get sum of delays, since system boot, for all pids with tgid 5
88# ./getdelays -t 5
89
90
91CPU count real total virtual total delay total
92 7876 92005750 100000000 24001500
93IO count delay total
94 0 0
95MEM count delay total
96 0 0
97
98Get delays seen in executing a given simple command
99# ./getdelays -c ls /
100
101bin data1 data3 data5 dev home media opt root srv sys usr
102boot data2 data4 data6 etc lib mnt proc sbin subdomain tmp var
103
104
105CPU count real total virtual total delay total
106 6 4000250 4000000 0
107IO count delay total
108 0 0
109MEM count delay total
110 0 0
diff --git a/Documentation/accounting/getdelays.c b/Documentation/accounting/getdelays.c
new file mode 100644
index 000000000000..795ca3911cc5
--- /dev/null
+++ b/Documentation/accounting/getdelays.c
@@ -0,0 +1,396 @@
1/* getdelays.c
2 *
3 * Utility to get per-pid and per-tgid delay accounting statistics
4 * Also illustrates usage of the taskstats interface
5 *
6 * Copyright (C) Shailabh Nagar, IBM Corp. 2005
7 * Copyright (C) Balbir Singh, IBM Corp. 2006
8 * Copyright (c) Jay Lan, SGI. 2006
9 *
10 */
11
12#include <stdio.h>
13#include <stdlib.h>
14#include <errno.h>
15#include <unistd.h>
16#include <poll.h>
17#include <string.h>
18#include <fcntl.h>
19#include <sys/types.h>
20#include <sys/stat.h>
21#include <sys/socket.h>
22#include <sys/types.h>
23#include <signal.h>
24
25#include <linux/genetlink.h>
26#include <linux/taskstats.h>
27
28/*
29 * Generic macros for dealing with netlink sockets. Might be duplicated
30 * elsewhere. It is recommended that commercial grade applications use
31 * libnl or libnetlink and use the interfaces provided by the library
32 */
33#define GENLMSG_DATA(glh) ((void *)(NLMSG_DATA(glh) + GENL_HDRLEN))
34#define GENLMSG_PAYLOAD(glh) (NLMSG_PAYLOAD(glh, 0) - GENL_HDRLEN)
35#define NLA_DATA(na) ((void *)((char*)(na) + NLA_HDRLEN))
36#define NLA_PAYLOAD(len) (len - NLA_HDRLEN)
37
38#define err(code, fmt, arg...) do { printf(fmt, ##arg); exit(code); } while (0)
39int done = 0;
40int rcvbufsz=0;
41
42 char name[100];
43int dbg=0, print_delays=0;
44__u64 stime, utime;
45#define PRINTF(fmt, arg...) { \
46 if (dbg) { \
47 printf(fmt, ##arg); \
48 } \
49 }
50
51/* Maximum size of response requested or message sent */
52#define MAX_MSG_SIZE 256
53/* Maximum number of cpus expected to be specified in a cpumask */
54#define MAX_CPUS 32
55/* Maximum length of pathname to log file */
56#define MAX_FILENAME 256
57
58struct msgtemplate {
59 struct nlmsghdr n;
60 struct genlmsghdr g;
61 char buf[MAX_MSG_SIZE];
62};
63
64char cpumask[100+6*MAX_CPUS];
65
66/*
67 * Create a raw netlink socket and bind
68 */
69static int create_nl_socket(int protocol)
70{
71 int fd;
72 struct sockaddr_nl local;
73
74 fd = socket(AF_NETLINK, SOCK_RAW, protocol);
75 if (fd < 0)
76 return -1;
77
78 if (rcvbufsz)
79 if (setsockopt(fd, SOL_SOCKET, SO_RCVBUF,
80 &rcvbufsz, sizeof(rcvbufsz)) < 0) {
81 printf("Unable to set socket rcv buf size to %d\n",
82 rcvbufsz);
83 return -1;
84 }
85
86 memset(&local, 0, sizeof(local));
87 local.nl_family = AF_NETLINK;
88
89 if (bind(fd, (struct sockaddr *) &local, sizeof(local)) < 0)
90 goto error;
91
92 return fd;
93error:
94 close(fd);
95 return -1;
96}
97
98
99int send_cmd(int sd, __u16 nlmsg_type, __u32 nlmsg_pid,
100 __u8 genl_cmd, __u16 nla_type,
101 void *nla_data, int nla_len)
102{
103 struct nlattr *na;
104 struct sockaddr_nl nladdr;
105 int r, buflen;
106 char *buf;
107
108 struct msgtemplate msg;
109
110 msg.n.nlmsg_len = NLMSG_LENGTH(GENL_HDRLEN);
111 msg.n.nlmsg_type = nlmsg_type;
112 msg.n.nlmsg_flags = NLM_F_REQUEST;
113 msg.n.nlmsg_seq = 0;
114 msg.n.nlmsg_pid = nlmsg_pid;
115 msg.g.cmd = genl_cmd;
116 msg.g.version = 0x1;
117 na = (struct nlattr *) GENLMSG_DATA(&msg);
118 na->nla_type = nla_type;
119 na->nla_len = nla_len + 1 + NLA_HDRLEN;
120 memcpy(NLA_DATA(na), nla_data, nla_len);
121 msg.n.nlmsg_len += NLMSG_ALIGN(na->nla_len);
122
123 buf = (char *) &msg;
124 buflen = msg.n.nlmsg_len ;
125 memset(&nladdr, 0, sizeof(nladdr));
126 nladdr.nl_family = AF_NETLINK;
127 while ((r = sendto(sd, buf, buflen, 0, (struct sockaddr *) &nladdr,
128 sizeof(nladdr))) < buflen) {
129 if (r > 0) {
130 buf += r;
131 buflen -= r;
132 } else if (errno != EAGAIN)
133 return -1;
134 }
135 return 0;
136}
137
138
139/*
140 * Probe the controller in genetlink to find the family id
141 * for the TASKSTATS family
142 */
143int get_family_id(int sd)
144{
145 struct {
146 struct nlmsghdr n;
147 struct genlmsghdr g;
148 char buf[256];
149 } ans;
150
151 int id, rc;
152 struct nlattr *na;
153 int rep_len;
154
155 strcpy(name, TASKSTATS_GENL_NAME);
156 rc = send_cmd(sd, GENL_ID_CTRL, getpid(), CTRL_CMD_GETFAMILY,
157 CTRL_ATTR_FAMILY_NAME, (void *)name,
158 strlen(TASKSTATS_GENL_NAME)+1);
159
160 rep_len = recv(sd, &ans, sizeof(ans), 0);
161 if (ans.n.nlmsg_type == NLMSG_ERROR ||
162 (rep_len < 0) || !NLMSG_OK((&ans.n), rep_len))
163 return 0;
164
165 na = (struct nlattr *) GENLMSG_DATA(&ans);
166 na = (struct nlattr *) ((char *) na + NLA_ALIGN(na->nla_len));
167 if (na->nla_type == CTRL_ATTR_FAMILY_ID) {
168 id = *(__u16 *) NLA_DATA(na);
169 }
170 return id;
171}
172
173void print_delayacct(struct taskstats *t)
174{
175 printf("\n\nCPU %15s%15s%15s%15s\n"
176 " %15llu%15llu%15llu%15llu\n"
177 "IO %15s%15s\n"
178 " %15llu%15llu\n"
179 "MEM %15s%15s\n"
180 " %15llu%15llu\n\n",
181 "count", "real total", "virtual total", "delay total",
182 t->cpu_count, t->cpu_run_real_total, t->cpu_run_virtual_total,
183 t->cpu_delay_total,
184 "count", "delay total",
185 t->blkio_count, t->blkio_delay_total,
186 "count", "delay total", t->swapin_count, t->swapin_delay_total);
187}
188
189int main(int argc, char *argv[])
190{
191 int c, rc, rep_len, aggr_len, len2, cmd_type;
192 __u16 id;
193 __u32 mypid;
194
195 struct nlattr *na;
196 int nl_sd = -1;
197 int len = 0;
198 pid_t tid = 0;
199 pid_t rtid = 0;
200
201 int fd = 0;
202 int count = 0;
203 int write_file = 0;
204 int maskset = 0;
205 char logfile[128];
206 int loop = 0;
207
208 struct msgtemplate msg;
209
210 while (1) {
211 c = getopt(argc, argv, "dw:r:m:t:p:v:l");
212 if (c < 0)
213 break;
214
215 switch (c) {
216 case 'd':
217 printf("print delayacct stats ON\n");
218 print_delays = 1;
219 break;
220 case 'w':
221 strncpy(logfile, optarg, MAX_FILENAME);
222 printf("write to file %s\n", logfile);
223 write_file = 1;
224 break;
225 case 'r':
226 rcvbufsz = atoi(optarg);
227 printf("receive buf size %d\n", rcvbufsz);
228 if (rcvbufsz < 0)
229 err(1, "Invalid rcv buf size\n");
230 break;
231 case 'm':
232 strncpy(cpumask, optarg, sizeof(cpumask));
233 maskset = 1;
234 printf("cpumask %s maskset %d\n", cpumask, maskset);
235 break;
236 case 't':
237 tid = atoi(optarg);
238 if (!tid)
239 err(1, "Invalid tgid\n");
240 cmd_type = TASKSTATS_CMD_ATTR_TGID;
241 print_delays = 1;
242 break;
243 case 'p':
244 tid = atoi(optarg);
245 if (!tid)
246 err(1, "Invalid pid\n");
247 cmd_type = TASKSTATS_CMD_ATTR_PID;
248 print_delays = 1;
249 break;
250 case 'v':
251 printf("debug on\n");
252 dbg = 1;
253 break;
254 case 'l':
255 printf("listen forever\n");
256 loop = 1;
257 break;
258 default:
259 printf("Unknown option %d\n", c);
260 exit(-1);
261 }
262 }
263
264 if (write_file) {
265 fd = open(logfile, O_WRONLY | O_CREAT | O_TRUNC,
266 S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH);
267 if (fd == -1) {
268 perror("Cannot open output file\n");
269 exit(1);
270 }
271 }
272
273 if ((nl_sd = create_nl_socket(NETLINK_GENERIC)) < 0)
274 err(1, "error creating Netlink socket\n");
275
276
277 mypid = getpid();
278 id = get_family_id(nl_sd);
279 if (!id) {
280 printf("Error getting family id, errno %d", errno);
281 goto err;
282 }
283 PRINTF("family id %d\n", id);
284
285 if (maskset) {
286 rc = send_cmd(nl_sd, id, mypid, TASKSTATS_CMD_GET,
287 TASKSTATS_CMD_ATTR_REGISTER_CPUMASK,
288 &cpumask, sizeof(cpumask));
289 PRINTF("Sent register cpumask, retval %d\n", rc);
290 if (rc < 0) {
291 printf("error sending register cpumask\n");
292 goto err;
293 }
294 }
295
296 if (tid) {
297 rc = send_cmd(nl_sd, id, mypid, TASKSTATS_CMD_GET,
298 cmd_type, &tid, sizeof(__u32));
299 PRINTF("Sent pid/tgid, retval %d\n", rc);
300 if (rc < 0) {
301 printf("error sending tid/tgid cmd\n");
302 goto done;
303 }
304 }
305
306 do {
307 int i;
308
309 rep_len = recv(nl_sd, &msg, sizeof(msg), 0);
310 PRINTF("received %d bytes\n", rep_len);
311
312 if (rep_len < 0) {
313 printf("nonfatal reply error: errno %d\n", errno);
314 continue;
315 }
316 if (msg.n.nlmsg_type == NLMSG_ERROR ||
317 !NLMSG_OK((&msg.n), rep_len)) {
318 printf("fatal reply error, errno %d\n", errno);
319 goto done;
320 }
321
322 PRINTF("nlmsghdr size=%d, nlmsg_len=%d, rep_len=%d\n",
323 sizeof(struct nlmsghdr), msg.n.nlmsg_len, rep_len);
324
325
326 rep_len = GENLMSG_PAYLOAD(&msg.n);
327
328 na = (struct nlattr *) GENLMSG_DATA(&msg);
329 len = 0;
330 i = 0;
331 while (len < rep_len) {
332 len += NLA_ALIGN(na->nla_len);
333 switch (na->nla_type) {
334 case TASKSTATS_TYPE_AGGR_TGID:
335 /* Fall through */
336 case TASKSTATS_TYPE_AGGR_PID:
337 aggr_len = NLA_PAYLOAD(na->nla_len);
338 len2 = 0;
339 /* For nested attributes, na follows */
340 na = (struct nlattr *) NLA_DATA(na);
341 done = 0;
342 while (len2 < aggr_len) {
343 switch (na->nla_type) {
344 case TASKSTATS_TYPE_PID:
345 rtid = *(int *) NLA_DATA(na);
346 if (print_delays)
347 printf("PID\t%d\n", rtid);
348 break;
349 case TASKSTATS_TYPE_TGID:
350 rtid = *(int *) NLA_DATA(na);
351 if (print_delays)
352 printf("TGID\t%d\n", rtid);
353 break;
354 case TASKSTATS_TYPE_STATS:
355 count++;
356 if (print_delays)
357 print_delayacct((struct taskstats *) NLA_DATA(na));
358 if (fd) {
359 if (write(fd, NLA_DATA(na), na->nla_len) < 0) {
360 err(1,"write error\n");
361 }
362 }
363 if (!loop)
364 goto done;
365 break;
366 default:
367 printf("Unknown nested nla_type %d\n", na->nla_type);
368 break;
369 }
370 len2 += NLA_ALIGN(na->nla_len);
371 na = (struct nlattr *) ((char *) na + len2);
372 }
373 break;
374
375 default:
376 printf("Unknown nla_type %d\n", na->nla_type);
377 break;
378 }
379 na = (struct nlattr *) (GENLMSG_DATA(&msg) + len);
380 }
381 } while (loop);
382done:
383 if (maskset) {
384 rc = send_cmd(nl_sd, id, mypid, TASKSTATS_CMD_GET,
385 TASKSTATS_CMD_ATTR_DEREGISTER_CPUMASK,
386 &cpumask, sizeof(cpumask));
387 printf("Sent deregister mask, retval %d\n", rc);
388 if (rc < 0)
389 err(rc, "error sending deregister cpumask\n");
390 }
391err:
392 close(nl_sd);
393 if (fd)
394 close(fd);
395 return 0;
396}
diff --git a/Documentation/accounting/taskstats.txt b/Documentation/accounting/taskstats.txt
new file mode 100644
index 000000000000..92ebf29e9041
--- /dev/null
+++ b/Documentation/accounting/taskstats.txt
@@ -0,0 +1,181 @@
1Per-task statistics interface
2-----------------------------
3
4
5Taskstats is a netlink-based interface for sending per-task and
6per-process statistics from the kernel to userspace.
7
8Taskstats was designed for the following benefits:
9
10- efficiently provide statistics during lifetime of a task and on its exit
11- unified interface for multiple accounting subsystems
12- extensibility for use by future accounting patches
13
14Terminology
15-----------
16
17"pid", "tid" and "task" are used interchangeably and refer to the standard
18Linux task defined by struct task_struct. per-pid stats are the same as
19per-task stats.
20
21"tgid", "process" and "thread group" are used interchangeably and refer to the
22tasks that share an mm_struct i.e. the traditional Unix process. Despite the
23use of tgid, there is no special treatment for the task that is thread group
24leader - a process is deemed alive as long as it has any task belonging to it.
25
26Usage
27-----
28
29To get statistics during a task's lifetime, userspace opens a unicast netlink
30socket (NETLINK_GENERIC family) and sends commands specifying a pid or a tgid.
31The response contains statistics for a task (if pid is specified) or the sum of
32statistics for all tasks of the process (if tgid is specified).
33
34To obtain statistics for tasks which are exiting, the userspace listener
35sends a register command and specifies a cpumask. Whenever a task exits on
36one of the cpus in the cpumask, its per-pid statistics are sent to the
37registered listener. Using cpumasks allows the data received by one listener
38to be limited and assists in flow control over the netlink interface and is
39explained in more detail below.
40
41If the exiting task is the last thread exiting its thread group,
42an additional record containing the per-tgid stats is also sent to userspace.
43The latter contains the sum of per-pid stats for all threads in the thread
44group, both past and present.
45
46getdelays.c is a simple utility demonstrating usage of the taskstats interface
47for reporting delay accounting statistics. Users can register cpumasks,
48send commands and process responses, listen for per-tid/tgid exit data,
49write the data received to a file and do basic flow control by increasing
50receive buffer sizes.
51
52Interface
53---------
54
55The user-kernel interface is encapsulated in include/linux/taskstats.h
56
57To avoid this documentation becoming obsolete as the interface evolves, only
58an outline of the current version is given. taskstats.h always overrides the
59description here.
60
61struct taskstats is the common accounting structure for both per-pid and
62per-tgid data. It is versioned and can be extended by each accounting subsystem
63that is added to the kernel. The fields and their semantics are defined in the
64taskstats.h file.
65
66The data exchanged between user and kernel space is a netlink message belonging
67to the NETLINK_GENERIC family and using the netlink attributes interface.
68The messages are in the format
69
70 +----------+- - -+-------------+-------------------+
71 | nlmsghdr | Pad | genlmsghdr | taskstats payload |
72 +----------+- - -+-------------+-------------------+
73
74
75The taskstats payload is one of the following three kinds:
76
771. Commands: Sent from user to kernel. Commands to get data on
78a pid/tgid consist of one attribute, of type TASKSTATS_CMD_ATTR_PID/TGID,
79containing a u32 pid or tgid in the attribute payload. The pid/tgid denotes
80the task/process for which userspace wants statistics.
81
82Commands to register/deregister interest in exit data from a set of cpus
83consist of one attribute, of type
84TASKSTATS_CMD_ATTR_REGISTER/DEREGISTER_CPUMASK and contain a cpumask in the
85attribute payload. The cpumask is specified as an ascii string of
86comma-separated cpu ranges e.g. to listen to exit data from cpus 1,2,3,5,7,8
87the cpumask would be "1-3,5,7-8". If userspace forgets to deregister interest
88in cpus before closing the listening socket, the kernel cleans up its interest
89set over time. However, for the sake of efficiency, an explicit deregistration
90is advisable.
91
922. Response for a command: sent from the kernel in response to a userspace
93command. The payload is a series of three attributes of type:
94
95a) TASKSTATS_TYPE_AGGR_PID/TGID : attribute containing no payload but indicates
96a pid/tgid will be followed by some stats.
97
98b) TASKSTATS_TYPE_PID/TGID: attribute whose payload is the pid/tgid whose stats
99is being returned.
100
101c) TASKSTATS_TYPE_STATS: attribute with a struct taskstsats as payload. The
102same structure is used for both per-pid and per-tgid stats.
103
1043. New message sent by kernel whenever a task exits. The payload consists of a
105 series of attributes of the following type:
106
107a) TASKSTATS_TYPE_AGGR_PID: indicates next two attributes will be pid+stats
108b) TASKSTATS_TYPE_PID: contains exiting task's pid
109c) TASKSTATS_TYPE_STATS: contains the exiting task's per-pid stats
110d) TASKSTATS_TYPE_AGGR_TGID: indicates next two attributes will be tgid+stats
111e) TASKSTATS_TYPE_TGID: contains tgid of process to which task belongs
112f) TASKSTATS_TYPE_STATS: contains the per-tgid stats for exiting task's process
113
114
115per-tgid stats
116--------------
117
118Taskstats provides per-process stats, in addition to per-task stats, since
119resource management is often done at a process granularity and aggregating task
120stats in userspace alone is inefficient and potentially inaccurate (due to lack
121of atomicity).
122
123However, maintaining per-process, in addition to per-task stats, within the
124kernel has space and time overheads. To address this, the taskstats code
125accumalates each exiting task's statistics into a process-wide data structure.
126When the last task of a process exits, the process level data accumalated also
127gets sent to userspace (along with the per-task data).
128
129When a user queries to get per-tgid data, the sum of all other live threads in
130the group is added up and added to the accumalated total for previously exited
131threads of the same thread group.
132
133Extending taskstats
134-------------------
135
136There are two ways to extend the taskstats interface to export more
137per-task/process stats as patches to collect them get added to the kernel
138in future:
139
1401. Adding more fields to the end of the existing struct taskstats. Backward
141 compatibility is ensured by the version number within the
142 structure. Userspace will use only the fields of the struct that correspond
143 to the version its using.
144
1452. Defining separate statistic structs and using the netlink attributes
146 interface to return them. Since userspace processes each netlink attribute
147 independently, it can always ignore attributes whose type it does not
148 understand (because it is using an older version of the interface).
149
150
151Choosing between 1. and 2. is a matter of trading off flexibility and
152overhead. If only a few fields need to be added, then 1. is the preferable
153path since the kernel and userspace don't need to incur the overhead of
154processing new netlink attributes. But if the new fields expand the existing
155struct too much, requiring disparate userspace accounting utilities to
156unnecessarily receive large structures whose fields are of no interest, then
157extending the attributes structure would be worthwhile.
158
159Flow control for taskstats
160--------------------------
161
162When the rate of task exits becomes large, a listener may not be able to keep
163up with the kernel's rate of sending per-tid/tgid exit data leading to data
164loss. This possibility gets compounded when the taskstats structure gets
165extended and the number of cpus grows large.
166
167To avoid losing statistics, userspace should do one or more of the following:
168
169- increase the receive buffer sizes for the netlink sockets opened by
170listeners to receive exit data.
171
172- create more listeners and reduce the number of cpus being listened to by
173each listener. In the extreme case, there could be one listener for each cpu.
174Users may also consider setting the cpu affinity of the listener to the subset
175of cpus to which it listens, especially if they are listening to just one cpu.
176
177Despite these measures, if the userspace receives ENOBUFS error messages
178indicated overflow of receive buffers, it should take measures to handle the
179loss of data.
180
181----