aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/RCU
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/RCU')
-rw-r--r--Documentation/RCU/00-INDEX2
-rw-r--r--Documentation/RCU/stallwarn.txt23
-rw-r--r--Documentation/RCU/trace.txt278
3 files changed, 245 insertions, 58 deletions
diff --git a/Documentation/RCU/00-INDEX b/Documentation/RCU/00-INDEX
index 71b6f500ddb9..1d7a885761f5 100644
--- a/Documentation/RCU/00-INDEX
+++ b/Documentation/RCU/00-INDEX
@@ -21,7 +21,7 @@ rcu.txt
21RTFP.txt 21RTFP.txt
22 - List of RCU papers (bibliography) going back to 1980. 22 - List of RCU papers (bibliography) going back to 1980.
23stallwarn.txt 23stallwarn.txt
24 - RCU CPU stall warnings (CONFIG_RCU_CPU_STALL_DETECTOR) 24 - RCU CPU stall warnings (module parameter rcu_cpu_stall_suppress)
25torture.txt 25torture.txt
26 - RCU Torture Test Operation (CONFIG_RCU_TORTURE_TEST) 26 - RCU Torture Test Operation (CONFIG_RCU_TORTURE_TEST)
27trace.txt 27trace.txt
diff --git a/Documentation/RCU/stallwarn.txt b/Documentation/RCU/stallwarn.txt
index 862c08ef1fde..4e959208f736 100644
--- a/Documentation/RCU/stallwarn.txt
+++ b/Documentation/RCU/stallwarn.txt
@@ -1,22 +1,25 @@
1Using RCU's CPU Stall Detector 1Using RCU's CPU Stall Detector
2 2
3The CONFIG_RCU_CPU_STALL_DETECTOR kernel config parameter enables 3The rcu_cpu_stall_suppress module parameter enables RCU's CPU stall
4RCU's CPU stall detector, which detects conditions that unduly delay 4detector, which detects conditions that unduly delay RCU grace periods.
5RCU grace periods. The stall detector's idea of what constitutes 5This module parameter enables CPU stall detection by default, but
6"unduly delayed" is controlled by a set of C preprocessor macros: 6may be overridden via boot-time parameter or at runtime via sysfs.
7The stall detector's idea of what constitutes "unduly delayed" is
8controlled by a set of kernel configuration variables and cpp macros:
7 9
8RCU_SECONDS_TILL_STALL_CHECK 10CONFIG_RCU_CPU_STALL_TIMEOUT
9 11
10 This macro defines the period of time that RCU will wait from 12 This kernel configuration parameter defines the period of time
11 the beginning of a grace period until it issues an RCU CPU 13 that RCU will wait from the beginning of a grace period until it
12 stall warning. This time period is normally ten seconds. 14 issues an RCU CPU stall warning. This time period is normally
15 ten seconds.
13 16
14RCU_SECONDS_TILL_STALL_RECHECK 17RCU_SECONDS_TILL_STALL_RECHECK
15 18
16 This macro defines the period of time that RCU will wait after 19 This macro defines the period of time that RCU will wait after
17 issuing a stall warning until it issues another stall warning 20 issuing a stall warning until it issues another stall warning
18 for the same stall. This time period is normally set to thirty 21 for the same stall. This time period is normally set to three
19 seconds. 22 times the check interval plus thirty seconds.
20 23
21RCU_STALL_RAT_DELAY 24RCU_STALL_RAT_DELAY
22 25
diff --git a/Documentation/RCU/trace.txt b/Documentation/RCU/trace.txt
index 6a8c73f55b80..c078ad48f7a1 100644
--- a/Documentation/RCU/trace.txt
+++ b/Documentation/RCU/trace.txt
@@ -10,34 +10,46 @@ for rcutree and next for rcutiny.
10 10
11CONFIG_TREE_RCU and CONFIG_TREE_PREEMPT_RCU debugfs Files and Formats 11CONFIG_TREE_RCU and CONFIG_TREE_PREEMPT_RCU debugfs Files and Formats
12 12
13These implementations of RCU provides five debugfs files under the 13These implementations of RCU provides several debugfs files under the
14top-level directory RCU: rcu/rcudata (which displays fields in struct 14top-level directory "rcu":
15rcu_data), rcu/rcudata.csv (which is a .csv spreadsheet version of 15
16rcu/rcudata), rcu/rcugp (which displays grace-period counters), 16rcu/rcudata:
17rcu/rcuhier (which displays the struct rcu_node hierarchy), and 17 Displays fields in struct rcu_data.
18rcu/rcu_pending (which displays counts of the reasons that the 18rcu/rcudata.csv:
19rcu_pending() function decided that there was core RCU work to do). 19 Comma-separated values spreadsheet version of rcudata.
20rcu/rcugp:
21 Displays grace-period counters.
22rcu/rcuhier:
23 Displays the struct rcu_node hierarchy.
24rcu/rcu_pending:
25 Displays counts of the reasons rcu_pending() decided that RCU had
26 work to do.
27rcu/rcutorture:
28 Displays rcutorture test progress.
29rcu/rcuboost:
30 Displays RCU boosting statistics. Only present if
31 CONFIG_RCU_BOOST=y.
20 32
21The output of "cat rcu/rcudata" looks as follows: 33The output of "cat rcu/rcudata" looks as follows:
22 34
23rcu_sched: 35rcu_sched:
24 0 c=17829 g=17829 pq=1 pqc=17829 qp=0 dt=10951/1 dn=0 df=1101 of=0 ri=36 ql=0 b=10 36 0 c=20972 g=20973 pq=1 pqc=20972 qp=0 dt=545/1/0 df=50 of=0 ri=0 ql=163 qs=NRW. kt=0/W/0 ktl=ebc3 b=10 ci=153737 co=0 ca=0
25 1 c=17829 g=17829 pq=1 pqc=17829 qp=0 dt=16117/1 dn=0 df=1015 of=0 ri=0 ql=0 b=10 37 1 c=20972 g=20973 pq=1 pqc=20972 qp=0 dt=967/1/0 df=58 of=0 ri=0 ql=634 qs=NRW. kt=0/W/1 ktl=58c b=10 ci=191037 co=0 ca=0
26 2 c=17829 g=17829 pq=1 pqc=17829 qp=0 dt=1445/1 dn=0 df=1839 of=0 ri=0 ql=0 b=10 38 2 c=20972 g=20973 pq=1 pqc=20972 qp=0 dt=1081/1/0 df=175 of=0 ri=0 ql=74 qs=N.W. kt=0/W/2 ktl=da94 b=10 ci=75991 co=0 ca=0
27 3 c=17829 g=17829 pq=1 pqc=17829 qp=0 dt=6681/1 dn=0 df=1545 of=0 ri=0 ql=0 b=10 39 3 c=20942 g=20943 pq=1 pqc=20942 qp=1 dt=1846/0/0 df=404 of=0 ri=0 ql=0 qs=.... kt=0/W/3 ktl=d1cd b=10 ci=72261 co=0 ca=0
28 4 c=17829 g=17829 pq=1 pqc=17829 qp=0 dt=1003/1 dn=0 df=1992 of=0 ri=0 ql=0 b=10 40 4 c=20972 g=20973 pq=1 pqc=20972 qp=0 dt=369/1/0 df=83 of=0 ri=0 ql=48 qs=N.W. kt=0/W/4 ktl=e0e7 b=10 ci=128365 co=0 ca=0
29 5 c=17829 g=17830 pq=1 pqc=17829 qp=1 dt=3887/1 dn=0 df=3331 of=0 ri=4 ql=2 b=10 41 5 c=20972 g=20973 pq=1 pqc=20972 qp=0 dt=381/1/0 df=64 of=0 ri=0 ql=169 qs=NRW. kt=0/W/5 ktl=fb2f b=10 ci=164360 co=0 ca=0
30 6 c=17829 g=17829 pq=1 pqc=17829 qp=0 dt=859/1 dn=0 df=3224 of=0 ri=0 ql=0 b=10 42 6 c=20972 g=20973 pq=1 pqc=20972 qp=0 dt=1037/1/0 df=183 of=0 ri=0 ql=62 qs=N.W. kt=0/W/6 ktl=d2ad b=10 ci=65663 co=0 ca=0
31 7 c=17829 g=17830 pq=0 pqc=17829 qp=1 dt=3761/1 dn=0 df=1818 of=0 ri=0 ql=2 b=10 43 7 c=20897 g=20897 pq=1 pqc=20896 qp=0 dt=1572/0/0 df=382 of=0 ri=0 ql=0 qs=.... kt=0/W/7 ktl=cf15 b=10 ci=75006 co=0 ca=0
32rcu_bh: 44rcu_bh:
33 0 c=-275 g=-275 pq=1 pqc=-275 qp=0 dt=10951/1 dn=0 df=0 of=0 ri=0 ql=0 b=10 45 0 c=1480 g=1480 pq=1 pqc=1479 qp=0 dt=545/1/0 df=6 of=0 ri=1 ql=0 qs=.... kt=0/W/0 ktl=ebc3 b=10 ci=0 co=0 ca=0
34 1 c=-275 g=-275 pq=1 pqc=-275 qp=0 dt=16117/1 dn=0 df=13 of=0 ri=0 ql=0 b=10 46 1 c=1480 g=1480 pq=1 pqc=1479 qp=0 dt=967/1/0 df=3 of=0 ri=1 ql=0 qs=.... kt=0/W/1 ktl=58c b=10 ci=151 co=0 ca=0
35 2 c=-275 g=-275 pq=1 pqc=-275 qp=0 dt=1445/1 dn=0 df=15 of=0 ri=0 ql=0 b=10 47 2 c=1480 g=1480 pq=1 pqc=1479 qp=0 dt=1081/1/0 df=6 of=0 ri=1 ql=0 qs=.... kt=0/W/2 ktl=da94 b=10 ci=0 co=0 ca=0
36 3 c=-275 g=-275 pq=1 pqc=-275 qp=0 dt=6681/1 dn=0 df=9 of=0 ri=0 ql=0 b=10 48 3 c=1480 g=1480 pq=1 pqc=1479 qp=0 dt=1846/0/0 df=8 of=0 ri=1 ql=0 qs=.... kt=0/W/3 ktl=d1cd b=10 ci=0 co=0 ca=0
37 4 c=-275 g=-275 pq=1 pqc=-275 qp=0 dt=1003/1 dn=0 df=15 of=0 ri=0 ql=0 b=10 49 4 c=1480 g=1480 pq=1 pqc=1479 qp=0 dt=369/1/0 df=6 of=0 ri=1 ql=0 qs=.... kt=0/W/4 ktl=e0e7 b=10 ci=0 co=0 ca=0
38 5 c=-275 g=-275 pq=1 pqc=-275 qp=0 dt=3887/1 dn=0 df=15 of=0 ri=0 ql=0 b=10 50 5 c=1480 g=1480 pq=1 pqc=1479 qp=0 dt=381/1/0 df=4 of=0 ri=1 ql=0 qs=.... kt=0/W/5 ktl=fb2f b=10 ci=0 co=0 ca=0
39 6 c=-275 g=-275 pq=1 pqc=-275 qp=0 dt=859/1 dn=0 df=15 of=0 ri=0 ql=0 b=10 51 6 c=1480 g=1480 pq=1 pqc=1479 qp=0 dt=1037/1/0 df=6 of=0 ri=1 ql=0 qs=.... kt=0/W/6 ktl=d2ad b=10 ci=0 co=0 ca=0
40 7 c=-275 g=-275 pq=1 pqc=-275 qp=0 dt=3761/1 dn=0 df=15 of=0 ri=0 ql=0 b=10 52 7 c=1474 g=1474 pq=1 pqc=1473 qp=0 dt=1572/0/0 df=8 of=0 ri=1 ql=0 qs=.... kt=0/W/7 ktl=cf15 b=10 ci=0 co=0 ca=0
41 53
42The first section lists the rcu_data structures for rcu_sched, the second 54The first section lists the rcu_data structures for rcu_sched, the second
43for rcu_bh. Note that CONFIG_TREE_PREEMPT_RCU kernels will have an 55for rcu_bh. Note that CONFIG_TREE_PREEMPT_RCU kernels will have an
@@ -52,17 +64,18 @@ o The number at the beginning of each line is the CPU number.
52 substantially larger than the number of actual CPUs. 64 substantially larger than the number of actual CPUs.
53 65
54o "c" is the count of grace periods that this CPU believes have 66o "c" is the count of grace periods that this CPU believes have
55 completed. CPUs in dynticks idle mode may lag quite a ways 67 completed. Offlined CPUs and CPUs in dynticks idle mode may
56 behind, for example, CPU 4 under "rcu_sched" above, which has 68 lag quite a ways behind, for example, CPU 6 under "rcu_sched"
57 slept through the past 25 RCU grace periods. It is not unusual 69 above, which has been offline through not quite 40,000 RCU grace
58 to see CPUs lagging by thousands of grace periods. 70 periods. It is not unusual to see CPUs lagging by thousands of
71 grace periods.
59 72
60o "g" is the count of grace periods that this CPU believes have 73o "g" is the count of grace periods that this CPU believes have
61 started. Again, CPUs in dynticks idle mode may lag behind. 74 started. Again, offlined CPUs and CPUs in dynticks idle mode
62 If the "c" and "g" values are equal, this CPU has already 75 may lag behind. If the "c" and "g" values are equal, this CPU
63 reported a quiescent state for the last RCU grace period that 76 has already reported a quiescent state for the last RCU grace
64 it is aware of, otherwise, the CPU believes that it owes RCU a 77 period that it is aware of, otherwise, the CPU believes that it
65 quiescent state. 78 owes RCU a quiescent state.
66 79
67o "pq" indicates that this CPU has passed through a quiescent state 80o "pq" indicates that this CPU has passed through a quiescent state
68 for the current grace period. It is possible for "pq" to be 81 for the current grace period. It is possible for "pq" to be
@@ -81,7 +94,8 @@ o "pqc" indicates which grace period the last-observed quiescent
81 the next grace period! 94 the next grace period!
82 95
83o "qp" indicates that RCU still expects a quiescent state from 96o "qp" indicates that RCU still expects a quiescent state from
84 this CPU. 97 this CPU. Offlined CPUs and CPUs in dyntick idle mode might
98 well have qp=1, which is OK: RCU is still ignoring them.
85 99
86o "dt" is the current value of the dyntick counter that is incremented 100o "dt" is the current value of the dyntick counter that is incremented
87 when entering or leaving dynticks idle state, either by the 101 when entering or leaving dynticks idle state, either by the
@@ -108,7 +122,7 @@ o "df" is the number of times that some other CPU has forced a
108 122
109o "of" is the number of times that some other CPU has forced a 123o "of" is the number of times that some other CPU has forced a
110 quiescent state on behalf of this CPU due to this CPU being 124 quiescent state on behalf of this CPU due to this CPU being
111 offline. In a perfect world, this might neve happen, but it 125 offline. In a perfect world, this might never happen, but it
112 turns out that offlining and onlining a CPU can take several grace 126 turns out that offlining and onlining a CPU can take several grace
113 periods, and so there is likely to be an extended period of time 127 periods, and so there is likely to be an extended period of time
114 when RCU believes that the CPU is online when it really is not. 128 when RCU believes that the CPU is online when it really is not.
@@ -125,6 +139,62 @@ o "ql" is the number of RCU callbacks currently residing on
125 of what state they are in (new, waiting for grace period to 139 of what state they are in (new, waiting for grace period to
126 start, waiting for grace period to end, ready to invoke). 140 start, waiting for grace period to end, ready to invoke).
127 141
142o "qs" gives an indication of the state of the callback queue
143 with four characters:
144
145 "N" Indicates that there are callbacks queued that are not
146 ready to be handled by the next grace period, and thus
147 will be handled by the grace period following the next
148 one.
149
150 "R" Indicates that there are callbacks queued that are
151 ready to be handled by the next grace period.
152
153 "W" Indicates that there are callbacks queued that are
154 waiting on the current grace period.
155
156 "D" Indicates that there are callbacks queued that have
157 already been handled by a prior grace period, and are
158 thus waiting to be invoked. Note that callbacks in
159 the process of being invoked are not counted here.
160 Callbacks in the process of being invoked are those
161 that have been removed from the rcu_data structures
162 queues by rcu_do_batch(), but which have not yet been
163 invoked.
164
165 If there are no callbacks in a given one of the above states,
166 the corresponding character is replaced by ".".
167
168o "kt" is the per-CPU kernel-thread state. The digit preceding
169 the first slash is zero if there is no work pending and 1
170 otherwise. The character between the first pair of slashes is
171 as follows:
172
173 "S" The kernel thread is stopped, in other words, all
174 CPUs corresponding to this rcu_node structure are
175 offline.
176
177 "R" The kernel thread is running.
178
179 "W" The kernel thread is waiting because there is no work
180 for it to do.
181
182 "O" The kernel thread is waiting because it has been
183 forced off of its designated CPU or because its
184 ->cpus_allowed mask permits it to run on other than
185 its designated CPU.
186
187 "Y" The kernel thread is yielding to avoid hogging CPU.
188
189 "?" Unknown value, indicates a bug.
190
191 The number after the final slash is the CPU that the kthread
192 is actually running on.
193
194o "ktl" is the low-order 16 bits (in hexadecimal) of the count of
195 the number of times that this CPU's per-CPU kthread has gone
196 through its loop servicing invoke_rcu_cpu_kthread() requests.
197
128o "b" is the batch limit for this CPU. If more than this number 198o "b" is the batch limit for this CPU. If more than this number
129 of RCU callbacks is ready to invoke, then the remainder will 199 of RCU callbacks is ready to invoke, then the remainder will
130 be deferred. 200 be deferred.
@@ -174,14 +244,14 @@ o "gpnum" is the number of grace periods that have started. It is
174The output of "cat rcu/rcuhier" looks as follows, with very long lines: 244The output of "cat rcu/rcuhier" looks as follows, with very long lines:
175 245
176c=6902 g=6903 s=2 jfq=3 j=72c7 nfqs=13142/nfqsng=0(13142) fqlh=6 246c=6902 g=6903 s=2 jfq=3 j=72c7 nfqs=13142/nfqsng=0(13142) fqlh=6
1771/1 .>. 0:127 ^0 2471/1 ..>. 0:127 ^0
1783/3 .>. 0:35 ^0 0/0 .>. 36:71 ^1 0/0 .>. 72:107 ^2 0/0 .>. 108:127 ^3 2483/3 ..>. 0:35 ^0 0/0 ..>. 36:71 ^1 0/0 ..>. 72:107 ^2 0/0 ..>. 108:127 ^3
1793/3f .>. 0:5 ^0 2/3 .>. 6:11 ^1 0/0 .>. 12:17 ^2 0/0 .>. 18:23 ^3 0/0 .>. 24:29 ^4 0/0 .>. 30:35 ^5 0/0 .>. 36:41 ^0 0/0 .>. 42:47 ^1 0/0 .>. 48:53 ^2 0/0 .>. 54:59 ^3 0/0 .>. 60:65 ^4 0/0 .>. 66:71 ^5 0/0 .>. 72:77 ^0 0/0 .>. 78:83 ^1 0/0 .>. 84:89 ^2 0/0 .>. 90:95 ^3 0/0 .>. 96:101 ^4 0/0 .>. 102:107 ^5 0/0 .>. 108:113 ^0 0/0 .>. 114:119 ^1 0/0 .>. 120:125 ^2 0/0 .>. 126:127 ^3 2493/3f ..>. 0:5 ^0 2/3 ..>. 6:11 ^1 0/0 ..>. 12:17 ^2 0/0 ..>. 18:23 ^3 0/0 ..>. 24:29 ^4 0/0 ..>. 30:35 ^5 0/0 ..>. 36:41 ^0 0/0 ..>. 42:47 ^1 0/0 ..>. 48:53 ^2 0/0 ..>. 54:59 ^3 0/0 ..>. 60:65 ^4 0/0 ..>. 66:71 ^5 0/0 ..>. 72:77 ^0 0/0 ..>. 78:83 ^1 0/0 ..>. 84:89 ^2 0/0 ..>. 90:95 ^3 0/0 ..>. 96:101 ^4 0/0 ..>. 102:107 ^5 0/0 ..>. 108:113 ^0 0/0 ..>. 114:119 ^1 0/0 ..>. 120:125 ^2 0/0 ..>. 126:127 ^3
180rcu_bh: 250rcu_bh:
181c=-226 g=-226 s=1 jfq=-5701 j=72c7 nfqs=88/nfqsng=0(88) fqlh=0 251c=-226 g=-226 s=1 jfq=-5701 j=72c7 nfqs=88/nfqsng=0(88) fqlh=0
1820/1 .>. 0:127 ^0 2520/1 ..>. 0:127 ^0
1830/3 .>. 0:35 ^0 0/0 .>. 36:71 ^1 0/0 .>. 72:107 ^2 0/0 .>. 108:127 ^3 2530/3 ..>. 0:35 ^0 0/0 ..>. 36:71 ^1 0/0 ..>. 72:107 ^2 0/0 ..>. 108:127 ^3
1840/3f .>. 0:5 ^0 0/3 .>. 6:11 ^1 0/0 .>. 12:17 ^2 0/0 .>. 18:23 ^3 0/0 .>. 24:29 ^4 0/0 .>. 30:35 ^5 0/0 .>. 36:41 ^0 0/0 .>. 42:47 ^1 0/0 .>. 48:53 ^2 0/0 .>. 54:59 ^3 0/0 .>. 60:65 ^4 0/0 .>. 66:71 ^5 0/0 .>. 72:77 ^0 0/0 .>. 78:83 ^1 0/0 .>. 84:89 ^2 0/0 .>. 90:95 ^3 0/0 .>. 96:101 ^4 0/0 .>. 102:107 ^5 0/0 .>. 108:113 ^0 0/0 .>. 114:119 ^1 0/0 .>. 120:125 ^2 0/0 .>. 126:127 ^3 2540/3f ..>. 0:5 ^0 0/3 ..>. 6:11 ^1 0/0 ..>. 12:17 ^2 0/0 ..>. 18:23 ^3 0/0 ..>. 24:29 ^4 0/0 ..>. 30:35 ^5 0/0 ..>. 36:41 ^0 0/0 ..>. 42:47 ^1 0/0 ..>. 48:53 ^2 0/0 ..>. 54:59 ^3 0/0 ..>. 60:65 ^4 0/0 ..>. 66:71 ^5 0/0 ..>. 72:77 ^0 0/0 ..>. 78:83 ^1 0/0 ..>. 84:89 ^2 0/0 ..>. 90:95 ^3 0/0 ..>. 96:101 ^4 0/0 ..>. 102:107 ^5 0/0 ..>. 108:113 ^0 0/0 ..>. 114:119 ^1 0/0 ..>. 120:125 ^2 0/0 ..>. 126:127 ^3
185 255
186This is once again split into "rcu_sched" and "rcu_bh" portions, 256This is once again split into "rcu_sched" and "rcu_bh" portions,
187and CONFIG_TREE_PREEMPT_RCU kernels will again have an additional 257and CONFIG_TREE_PREEMPT_RCU kernels will again have an additional
@@ -240,13 +310,20 @@ o Each element of the form "1/1 0:127 ^0" represents one struct
240 current grace period. 310 current grace period.
241 311
242 o The characters separated by the ">" indicate the state 312 o The characters separated by the ">" indicate the state
243 of the blocked-tasks lists. A "T" preceding the ">" 313 of the blocked-tasks lists. A "G" preceding the ">"
244 indicates that at least one task blocked in an RCU 314 indicates that at least one task blocked in an RCU
245 read-side critical section blocks the current grace 315 read-side critical section blocks the current grace
246 period, while a "." preceding the ">" indicates otherwise. 316 period, while a "E" preceding the ">" indicates that
247 The character following the ">" indicates similarly for 317 at least one task blocked in an RCU read-side critical
248 the next grace period. A "T" should appear in this 318 section blocks the current expedited grace period.
249 field only for rcu-preempt. 319 A "T" character following the ">" indicates that at
320 least one task is blocked within an RCU read-side
321 critical section, regardless of whether any current
322 grace period (expedited or normal) is inconvenienced.
323 A "." character appears if the corresponding condition
324 does not hold, so that "..>." indicates that no tasks
325 are blocked. In contrast, "GE>T" indicates maximal
326 inconvenience from blocked tasks.
250 327
251 o The numbers separated by the ":" are the range of CPUs 328 o The numbers separated by the ":" are the range of CPUs
252 served by this struct rcu_node. This can be helpful 329 served by this struct rcu_node. This can be helpful
@@ -328,6 +405,113 @@ o "nn" is the number of times that this CPU needed nothing. Alert
328 is due to short-circuit evaluation in rcu_pending(). 405 is due to short-circuit evaluation in rcu_pending().
329 406
330 407
408The output of "cat rcu/rcutorture" looks as follows:
409
410rcutorture test sequence: 0 (test in progress)
411rcutorture update version number: 615
412
413The first line shows the number of rcutorture tests that have completed
414since boot. If a test is currently running, the "(test in progress)"
415string will appear as shown above. The second line shows the number of
416update cycles that the current test has started, or zero if there is
417no test in progress.
418
419
420The output of "cat rcu/rcuboost" looks as follows:
421
4220:5 tasks=.... kt=W ntb=0 neb=0 nnb=0 j=2f95 bt=300f
423 balk: nt=0 egt=989 bt=0 nb=0 ny=0 nos=16
4246:7 tasks=.... kt=W ntb=0 neb=0 nnb=0 j=2f95 bt=300f
425 balk: nt=0 egt=225 bt=0 nb=0 ny=0 nos=6
426
427This information is output only for rcu_preempt. Each two-line entry
428corresponds to a leaf rcu_node strcuture. The fields are as follows:
429
430o "n:m" is the CPU-number range for the corresponding two-line
431 entry. In the sample output above, the first entry covers
432 CPUs zero through five and the second entry covers CPUs 6
433 and 7.
434
435o "tasks=TNEB" gives the state of the various segments of the
436 rnp->blocked_tasks list:
437
438 "T" This indicates that there are some tasks that blocked
439 while running on one of the corresponding CPUs while
440 in an RCU read-side critical section.
441
442 "N" This indicates that some of the blocked tasks are preventing
443 the current normal (non-expedited) grace period from
444 completing.
445
446 "E" This indicates that some of the blocked tasks are preventing
447 the current expedited grace period from completing.
448
449 "B" This indicates that some of the blocked tasks are in
450 need of RCU priority boosting.
451
452 Each character is replaced with "." if the corresponding
453 condition does not hold.
454
455o "kt" is the state of the RCU priority-boosting kernel
456 thread associated with the corresponding rcu_node structure.
457 The state can be one of the following:
458
459 "S" The kernel thread is stopped, in other words, all
460 CPUs corresponding to this rcu_node structure are
461 offline.
462
463 "R" The kernel thread is running.
464
465 "W" The kernel thread is waiting because there is no work
466 for it to do.
467
468 "Y" The kernel thread is yielding to avoid hogging CPU.
469
470 "?" Unknown value, indicates a bug.
471
472o "ntb" is the number of tasks boosted.
473
474o "neb" is the number of tasks boosted in order to complete an
475 expedited grace period.
476
477o "nnb" is the number of tasks boosted in order to complete a
478 normal (non-expedited) grace period. When boosting a task
479 that was blocking both an expedited and a normal grace period,
480 it is counted against the expedited total above.
481
482o "j" is the low-order 16 bits of the jiffies counter in
483 hexadecimal.
484
485o "bt" is the low-order 16 bits of the value that the jiffies
486 counter will have when we next start boosting, assuming that
487 the current grace period does not end beforehand. This is
488 also in hexadecimal.
489
490o "balk: nt" counts the number of times we didn't boost (in
491 other words, we balked) even though it was time to boost because
492 there were no blocked tasks to boost. This situation occurs
493 when there is one blocked task on one rcu_node structure and
494 none on some other rcu_node structure.
495
496o "egt" counts the number of times we balked because although
497 there were blocked tasks, none of them were blocking the
498 current grace period, whether expedited or otherwise.
499
500o "bt" counts the number of times we balked because boosting
501 had already been initiated for the current grace period.
502
503o "nb" counts the number of times we balked because there
504 was at least one task blocking the current non-expedited grace
505 period that never had blocked. If it is already running, it
506 just won't help to boost its priority!
507
508o "ny" counts the number of times we balked because it was
509 not yet time to start boosting.
510
511o "nos" counts the number of times we balked for other
512 reasons, e.g., the grace period ended first.
513
514
331CONFIG_TINY_RCU and CONFIG_TINY_PREEMPT_RCU debugfs Files and Formats 515CONFIG_TINY_RCU and CONFIG_TINY_PREEMPT_RCU debugfs Files and Formats
332 516
333These implementations of RCU provides a single debugfs file under the 517These implementations of RCU provides a single debugfs file under the
@@ -394,9 +578,9 @@ o "neb" is the number of expedited grace periods that have had
394o "nnb" is the number of normal grace periods that have had 578o "nnb" is the number of normal grace periods that have had
395 to resort to RCU priority boosting since boot. 579 to resort to RCU priority boosting since boot.
396 580
397o "j" is the low-order 12 bits of the jiffies counter in hexadecimal. 581o "j" is the low-order 16 bits of the jiffies counter in hexadecimal.
398 582
399o "bt" is the low-order 12 bits of the value that the jiffies counter 583o "bt" is the low-order 16 bits of the value that the jiffies counter
400 will have at the next time that boosting is scheduled to begin. 584 will have at the next time that boosting is scheduled to begin.
401 585
402o In the line beginning with "normal balk", the fields are as follows: 586o In the line beginning with "normal balk", the fields are as follows: