diff options
Diffstat (limited to 'Documentation/DocBook')
-rw-r--r-- | Documentation/DocBook/Makefile | 3 | ||||
-rw-r--r-- | Documentation/DocBook/alsa-driver-api.tmpl | 109 | ||||
-rw-r--r-- | Documentation/DocBook/writing-an-alsa-driver.tmpl | 6216 |
3 files changed, 6327 insertions, 1 deletions
diff --git a/Documentation/DocBook/Makefile b/Documentation/DocBook/Makefile index 1462ed86d40a..a3a83d38f96f 100644 --- a/Documentation/DocBook/Makefile +++ b/Documentation/DocBook/Makefile | |||
@@ -12,7 +12,8 @@ DOCBOOKS := z8530book.xml mcabook.xml device-drivers.xml \ | |||
12 | kernel-api.xml filesystems.xml lsm.xml usb.xml kgdb.xml \ | 12 | kernel-api.xml filesystems.xml lsm.xml usb.xml kgdb.xml \ |
13 | gadget.xml libata.xml mtdnand.xml librs.xml rapidio.xml \ | 13 | gadget.xml libata.xml mtdnand.xml librs.xml rapidio.xml \ |
14 | genericirq.xml s390-drivers.xml uio-howto.xml scsi.xml \ | 14 | genericirq.xml s390-drivers.xml uio-howto.xml scsi.xml \ |
15 | mac80211.xml debugobjects.xml sh.xml regulator.xml | 15 | mac80211.xml debugobjects.xml sh.xml regulator.xml \ |
16 | alsa-driver-api.xml writing-an-alsa-driver.xml | ||
16 | 17 | ||
17 | ### | 18 | ### |
18 | # The build process is as follows (targets): | 19 | # The build process is as follows (targets): |
diff --git a/Documentation/DocBook/alsa-driver-api.tmpl b/Documentation/DocBook/alsa-driver-api.tmpl new file mode 100644 index 000000000000..0230a96f0564 --- /dev/null +++ b/Documentation/DocBook/alsa-driver-api.tmpl | |||
@@ -0,0 +1,109 @@ | |||
1 | <?xml version="1.0" encoding="UTF-8"?> | ||
2 | <!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN" | ||
3 | "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []> | ||
4 | |||
5 | <!-- ****************************************************** --> | ||
6 | <!-- Header --> | ||
7 | <!-- ****************************************************** --> | ||
8 | <book id="ALSA-Driver-API"> | ||
9 | <bookinfo> | ||
10 | <title>The ALSA Driver API</title> | ||
11 | |||
12 | <legalnotice> | ||
13 | <para> | ||
14 | This document is free; you can redistribute it and/or modify it | ||
15 | under the terms of the GNU General Public License as published by | ||
16 | the Free Software Foundation; either version 2 of the License, or | ||
17 | (at your option) any later version. | ||
18 | </para> | ||
19 | |||
20 | <para> | ||
21 | This document is distributed in the hope that it will be useful, | ||
22 | but <emphasis>WITHOUT ANY WARRANTY</emphasis>; without even the | ||
23 | implied warranty of <emphasis>MERCHANTABILITY or FITNESS FOR A | ||
24 | PARTICULAR PURPOSE</emphasis>. See the GNU General Public License | ||
25 | for more details. | ||
26 | </para> | ||
27 | |||
28 | <para> | ||
29 | You should have received a copy of the GNU General Public | ||
30 | License along with this program; if not, write to the Free | ||
31 | Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, | ||
32 | MA 02111-1307 USA | ||
33 | </para> | ||
34 | </legalnotice> | ||
35 | |||
36 | </bookinfo> | ||
37 | |||
38 | <toc></toc> | ||
39 | |||
40 | <chapter><title>Management of Cards and Devices</title> | ||
41 | <sect1><title>Card Management</title> | ||
42 | !Esound/core/init.c | ||
43 | </sect1> | ||
44 | <sect1><title>Device Components</title> | ||
45 | !Esound/core/device.c | ||
46 | </sect1> | ||
47 | <sect1><title>Module requests and Device File Entries</title> | ||
48 | !Esound/core/sound.c | ||
49 | </sect1> | ||
50 | <sect1><title>Memory Management Helpers</title> | ||
51 | !Esound/core/memory.c | ||
52 | !Esound/core/memalloc.c | ||
53 | </sect1> | ||
54 | </chapter> | ||
55 | <chapter><title>PCM API</title> | ||
56 | <sect1><title>PCM Core</title> | ||
57 | !Esound/core/pcm.c | ||
58 | !Esound/core/pcm_lib.c | ||
59 | !Esound/core/pcm_native.c | ||
60 | </sect1> | ||
61 | <sect1><title>PCM Format Helpers</title> | ||
62 | !Esound/core/pcm_misc.c | ||
63 | </sect1> | ||
64 | <sect1><title>PCM Memory Management</title> | ||
65 | !Esound/core/pcm_memory.c | ||
66 | </sect1> | ||
67 | </chapter> | ||
68 | <chapter><title>Control/Mixer API</title> | ||
69 | <sect1><title>General Control Interface</title> | ||
70 | !Esound/core/control.c | ||
71 | </sect1> | ||
72 | <sect1><title>AC97 Codec API</title> | ||
73 | !Esound/pci/ac97/ac97_codec.c | ||
74 | !Esound/pci/ac97/ac97_pcm.c | ||
75 | </sect1> | ||
76 | <sect1><title>Virtual Master Control API</title> | ||
77 | !Esound/core/vmaster.c | ||
78 | !Iinclude/sound/control.h | ||
79 | </sect1> | ||
80 | </chapter> | ||
81 | <chapter><title>MIDI API</title> | ||
82 | <sect1><title>Raw MIDI API</title> | ||
83 | !Esound/core/rawmidi.c | ||
84 | </sect1> | ||
85 | <sect1><title>MPU401-UART API</title> | ||
86 | !Esound/drivers/mpu401/mpu401_uart.c | ||
87 | </sect1> | ||
88 | </chapter> | ||
89 | <chapter><title>Proc Info API</title> | ||
90 | <sect1><title>Proc Info Interface</title> | ||
91 | !Esound/core/info.c | ||
92 | </sect1> | ||
93 | </chapter> | ||
94 | <chapter><title>Miscellaneous Functions</title> | ||
95 | <sect1><title>Hardware-Dependent Devices API</title> | ||
96 | !Esound/core/hwdep.c | ||
97 | </sect1> | ||
98 | <sect1><title>Jack Abstraction Layer API</title> | ||
99 | !Esound/core/jack.c | ||
100 | </sect1> | ||
101 | <sect1><title>ISA DMA Helpers</title> | ||
102 | !Esound/core/isadma.c | ||
103 | </sect1> | ||
104 | <sect1><title>Other Helper Macros</title> | ||
105 | !Iinclude/sound/core.h | ||
106 | </sect1> | ||
107 | </chapter> | ||
108 | |||
109 | </book> | ||
diff --git a/Documentation/DocBook/writing-an-alsa-driver.tmpl b/Documentation/DocBook/writing-an-alsa-driver.tmpl new file mode 100644 index 000000000000..46b08fef3744 --- /dev/null +++ b/Documentation/DocBook/writing-an-alsa-driver.tmpl | |||
@@ -0,0 +1,6216 @@ | |||
1 | <?xml version="1.0" encoding="UTF-8"?> | ||
2 | <!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN" | ||
3 | "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []> | ||
4 | |||
5 | <!-- ****************************************************** --> | ||
6 | <!-- Header --> | ||
7 | <!-- ****************************************************** --> | ||
8 | <book id="Writing-an-ALSA-Driver"> | ||
9 | <bookinfo> | ||
10 | <title>Writing an ALSA Driver</title> | ||
11 | <author> | ||
12 | <firstname>Takashi</firstname> | ||
13 | <surname>Iwai</surname> | ||
14 | <affiliation> | ||
15 | <address> | ||
16 | <email>tiwai@suse.de</email> | ||
17 | </address> | ||
18 | </affiliation> | ||
19 | </author> | ||
20 | |||
21 | <date>Oct 15, 2007</date> | ||
22 | <edition>0.3.7</edition> | ||
23 | |||
24 | <abstract> | ||
25 | <para> | ||
26 | This document describes how to write an ALSA (Advanced Linux | ||
27 | Sound Architecture) driver. | ||
28 | </para> | ||
29 | </abstract> | ||
30 | |||
31 | <legalnotice> | ||
32 | <para> | ||
33 | Copyright (c) 2002-2005 Takashi Iwai <email>tiwai@suse.de</email> | ||
34 | </para> | ||
35 | |||
36 | <para> | ||
37 | This document is free; you can redistribute it and/or modify it | ||
38 | under the terms of the GNU General Public License as published by | ||
39 | the Free Software Foundation; either version 2 of the License, or | ||
40 | (at your option) any later version. | ||
41 | </para> | ||
42 | |||
43 | <para> | ||
44 | This document is distributed in the hope that it will be useful, | ||
45 | but <emphasis>WITHOUT ANY WARRANTY</emphasis>; without even the | ||
46 | implied warranty of <emphasis>MERCHANTABILITY or FITNESS FOR A | ||
47 | PARTICULAR PURPOSE</emphasis>. See the GNU General Public License | ||
48 | for more details. | ||
49 | </para> | ||
50 | |||
51 | <para> | ||
52 | You should have received a copy of the GNU General Public | ||
53 | License along with this program; if not, write to the Free | ||
54 | Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, | ||
55 | MA 02111-1307 USA | ||
56 | </para> | ||
57 | </legalnotice> | ||
58 | |||
59 | </bookinfo> | ||
60 | |||
61 | <!-- ****************************************************** --> | ||
62 | <!-- Preface --> | ||
63 | <!-- ****************************************************** --> | ||
64 | <preface id="preface"> | ||
65 | <title>Preface</title> | ||
66 | <para> | ||
67 | This document describes how to write an | ||
68 | <ulink url="http://www.alsa-project.org/"><citetitle> | ||
69 | ALSA (Advanced Linux Sound Architecture)</citetitle></ulink> | ||
70 | driver. The document focuses mainly on PCI soundcards. | ||
71 | In the case of other device types, the API might | ||
72 | be different, too. However, at least the ALSA kernel API is | ||
73 | consistent, and therefore it would be still a bit help for | ||
74 | writing them. | ||
75 | </para> | ||
76 | |||
77 | <para> | ||
78 | This document targets people who already have enough | ||
79 | C language skills and have basic linux kernel programming | ||
80 | knowledge. This document doesn't explain the general | ||
81 | topic of linux kernel coding and doesn't cover low-level | ||
82 | driver implementation details. It only describes | ||
83 | the standard way to write a PCI sound driver on ALSA. | ||
84 | </para> | ||
85 | |||
86 | <para> | ||
87 | If you are already familiar with the older ALSA ver.0.5.x API, you | ||
88 | can check the drivers such as <filename>sound/pci/es1938.c</filename> or | ||
89 | <filename>sound/pci/maestro3.c</filename> which have also almost the same | ||
90 | code-base in the ALSA 0.5.x tree, so you can compare the differences. | ||
91 | </para> | ||
92 | |||
93 | <para> | ||
94 | This document is still a draft version. Any feedback and | ||
95 | corrections, please!! | ||
96 | </para> | ||
97 | </preface> | ||
98 | |||
99 | |||
100 | <!-- ****************************************************** --> | ||
101 | <!-- File Tree Structure --> | ||
102 | <!-- ****************************************************** --> | ||
103 | <chapter id="file-tree"> | ||
104 | <title>File Tree Structure</title> | ||
105 | |||
106 | <section id="file-tree-general"> | ||
107 | <title>General</title> | ||
108 | <para> | ||
109 | The ALSA drivers are provided in two ways. | ||
110 | </para> | ||
111 | |||
112 | <para> | ||
113 | One is the trees provided as a tarball or via cvs from the | ||
114 | ALSA's ftp site, and another is the 2.6 (or later) Linux kernel | ||
115 | tree. To synchronize both, the ALSA driver tree is split into | ||
116 | two different trees: alsa-kernel and alsa-driver. The former | ||
117 | contains purely the source code for the Linux 2.6 (or later) | ||
118 | tree. This tree is designed only for compilation on 2.6 or | ||
119 | later environment. The latter, alsa-driver, contains many subtle | ||
120 | files for compiling ALSA drivers outside of the Linux kernel tree, | ||
121 | wrapper functions for older 2.2 and 2.4 kernels, to adapt the latest kernel API, | ||
122 | and additional drivers which are still in development or in | ||
123 | tests. The drivers in alsa-driver tree will be moved to | ||
124 | alsa-kernel (and eventually to the 2.6 kernel tree) when they are | ||
125 | finished and confirmed to work fine. | ||
126 | </para> | ||
127 | |||
128 | <para> | ||
129 | The file tree structure of ALSA driver is depicted below. Both | ||
130 | alsa-kernel and alsa-driver have almost the same file | ||
131 | structure, except for <quote>core</quote> directory. It's | ||
132 | named as <quote>acore</quote> in alsa-driver tree. | ||
133 | |||
134 | <example> | ||
135 | <title>ALSA File Tree Structure</title> | ||
136 | <literallayout> | ||
137 | sound | ||
138 | /core | ||
139 | /oss | ||
140 | /seq | ||
141 | /oss | ||
142 | /instr | ||
143 | /ioctl32 | ||
144 | /include | ||
145 | /drivers | ||
146 | /mpu401 | ||
147 | /opl3 | ||
148 | /i2c | ||
149 | /l3 | ||
150 | /synth | ||
151 | /emux | ||
152 | /pci | ||
153 | /(cards) | ||
154 | /isa | ||
155 | /(cards) | ||
156 | /arm | ||
157 | /ppc | ||
158 | /sparc | ||
159 | /usb | ||
160 | /pcmcia /(cards) | ||
161 | /oss | ||
162 | </literallayout> | ||
163 | </example> | ||
164 | </para> | ||
165 | </section> | ||
166 | |||
167 | <section id="file-tree-core-directory"> | ||
168 | <title>core directory</title> | ||
169 | <para> | ||
170 | This directory contains the middle layer which is the heart | ||
171 | of ALSA drivers. In this directory, the native ALSA modules are | ||
172 | stored. The sub-directories contain different modules and are | ||
173 | dependent upon the kernel config. | ||
174 | </para> | ||
175 | |||
176 | <section id="file-tree-core-directory-oss"> | ||
177 | <title>core/oss</title> | ||
178 | |||
179 | <para> | ||
180 | The codes for PCM and mixer OSS emulation modules are stored | ||
181 | in this directory. The rawmidi OSS emulation is included in | ||
182 | the ALSA rawmidi code since it's quite small. The sequencer | ||
183 | code is stored in <filename>core/seq/oss</filename> directory (see | ||
184 | <link linkend="file-tree-core-directory-seq-oss"><citetitle> | ||
185 | below</citetitle></link>). | ||
186 | </para> | ||
187 | </section> | ||
188 | |||
189 | <section id="file-tree-core-directory-ioctl32"> | ||
190 | <title>core/ioctl32</title> | ||
191 | |||
192 | <para> | ||
193 | This directory contains the 32bit-ioctl wrappers for 64bit | ||
194 | architectures such like x86-64, ppc64 and sparc64. For 32bit | ||
195 | and alpha architectures, these are not compiled. | ||
196 | </para> | ||
197 | </section> | ||
198 | |||
199 | <section id="file-tree-core-directory-seq"> | ||
200 | <title>core/seq</title> | ||
201 | <para> | ||
202 | This directory and its sub-directories are for the ALSA | ||
203 | sequencer. This directory contains the sequencer core and | ||
204 | primary sequencer modules such like snd-seq-midi, | ||
205 | snd-seq-virmidi, etc. They are compiled only when | ||
206 | <constant>CONFIG_SND_SEQUENCER</constant> is set in the kernel | ||
207 | config. | ||
208 | </para> | ||
209 | </section> | ||
210 | |||
211 | <section id="file-tree-core-directory-seq-oss"> | ||
212 | <title>core/seq/oss</title> | ||
213 | <para> | ||
214 | This contains the OSS sequencer emulation codes. | ||
215 | </para> | ||
216 | </section> | ||
217 | |||
218 | <section id="file-tree-core-directory-deq-instr"> | ||
219 | <title>core/seq/instr</title> | ||
220 | <para> | ||
221 | This directory contains the modules for the sequencer | ||
222 | instrument layer. | ||
223 | </para> | ||
224 | </section> | ||
225 | </section> | ||
226 | |||
227 | <section id="file-tree-include-directory"> | ||
228 | <title>include directory</title> | ||
229 | <para> | ||
230 | This is the place for the public header files of ALSA drivers, | ||
231 | which are to be exported to user-space, or included by | ||
232 | several files at different directories. Basically, the private | ||
233 | header files should not be placed in this directory, but you may | ||
234 | still find files there, due to historical reasons :) | ||
235 | </para> | ||
236 | </section> | ||
237 | |||
238 | <section id="file-tree-drivers-directory"> | ||
239 | <title>drivers directory</title> | ||
240 | <para> | ||
241 | This directory contains code shared among different drivers | ||
242 | on different architectures. They are hence supposed not to be | ||
243 | architecture-specific. | ||
244 | For example, the dummy pcm driver and the serial MIDI | ||
245 | driver are found in this directory. In the sub-directories, | ||
246 | there is code for components which are independent from | ||
247 | bus and cpu architectures. | ||
248 | </para> | ||
249 | |||
250 | <section id="file-tree-drivers-directory-mpu401"> | ||
251 | <title>drivers/mpu401</title> | ||
252 | <para> | ||
253 | The MPU401 and MPU401-UART modules are stored here. | ||
254 | </para> | ||
255 | </section> | ||
256 | |||
257 | <section id="file-tree-drivers-directory-opl3"> | ||
258 | <title>drivers/opl3 and opl4</title> | ||
259 | <para> | ||
260 | The OPL3 and OPL4 FM-synth stuff is found here. | ||
261 | </para> | ||
262 | </section> | ||
263 | </section> | ||
264 | |||
265 | <section id="file-tree-i2c-directory"> | ||
266 | <title>i2c directory</title> | ||
267 | <para> | ||
268 | This contains the ALSA i2c components. | ||
269 | </para> | ||
270 | |||
271 | <para> | ||
272 | Although there is a standard i2c layer on Linux, ALSA has its | ||
273 | own i2c code for some cards, because the soundcard needs only a | ||
274 | simple operation and the standard i2c API is too complicated for | ||
275 | such a purpose. | ||
276 | </para> | ||
277 | |||
278 | <section id="file-tree-i2c-directory-l3"> | ||
279 | <title>i2c/l3</title> | ||
280 | <para> | ||
281 | This is a sub-directory for ARM L3 i2c. | ||
282 | </para> | ||
283 | </section> | ||
284 | </section> | ||
285 | |||
286 | <section id="file-tree-synth-directory"> | ||
287 | <title>synth directory</title> | ||
288 | <para> | ||
289 | This contains the synth middle-level modules. | ||
290 | </para> | ||
291 | |||
292 | <para> | ||
293 | So far, there is only Emu8000/Emu10k1 synth driver under | ||
294 | the <filename>synth/emux</filename> sub-directory. | ||
295 | </para> | ||
296 | </section> | ||
297 | |||
298 | <section id="file-tree-pci-directory"> | ||
299 | <title>pci directory</title> | ||
300 | <para> | ||
301 | This directory and its sub-directories hold the top-level card modules | ||
302 | for PCI soundcards and the code specific to the PCI BUS. | ||
303 | </para> | ||
304 | |||
305 | <para> | ||
306 | The drivers compiled from a single file are stored directly | ||
307 | in the pci directory, while the drivers with several source files are | ||
308 | stored on their own sub-directory (e.g. emu10k1, ice1712). | ||
309 | </para> | ||
310 | </section> | ||
311 | |||
312 | <section id="file-tree-isa-directory"> | ||
313 | <title>isa directory</title> | ||
314 | <para> | ||
315 | This directory and its sub-directories hold the top-level card modules | ||
316 | for ISA soundcards. | ||
317 | </para> | ||
318 | </section> | ||
319 | |||
320 | <section id="file-tree-arm-ppc-sparc-directories"> | ||
321 | <title>arm, ppc, and sparc directories</title> | ||
322 | <para> | ||
323 | They are used for top-level card modules which are | ||
324 | specific to one of these architectures. | ||
325 | </para> | ||
326 | </section> | ||
327 | |||
328 | <section id="file-tree-usb-directory"> | ||
329 | <title>usb directory</title> | ||
330 | <para> | ||
331 | This directory contains the USB-audio driver. In the latest version, the | ||
332 | USB MIDI driver is integrated in the usb-audio driver. | ||
333 | </para> | ||
334 | </section> | ||
335 | |||
336 | <section id="file-tree-pcmcia-directory"> | ||
337 | <title>pcmcia directory</title> | ||
338 | <para> | ||
339 | The PCMCIA, especially PCCard drivers will go here. CardBus | ||
340 | drivers will be in the pci directory, because their API is identical | ||
341 | to that of standard PCI cards. | ||
342 | </para> | ||
343 | </section> | ||
344 | |||
345 | <section id="file-tree-oss-directory"> | ||
346 | <title>oss directory</title> | ||
347 | <para> | ||
348 | The OSS/Lite source files are stored here in Linux 2.6 (or | ||
349 | later) tree. In the ALSA driver tarball, this directory is empty, | ||
350 | of course :) | ||
351 | </para> | ||
352 | </section> | ||
353 | </chapter> | ||
354 | |||
355 | |||
356 | <!-- ****************************************************** --> | ||
357 | <!-- Basic Flow for PCI Drivers --> | ||
358 | <!-- ****************************************************** --> | ||
359 | <chapter id="basic-flow"> | ||
360 | <title>Basic Flow for PCI Drivers</title> | ||
361 | |||
362 | <section id="basic-flow-outline"> | ||
363 | <title>Outline</title> | ||
364 | <para> | ||
365 | The minimum flow for PCI soundcards is as follows: | ||
366 | |||
367 | <itemizedlist> | ||
368 | <listitem><para>define the PCI ID table (see the section | ||
369 | <link linkend="pci-resource-entries"><citetitle>PCI Entries | ||
370 | </citetitle></link>).</para></listitem> | ||
371 | <listitem><para>create <function>probe()</function> callback.</para></listitem> | ||
372 | <listitem><para>create <function>remove()</function> callback.</para></listitem> | ||
373 | <listitem><para>create a <structname>pci_driver</structname> structure | ||
374 | containing the three pointers above.</para></listitem> | ||
375 | <listitem><para>create an <function>init()</function> function just calling | ||
376 | the <function>pci_register_driver()</function> to register the pci_driver table | ||
377 | defined above.</para></listitem> | ||
378 | <listitem><para>create an <function>exit()</function> function to call | ||
379 | the <function>pci_unregister_driver()</function> function.</para></listitem> | ||
380 | </itemizedlist> | ||
381 | </para> | ||
382 | </section> | ||
383 | |||
384 | <section id="basic-flow-example"> | ||
385 | <title>Full Code Example</title> | ||
386 | <para> | ||
387 | The code example is shown below. Some parts are kept | ||
388 | unimplemented at this moment but will be filled in the | ||
389 | next sections. The numbers in the comment lines of the | ||
390 | <function>snd_mychip_probe()</function> function | ||
391 | refer to details explained in the following section. | ||
392 | |||
393 | <example> | ||
394 | <title>Basic Flow for PCI Drivers - Example</title> | ||
395 | <programlisting> | ||
396 | <![CDATA[ | ||
397 | #include <linux/init.h> | ||
398 | #include <linux/pci.h> | ||
399 | #include <linux/slab.h> | ||
400 | #include <sound/core.h> | ||
401 | #include <sound/initval.h> | ||
402 | |||
403 | /* module parameters (see "Module Parameters") */ | ||
404 | /* SNDRV_CARDS: maximum number of cards supported by this module */ | ||
405 | static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; | ||
406 | static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; | ||
407 | static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; | ||
408 | |||
409 | /* definition of the chip-specific record */ | ||
410 | struct mychip { | ||
411 | struct snd_card *card; | ||
412 | /* the rest of the implementation will be in section | ||
413 | * "PCI Resource Management" | ||
414 | */ | ||
415 | }; | ||
416 | |||
417 | /* chip-specific destructor | ||
418 | * (see "PCI Resource Management") | ||
419 | */ | ||
420 | static int snd_mychip_free(struct mychip *chip) | ||
421 | { | ||
422 | .... /* will be implemented later... */ | ||
423 | } | ||
424 | |||
425 | /* component-destructor | ||
426 | * (see "Management of Cards and Components") | ||
427 | */ | ||
428 | static int snd_mychip_dev_free(struct snd_device *device) | ||
429 | { | ||
430 | return snd_mychip_free(device->device_data); | ||
431 | } | ||
432 | |||
433 | /* chip-specific constructor | ||
434 | * (see "Management of Cards and Components") | ||
435 | */ | ||
436 | static int __devinit snd_mychip_create(struct snd_card *card, | ||
437 | struct pci_dev *pci, | ||
438 | struct mychip **rchip) | ||
439 | { | ||
440 | struct mychip *chip; | ||
441 | int err; | ||
442 | static struct snd_device_ops ops = { | ||
443 | .dev_free = snd_mychip_dev_free, | ||
444 | }; | ||
445 | |||
446 | *rchip = NULL; | ||
447 | |||
448 | /* check PCI availability here | ||
449 | * (see "PCI Resource Management") | ||
450 | */ | ||
451 | .... | ||
452 | |||
453 | /* allocate a chip-specific data with zero filled */ | ||
454 | chip = kzalloc(sizeof(*chip), GFP_KERNEL); | ||
455 | if (chip == NULL) | ||
456 | return -ENOMEM; | ||
457 | |||
458 | chip->card = card; | ||
459 | |||
460 | /* rest of initialization here; will be implemented | ||
461 | * later, see "PCI Resource Management" | ||
462 | */ | ||
463 | .... | ||
464 | |||
465 | err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops); | ||
466 | if (err < 0) { | ||
467 | snd_mychip_free(chip); | ||
468 | return err; | ||
469 | } | ||
470 | |||
471 | snd_card_set_dev(card, &pci->dev); | ||
472 | |||
473 | *rchip = chip; | ||
474 | return 0; | ||
475 | } | ||
476 | |||
477 | /* constructor -- see "Constructor" sub-section */ | ||
478 | static int __devinit snd_mychip_probe(struct pci_dev *pci, | ||
479 | const struct pci_device_id *pci_id) | ||
480 | { | ||
481 | static int dev; | ||
482 | struct snd_card *card; | ||
483 | struct mychip *chip; | ||
484 | int err; | ||
485 | |||
486 | /* (1) */ | ||
487 | if (dev >= SNDRV_CARDS) | ||
488 | return -ENODEV; | ||
489 | if (!enable[dev]) { | ||
490 | dev++; | ||
491 | return -ENOENT; | ||
492 | } | ||
493 | |||
494 | /* (2) */ | ||
495 | err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card); | ||
496 | if (err < 0) | ||
497 | return err; | ||
498 | |||
499 | /* (3) */ | ||
500 | err = snd_mychip_create(card, pci, &chip); | ||
501 | if (err < 0) { | ||
502 | snd_card_free(card); | ||
503 | return err; | ||
504 | } | ||
505 | |||
506 | /* (4) */ | ||
507 | strcpy(card->driver, "My Chip"); | ||
508 | strcpy(card->shortname, "My Own Chip 123"); | ||
509 | sprintf(card->longname, "%s at 0x%lx irq %i", | ||
510 | card->shortname, chip->ioport, chip->irq); | ||
511 | |||
512 | /* (5) */ | ||
513 | .... /* implemented later */ | ||
514 | |||
515 | /* (6) */ | ||
516 | err = snd_card_register(card); | ||
517 | if (err < 0) { | ||
518 | snd_card_free(card); | ||
519 | return err; | ||
520 | } | ||
521 | |||
522 | /* (7) */ | ||
523 | pci_set_drvdata(pci, card); | ||
524 | dev++; | ||
525 | return 0; | ||
526 | } | ||
527 | |||
528 | /* destructor -- see the "Destructor" sub-section */ | ||
529 | static void __devexit snd_mychip_remove(struct pci_dev *pci) | ||
530 | { | ||
531 | snd_card_free(pci_get_drvdata(pci)); | ||
532 | pci_set_drvdata(pci, NULL); | ||
533 | } | ||
534 | ]]> | ||
535 | </programlisting> | ||
536 | </example> | ||
537 | </para> | ||
538 | </section> | ||
539 | |||
540 | <section id="basic-flow-constructor"> | ||
541 | <title>Constructor</title> | ||
542 | <para> | ||
543 | The real constructor of PCI drivers is the <function>probe</function> callback. | ||
544 | The <function>probe</function> callback and other component-constructors which are called | ||
545 | from the <function>probe</function> callback should be defined with | ||
546 | the <parameter>__devinit</parameter> prefix. You | ||
547 | cannot use the <parameter>__init</parameter> prefix for them, | ||
548 | because any PCI device could be a hotplug device. | ||
549 | </para> | ||
550 | |||
551 | <para> | ||
552 | In the <function>probe</function> callback, the following scheme is often used. | ||
553 | </para> | ||
554 | |||
555 | <section id="basic-flow-constructor-device-index"> | ||
556 | <title>1) Check and increment the device index.</title> | ||
557 | <para> | ||
558 | <informalexample> | ||
559 | <programlisting> | ||
560 | <![CDATA[ | ||
561 | static int dev; | ||
562 | .... | ||
563 | if (dev >= SNDRV_CARDS) | ||
564 | return -ENODEV; | ||
565 | if (!enable[dev]) { | ||
566 | dev++; | ||
567 | return -ENOENT; | ||
568 | } | ||
569 | ]]> | ||
570 | </programlisting> | ||
571 | </informalexample> | ||
572 | |||
573 | where enable[dev] is the module option. | ||
574 | </para> | ||
575 | |||
576 | <para> | ||
577 | Each time the <function>probe</function> callback is called, check the | ||
578 | availability of the device. If not available, simply increment | ||
579 | the device index and returns. dev will be incremented also | ||
580 | later (<link | ||
581 | linkend="basic-flow-constructor-set-pci"><citetitle>step | ||
582 | 7</citetitle></link>). | ||
583 | </para> | ||
584 | </section> | ||
585 | |||
586 | <section id="basic-flow-constructor-create-card"> | ||
587 | <title>2) Create a card instance</title> | ||
588 | <para> | ||
589 | <informalexample> | ||
590 | <programlisting> | ||
591 | <![CDATA[ | ||
592 | struct snd_card *card; | ||
593 | int err; | ||
594 | .... | ||
595 | err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card); | ||
596 | ]]> | ||
597 | </programlisting> | ||
598 | </informalexample> | ||
599 | </para> | ||
600 | |||
601 | <para> | ||
602 | The details will be explained in the section | ||
603 | <link linkend="card-management-card-instance"><citetitle> | ||
604 | Management of Cards and Components</citetitle></link>. | ||
605 | </para> | ||
606 | </section> | ||
607 | |||
608 | <section id="basic-flow-constructor-create-main"> | ||
609 | <title>3) Create a main component</title> | ||
610 | <para> | ||
611 | In this part, the PCI resources are allocated. | ||
612 | |||
613 | <informalexample> | ||
614 | <programlisting> | ||
615 | <![CDATA[ | ||
616 | struct mychip *chip; | ||
617 | .... | ||
618 | err = snd_mychip_create(card, pci, &chip); | ||
619 | if (err < 0) { | ||
620 | snd_card_free(card); | ||
621 | return err; | ||
622 | } | ||
623 | ]]> | ||
624 | </programlisting> | ||
625 | </informalexample> | ||
626 | |||
627 | The details will be explained in the section <link | ||
628 | linkend="pci-resource"><citetitle>PCI Resource | ||
629 | Management</citetitle></link>. | ||
630 | </para> | ||
631 | </section> | ||
632 | |||
633 | <section id="basic-flow-constructor-main-component"> | ||
634 | <title>4) Set the driver ID and name strings.</title> | ||
635 | <para> | ||
636 | <informalexample> | ||
637 | <programlisting> | ||
638 | <![CDATA[ | ||
639 | strcpy(card->driver, "My Chip"); | ||
640 | strcpy(card->shortname, "My Own Chip 123"); | ||
641 | sprintf(card->longname, "%s at 0x%lx irq %i", | ||
642 | card->shortname, chip->ioport, chip->irq); | ||
643 | ]]> | ||
644 | </programlisting> | ||
645 | </informalexample> | ||
646 | |||
647 | The driver field holds the minimal ID string of the | ||
648 | chip. This is used by alsa-lib's configurator, so keep it | ||
649 | simple but unique. | ||
650 | Even the same driver can have different driver IDs to | ||
651 | distinguish the functionality of each chip type. | ||
652 | </para> | ||
653 | |||
654 | <para> | ||
655 | The shortname field is a string shown as more verbose | ||
656 | name. The longname field contains the information | ||
657 | shown in <filename>/proc/asound/cards</filename>. | ||
658 | </para> | ||
659 | </section> | ||
660 | |||
661 | <section id="basic-flow-constructor-create-other"> | ||
662 | <title>5) Create other components, such as mixer, MIDI, etc.</title> | ||
663 | <para> | ||
664 | Here you define the basic components such as | ||
665 | <link linkend="pcm-interface"><citetitle>PCM</citetitle></link>, | ||
666 | mixer (e.g. <link linkend="api-ac97"><citetitle>AC97</citetitle></link>), | ||
667 | MIDI (e.g. <link linkend="midi-interface"><citetitle>MPU-401</citetitle></link>), | ||
668 | and other interfaces. | ||
669 | Also, if you want a <link linkend="proc-interface"><citetitle>proc | ||
670 | file</citetitle></link>, define it here, too. | ||
671 | </para> | ||
672 | </section> | ||
673 | |||
674 | <section id="basic-flow-constructor-register-card"> | ||
675 | <title>6) Register the card instance.</title> | ||
676 | <para> | ||
677 | <informalexample> | ||
678 | <programlisting> | ||
679 | <![CDATA[ | ||
680 | err = snd_card_register(card); | ||
681 | if (err < 0) { | ||
682 | snd_card_free(card); | ||
683 | return err; | ||
684 | } | ||
685 | ]]> | ||
686 | </programlisting> | ||
687 | </informalexample> | ||
688 | </para> | ||
689 | |||
690 | <para> | ||
691 | Will be explained in the section <link | ||
692 | linkend="card-management-registration"><citetitle>Management | ||
693 | of Cards and Components</citetitle></link>, too. | ||
694 | </para> | ||
695 | </section> | ||
696 | |||
697 | <section id="basic-flow-constructor-set-pci"> | ||
698 | <title>7) Set the PCI driver data and return zero.</title> | ||
699 | <para> | ||
700 | <informalexample> | ||
701 | <programlisting> | ||
702 | <![CDATA[ | ||
703 | pci_set_drvdata(pci, card); | ||
704 | dev++; | ||
705 | return 0; | ||
706 | ]]> | ||
707 | </programlisting> | ||
708 | </informalexample> | ||
709 | |||
710 | In the above, the card record is stored. This pointer is | ||
711 | used in the remove callback and power-management | ||
712 | callbacks, too. | ||
713 | </para> | ||
714 | </section> | ||
715 | </section> | ||
716 | |||
717 | <section id="basic-flow-destructor"> | ||
718 | <title>Destructor</title> | ||
719 | <para> | ||
720 | The destructor, remove callback, simply releases the card | ||
721 | instance. Then the ALSA middle layer will release all the | ||
722 | attached components automatically. | ||
723 | </para> | ||
724 | |||
725 | <para> | ||
726 | It would be typically like the following: | ||
727 | |||
728 | <informalexample> | ||
729 | <programlisting> | ||
730 | <![CDATA[ | ||
731 | static void __devexit snd_mychip_remove(struct pci_dev *pci) | ||
732 | { | ||
733 | snd_card_free(pci_get_drvdata(pci)); | ||
734 | pci_set_drvdata(pci, NULL); | ||
735 | } | ||
736 | ]]> | ||
737 | </programlisting> | ||
738 | </informalexample> | ||
739 | |||
740 | The above code assumes that the card pointer is set to the PCI | ||
741 | driver data. | ||
742 | </para> | ||
743 | </section> | ||
744 | |||
745 | <section id="basic-flow-header-files"> | ||
746 | <title>Header Files</title> | ||
747 | <para> | ||
748 | For the above example, at least the following include files | ||
749 | are necessary. | ||
750 | |||
751 | <informalexample> | ||
752 | <programlisting> | ||
753 | <![CDATA[ | ||
754 | #include <linux/init.h> | ||
755 | #include <linux/pci.h> | ||
756 | #include <linux/slab.h> | ||
757 | #include <sound/core.h> | ||
758 | #include <sound/initval.h> | ||
759 | ]]> | ||
760 | </programlisting> | ||
761 | </informalexample> | ||
762 | |||
763 | where the last one is necessary only when module options are | ||
764 | defined in the source file. If the code is split into several | ||
765 | files, the files without module options don't need them. | ||
766 | </para> | ||
767 | |||
768 | <para> | ||
769 | In addition to these headers, you'll need | ||
770 | <filename><linux/interrupt.h></filename> for interrupt | ||
771 | handling, and <filename><asm/io.h></filename> for I/O | ||
772 | access. If you use the <function>mdelay()</function> or | ||
773 | <function>udelay()</function> functions, you'll need to include | ||
774 | <filename><linux/delay.h></filename> too. | ||
775 | </para> | ||
776 | |||
777 | <para> | ||
778 | The ALSA interfaces like the PCM and control APIs are defined in other | ||
779 | <filename><sound/xxx.h></filename> header files. | ||
780 | They have to be included after | ||
781 | <filename><sound/core.h></filename>. | ||
782 | </para> | ||
783 | |||
784 | </section> | ||
785 | </chapter> | ||
786 | |||
787 | |||
788 | <!-- ****************************************************** --> | ||
789 | <!-- Management of Cards and Components --> | ||
790 | <!-- ****************************************************** --> | ||
791 | <chapter id="card-management"> | ||
792 | <title>Management of Cards and Components</title> | ||
793 | |||
794 | <section id="card-management-card-instance"> | ||
795 | <title>Card Instance</title> | ||
796 | <para> | ||
797 | For each soundcard, a <quote>card</quote> record must be allocated. | ||
798 | </para> | ||
799 | |||
800 | <para> | ||
801 | A card record is the headquarters of the soundcard. It manages | ||
802 | the whole list of devices (components) on the soundcard, such as | ||
803 | PCM, mixers, MIDI, synthesizer, and so on. Also, the card | ||
804 | record holds the ID and the name strings of the card, manages | ||
805 | the root of proc files, and controls the power-management states | ||
806 | and hotplug disconnections. The component list on the card | ||
807 | record is used to manage the correct release of resources at | ||
808 | destruction. | ||
809 | </para> | ||
810 | |||
811 | <para> | ||
812 | As mentioned above, to create a card instance, call | ||
813 | <function>snd_card_create()</function>. | ||
814 | |||
815 | <informalexample> | ||
816 | <programlisting> | ||
817 | <![CDATA[ | ||
818 | struct snd_card *card; | ||
819 | int err; | ||
820 | err = snd_card_create(index, id, module, extra_size, &card); | ||
821 | ]]> | ||
822 | </programlisting> | ||
823 | </informalexample> | ||
824 | </para> | ||
825 | |||
826 | <para> | ||
827 | The function takes five arguments, the card-index number, the | ||
828 | id string, the module pointer (usually | ||
829 | <constant>THIS_MODULE</constant>), | ||
830 | the size of extra-data space, and the pointer to return the | ||
831 | card instance. The extra_size argument is used to | ||
832 | allocate card->private_data for the | ||
833 | chip-specific data. Note that these data | ||
834 | are allocated by <function>snd_card_create()</function>. | ||
835 | </para> | ||
836 | </section> | ||
837 | |||
838 | <section id="card-management-component"> | ||
839 | <title>Components</title> | ||
840 | <para> | ||
841 | After the card is created, you can attach the components | ||
842 | (devices) to the card instance. In an ALSA driver, a component is | ||
843 | represented as a struct <structname>snd_device</structname> object. | ||
844 | A component can be a PCM instance, a control interface, a raw | ||
845 | MIDI interface, etc. Each such instance has one component | ||
846 | entry. | ||
847 | </para> | ||
848 | |||
849 | <para> | ||
850 | A component can be created via | ||
851 | <function>snd_device_new()</function> function. | ||
852 | |||
853 | <informalexample> | ||
854 | <programlisting> | ||
855 | <![CDATA[ | ||
856 | snd_device_new(card, SNDRV_DEV_XXX, chip, &ops); | ||
857 | ]]> | ||
858 | </programlisting> | ||
859 | </informalexample> | ||
860 | </para> | ||
861 | |||
862 | <para> | ||
863 | This takes the card pointer, the device-level | ||
864 | (<constant>SNDRV_DEV_XXX</constant>), the data pointer, and the | ||
865 | callback pointers (<parameter>&ops</parameter>). The | ||
866 | device-level defines the type of components and the order of | ||
867 | registration and de-registration. For most components, the | ||
868 | device-level is already defined. For a user-defined component, | ||
869 | you can use <constant>SNDRV_DEV_LOWLEVEL</constant>. | ||
870 | </para> | ||
871 | |||
872 | <para> | ||
873 | This function itself doesn't allocate the data space. The data | ||
874 | must be allocated manually beforehand, and its pointer is passed | ||
875 | as the argument. This pointer is used as the | ||
876 | (<parameter>chip</parameter> identifier in the above example) | ||
877 | for the instance. | ||
878 | </para> | ||
879 | |||
880 | <para> | ||
881 | Each pre-defined ALSA component such as ac97 and pcm calls | ||
882 | <function>snd_device_new()</function> inside its | ||
883 | constructor. The destructor for each component is defined in the | ||
884 | callback pointers. Hence, you don't need to take care of | ||
885 | calling a destructor for such a component. | ||
886 | </para> | ||
887 | |||
888 | <para> | ||
889 | If you wish to create your own component, you need to | ||
890 | set the destructor function to the dev_free callback in | ||
891 | the <parameter>ops</parameter>, so that it can be released | ||
892 | automatically via <function>snd_card_free()</function>. | ||
893 | The next example will show an implementation of chip-specific | ||
894 | data. | ||
895 | </para> | ||
896 | </section> | ||
897 | |||
898 | <section id="card-management-chip-specific"> | ||
899 | <title>Chip-Specific Data</title> | ||
900 | <para> | ||
901 | Chip-specific information, e.g. the I/O port address, its | ||
902 | resource pointer, or the irq number, is stored in the | ||
903 | chip-specific record. | ||
904 | |||
905 | <informalexample> | ||
906 | <programlisting> | ||
907 | <![CDATA[ | ||
908 | struct mychip { | ||
909 | .... | ||
910 | }; | ||
911 | ]]> | ||
912 | </programlisting> | ||
913 | </informalexample> | ||
914 | </para> | ||
915 | |||
916 | <para> | ||
917 | In general, there are two ways of allocating the chip record. | ||
918 | </para> | ||
919 | |||
920 | <section id="card-management-chip-specific-snd-card-new"> | ||
921 | <title>1. Allocating via <function>snd_card_create()</function>.</title> | ||
922 | <para> | ||
923 | As mentioned above, you can pass the extra-data-length | ||
924 | to the 4th argument of <function>snd_card_create()</function>, i.e. | ||
925 | |||
926 | <informalexample> | ||
927 | <programlisting> | ||
928 | <![CDATA[ | ||
929 | err = snd_card_create(index[dev], id[dev], THIS_MODULE, | ||
930 | sizeof(struct mychip), &card); | ||
931 | ]]> | ||
932 | </programlisting> | ||
933 | </informalexample> | ||
934 | |||
935 | struct <structname>mychip</structname> is the type of the chip record. | ||
936 | </para> | ||
937 | |||
938 | <para> | ||
939 | In return, the allocated record can be accessed as | ||
940 | |||
941 | <informalexample> | ||
942 | <programlisting> | ||
943 | <![CDATA[ | ||
944 | struct mychip *chip = card->private_data; | ||
945 | ]]> | ||
946 | </programlisting> | ||
947 | </informalexample> | ||
948 | |||
949 | With this method, you don't have to allocate twice. | ||
950 | The record is released together with the card instance. | ||
951 | </para> | ||
952 | </section> | ||
953 | |||
954 | <section id="card-management-chip-specific-allocate-extra"> | ||
955 | <title>2. Allocating an extra device.</title> | ||
956 | |||
957 | <para> | ||
958 | After allocating a card instance via | ||
959 | <function>snd_card_create()</function> (with | ||
960 | <constant>0</constant> on the 4th arg), call | ||
961 | <function>kzalloc()</function>. | ||
962 | |||
963 | <informalexample> | ||
964 | <programlisting> | ||
965 | <![CDATA[ | ||
966 | struct snd_card *card; | ||
967 | struct mychip *chip; | ||
968 | err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card); | ||
969 | ..... | ||
970 | chip = kzalloc(sizeof(*chip), GFP_KERNEL); | ||
971 | ]]> | ||
972 | </programlisting> | ||
973 | </informalexample> | ||
974 | </para> | ||
975 | |||
976 | <para> | ||
977 | The chip record should have the field to hold the card | ||
978 | pointer at least, | ||
979 | |||
980 | <informalexample> | ||
981 | <programlisting> | ||
982 | <![CDATA[ | ||
983 | struct mychip { | ||
984 | struct snd_card *card; | ||
985 | .... | ||
986 | }; | ||
987 | ]]> | ||
988 | </programlisting> | ||
989 | </informalexample> | ||
990 | </para> | ||
991 | |||
992 | <para> | ||
993 | Then, set the card pointer in the returned chip instance. | ||
994 | |||
995 | <informalexample> | ||
996 | <programlisting> | ||
997 | <![CDATA[ | ||
998 | chip->card = card; | ||
999 | ]]> | ||
1000 | </programlisting> | ||
1001 | </informalexample> | ||
1002 | </para> | ||
1003 | |||
1004 | <para> | ||
1005 | Next, initialize the fields, and register this chip | ||
1006 | record as a low-level device with a specified | ||
1007 | <parameter>ops</parameter>, | ||
1008 | |||
1009 | <informalexample> | ||
1010 | <programlisting> | ||
1011 | <![CDATA[ | ||
1012 | static struct snd_device_ops ops = { | ||
1013 | .dev_free = snd_mychip_dev_free, | ||
1014 | }; | ||
1015 | .... | ||
1016 | snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops); | ||
1017 | ]]> | ||
1018 | </programlisting> | ||
1019 | </informalexample> | ||
1020 | |||
1021 | <function>snd_mychip_dev_free()</function> is the | ||
1022 | device-destructor function, which will call the real | ||
1023 | destructor. | ||
1024 | </para> | ||
1025 | |||
1026 | <para> | ||
1027 | <informalexample> | ||
1028 | <programlisting> | ||
1029 | <![CDATA[ | ||
1030 | static int snd_mychip_dev_free(struct snd_device *device) | ||
1031 | { | ||
1032 | return snd_mychip_free(device->device_data); | ||
1033 | } | ||
1034 | ]]> | ||
1035 | </programlisting> | ||
1036 | </informalexample> | ||
1037 | |||
1038 | where <function>snd_mychip_free()</function> is the real destructor. | ||
1039 | </para> | ||
1040 | </section> | ||
1041 | </section> | ||
1042 | |||
1043 | <section id="card-management-registration"> | ||
1044 | <title>Registration and Release</title> | ||
1045 | <para> | ||
1046 | After all components are assigned, register the card instance | ||
1047 | by calling <function>snd_card_register()</function>. Access | ||
1048 | to the device files is enabled at this point. That is, before | ||
1049 | <function>snd_card_register()</function> is called, the | ||
1050 | components are safely inaccessible from external side. If this | ||
1051 | call fails, exit the probe function after releasing the card via | ||
1052 | <function>snd_card_free()</function>. | ||
1053 | </para> | ||
1054 | |||
1055 | <para> | ||
1056 | For releasing the card instance, you can call simply | ||
1057 | <function>snd_card_free()</function>. As mentioned earlier, all | ||
1058 | components are released automatically by this call. | ||
1059 | </para> | ||
1060 | |||
1061 | <para> | ||
1062 | As further notes, the destructors (both | ||
1063 | <function>snd_mychip_dev_free</function> and | ||
1064 | <function>snd_mychip_free</function>) cannot be defined with | ||
1065 | the <parameter>__devexit</parameter> prefix, because they may be | ||
1066 | called from the constructor, too, at the false path. | ||
1067 | </para> | ||
1068 | |||
1069 | <para> | ||
1070 | For a device which allows hotplugging, you can use | ||
1071 | <function>snd_card_free_when_closed</function>. This one will | ||
1072 | postpone the destruction until all devices are closed. | ||
1073 | </para> | ||
1074 | |||
1075 | </section> | ||
1076 | |||
1077 | </chapter> | ||
1078 | |||
1079 | |||
1080 | <!-- ****************************************************** --> | ||
1081 | <!-- PCI Resource Management --> | ||
1082 | <!-- ****************************************************** --> | ||
1083 | <chapter id="pci-resource"> | ||
1084 | <title>PCI Resource Management</title> | ||
1085 | |||
1086 | <section id="pci-resource-example"> | ||
1087 | <title>Full Code Example</title> | ||
1088 | <para> | ||
1089 | In this section, we'll complete the chip-specific constructor, | ||
1090 | destructor and PCI entries. Example code is shown first, | ||
1091 | below. | ||
1092 | |||
1093 | <example> | ||
1094 | <title>PCI Resource Management Example</title> | ||
1095 | <programlisting> | ||
1096 | <![CDATA[ | ||
1097 | struct mychip { | ||
1098 | struct snd_card *card; | ||
1099 | struct pci_dev *pci; | ||
1100 | |||
1101 | unsigned long port; | ||
1102 | int irq; | ||
1103 | }; | ||
1104 | |||
1105 | static int snd_mychip_free(struct mychip *chip) | ||
1106 | { | ||
1107 | /* disable hardware here if any */ | ||
1108 | .... /* (not implemented in this document) */ | ||
1109 | |||
1110 | /* release the irq */ | ||
1111 | if (chip->irq >= 0) | ||
1112 | free_irq(chip->irq, chip); | ||
1113 | /* release the I/O ports & memory */ | ||
1114 | pci_release_regions(chip->pci); | ||
1115 | /* disable the PCI entry */ | ||
1116 | pci_disable_device(chip->pci); | ||
1117 | /* release the data */ | ||
1118 | kfree(chip); | ||
1119 | return 0; | ||
1120 | } | ||
1121 | |||
1122 | /* chip-specific constructor */ | ||
1123 | static int __devinit snd_mychip_create(struct snd_card *card, | ||
1124 | struct pci_dev *pci, | ||
1125 | struct mychip **rchip) | ||
1126 | { | ||
1127 | struct mychip *chip; | ||
1128 | int err; | ||
1129 | static struct snd_device_ops ops = { | ||
1130 | .dev_free = snd_mychip_dev_free, | ||
1131 | }; | ||
1132 | |||
1133 | *rchip = NULL; | ||
1134 | |||
1135 | /* initialize the PCI entry */ | ||
1136 | err = pci_enable_device(pci); | ||
1137 | if (err < 0) | ||
1138 | return err; | ||
1139 | /* check PCI availability (28bit DMA) */ | ||
1140 | if (pci_set_dma_mask(pci, DMA_28BIT_MASK) < 0 || | ||
1141 | pci_set_consistent_dma_mask(pci, DMA_28BIT_MASK) < 0) { | ||
1142 | printk(KERN_ERR "error to set 28bit mask DMA\n"); | ||
1143 | pci_disable_device(pci); | ||
1144 | return -ENXIO; | ||
1145 | } | ||
1146 | |||
1147 | chip = kzalloc(sizeof(*chip), GFP_KERNEL); | ||
1148 | if (chip == NULL) { | ||
1149 | pci_disable_device(pci); | ||
1150 | return -ENOMEM; | ||
1151 | } | ||
1152 | |||
1153 | /* initialize the stuff */ | ||
1154 | chip->card = card; | ||
1155 | chip->pci = pci; | ||
1156 | chip->irq = -1; | ||
1157 | |||
1158 | /* (1) PCI resource allocation */ | ||
1159 | err = pci_request_regions(pci, "My Chip"); | ||
1160 | if (err < 0) { | ||
1161 | kfree(chip); | ||
1162 | pci_disable_device(pci); | ||
1163 | return err; | ||
1164 | } | ||
1165 | chip->port = pci_resource_start(pci, 0); | ||
1166 | if (request_irq(pci->irq, snd_mychip_interrupt, | ||
1167 | IRQF_SHARED, "My Chip", chip)) { | ||
1168 | printk(KERN_ERR "cannot grab irq %d\n", pci->irq); | ||
1169 | snd_mychip_free(chip); | ||
1170 | return -EBUSY; | ||
1171 | } | ||
1172 | chip->irq = pci->irq; | ||
1173 | |||
1174 | /* (2) initialization of the chip hardware */ | ||
1175 | .... /* (not implemented in this document) */ | ||
1176 | |||
1177 | err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops); | ||
1178 | if (err < 0) { | ||
1179 | snd_mychip_free(chip); | ||
1180 | return err; | ||
1181 | } | ||
1182 | |||
1183 | snd_card_set_dev(card, &pci->dev); | ||
1184 | |||
1185 | *rchip = chip; | ||
1186 | return 0; | ||
1187 | } | ||
1188 | |||
1189 | /* PCI IDs */ | ||
1190 | static struct pci_device_id snd_mychip_ids[] = { | ||
1191 | { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR, | ||
1192 | PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, }, | ||
1193 | .... | ||
1194 | { 0, } | ||
1195 | }; | ||
1196 | MODULE_DEVICE_TABLE(pci, snd_mychip_ids); | ||
1197 | |||
1198 | /* pci_driver definition */ | ||
1199 | static struct pci_driver driver = { | ||
1200 | .name = "My Own Chip", | ||
1201 | .id_table = snd_mychip_ids, | ||
1202 | .probe = snd_mychip_probe, | ||
1203 | .remove = __devexit_p(snd_mychip_remove), | ||
1204 | }; | ||
1205 | |||
1206 | /* module initialization */ | ||
1207 | static int __init alsa_card_mychip_init(void) | ||
1208 | { | ||
1209 | return pci_register_driver(&driver); | ||
1210 | } | ||
1211 | |||
1212 | /* module clean up */ | ||
1213 | static void __exit alsa_card_mychip_exit(void) | ||
1214 | { | ||
1215 | pci_unregister_driver(&driver); | ||
1216 | } | ||
1217 | |||
1218 | module_init(alsa_card_mychip_init) | ||
1219 | module_exit(alsa_card_mychip_exit) | ||
1220 | |||
1221 | EXPORT_NO_SYMBOLS; /* for old kernels only */ | ||
1222 | ]]> | ||
1223 | </programlisting> | ||
1224 | </example> | ||
1225 | </para> | ||
1226 | </section> | ||
1227 | |||
1228 | <section id="pci-resource-some-haftas"> | ||
1229 | <title>Some Hafta's</title> | ||
1230 | <para> | ||
1231 | The allocation of PCI resources is done in the | ||
1232 | <function>probe()</function> function, and usually an extra | ||
1233 | <function>xxx_create()</function> function is written for this | ||
1234 | purpose. | ||
1235 | </para> | ||
1236 | |||
1237 | <para> | ||
1238 | In the case of PCI devices, you first have to call | ||
1239 | the <function>pci_enable_device()</function> function before | ||
1240 | allocating resources. Also, you need to set the proper PCI DMA | ||
1241 | mask to limit the accessed I/O range. In some cases, you might | ||
1242 | need to call <function>pci_set_master()</function> function, | ||
1243 | too. | ||
1244 | </para> | ||
1245 | |||
1246 | <para> | ||
1247 | Suppose the 28bit mask, and the code to be added would be like: | ||
1248 | |||
1249 | <informalexample> | ||
1250 | <programlisting> | ||
1251 | <![CDATA[ | ||
1252 | err = pci_enable_device(pci); | ||
1253 | if (err < 0) | ||
1254 | return err; | ||
1255 | if (pci_set_dma_mask(pci, DMA_28BIT_MASK) < 0 || | ||
1256 | pci_set_consistent_dma_mask(pci, DMA_28BIT_MASK) < 0) { | ||
1257 | printk(KERN_ERR "error to set 28bit mask DMA\n"); | ||
1258 | pci_disable_device(pci); | ||
1259 | return -ENXIO; | ||
1260 | } | ||
1261 | |||
1262 | ]]> | ||
1263 | </programlisting> | ||
1264 | </informalexample> | ||
1265 | </para> | ||
1266 | </section> | ||
1267 | |||
1268 | <section id="pci-resource-resource-allocation"> | ||
1269 | <title>Resource Allocation</title> | ||
1270 | <para> | ||
1271 | The allocation of I/O ports and irqs is done via standard kernel | ||
1272 | functions. Unlike ALSA ver.0.5.x., there are no helpers for | ||
1273 | that. And these resources must be released in the destructor | ||
1274 | function (see below). Also, on ALSA 0.9.x, you don't need to | ||
1275 | allocate (pseudo-)DMA for PCI like in ALSA 0.5.x. | ||
1276 | </para> | ||
1277 | |||
1278 | <para> | ||
1279 | Now assume that the PCI device has an I/O port with 8 bytes | ||
1280 | and an interrupt. Then struct <structname>mychip</structname> will have the | ||
1281 | following fields: | ||
1282 | |||
1283 | <informalexample> | ||
1284 | <programlisting> | ||
1285 | <![CDATA[ | ||
1286 | struct mychip { | ||
1287 | struct snd_card *card; | ||
1288 | |||
1289 | unsigned long port; | ||
1290 | int irq; | ||
1291 | }; | ||
1292 | ]]> | ||
1293 | </programlisting> | ||
1294 | </informalexample> | ||
1295 | </para> | ||
1296 | |||
1297 | <para> | ||
1298 | For an I/O port (and also a memory region), you need to have | ||
1299 | the resource pointer for the standard resource management. For | ||
1300 | an irq, you have to keep only the irq number (integer). But you | ||
1301 | need to initialize this number as -1 before actual allocation, | ||
1302 | since irq 0 is valid. The port address and its resource pointer | ||
1303 | can be initialized as null by | ||
1304 | <function>kzalloc()</function> automatically, so you | ||
1305 | don't have to take care of resetting them. | ||
1306 | </para> | ||
1307 | |||
1308 | <para> | ||
1309 | The allocation of an I/O port is done like this: | ||
1310 | |||
1311 | <informalexample> | ||
1312 | <programlisting> | ||
1313 | <![CDATA[ | ||
1314 | err = pci_request_regions(pci, "My Chip"); | ||
1315 | if (err < 0) { | ||
1316 | kfree(chip); | ||
1317 | pci_disable_device(pci); | ||
1318 | return err; | ||
1319 | } | ||
1320 | chip->port = pci_resource_start(pci, 0); | ||
1321 | ]]> | ||
1322 | </programlisting> | ||
1323 | </informalexample> | ||
1324 | </para> | ||
1325 | |||
1326 | <para> | ||
1327 | <!-- obsolete --> | ||
1328 | It will reserve the I/O port region of 8 bytes of the given | ||
1329 | PCI device. The returned value, chip->res_port, is allocated | ||
1330 | via <function>kmalloc()</function> by | ||
1331 | <function>request_region()</function>. The pointer must be | ||
1332 | released via <function>kfree()</function>, but there is a | ||
1333 | problem with this. This issue will be explained later. | ||
1334 | </para> | ||
1335 | |||
1336 | <para> | ||
1337 | The allocation of an interrupt source is done like this: | ||
1338 | |||
1339 | <informalexample> | ||
1340 | <programlisting> | ||
1341 | <![CDATA[ | ||
1342 | if (request_irq(pci->irq, snd_mychip_interrupt, | ||
1343 | IRQF_SHARED, "My Chip", chip)) { | ||
1344 | printk(KERN_ERR "cannot grab irq %d\n", pci->irq); | ||
1345 | snd_mychip_free(chip); | ||
1346 | return -EBUSY; | ||
1347 | } | ||
1348 | chip->irq = pci->irq; | ||
1349 | ]]> | ||
1350 | </programlisting> | ||
1351 | </informalexample> | ||
1352 | |||
1353 | where <function>snd_mychip_interrupt()</function> is the | ||
1354 | interrupt handler defined <link | ||
1355 | linkend="pcm-interface-interrupt-handler"><citetitle>later</citetitle></link>. | ||
1356 | Note that chip->irq should be defined | ||
1357 | only when <function>request_irq()</function> succeeded. | ||
1358 | </para> | ||
1359 | |||
1360 | <para> | ||
1361 | On the PCI bus, interrupts can be shared. Thus, | ||
1362 | <constant>IRQF_SHARED</constant> is used as the interrupt flag of | ||
1363 | <function>request_irq()</function>. | ||
1364 | </para> | ||
1365 | |||
1366 | <para> | ||
1367 | The last argument of <function>request_irq()</function> is the | ||
1368 | data pointer passed to the interrupt handler. Usually, the | ||
1369 | chip-specific record is used for that, but you can use what you | ||
1370 | like, too. | ||
1371 | </para> | ||
1372 | |||
1373 | <para> | ||
1374 | I won't give details about the interrupt handler at this | ||
1375 | point, but at least its appearance can be explained now. The | ||
1376 | interrupt handler looks usually like the following: | ||
1377 | |||
1378 | <informalexample> | ||
1379 | <programlisting> | ||
1380 | <![CDATA[ | ||
1381 | static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id) | ||
1382 | { | ||
1383 | struct mychip *chip = dev_id; | ||
1384 | .... | ||
1385 | return IRQ_HANDLED; | ||
1386 | } | ||
1387 | ]]> | ||
1388 | </programlisting> | ||
1389 | </informalexample> | ||
1390 | </para> | ||
1391 | |||
1392 | <para> | ||
1393 | Now let's write the corresponding destructor for the resources | ||
1394 | above. The role of destructor is simple: disable the hardware | ||
1395 | (if already activated) and release the resources. So far, we | ||
1396 | have no hardware part, so the disabling code is not written here. | ||
1397 | </para> | ||
1398 | |||
1399 | <para> | ||
1400 | To release the resources, the <quote>check-and-release</quote> | ||
1401 | method is a safer way. For the interrupt, do like this: | ||
1402 | |||
1403 | <informalexample> | ||
1404 | <programlisting> | ||
1405 | <![CDATA[ | ||
1406 | if (chip->irq >= 0) | ||
1407 | free_irq(chip->irq, chip); | ||
1408 | ]]> | ||
1409 | </programlisting> | ||
1410 | </informalexample> | ||
1411 | |||
1412 | Since the irq number can start from 0, you should initialize | ||
1413 | chip->irq with a negative value (e.g. -1), so that you can | ||
1414 | check the validity of the irq number as above. | ||
1415 | </para> | ||
1416 | |||
1417 | <para> | ||
1418 | When you requested I/O ports or memory regions via | ||
1419 | <function>pci_request_region()</function> or | ||
1420 | <function>pci_request_regions()</function> like in this example, | ||
1421 | release the resource(s) using the corresponding function, | ||
1422 | <function>pci_release_region()</function> or | ||
1423 | <function>pci_release_regions()</function>. | ||
1424 | |||
1425 | <informalexample> | ||
1426 | <programlisting> | ||
1427 | <![CDATA[ | ||
1428 | pci_release_regions(chip->pci); | ||
1429 | ]]> | ||
1430 | </programlisting> | ||
1431 | </informalexample> | ||
1432 | </para> | ||
1433 | |||
1434 | <para> | ||
1435 | When you requested manually via <function>request_region()</function> | ||
1436 | or <function>request_mem_region</function>, you can release it via | ||
1437 | <function>release_resource()</function>. Suppose that you keep | ||
1438 | the resource pointer returned from <function>request_region()</function> | ||
1439 | in chip->res_port, the release procedure looks like: | ||
1440 | |||
1441 | <informalexample> | ||
1442 | <programlisting> | ||
1443 | <![CDATA[ | ||
1444 | release_and_free_resource(chip->res_port); | ||
1445 | ]]> | ||
1446 | </programlisting> | ||
1447 | </informalexample> | ||
1448 | </para> | ||
1449 | |||
1450 | <para> | ||
1451 | Don't forget to call <function>pci_disable_device()</function> | ||
1452 | before the end. | ||
1453 | </para> | ||
1454 | |||
1455 | <para> | ||
1456 | And finally, release the chip-specific record. | ||
1457 | |||
1458 | <informalexample> | ||
1459 | <programlisting> | ||
1460 | <![CDATA[ | ||
1461 | kfree(chip); | ||
1462 | ]]> | ||
1463 | </programlisting> | ||
1464 | </informalexample> | ||
1465 | </para> | ||
1466 | |||
1467 | <para> | ||
1468 | Again, remember that you cannot | ||
1469 | use the <parameter>__devexit</parameter> prefix for this destructor. | ||
1470 | </para> | ||
1471 | |||
1472 | <para> | ||
1473 | We didn't implement the hardware disabling part in the above. | ||
1474 | If you need to do this, please note that the destructor may be | ||
1475 | called even before the initialization of the chip is completed. | ||
1476 | It would be better to have a flag to skip hardware disabling | ||
1477 | if the hardware was not initialized yet. | ||
1478 | </para> | ||
1479 | |||
1480 | <para> | ||
1481 | When the chip-data is assigned to the card using | ||
1482 | <function>snd_device_new()</function> with | ||
1483 | <constant>SNDRV_DEV_LOWLELVEL</constant> , its destructor is | ||
1484 | called at the last. That is, it is assured that all other | ||
1485 | components like PCMs and controls have already been released. | ||
1486 | You don't have to stop PCMs, etc. explicitly, but just | ||
1487 | call low-level hardware stopping. | ||
1488 | </para> | ||
1489 | |||
1490 | <para> | ||
1491 | The management of a memory-mapped region is almost as same as | ||
1492 | the management of an I/O port. You'll need three fields like | ||
1493 | the following: | ||
1494 | |||
1495 | <informalexample> | ||
1496 | <programlisting> | ||
1497 | <![CDATA[ | ||
1498 | struct mychip { | ||
1499 | .... | ||
1500 | unsigned long iobase_phys; | ||
1501 | void __iomem *iobase_virt; | ||
1502 | }; | ||
1503 | ]]> | ||
1504 | </programlisting> | ||
1505 | </informalexample> | ||
1506 | |||
1507 | and the allocation would be like below: | ||
1508 | |||
1509 | <informalexample> | ||
1510 | <programlisting> | ||
1511 | <![CDATA[ | ||
1512 | if ((err = pci_request_regions(pci, "My Chip")) < 0) { | ||
1513 | kfree(chip); | ||
1514 | return err; | ||
1515 | } | ||
1516 | chip->iobase_phys = pci_resource_start(pci, 0); | ||
1517 | chip->iobase_virt = ioremap_nocache(chip->iobase_phys, | ||
1518 | pci_resource_len(pci, 0)); | ||
1519 | ]]> | ||
1520 | </programlisting> | ||
1521 | </informalexample> | ||
1522 | |||
1523 | and the corresponding destructor would be: | ||
1524 | |||
1525 | <informalexample> | ||
1526 | <programlisting> | ||
1527 | <![CDATA[ | ||
1528 | static int snd_mychip_free(struct mychip *chip) | ||
1529 | { | ||
1530 | .... | ||
1531 | if (chip->iobase_virt) | ||
1532 | iounmap(chip->iobase_virt); | ||
1533 | .... | ||
1534 | pci_release_regions(chip->pci); | ||
1535 | .... | ||
1536 | } | ||
1537 | ]]> | ||
1538 | </programlisting> | ||
1539 | </informalexample> | ||
1540 | </para> | ||
1541 | |||
1542 | </section> | ||
1543 | |||
1544 | <section id="pci-resource-device-struct"> | ||
1545 | <title>Registration of Device Struct</title> | ||
1546 | <para> | ||
1547 | At some point, typically after calling <function>snd_device_new()</function>, | ||
1548 | you need to register the struct <structname>device</structname> of the chip | ||
1549 | you're handling for udev and co. ALSA provides a macro for compatibility with | ||
1550 | older kernels. Simply call like the following: | ||
1551 | <informalexample> | ||
1552 | <programlisting> | ||
1553 | <![CDATA[ | ||
1554 | snd_card_set_dev(card, &pci->dev); | ||
1555 | ]]> | ||
1556 | </programlisting> | ||
1557 | </informalexample> | ||
1558 | so that it stores the PCI's device pointer to the card. This will be | ||
1559 | referred by ALSA core functions later when the devices are registered. | ||
1560 | </para> | ||
1561 | <para> | ||
1562 | In the case of non-PCI, pass the proper device struct pointer of the BUS | ||
1563 | instead. (In the case of legacy ISA without PnP, you don't have to do | ||
1564 | anything.) | ||
1565 | </para> | ||
1566 | </section> | ||
1567 | |||
1568 | <section id="pci-resource-entries"> | ||
1569 | <title>PCI Entries</title> | ||
1570 | <para> | ||
1571 | So far, so good. Let's finish the missing PCI | ||
1572 | stuff. At first, we need a | ||
1573 | <structname>pci_device_id</structname> table for this | ||
1574 | chipset. It's a table of PCI vendor/device ID number, and some | ||
1575 | masks. | ||
1576 | </para> | ||
1577 | |||
1578 | <para> | ||
1579 | For example, | ||
1580 | |||
1581 | <informalexample> | ||
1582 | <programlisting> | ||
1583 | <![CDATA[ | ||
1584 | static struct pci_device_id snd_mychip_ids[] = { | ||
1585 | { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR, | ||
1586 | PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, }, | ||
1587 | .... | ||
1588 | { 0, } | ||
1589 | }; | ||
1590 | MODULE_DEVICE_TABLE(pci, snd_mychip_ids); | ||
1591 | ]]> | ||
1592 | </programlisting> | ||
1593 | </informalexample> | ||
1594 | </para> | ||
1595 | |||
1596 | <para> | ||
1597 | The first and second fields of | ||
1598 | the <structname>pci_device_id</structname> structure are the vendor and | ||
1599 | device IDs. If you have no reason to filter the matching | ||
1600 | devices, you can leave the remaining fields as above. The last | ||
1601 | field of the <structname>pci_device_id</structname> struct contains | ||
1602 | private data for this entry. You can specify any value here, for | ||
1603 | example, to define specific operations for supported device IDs. | ||
1604 | Such an example is found in the intel8x0 driver. | ||
1605 | </para> | ||
1606 | |||
1607 | <para> | ||
1608 | The last entry of this list is the terminator. You must | ||
1609 | specify this all-zero entry. | ||
1610 | </para> | ||
1611 | |||
1612 | <para> | ||
1613 | Then, prepare the <structname>pci_driver</structname> record: | ||
1614 | |||
1615 | <informalexample> | ||
1616 | <programlisting> | ||
1617 | <![CDATA[ | ||
1618 | static struct pci_driver driver = { | ||
1619 | .name = "My Own Chip", | ||
1620 | .id_table = snd_mychip_ids, | ||
1621 | .probe = snd_mychip_probe, | ||
1622 | .remove = __devexit_p(snd_mychip_remove), | ||
1623 | }; | ||
1624 | ]]> | ||
1625 | </programlisting> | ||
1626 | </informalexample> | ||
1627 | </para> | ||
1628 | |||
1629 | <para> | ||
1630 | The <structfield>probe</structfield> and | ||
1631 | <structfield>remove</structfield> functions have already | ||
1632 | been defined in the previous sections. | ||
1633 | The <structfield>remove</structfield> function should | ||
1634 | be defined with the | ||
1635 | <function>__devexit_p()</function> macro, so that it's not | ||
1636 | defined for built-in (and non-hot-pluggable) case. The | ||
1637 | <structfield>name</structfield> | ||
1638 | field is the name string of this device. Note that you must not | ||
1639 | use a slash <quote>/</quote> in this string. | ||
1640 | </para> | ||
1641 | |||
1642 | <para> | ||
1643 | And at last, the module entries: | ||
1644 | |||
1645 | <informalexample> | ||
1646 | <programlisting> | ||
1647 | <![CDATA[ | ||
1648 | static int __init alsa_card_mychip_init(void) | ||
1649 | { | ||
1650 | return pci_register_driver(&driver); | ||
1651 | } | ||
1652 | |||
1653 | static void __exit alsa_card_mychip_exit(void) | ||
1654 | { | ||
1655 | pci_unregister_driver(&driver); | ||
1656 | } | ||
1657 | |||
1658 | module_init(alsa_card_mychip_init) | ||
1659 | module_exit(alsa_card_mychip_exit) | ||
1660 | ]]> | ||
1661 | </programlisting> | ||
1662 | </informalexample> | ||
1663 | </para> | ||
1664 | |||
1665 | <para> | ||
1666 | Note that these module entries are tagged with | ||
1667 | <parameter>__init</parameter> and | ||
1668 | <parameter>__exit</parameter> prefixes, not | ||
1669 | <parameter>__devinit</parameter> nor | ||
1670 | <parameter>__devexit</parameter>. | ||
1671 | </para> | ||
1672 | |||
1673 | <para> | ||
1674 | Oh, one thing was forgotten. If you have no exported symbols, | ||
1675 | you need to declare it in 2.2 or 2.4 kernels (it's not necessary in 2.6 kernels). | ||
1676 | |||
1677 | <informalexample> | ||
1678 | <programlisting> | ||
1679 | <![CDATA[ | ||
1680 | EXPORT_NO_SYMBOLS; | ||
1681 | ]]> | ||
1682 | </programlisting> | ||
1683 | </informalexample> | ||
1684 | |||
1685 | That's all! | ||
1686 | </para> | ||
1687 | </section> | ||
1688 | </chapter> | ||
1689 | |||
1690 | |||
1691 | <!-- ****************************************************** --> | ||
1692 | <!-- PCM Interface --> | ||
1693 | <!-- ****************************************************** --> | ||
1694 | <chapter id="pcm-interface"> | ||
1695 | <title>PCM Interface</title> | ||
1696 | |||
1697 | <section id="pcm-interface-general"> | ||
1698 | <title>General</title> | ||
1699 | <para> | ||
1700 | The PCM middle layer of ALSA is quite powerful and it is only | ||
1701 | necessary for each driver to implement the low-level functions | ||
1702 | to access its hardware. | ||
1703 | </para> | ||
1704 | |||
1705 | <para> | ||
1706 | For accessing to the PCM layer, you need to include | ||
1707 | <filename><sound/pcm.h></filename> first. In addition, | ||
1708 | <filename><sound/pcm_params.h></filename> might be needed | ||
1709 | if you access to some functions related with hw_param. | ||
1710 | </para> | ||
1711 | |||
1712 | <para> | ||
1713 | Each card device can have up to four pcm instances. A pcm | ||
1714 | instance corresponds to a pcm device file. The limitation of | ||
1715 | number of instances comes only from the available bit size of | ||
1716 | the Linux's device numbers. Once when 64bit device number is | ||
1717 | used, we'll have more pcm instances available. | ||
1718 | </para> | ||
1719 | |||
1720 | <para> | ||
1721 | A pcm instance consists of pcm playback and capture streams, | ||
1722 | and each pcm stream consists of one or more pcm substreams. Some | ||
1723 | soundcards support multiple playback functions. For example, | ||
1724 | emu10k1 has a PCM playback of 32 stereo substreams. In this case, at | ||
1725 | each open, a free substream is (usually) automatically chosen | ||
1726 | and opened. Meanwhile, when only one substream exists and it was | ||
1727 | already opened, the successful open will either block | ||
1728 | or error with <constant>EAGAIN</constant> according to the | ||
1729 | file open mode. But you don't have to care about such details in your | ||
1730 | driver. The PCM middle layer will take care of such work. | ||
1731 | </para> | ||
1732 | </section> | ||
1733 | |||
1734 | <section id="pcm-interface-example"> | ||
1735 | <title>Full Code Example</title> | ||
1736 | <para> | ||
1737 | The example code below does not include any hardware access | ||
1738 | routines but shows only the skeleton, how to build up the PCM | ||
1739 | interfaces. | ||
1740 | |||
1741 | <example> | ||
1742 | <title>PCM Example Code</title> | ||
1743 | <programlisting> | ||
1744 | <![CDATA[ | ||
1745 | #include <sound/pcm.h> | ||
1746 | .... | ||
1747 | |||
1748 | /* hardware definition */ | ||
1749 | static struct snd_pcm_hardware snd_mychip_playback_hw = { | ||
1750 | .info = (SNDRV_PCM_INFO_MMAP | | ||
1751 | SNDRV_PCM_INFO_INTERLEAVED | | ||
1752 | SNDRV_PCM_INFO_BLOCK_TRANSFER | | ||
1753 | SNDRV_PCM_INFO_MMAP_VALID), | ||
1754 | .formats = SNDRV_PCM_FMTBIT_S16_LE, | ||
1755 | .rates = SNDRV_PCM_RATE_8000_48000, | ||
1756 | .rate_min = 8000, | ||
1757 | .rate_max = 48000, | ||
1758 | .channels_min = 2, | ||
1759 | .channels_max = 2, | ||
1760 | .buffer_bytes_max = 32768, | ||
1761 | .period_bytes_min = 4096, | ||
1762 | .period_bytes_max = 32768, | ||
1763 | .periods_min = 1, | ||
1764 | .periods_max = 1024, | ||
1765 | }; | ||
1766 | |||
1767 | /* hardware definition */ | ||
1768 | static struct snd_pcm_hardware snd_mychip_capture_hw = { | ||
1769 | .info = (SNDRV_PCM_INFO_MMAP | | ||
1770 | SNDRV_PCM_INFO_INTERLEAVED | | ||
1771 | SNDRV_PCM_INFO_BLOCK_TRANSFER | | ||
1772 | SNDRV_PCM_INFO_MMAP_VALID), | ||
1773 | .formats = SNDRV_PCM_FMTBIT_S16_LE, | ||
1774 | .rates = SNDRV_PCM_RATE_8000_48000, | ||
1775 | .rate_min = 8000, | ||
1776 | .rate_max = 48000, | ||
1777 | .channels_min = 2, | ||
1778 | .channels_max = 2, | ||
1779 | .buffer_bytes_max = 32768, | ||
1780 | .period_bytes_min = 4096, | ||
1781 | .period_bytes_max = 32768, | ||
1782 | .periods_min = 1, | ||
1783 | .periods_max = 1024, | ||
1784 | }; | ||
1785 | |||
1786 | /* open callback */ | ||
1787 | static int snd_mychip_playback_open(struct snd_pcm_substream *substream) | ||
1788 | { | ||
1789 | struct mychip *chip = snd_pcm_substream_chip(substream); | ||
1790 | struct snd_pcm_runtime *runtime = substream->runtime; | ||
1791 | |||
1792 | runtime->hw = snd_mychip_playback_hw; | ||
1793 | /* more hardware-initialization will be done here */ | ||
1794 | .... | ||
1795 | return 0; | ||
1796 | } | ||
1797 | |||
1798 | /* close callback */ | ||
1799 | static int snd_mychip_playback_close(struct snd_pcm_substream *substream) | ||
1800 | { | ||
1801 | struct mychip *chip = snd_pcm_substream_chip(substream); | ||
1802 | /* the hardware-specific codes will be here */ | ||
1803 | .... | ||
1804 | return 0; | ||
1805 | |||
1806 | } | ||
1807 | |||
1808 | /* open callback */ | ||
1809 | static int snd_mychip_capture_open(struct snd_pcm_substream *substream) | ||
1810 | { | ||
1811 | struct mychip *chip = snd_pcm_substream_chip(substream); | ||
1812 | struct snd_pcm_runtime *runtime = substream->runtime; | ||
1813 | |||
1814 | runtime->hw = snd_mychip_capture_hw; | ||
1815 | /* more hardware-initialization will be done here */ | ||
1816 | .... | ||
1817 | return 0; | ||
1818 | } | ||
1819 | |||
1820 | /* close callback */ | ||
1821 | static int snd_mychip_capture_close(struct snd_pcm_substream *substream) | ||
1822 | { | ||
1823 | struct mychip *chip = snd_pcm_substream_chip(substream); | ||
1824 | /* the hardware-specific codes will be here */ | ||
1825 | .... | ||
1826 | return 0; | ||
1827 | |||
1828 | } | ||
1829 | |||
1830 | /* hw_params callback */ | ||
1831 | static int snd_mychip_pcm_hw_params(struct snd_pcm_substream *substream, | ||
1832 | struct snd_pcm_hw_params *hw_params) | ||
1833 | { | ||
1834 | return snd_pcm_lib_malloc_pages(substream, | ||
1835 | params_buffer_bytes(hw_params)); | ||
1836 | } | ||
1837 | |||
1838 | /* hw_free callback */ | ||
1839 | static int snd_mychip_pcm_hw_free(struct snd_pcm_substream *substream) | ||
1840 | { | ||
1841 | return snd_pcm_lib_free_pages(substream); | ||
1842 | } | ||
1843 | |||
1844 | /* prepare callback */ | ||
1845 | static int snd_mychip_pcm_prepare(struct snd_pcm_substream *substream) | ||
1846 | { | ||
1847 | struct mychip *chip = snd_pcm_substream_chip(substream); | ||
1848 | struct snd_pcm_runtime *runtime = substream->runtime; | ||
1849 | |||
1850 | /* set up the hardware with the current configuration | ||
1851 | * for example... | ||
1852 | */ | ||
1853 | mychip_set_sample_format(chip, runtime->format); | ||
1854 | mychip_set_sample_rate(chip, runtime->rate); | ||
1855 | mychip_set_channels(chip, runtime->channels); | ||
1856 | mychip_set_dma_setup(chip, runtime->dma_addr, | ||
1857 | chip->buffer_size, | ||
1858 | chip->period_size); | ||
1859 | return 0; | ||
1860 | } | ||
1861 | |||
1862 | /* trigger callback */ | ||
1863 | static int snd_mychip_pcm_trigger(struct snd_pcm_substream *substream, | ||
1864 | int cmd) | ||
1865 | { | ||
1866 | switch (cmd) { | ||
1867 | case SNDRV_PCM_TRIGGER_START: | ||
1868 | /* do something to start the PCM engine */ | ||
1869 | .... | ||
1870 | break; | ||
1871 | case SNDRV_PCM_TRIGGER_STOP: | ||
1872 | /* do something to stop the PCM engine */ | ||
1873 | .... | ||
1874 | break; | ||
1875 | default: | ||
1876 | return -EINVAL; | ||
1877 | } | ||
1878 | } | ||
1879 | |||
1880 | /* pointer callback */ | ||
1881 | static snd_pcm_uframes_t | ||
1882 | snd_mychip_pcm_pointer(struct snd_pcm_substream *substream) | ||
1883 | { | ||
1884 | struct mychip *chip = snd_pcm_substream_chip(substream); | ||
1885 | unsigned int current_ptr; | ||
1886 | |||
1887 | /* get the current hardware pointer */ | ||
1888 | current_ptr = mychip_get_hw_pointer(chip); | ||
1889 | return current_ptr; | ||
1890 | } | ||
1891 | |||
1892 | /* operators */ | ||
1893 | static struct snd_pcm_ops snd_mychip_playback_ops = { | ||
1894 | .open = snd_mychip_playback_open, | ||
1895 | .close = snd_mychip_playback_close, | ||
1896 | .ioctl = snd_pcm_lib_ioctl, | ||
1897 | .hw_params = snd_mychip_pcm_hw_params, | ||
1898 | .hw_free = snd_mychip_pcm_hw_free, | ||
1899 | .prepare = snd_mychip_pcm_prepare, | ||
1900 | .trigger = snd_mychip_pcm_trigger, | ||
1901 | .pointer = snd_mychip_pcm_pointer, | ||
1902 | }; | ||
1903 | |||
1904 | /* operators */ | ||
1905 | static struct snd_pcm_ops snd_mychip_capture_ops = { | ||
1906 | .open = snd_mychip_capture_open, | ||
1907 | .close = snd_mychip_capture_close, | ||
1908 | .ioctl = snd_pcm_lib_ioctl, | ||
1909 | .hw_params = snd_mychip_pcm_hw_params, | ||
1910 | .hw_free = snd_mychip_pcm_hw_free, | ||
1911 | .prepare = snd_mychip_pcm_prepare, | ||
1912 | .trigger = snd_mychip_pcm_trigger, | ||
1913 | .pointer = snd_mychip_pcm_pointer, | ||
1914 | }; | ||
1915 | |||
1916 | /* | ||
1917 | * definitions of capture are omitted here... | ||
1918 | */ | ||
1919 | |||
1920 | /* create a pcm device */ | ||
1921 | static int __devinit snd_mychip_new_pcm(struct mychip *chip) | ||
1922 | { | ||
1923 | struct snd_pcm *pcm; | ||
1924 | int err; | ||
1925 | |||
1926 | err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1, &pcm); | ||
1927 | if (err < 0) | ||
1928 | return err; | ||
1929 | pcm->private_data = chip; | ||
1930 | strcpy(pcm->name, "My Chip"); | ||
1931 | chip->pcm = pcm; | ||
1932 | /* set operators */ | ||
1933 | snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, | ||
1934 | &snd_mychip_playback_ops); | ||
1935 | snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, | ||
1936 | &snd_mychip_capture_ops); | ||
1937 | /* pre-allocation of buffers */ | ||
1938 | /* NOTE: this may fail */ | ||
1939 | snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, | ||
1940 | snd_dma_pci_data(chip->pci), | ||
1941 | 64*1024, 64*1024); | ||
1942 | return 0; | ||
1943 | } | ||
1944 | ]]> | ||
1945 | </programlisting> | ||
1946 | </example> | ||
1947 | </para> | ||
1948 | </section> | ||
1949 | |||
1950 | <section id="pcm-interface-constructor"> | ||
1951 | <title>Constructor</title> | ||
1952 | <para> | ||
1953 | A pcm instance is allocated by the <function>snd_pcm_new()</function> | ||
1954 | function. It would be better to create a constructor for pcm, | ||
1955 | namely, | ||
1956 | |||
1957 | <informalexample> | ||
1958 | <programlisting> | ||
1959 | <![CDATA[ | ||
1960 | static int __devinit snd_mychip_new_pcm(struct mychip *chip) | ||
1961 | { | ||
1962 | struct snd_pcm *pcm; | ||
1963 | int err; | ||
1964 | |||
1965 | err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1, &pcm); | ||
1966 | if (err < 0) | ||
1967 | return err; | ||
1968 | pcm->private_data = chip; | ||
1969 | strcpy(pcm->name, "My Chip"); | ||
1970 | chip->pcm = pcm; | ||
1971 | .... | ||
1972 | return 0; | ||
1973 | } | ||
1974 | ]]> | ||
1975 | </programlisting> | ||
1976 | </informalexample> | ||
1977 | </para> | ||
1978 | |||
1979 | <para> | ||
1980 | The <function>snd_pcm_new()</function> function takes four | ||
1981 | arguments. The first argument is the card pointer to which this | ||
1982 | pcm is assigned, and the second is the ID string. | ||
1983 | </para> | ||
1984 | |||
1985 | <para> | ||
1986 | The third argument (<parameter>index</parameter>, 0 in the | ||
1987 | above) is the index of this new pcm. It begins from zero. If | ||
1988 | you create more than one pcm instances, specify the | ||
1989 | different numbers in this argument. For example, | ||
1990 | <parameter>index</parameter> = 1 for the second PCM device. | ||
1991 | </para> | ||
1992 | |||
1993 | <para> | ||
1994 | The fourth and fifth arguments are the number of substreams | ||
1995 | for playback and capture, respectively. Here 1 is used for | ||
1996 | both arguments. When no playback or capture substreams are available, | ||
1997 | pass 0 to the corresponding argument. | ||
1998 | </para> | ||
1999 | |||
2000 | <para> | ||
2001 | If a chip supports multiple playbacks or captures, you can | ||
2002 | specify more numbers, but they must be handled properly in | ||
2003 | open/close, etc. callbacks. When you need to know which | ||
2004 | substream you are referring to, then it can be obtained from | ||
2005 | struct <structname>snd_pcm_substream</structname> data passed to each callback | ||
2006 | as follows: | ||
2007 | |||
2008 | <informalexample> | ||
2009 | <programlisting> | ||
2010 | <![CDATA[ | ||
2011 | struct snd_pcm_substream *substream; | ||
2012 | int index = substream->number; | ||
2013 | ]]> | ||
2014 | </programlisting> | ||
2015 | </informalexample> | ||
2016 | </para> | ||
2017 | |||
2018 | <para> | ||
2019 | After the pcm is created, you need to set operators for each | ||
2020 | pcm stream. | ||
2021 | |||
2022 | <informalexample> | ||
2023 | <programlisting> | ||
2024 | <![CDATA[ | ||
2025 | snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, | ||
2026 | &snd_mychip_playback_ops); | ||
2027 | snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, | ||
2028 | &snd_mychip_capture_ops); | ||
2029 | ]]> | ||
2030 | </programlisting> | ||
2031 | </informalexample> | ||
2032 | </para> | ||
2033 | |||
2034 | <para> | ||
2035 | The operators are defined typically like this: | ||
2036 | |||
2037 | <informalexample> | ||
2038 | <programlisting> | ||
2039 | <![CDATA[ | ||
2040 | static struct snd_pcm_ops snd_mychip_playback_ops = { | ||
2041 | .open = snd_mychip_pcm_open, | ||
2042 | .close = snd_mychip_pcm_close, | ||
2043 | .ioctl = snd_pcm_lib_ioctl, | ||
2044 | .hw_params = snd_mychip_pcm_hw_params, | ||
2045 | .hw_free = snd_mychip_pcm_hw_free, | ||
2046 | .prepare = snd_mychip_pcm_prepare, | ||
2047 | .trigger = snd_mychip_pcm_trigger, | ||
2048 | .pointer = snd_mychip_pcm_pointer, | ||
2049 | }; | ||
2050 | ]]> | ||
2051 | </programlisting> | ||
2052 | </informalexample> | ||
2053 | |||
2054 | All the callbacks are described in the | ||
2055 | <link linkend="pcm-interface-operators"><citetitle> | ||
2056 | Operators</citetitle></link> subsection. | ||
2057 | </para> | ||
2058 | |||
2059 | <para> | ||
2060 | After setting the operators, you probably will want to | ||
2061 | pre-allocate the buffer. For the pre-allocation, simply call | ||
2062 | the following: | ||
2063 | |||
2064 | <informalexample> | ||
2065 | <programlisting> | ||
2066 | <![CDATA[ | ||
2067 | snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, | ||
2068 | snd_dma_pci_data(chip->pci), | ||
2069 | 64*1024, 64*1024); | ||
2070 | ]]> | ||
2071 | </programlisting> | ||
2072 | </informalexample> | ||
2073 | |||
2074 | It will allocate a buffer up to 64kB as default. | ||
2075 | Buffer management details will be described in the later section <link | ||
2076 | linkend="buffer-and-memory"><citetitle>Buffer and Memory | ||
2077 | Management</citetitle></link>. | ||
2078 | </para> | ||
2079 | |||
2080 | <para> | ||
2081 | Additionally, you can set some extra information for this pcm | ||
2082 | in pcm->info_flags. | ||
2083 | The available values are defined as | ||
2084 | <constant>SNDRV_PCM_INFO_XXX</constant> in | ||
2085 | <filename><sound/asound.h></filename>, which is used for | ||
2086 | the hardware definition (described later). When your soundchip | ||
2087 | supports only half-duplex, specify like this: | ||
2088 | |||
2089 | <informalexample> | ||
2090 | <programlisting> | ||
2091 | <![CDATA[ | ||
2092 | pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX; | ||
2093 | ]]> | ||
2094 | </programlisting> | ||
2095 | </informalexample> | ||
2096 | </para> | ||
2097 | </section> | ||
2098 | |||
2099 | <section id="pcm-interface-destructor"> | ||
2100 | <title>... And the Destructor?</title> | ||
2101 | <para> | ||
2102 | The destructor for a pcm instance is not always | ||
2103 | necessary. Since the pcm device will be released by the middle | ||
2104 | layer code automatically, you don't have to call the destructor | ||
2105 | explicitly. | ||
2106 | </para> | ||
2107 | |||
2108 | <para> | ||
2109 | The destructor would be necessary if you created | ||
2110 | special records internally and needed to release them. In such a | ||
2111 | case, set the destructor function to | ||
2112 | pcm->private_free: | ||
2113 | |||
2114 | <example> | ||
2115 | <title>PCM Instance with a Destructor</title> | ||
2116 | <programlisting> | ||
2117 | <![CDATA[ | ||
2118 | static void mychip_pcm_free(struct snd_pcm *pcm) | ||
2119 | { | ||
2120 | struct mychip *chip = snd_pcm_chip(pcm); | ||
2121 | /* free your own data */ | ||
2122 | kfree(chip->my_private_pcm_data); | ||
2123 | /* do what you like else */ | ||
2124 | .... | ||
2125 | } | ||
2126 | |||
2127 | static int __devinit snd_mychip_new_pcm(struct mychip *chip) | ||
2128 | { | ||
2129 | struct snd_pcm *pcm; | ||
2130 | .... | ||
2131 | /* allocate your own data */ | ||
2132 | chip->my_private_pcm_data = kmalloc(...); | ||
2133 | /* set the destructor */ | ||
2134 | pcm->private_data = chip; | ||
2135 | pcm->private_free = mychip_pcm_free; | ||
2136 | .... | ||
2137 | } | ||
2138 | ]]> | ||
2139 | </programlisting> | ||
2140 | </example> | ||
2141 | </para> | ||
2142 | </section> | ||
2143 | |||
2144 | <section id="pcm-interface-runtime"> | ||
2145 | <title>Runtime Pointer - The Chest of PCM Information</title> | ||
2146 | <para> | ||
2147 | When the PCM substream is opened, a PCM runtime instance is | ||
2148 | allocated and assigned to the substream. This pointer is | ||
2149 | accessible via <constant>substream->runtime</constant>. | ||
2150 | This runtime pointer holds most information you need | ||
2151 | to control the PCM: the copy of hw_params and sw_params configurations, the buffer | ||
2152 | pointers, mmap records, spinlocks, etc. | ||
2153 | </para> | ||
2154 | |||
2155 | <para> | ||
2156 | The definition of runtime instance is found in | ||
2157 | <filename><sound/pcm.h></filename>. Here are | ||
2158 | the contents of this file: | ||
2159 | <informalexample> | ||
2160 | <programlisting> | ||
2161 | <![CDATA[ | ||
2162 | struct _snd_pcm_runtime { | ||
2163 | /* -- Status -- */ | ||
2164 | struct snd_pcm_substream *trigger_master; | ||
2165 | snd_timestamp_t trigger_tstamp; /* trigger timestamp */ | ||
2166 | int overrange; | ||
2167 | snd_pcm_uframes_t avail_max; | ||
2168 | snd_pcm_uframes_t hw_ptr_base; /* Position at buffer restart */ | ||
2169 | snd_pcm_uframes_t hw_ptr_interrupt; /* Position at interrupt time*/ | ||
2170 | |||
2171 | /* -- HW params -- */ | ||
2172 | snd_pcm_access_t access; /* access mode */ | ||
2173 | snd_pcm_format_t format; /* SNDRV_PCM_FORMAT_* */ | ||
2174 | snd_pcm_subformat_t subformat; /* subformat */ | ||
2175 | unsigned int rate; /* rate in Hz */ | ||
2176 | unsigned int channels; /* channels */ | ||
2177 | snd_pcm_uframes_t period_size; /* period size */ | ||
2178 | unsigned int periods; /* periods */ | ||
2179 | snd_pcm_uframes_t buffer_size; /* buffer size */ | ||
2180 | unsigned int tick_time; /* tick time */ | ||
2181 | snd_pcm_uframes_t min_align; /* Min alignment for the format */ | ||
2182 | size_t byte_align; | ||
2183 | unsigned int frame_bits; | ||
2184 | unsigned int sample_bits; | ||
2185 | unsigned int info; | ||
2186 | unsigned int rate_num; | ||
2187 | unsigned int rate_den; | ||
2188 | |||
2189 | /* -- SW params -- */ | ||
2190 | struct timespec tstamp_mode; /* mmap timestamp is updated */ | ||
2191 | unsigned int period_step; | ||
2192 | unsigned int sleep_min; /* min ticks to sleep */ | ||
2193 | snd_pcm_uframes_t start_threshold; | ||
2194 | snd_pcm_uframes_t stop_threshold; | ||
2195 | snd_pcm_uframes_t silence_threshold; /* Silence filling happens when | ||
2196 | noise is nearest than this */ | ||
2197 | snd_pcm_uframes_t silence_size; /* Silence filling size */ | ||
2198 | snd_pcm_uframes_t boundary; /* pointers wrap point */ | ||
2199 | |||
2200 | snd_pcm_uframes_t silenced_start; | ||
2201 | snd_pcm_uframes_t silenced_size; | ||
2202 | |||
2203 | snd_pcm_sync_id_t sync; /* hardware synchronization ID */ | ||
2204 | |||
2205 | /* -- mmap -- */ | ||
2206 | volatile struct snd_pcm_mmap_status *status; | ||
2207 | volatile struct snd_pcm_mmap_control *control; | ||
2208 | atomic_t mmap_count; | ||
2209 | |||
2210 | /* -- locking / scheduling -- */ | ||
2211 | spinlock_t lock; | ||
2212 | wait_queue_head_t sleep; | ||
2213 | struct timer_list tick_timer; | ||
2214 | struct fasync_struct *fasync; | ||
2215 | |||
2216 | /* -- private section -- */ | ||
2217 | void *private_data; | ||
2218 | void (*private_free)(struct snd_pcm_runtime *runtime); | ||
2219 | |||
2220 | /* -- hardware description -- */ | ||
2221 | struct snd_pcm_hardware hw; | ||
2222 | struct snd_pcm_hw_constraints hw_constraints; | ||
2223 | |||
2224 | /* -- interrupt callbacks -- */ | ||
2225 | void (*transfer_ack_begin)(struct snd_pcm_substream *substream); | ||
2226 | void (*transfer_ack_end)(struct snd_pcm_substream *substream); | ||
2227 | |||
2228 | /* -- timer -- */ | ||
2229 | unsigned int timer_resolution; /* timer resolution */ | ||
2230 | |||
2231 | /* -- DMA -- */ | ||
2232 | unsigned char *dma_area; /* DMA area */ | ||
2233 | dma_addr_t dma_addr; /* physical bus address (not accessible from main CPU) */ | ||
2234 | size_t dma_bytes; /* size of DMA area */ | ||
2235 | |||
2236 | struct snd_dma_buffer *dma_buffer_p; /* allocated buffer */ | ||
2237 | |||
2238 | #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE) | ||
2239 | /* -- OSS things -- */ | ||
2240 | struct snd_pcm_oss_runtime oss; | ||
2241 | #endif | ||
2242 | }; | ||
2243 | ]]> | ||
2244 | </programlisting> | ||
2245 | </informalexample> | ||
2246 | </para> | ||
2247 | |||
2248 | <para> | ||
2249 | For the operators (callbacks) of each sound driver, most of | ||
2250 | these records are supposed to be read-only. Only the PCM | ||
2251 | middle-layer changes / updates them. The exceptions are | ||
2252 | the hardware description (hw), interrupt callbacks | ||
2253 | (transfer_ack_xxx), DMA buffer information, and the private | ||
2254 | data. Besides, if you use the standard buffer allocation | ||
2255 | method via <function>snd_pcm_lib_malloc_pages()</function>, | ||
2256 | you don't need to set the DMA buffer information by yourself. | ||
2257 | </para> | ||
2258 | |||
2259 | <para> | ||
2260 | In the sections below, important records are explained. | ||
2261 | </para> | ||
2262 | |||
2263 | <section id="pcm-interface-runtime-hw"> | ||
2264 | <title>Hardware Description</title> | ||
2265 | <para> | ||
2266 | The hardware descriptor (struct <structname>snd_pcm_hardware</structname>) | ||
2267 | contains the definitions of the fundamental hardware | ||
2268 | configuration. Above all, you'll need to define this in | ||
2269 | <link linkend="pcm-interface-operators-open-callback"><citetitle> | ||
2270 | the open callback</citetitle></link>. | ||
2271 | Note that the runtime instance holds the copy of the | ||
2272 | descriptor, not the pointer to the existing descriptor. That | ||
2273 | is, in the open callback, you can modify the copied descriptor | ||
2274 | (<constant>runtime->hw</constant>) as you need. For example, if the maximum | ||
2275 | number of channels is 1 only on some chip models, you can | ||
2276 | still use the same hardware descriptor and change the | ||
2277 | channels_max later: | ||
2278 | <informalexample> | ||
2279 | <programlisting> | ||
2280 | <![CDATA[ | ||
2281 | struct snd_pcm_runtime *runtime = substream->runtime; | ||
2282 | ... | ||
2283 | runtime->hw = snd_mychip_playback_hw; /* common definition */ | ||
2284 | if (chip->model == VERY_OLD_ONE) | ||
2285 | runtime->hw.channels_max = 1; | ||
2286 | ]]> | ||
2287 | </programlisting> | ||
2288 | </informalexample> | ||
2289 | </para> | ||
2290 | |||
2291 | <para> | ||
2292 | Typically, you'll have a hardware descriptor as below: | ||
2293 | <informalexample> | ||
2294 | <programlisting> | ||
2295 | <![CDATA[ | ||
2296 | static struct snd_pcm_hardware snd_mychip_playback_hw = { | ||
2297 | .info = (SNDRV_PCM_INFO_MMAP | | ||
2298 | SNDRV_PCM_INFO_INTERLEAVED | | ||
2299 | SNDRV_PCM_INFO_BLOCK_TRANSFER | | ||
2300 | SNDRV_PCM_INFO_MMAP_VALID), | ||
2301 | .formats = SNDRV_PCM_FMTBIT_S16_LE, | ||
2302 | .rates = SNDRV_PCM_RATE_8000_48000, | ||
2303 | .rate_min = 8000, | ||
2304 | .rate_max = 48000, | ||
2305 | .channels_min = 2, | ||
2306 | .channels_max = 2, | ||
2307 | .buffer_bytes_max = 32768, | ||
2308 | .period_bytes_min = 4096, | ||
2309 | .period_bytes_max = 32768, | ||
2310 | .periods_min = 1, | ||
2311 | .periods_max = 1024, | ||
2312 | }; | ||
2313 | ]]> | ||
2314 | </programlisting> | ||
2315 | </informalexample> | ||
2316 | </para> | ||
2317 | |||
2318 | <para> | ||
2319 | <itemizedlist> | ||
2320 | <listitem><para> | ||
2321 | The <structfield>info</structfield> field contains the type and | ||
2322 | capabilities of this pcm. The bit flags are defined in | ||
2323 | <filename><sound/asound.h></filename> as | ||
2324 | <constant>SNDRV_PCM_INFO_XXX</constant>. Here, at least, you | ||
2325 | have to specify whether the mmap is supported and which | ||
2326 | interleaved format is supported. | ||
2327 | When the is supported, add the | ||
2328 | <constant>SNDRV_PCM_INFO_MMAP</constant> flag here. When the | ||
2329 | hardware supports the interleaved or the non-interleaved | ||
2330 | formats, <constant>SNDRV_PCM_INFO_INTERLEAVED</constant> or | ||
2331 | <constant>SNDRV_PCM_INFO_NONINTERLEAVED</constant> flag must | ||
2332 | be set, respectively. If both are supported, you can set both, | ||
2333 | too. | ||
2334 | </para> | ||
2335 | |||
2336 | <para> | ||
2337 | In the above example, <constant>MMAP_VALID</constant> and | ||
2338 | <constant>BLOCK_TRANSFER</constant> are specified for the OSS mmap | ||
2339 | mode. Usually both are set. Of course, | ||
2340 | <constant>MMAP_VALID</constant> is set only if the mmap is | ||
2341 | really supported. | ||
2342 | </para> | ||
2343 | |||
2344 | <para> | ||
2345 | The other possible flags are | ||
2346 | <constant>SNDRV_PCM_INFO_PAUSE</constant> and | ||
2347 | <constant>SNDRV_PCM_INFO_RESUME</constant>. The | ||
2348 | <constant>PAUSE</constant> bit means that the pcm supports the | ||
2349 | <quote>pause</quote> operation, while the | ||
2350 | <constant>RESUME</constant> bit means that the pcm supports | ||
2351 | the full <quote>suspend/resume</quote> operation. | ||
2352 | If the <constant>PAUSE</constant> flag is set, | ||
2353 | the <structfield>trigger</structfield> callback below | ||
2354 | must handle the corresponding (pause push/release) commands. | ||
2355 | The suspend/resume trigger commands can be defined even without | ||
2356 | the <constant>RESUME</constant> flag. See <link | ||
2357 | linkend="power-management"><citetitle> | ||
2358 | Power Management</citetitle></link> section for details. | ||
2359 | </para> | ||
2360 | |||
2361 | <para> | ||
2362 | When the PCM substreams can be synchronized (typically, | ||
2363 | synchronized start/stop of a playback and a capture streams), | ||
2364 | you can give <constant>SNDRV_PCM_INFO_SYNC_START</constant>, | ||
2365 | too. In this case, you'll need to check the linked-list of | ||
2366 | PCM substreams in the trigger callback. This will be | ||
2367 | described in the later section. | ||
2368 | </para> | ||
2369 | </listitem> | ||
2370 | |||
2371 | <listitem> | ||
2372 | <para> | ||
2373 | <structfield>formats</structfield> field contains the bit-flags | ||
2374 | of supported formats (<constant>SNDRV_PCM_FMTBIT_XXX</constant>). | ||
2375 | If the hardware supports more than one format, give all or'ed | ||
2376 | bits. In the example above, the signed 16bit little-endian | ||
2377 | format is specified. | ||
2378 | </para> | ||
2379 | </listitem> | ||
2380 | |||
2381 | <listitem> | ||
2382 | <para> | ||
2383 | <structfield>rates</structfield> field contains the bit-flags of | ||
2384 | supported rates (<constant>SNDRV_PCM_RATE_XXX</constant>). | ||
2385 | When the chip supports continuous rates, pass | ||
2386 | <constant>CONTINUOUS</constant> bit additionally. | ||
2387 | The pre-defined rate bits are provided only for typical | ||
2388 | rates. If your chip supports unconventional rates, you need to add | ||
2389 | the <constant>KNOT</constant> bit and set up the hardware | ||
2390 | constraint manually (explained later). | ||
2391 | </para> | ||
2392 | </listitem> | ||
2393 | |||
2394 | <listitem> | ||
2395 | <para> | ||
2396 | <structfield>rate_min</structfield> and | ||
2397 | <structfield>rate_max</structfield> define the minimum and | ||
2398 | maximum sample rate. This should correspond somehow to | ||
2399 | <structfield>rates</structfield> bits. | ||
2400 | </para> | ||
2401 | </listitem> | ||
2402 | |||
2403 | <listitem> | ||
2404 | <para> | ||
2405 | <structfield>channel_min</structfield> and | ||
2406 | <structfield>channel_max</structfield> | ||
2407 | define, as you might already expected, the minimum and maximum | ||
2408 | number of channels. | ||
2409 | </para> | ||
2410 | </listitem> | ||
2411 | |||
2412 | <listitem> | ||
2413 | <para> | ||
2414 | <structfield>buffer_bytes_max</structfield> defines the | ||
2415 | maximum buffer size in bytes. There is no | ||
2416 | <structfield>buffer_bytes_min</structfield> field, since | ||
2417 | it can be calculated from the minimum period size and the | ||
2418 | minimum number of periods. | ||
2419 | Meanwhile, <structfield>period_bytes_min</structfield> and | ||
2420 | define the minimum and maximum size of the period in bytes. | ||
2421 | <structfield>periods_max</structfield> and | ||
2422 | <structfield>periods_min</structfield> define the maximum and | ||
2423 | minimum number of periods in the buffer. | ||
2424 | </para> | ||
2425 | |||
2426 | <para> | ||
2427 | The <quote>period</quote> is a term that corresponds to | ||
2428 | a fragment in the OSS world. The period defines the size at | ||
2429 | which a PCM interrupt is generated. This size strongly | ||
2430 | depends on the hardware. | ||
2431 | Generally, the smaller period size will give you more | ||
2432 | interrupts, that is, more controls. | ||
2433 | In the case of capture, this size defines the input latency. | ||
2434 | On the other hand, the whole buffer size defines the | ||
2435 | output latency for the playback direction. | ||
2436 | </para> | ||
2437 | </listitem> | ||
2438 | |||
2439 | <listitem> | ||
2440 | <para> | ||
2441 | There is also a field <structfield>fifo_size</structfield>. | ||
2442 | This specifies the size of the hardware FIFO, but currently it | ||
2443 | is neither used in the driver nor in the alsa-lib. So, you | ||
2444 | can ignore this field. | ||
2445 | </para> | ||
2446 | </listitem> | ||
2447 | </itemizedlist> | ||
2448 | </para> | ||
2449 | </section> | ||
2450 | |||
2451 | <section id="pcm-interface-runtime-config"> | ||
2452 | <title>PCM Configurations</title> | ||
2453 | <para> | ||
2454 | Ok, let's go back again to the PCM runtime records. | ||
2455 | The most frequently referred records in the runtime instance are | ||
2456 | the PCM configurations. | ||
2457 | The PCM configurations are stored in the runtime instance | ||
2458 | after the application sends <type>hw_params</type> data via | ||
2459 | alsa-lib. There are many fields copied from hw_params and | ||
2460 | sw_params structs. For example, | ||
2461 | <structfield>format</structfield> holds the format type | ||
2462 | chosen by the application. This field contains the enum value | ||
2463 | <constant>SNDRV_PCM_FORMAT_XXX</constant>. | ||
2464 | </para> | ||
2465 | |||
2466 | <para> | ||
2467 | One thing to be noted is that the configured buffer and period | ||
2468 | sizes are stored in <quote>frames</quote> in the runtime. | ||
2469 | In the ALSA world, 1 frame = channels * samples-size. | ||
2470 | For conversion between frames and bytes, you can use the | ||
2471 | <function>frames_to_bytes()</function> and | ||
2472 | <function>bytes_to_frames()</function> helper functions. | ||
2473 | <informalexample> | ||
2474 | <programlisting> | ||
2475 | <![CDATA[ | ||
2476 | period_bytes = frames_to_bytes(runtime, runtime->period_size); | ||
2477 | ]]> | ||
2478 | </programlisting> | ||
2479 | </informalexample> | ||
2480 | </para> | ||
2481 | |||
2482 | <para> | ||
2483 | Also, many software parameters (sw_params) are | ||
2484 | stored in frames, too. Please check the type of the field. | ||
2485 | <type>snd_pcm_uframes_t</type> is for the frames as unsigned | ||
2486 | integer while <type>snd_pcm_sframes_t</type> is for the frames | ||
2487 | as signed integer. | ||
2488 | </para> | ||
2489 | </section> | ||
2490 | |||
2491 | <section id="pcm-interface-runtime-dma"> | ||
2492 | <title>DMA Buffer Information</title> | ||
2493 | <para> | ||
2494 | The DMA buffer is defined by the following four fields, | ||
2495 | <structfield>dma_area</structfield>, | ||
2496 | <structfield>dma_addr</structfield>, | ||
2497 | <structfield>dma_bytes</structfield> and | ||
2498 | <structfield>dma_private</structfield>. | ||
2499 | The <structfield>dma_area</structfield> holds the buffer | ||
2500 | pointer (the logical address). You can call | ||
2501 | <function>memcpy</function> from/to | ||
2502 | this pointer. Meanwhile, <structfield>dma_addr</structfield> | ||
2503 | holds the physical address of the buffer. This field is | ||
2504 | specified only when the buffer is a linear buffer. | ||
2505 | <structfield>dma_bytes</structfield> holds the size of buffer | ||
2506 | in bytes. <structfield>dma_private</structfield> is used for | ||
2507 | the ALSA DMA allocator. | ||
2508 | </para> | ||
2509 | |||
2510 | <para> | ||
2511 | If you use a standard ALSA function, | ||
2512 | <function>snd_pcm_lib_malloc_pages()</function>, for | ||
2513 | allocating the buffer, these fields are set by the ALSA middle | ||
2514 | layer, and you should <emphasis>not</emphasis> change them by | ||
2515 | yourself. You can read them but not write them. | ||
2516 | On the other hand, if you want to allocate the buffer by | ||
2517 | yourself, you'll need to manage it in hw_params callback. | ||
2518 | At least, <structfield>dma_bytes</structfield> is mandatory. | ||
2519 | <structfield>dma_area</structfield> is necessary when the | ||
2520 | buffer is mmapped. If your driver doesn't support mmap, this | ||
2521 | field is not necessary. <structfield>dma_addr</structfield> | ||
2522 | is also optional. You can use | ||
2523 | <structfield>dma_private</structfield> as you like, too. | ||
2524 | </para> | ||
2525 | </section> | ||
2526 | |||
2527 | <section id="pcm-interface-runtime-status"> | ||
2528 | <title>Running Status</title> | ||
2529 | <para> | ||
2530 | The running status can be referred via <constant>runtime->status</constant>. | ||
2531 | This is the pointer to the struct <structname>snd_pcm_mmap_status</structname> | ||
2532 | record. For example, you can get the current DMA hardware | ||
2533 | pointer via <constant>runtime->status->hw_ptr</constant>. | ||
2534 | </para> | ||
2535 | |||
2536 | <para> | ||
2537 | The DMA application pointer can be referred via | ||
2538 | <constant>runtime->control</constant>, which points to the | ||
2539 | struct <structname>snd_pcm_mmap_control</structname> record. | ||
2540 | However, accessing directly to this value is not recommended. | ||
2541 | </para> | ||
2542 | </section> | ||
2543 | |||
2544 | <section id="pcm-interface-runtime-private"> | ||
2545 | <title>Private Data</title> | ||
2546 | <para> | ||
2547 | You can allocate a record for the substream and store it in | ||
2548 | <constant>runtime->private_data</constant>. Usually, this | ||
2549 | is done in | ||
2550 | <link linkend="pcm-interface-operators-open-callback"><citetitle> | ||
2551 | the open callback</citetitle></link>. | ||
2552 | Don't mix this with <constant>pcm->private_data</constant>. | ||
2553 | The <constant>pcm->private_data</constant> usually points to the | ||
2554 | chip instance assigned statically at the creation of PCM, while the | ||
2555 | <constant>runtime->private_data</constant> points to a dynamic | ||
2556 | data structure created at the PCM open callback. | ||
2557 | |||
2558 | <informalexample> | ||
2559 | <programlisting> | ||
2560 | <![CDATA[ | ||
2561 | static int snd_xxx_open(struct snd_pcm_substream *substream) | ||
2562 | { | ||
2563 | struct my_pcm_data *data; | ||
2564 | .... | ||
2565 | data = kmalloc(sizeof(*data), GFP_KERNEL); | ||
2566 | substream->runtime->private_data = data; | ||
2567 | .... | ||
2568 | } | ||
2569 | ]]> | ||
2570 | </programlisting> | ||
2571 | </informalexample> | ||
2572 | </para> | ||
2573 | |||
2574 | <para> | ||
2575 | The allocated object must be released in | ||
2576 | <link linkend="pcm-interface-operators-open-callback"><citetitle> | ||
2577 | the close callback</citetitle></link>. | ||
2578 | </para> | ||
2579 | </section> | ||
2580 | |||
2581 | <section id="pcm-interface-runtime-intr"> | ||
2582 | <title>Interrupt Callbacks</title> | ||
2583 | <para> | ||
2584 | The field <structfield>transfer_ack_begin</structfield> and | ||
2585 | <structfield>transfer_ack_end</structfield> are called at | ||
2586 | the beginning and at the end of | ||
2587 | <function>snd_pcm_period_elapsed()</function>, respectively. | ||
2588 | </para> | ||
2589 | </section> | ||
2590 | |||
2591 | </section> | ||
2592 | |||
2593 | <section id="pcm-interface-operators"> | ||
2594 | <title>Operators</title> | ||
2595 | <para> | ||
2596 | OK, now let me give details about each pcm callback | ||
2597 | (<parameter>ops</parameter>). In general, every callback must | ||
2598 | return 0 if successful, or a negative error number | ||
2599 | such as <constant>-EINVAL</constant>. To choose an appropriate | ||
2600 | error number, it is advised to check what value other parts of | ||
2601 | the kernel return when the same kind of request fails. | ||
2602 | </para> | ||
2603 | |||
2604 | <para> | ||
2605 | The callback function takes at least the argument with | ||
2606 | <structname>snd_pcm_substream</structname> pointer. To retrieve | ||
2607 | the chip record from the given substream instance, you can use the | ||
2608 | following macro. | ||
2609 | |||
2610 | <informalexample> | ||
2611 | <programlisting> | ||
2612 | <![CDATA[ | ||
2613 | int xxx() { | ||
2614 | struct mychip *chip = snd_pcm_substream_chip(substream); | ||
2615 | .... | ||
2616 | } | ||
2617 | ]]> | ||
2618 | </programlisting> | ||
2619 | </informalexample> | ||
2620 | |||
2621 | The macro reads <constant>substream->private_data</constant>, | ||
2622 | which is a copy of <constant>pcm->private_data</constant>. | ||
2623 | You can override the former if you need to assign different data | ||
2624 | records per PCM substream. For example, the cmi8330 driver assigns | ||
2625 | different private_data for playback and capture directions, | ||
2626 | because it uses two different codecs (SB- and AD-compatible) for | ||
2627 | different directions. | ||
2628 | </para> | ||
2629 | |||
2630 | <section id="pcm-interface-operators-open-callback"> | ||
2631 | <title>open callback</title> | ||
2632 | <para> | ||
2633 | <informalexample> | ||
2634 | <programlisting> | ||
2635 | <![CDATA[ | ||
2636 | static int snd_xxx_open(struct snd_pcm_substream *substream); | ||
2637 | ]]> | ||
2638 | </programlisting> | ||
2639 | </informalexample> | ||
2640 | |||
2641 | This is called when a pcm substream is opened. | ||
2642 | </para> | ||
2643 | |||
2644 | <para> | ||
2645 | At least, here you have to initialize the runtime->hw | ||
2646 | record. Typically, this is done by like this: | ||
2647 | |||
2648 | <informalexample> | ||
2649 | <programlisting> | ||
2650 | <![CDATA[ | ||
2651 | static int snd_xxx_open(struct snd_pcm_substream *substream) | ||
2652 | { | ||
2653 | struct mychip *chip = snd_pcm_substream_chip(substream); | ||
2654 | struct snd_pcm_runtime *runtime = substream->runtime; | ||
2655 | |||
2656 | runtime->hw = snd_mychip_playback_hw; | ||
2657 | return 0; | ||
2658 | } | ||
2659 | ]]> | ||
2660 | </programlisting> | ||
2661 | </informalexample> | ||
2662 | |||
2663 | where <parameter>snd_mychip_playback_hw</parameter> is the | ||
2664 | pre-defined hardware description. | ||
2665 | </para> | ||
2666 | |||
2667 | <para> | ||
2668 | You can allocate a private data in this callback, as described | ||
2669 | in <link linkend="pcm-interface-runtime-private"><citetitle> | ||
2670 | Private Data</citetitle></link> section. | ||
2671 | </para> | ||
2672 | |||
2673 | <para> | ||
2674 | If the hardware configuration needs more constraints, set the | ||
2675 | hardware constraints here, too. | ||
2676 | See <link linkend="pcm-interface-constraints"><citetitle> | ||
2677 | Constraints</citetitle></link> for more details. | ||
2678 | </para> | ||
2679 | </section> | ||
2680 | |||
2681 | <section id="pcm-interface-operators-close-callback"> | ||
2682 | <title>close callback</title> | ||
2683 | <para> | ||
2684 | <informalexample> | ||
2685 | <programlisting> | ||
2686 | <![CDATA[ | ||
2687 | static int snd_xxx_close(struct snd_pcm_substream *substream); | ||
2688 | ]]> | ||
2689 | </programlisting> | ||
2690 | </informalexample> | ||
2691 | |||
2692 | Obviously, this is called when a pcm substream is closed. | ||
2693 | </para> | ||
2694 | |||
2695 | <para> | ||
2696 | Any private instance for a pcm substream allocated in the | ||
2697 | open callback will be released here. | ||
2698 | |||
2699 | <informalexample> | ||
2700 | <programlisting> | ||
2701 | <![CDATA[ | ||
2702 | static int snd_xxx_close(struct snd_pcm_substream *substream) | ||
2703 | { | ||
2704 | .... | ||
2705 | kfree(substream->runtime->private_data); | ||
2706 | .... | ||
2707 | } | ||
2708 | ]]> | ||
2709 | </programlisting> | ||
2710 | </informalexample> | ||
2711 | </para> | ||
2712 | </section> | ||
2713 | |||
2714 | <section id="pcm-interface-operators-ioctl-callback"> | ||
2715 | <title>ioctl callback</title> | ||
2716 | <para> | ||
2717 | This is used for any special call to pcm ioctls. But | ||
2718 | usually you can pass a generic ioctl callback, | ||
2719 | <function>snd_pcm_lib_ioctl</function>. | ||
2720 | </para> | ||
2721 | </section> | ||
2722 | |||
2723 | <section id="pcm-interface-operators-hw-params-callback"> | ||
2724 | <title>hw_params callback</title> | ||
2725 | <para> | ||
2726 | <informalexample> | ||
2727 | <programlisting> | ||
2728 | <![CDATA[ | ||
2729 | static int snd_xxx_hw_params(struct snd_pcm_substream *substream, | ||
2730 | struct snd_pcm_hw_params *hw_params); | ||
2731 | ]]> | ||
2732 | </programlisting> | ||
2733 | </informalexample> | ||
2734 | </para> | ||
2735 | |||
2736 | <para> | ||
2737 | This is called when the hardware parameter | ||
2738 | (<structfield>hw_params</structfield>) is set | ||
2739 | up by the application, | ||
2740 | that is, once when the buffer size, the period size, the | ||
2741 | format, etc. are defined for the pcm substream. | ||
2742 | </para> | ||
2743 | |||
2744 | <para> | ||
2745 | Many hardware setups should be done in this callback, | ||
2746 | including the allocation of buffers. | ||
2747 | </para> | ||
2748 | |||
2749 | <para> | ||
2750 | Parameters to be initialized are retrieved by | ||
2751 | <function>params_xxx()</function> macros. To allocate | ||
2752 | buffer, you can call a helper function, | ||
2753 | |||
2754 | <informalexample> | ||
2755 | <programlisting> | ||
2756 | <![CDATA[ | ||
2757 | snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); | ||
2758 | ]]> | ||
2759 | </programlisting> | ||
2760 | </informalexample> | ||
2761 | |||
2762 | <function>snd_pcm_lib_malloc_pages()</function> is available | ||
2763 | only when the DMA buffers have been pre-allocated. | ||
2764 | See the section <link | ||
2765 | linkend="buffer-and-memory-buffer-types"><citetitle> | ||
2766 | Buffer Types</citetitle></link> for more details. | ||
2767 | </para> | ||
2768 | |||
2769 | <para> | ||
2770 | Note that this and <structfield>prepare</structfield> callbacks | ||
2771 | may be called multiple times per initialization. | ||
2772 | For example, the OSS emulation may | ||
2773 | call these callbacks at each change via its ioctl. | ||
2774 | </para> | ||
2775 | |||
2776 | <para> | ||
2777 | Thus, you need to be careful not to allocate the same buffers | ||
2778 | many times, which will lead to memory leaks! Calling the | ||
2779 | helper function above many times is OK. It will release the | ||
2780 | previous buffer automatically when it was already allocated. | ||
2781 | </para> | ||
2782 | |||
2783 | <para> | ||
2784 | Another note is that this callback is non-atomic | ||
2785 | (schedulable). This is important, because the | ||
2786 | <structfield>trigger</structfield> callback | ||
2787 | is atomic (non-schedulable). That is, mutexes or any | ||
2788 | schedule-related functions are not available in | ||
2789 | <structfield>trigger</structfield> callback. | ||
2790 | Please see the subsection | ||
2791 | <link linkend="pcm-interface-atomicity"><citetitle> | ||
2792 | Atomicity</citetitle></link> for details. | ||
2793 | </para> | ||
2794 | </section> | ||
2795 | |||
2796 | <section id="pcm-interface-operators-hw-free-callback"> | ||
2797 | <title>hw_free callback</title> | ||
2798 | <para> | ||
2799 | <informalexample> | ||
2800 | <programlisting> | ||
2801 | <![CDATA[ | ||
2802 | static int snd_xxx_hw_free(struct snd_pcm_substream *substream); | ||
2803 | ]]> | ||
2804 | </programlisting> | ||
2805 | </informalexample> | ||
2806 | </para> | ||
2807 | |||
2808 | <para> | ||
2809 | This is called to release the resources allocated via | ||
2810 | <structfield>hw_params</structfield>. For example, releasing the | ||
2811 | buffer via | ||
2812 | <function>snd_pcm_lib_malloc_pages()</function> is done by | ||
2813 | calling the following: | ||
2814 | |||
2815 | <informalexample> | ||
2816 | <programlisting> | ||
2817 | <![CDATA[ | ||
2818 | snd_pcm_lib_free_pages(substream); | ||
2819 | ]]> | ||
2820 | </programlisting> | ||
2821 | </informalexample> | ||
2822 | </para> | ||
2823 | |||
2824 | <para> | ||
2825 | This function is always called before the close callback is called. | ||
2826 | Also, the callback may be called multiple times, too. | ||
2827 | Keep track whether the resource was already released. | ||
2828 | </para> | ||
2829 | </section> | ||
2830 | |||
2831 | <section id="pcm-interface-operators-prepare-callback"> | ||
2832 | <title>prepare callback</title> | ||
2833 | <para> | ||
2834 | <informalexample> | ||
2835 | <programlisting> | ||
2836 | <![CDATA[ | ||
2837 | static int snd_xxx_prepare(struct snd_pcm_substream *substream); | ||
2838 | ]]> | ||
2839 | </programlisting> | ||
2840 | </informalexample> | ||
2841 | </para> | ||
2842 | |||
2843 | <para> | ||
2844 | This callback is called when the pcm is | ||
2845 | <quote>prepared</quote>. You can set the format type, sample | ||
2846 | rate, etc. here. The difference from | ||
2847 | <structfield>hw_params</structfield> is that the | ||
2848 | <structfield>prepare</structfield> callback will be called each | ||
2849 | time | ||
2850 | <function>snd_pcm_prepare()</function> is called, i.e. when | ||
2851 | recovering after underruns, etc. | ||
2852 | </para> | ||
2853 | |||
2854 | <para> | ||
2855 | Note that this callback is now non-atomic. | ||
2856 | You can use schedule-related functions safely in this callback. | ||
2857 | </para> | ||
2858 | |||
2859 | <para> | ||
2860 | In this and the following callbacks, you can refer to the | ||
2861 | values via the runtime record, | ||
2862 | substream->runtime. | ||
2863 | For example, to get the current | ||
2864 | rate, format or channels, access to | ||
2865 | runtime->rate, | ||
2866 | runtime->format or | ||
2867 | runtime->channels, respectively. | ||
2868 | The physical address of the allocated buffer is set to | ||
2869 | runtime->dma_area. The buffer and period sizes are | ||
2870 | in runtime->buffer_size and runtime->period_size, | ||
2871 | respectively. | ||
2872 | </para> | ||
2873 | |||
2874 | <para> | ||
2875 | Be careful that this callback will be called many times at | ||
2876 | each setup, too. | ||
2877 | </para> | ||
2878 | </section> | ||
2879 | |||
2880 | <section id="pcm-interface-operators-trigger-callback"> | ||
2881 | <title>trigger callback</title> | ||
2882 | <para> | ||
2883 | <informalexample> | ||
2884 | <programlisting> | ||
2885 | <![CDATA[ | ||
2886 | static int snd_xxx_trigger(struct snd_pcm_substream *substream, int cmd); | ||
2887 | ]]> | ||
2888 | </programlisting> | ||
2889 | </informalexample> | ||
2890 | |||
2891 | This is called when the pcm is started, stopped or paused. | ||
2892 | </para> | ||
2893 | |||
2894 | <para> | ||
2895 | Which action is specified in the second argument, | ||
2896 | <constant>SNDRV_PCM_TRIGGER_XXX</constant> in | ||
2897 | <filename><sound/pcm.h></filename>. At least, | ||
2898 | the <constant>START</constant> and <constant>STOP</constant> | ||
2899 | commands must be defined in this callback. | ||
2900 | |||
2901 | <informalexample> | ||
2902 | <programlisting> | ||
2903 | <![CDATA[ | ||
2904 | switch (cmd) { | ||
2905 | case SNDRV_PCM_TRIGGER_START: | ||
2906 | /* do something to start the PCM engine */ | ||
2907 | break; | ||
2908 | case SNDRV_PCM_TRIGGER_STOP: | ||
2909 | /* do something to stop the PCM engine */ | ||
2910 | break; | ||
2911 | default: | ||
2912 | return -EINVAL; | ||
2913 | } | ||
2914 | ]]> | ||
2915 | </programlisting> | ||
2916 | </informalexample> | ||
2917 | </para> | ||
2918 | |||
2919 | <para> | ||
2920 | When the pcm supports the pause operation (given in the info | ||
2921 | field of the hardware table), the <constant>PAUSE_PUSE</constant> | ||
2922 | and <constant>PAUSE_RELEASE</constant> commands must be | ||
2923 | handled here, too. The former is the command to pause the pcm, | ||
2924 | and the latter to restart the pcm again. | ||
2925 | </para> | ||
2926 | |||
2927 | <para> | ||
2928 | When the pcm supports the suspend/resume operation, | ||
2929 | regardless of full or partial suspend/resume support, | ||
2930 | the <constant>SUSPEND</constant> and <constant>RESUME</constant> | ||
2931 | commands must be handled, too. | ||
2932 | These commands are issued when the power-management status is | ||
2933 | changed. Obviously, the <constant>SUSPEND</constant> and | ||
2934 | <constant>RESUME</constant> commands | ||
2935 | suspend and resume the pcm substream, and usually, they | ||
2936 | are identical to the <constant>STOP</constant> and | ||
2937 | <constant>START</constant> commands, respectively. | ||
2938 | See the <link linkend="power-management"><citetitle> | ||
2939 | Power Management</citetitle></link> section for details. | ||
2940 | </para> | ||
2941 | |||
2942 | <para> | ||
2943 | As mentioned, this callback is atomic. You cannot call | ||
2944 | functions which may sleep. | ||
2945 | The trigger callback should be as minimal as possible, | ||
2946 | just really triggering the DMA. The other stuff should be | ||
2947 | initialized hw_params and prepare callbacks properly | ||
2948 | beforehand. | ||
2949 | </para> | ||
2950 | </section> | ||
2951 | |||
2952 | <section id="pcm-interface-operators-pointer-callback"> | ||
2953 | <title>pointer callback</title> | ||
2954 | <para> | ||
2955 | <informalexample> | ||
2956 | <programlisting> | ||
2957 | <![CDATA[ | ||
2958 | static snd_pcm_uframes_t snd_xxx_pointer(struct snd_pcm_substream *substream) | ||
2959 | ]]> | ||
2960 | </programlisting> | ||
2961 | </informalexample> | ||
2962 | |||
2963 | This callback is called when the PCM middle layer inquires | ||
2964 | the current hardware position on the buffer. The position must | ||
2965 | be returned in frames, | ||
2966 | ranging from 0 to buffer_size - 1. | ||
2967 | </para> | ||
2968 | |||
2969 | <para> | ||
2970 | This is called usually from the buffer-update routine in the | ||
2971 | pcm middle layer, which is invoked when | ||
2972 | <function>snd_pcm_period_elapsed()</function> is called in the | ||
2973 | interrupt routine. Then the pcm middle layer updates the | ||
2974 | position and calculates the available space, and wakes up the | ||
2975 | sleeping poll threads, etc. | ||
2976 | </para> | ||
2977 | |||
2978 | <para> | ||
2979 | This callback is also atomic. | ||
2980 | </para> | ||
2981 | </section> | ||
2982 | |||
2983 | <section id="pcm-interface-operators-copy-silence"> | ||
2984 | <title>copy and silence callbacks</title> | ||
2985 | <para> | ||
2986 | These callbacks are not mandatory, and can be omitted in | ||
2987 | most cases. These callbacks are used when the hardware buffer | ||
2988 | cannot be in the normal memory space. Some chips have their | ||
2989 | own buffer on the hardware which is not mappable. In such a | ||
2990 | case, you have to transfer the data manually from the memory | ||
2991 | buffer to the hardware buffer. Or, if the buffer is | ||
2992 | non-contiguous on both physical and virtual memory spaces, | ||
2993 | these callbacks must be defined, too. | ||
2994 | </para> | ||
2995 | |||
2996 | <para> | ||
2997 | If these two callbacks are defined, copy and set-silence | ||
2998 | operations are done by them. The detailed will be described in | ||
2999 | the later section <link | ||
3000 | linkend="buffer-and-memory"><citetitle>Buffer and Memory | ||
3001 | Management</citetitle></link>. | ||
3002 | </para> | ||
3003 | </section> | ||
3004 | |||
3005 | <section id="pcm-interface-operators-ack"> | ||
3006 | <title>ack callback</title> | ||
3007 | <para> | ||
3008 | This callback is also not mandatory. This callback is called | ||
3009 | when the appl_ptr is updated in read or write operations. | ||
3010 | Some drivers like emu10k1-fx and cs46xx need to track the | ||
3011 | current appl_ptr for the internal buffer, and this callback | ||
3012 | is useful only for such a purpose. | ||
3013 | </para> | ||
3014 | <para> | ||
3015 | This callback is atomic. | ||
3016 | </para> | ||
3017 | </section> | ||
3018 | |||
3019 | <section id="pcm-interface-operators-page-callback"> | ||
3020 | <title>page callback</title> | ||
3021 | |||
3022 | <para> | ||
3023 | This callback is optional too. This callback is used | ||
3024 | mainly for non-contiguous buffers. The mmap calls this | ||
3025 | callback to get the page address. Some examples will be | ||
3026 | explained in the later section <link | ||
3027 | linkend="buffer-and-memory"><citetitle>Buffer and Memory | ||
3028 | Management</citetitle></link>, too. | ||
3029 | </para> | ||
3030 | </section> | ||
3031 | </section> | ||
3032 | |||
3033 | <section id="pcm-interface-interrupt-handler"> | ||
3034 | <title>Interrupt Handler</title> | ||
3035 | <para> | ||
3036 | The rest of pcm stuff is the PCM interrupt handler. The | ||
3037 | role of PCM interrupt handler in the sound driver is to update | ||
3038 | the buffer position and to tell the PCM middle layer when the | ||
3039 | buffer position goes across the prescribed period size. To | ||
3040 | inform this, call the <function>snd_pcm_period_elapsed()</function> | ||
3041 | function. | ||
3042 | </para> | ||
3043 | |||
3044 | <para> | ||
3045 | There are several types of sound chips to generate the interrupts. | ||
3046 | </para> | ||
3047 | |||
3048 | <section id="pcm-interface-interrupt-handler-boundary"> | ||
3049 | <title>Interrupts at the period (fragment) boundary</title> | ||
3050 | <para> | ||
3051 | This is the most frequently found type: the hardware | ||
3052 | generates an interrupt at each period boundary. | ||
3053 | In this case, you can call | ||
3054 | <function>snd_pcm_period_elapsed()</function> at each | ||
3055 | interrupt. | ||
3056 | </para> | ||
3057 | |||
3058 | <para> | ||
3059 | <function>snd_pcm_period_elapsed()</function> takes the | ||
3060 | substream pointer as its argument. Thus, you need to keep the | ||
3061 | substream pointer accessible from the chip instance. For | ||
3062 | example, define substream field in the chip record to hold the | ||
3063 | current running substream pointer, and set the pointer value | ||
3064 | at open callback (and reset at close callback). | ||
3065 | </para> | ||
3066 | |||
3067 | <para> | ||
3068 | If you acquire a spinlock in the interrupt handler, and the | ||
3069 | lock is used in other pcm callbacks, too, then you have to | ||
3070 | release the lock before calling | ||
3071 | <function>snd_pcm_period_elapsed()</function>, because | ||
3072 | <function>snd_pcm_period_elapsed()</function> calls other pcm | ||
3073 | callbacks inside. | ||
3074 | </para> | ||
3075 | |||
3076 | <para> | ||
3077 | Typical code would be like: | ||
3078 | |||
3079 | <example> | ||
3080 | <title>Interrupt Handler Case #1</title> | ||
3081 | <programlisting> | ||
3082 | <![CDATA[ | ||
3083 | static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id) | ||
3084 | { | ||
3085 | struct mychip *chip = dev_id; | ||
3086 | spin_lock(&chip->lock); | ||
3087 | .... | ||
3088 | if (pcm_irq_invoked(chip)) { | ||
3089 | /* call updater, unlock before it */ | ||
3090 | spin_unlock(&chip->lock); | ||
3091 | snd_pcm_period_elapsed(chip->substream); | ||
3092 | spin_lock(&chip->lock); | ||
3093 | /* acknowledge the interrupt if necessary */ | ||
3094 | } | ||
3095 | .... | ||
3096 | spin_unlock(&chip->lock); | ||
3097 | return IRQ_HANDLED; | ||
3098 | } | ||
3099 | ]]> | ||
3100 | </programlisting> | ||
3101 | </example> | ||
3102 | </para> | ||
3103 | </section> | ||
3104 | |||
3105 | <section id="pcm-interface-interrupt-handler-timer"> | ||
3106 | <title>High frequency timer interrupts</title> | ||
3107 | <para> | ||
3108 | This happense when the hardware doesn't generate interrupts | ||
3109 | at the period boundary but issues timer interrupts at a fixed | ||
3110 | timer rate (e.g. es1968 or ymfpci drivers). | ||
3111 | In this case, you need to check the current hardware | ||
3112 | position and accumulate the processed sample length at each | ||
3113 | interrupt. When the accumulated size exceeds the period | ||
3114 | size, call | ||
3115 | <function>snd_pcm_period_elapsed()</function> and reset the | ||
3116 | accumulator. | ||
3117 | </para> | ||
3118 | |||
3119 | <para> | ||
3120 | Typical code would be like the following. | ||
3121 | |||
3122 | <example> | ||
3123 | <title>Interrupt Handler Case #2</title> | ||
3124 | <programlisting> | ||
3125 | <![CDATA[ | ||
3126 | static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id) | ||
3127 | { | ||
3128 | struct mychip *chip = dev_id; | ||
3129 | spin_lock(&chip->lock); | ||
3130 | .... | ||
3131 | if (pcm_irq_invoked(chip)) { | ||
3132 | unsigned int last_ptr, size; | ||
3133 | /* get the current hardware pointer (in frames) */ | ||
3134 | last_ptr = get_hw_ptr(chip); | ||
3135 | /* calculate the processed frames since the | ||
3136 | * last update | ||
3137 | */ | ||
3138 | if (last_ptr < chip->last_ptr) | ||
3139 | size = runtime->buffer_size + last_ptr | ||
3140 | - chip->last_ptr; | ||
3141 | else | ||
3142 | size = last_ptr - chip->last_ptr; | ||
3143 | /* remember the last updated point */ | ||
3144 | chip->last_ptr = last_ptr; | ||
3145 | /* accumulate the size */ | ||
3146 | chip->size += size; | ||
3147 | /* over the period boundary? */ | ||
3148 | if (chip->size >= runtime->period_size) { | ||
3149 | /* reset the accumulator */ | ||
3150 | chip->size %= runtime->period_size; | ||
3151 | /* call updater */ | ||
3152 | spin_unlock(&chip->lock); | ||
3153 | snd_pcm_period_elapsed(substream); | ||
3154 | spin_lock(&chip->lock); | ||
3155 | } | ||
3156 | /* acknowledge the interrupt if necessary */ | ||
3157 | } | ||
3158 | .... | ||
3159 | spin_unlock(&chip->lock); | ||
3160 | return IRQ_HANDLED; | ||
3161 | } | ||
3162 | ]]> | ||
3163 | </programlisting> | ||
3164 | </example> | ||
3165 | </para> | ||
3166 | </section> | ||
3167 | |||
3168 | <section id="pcm-interface-interrupt-handler-both"> | ||
3169 | <title>On calling <function>snd_pcm_period_elapsed()</function></title> | ||
3170 | <para> | ||
3171 | In both cases, even if more than one period are elapsed, you | ||
3172 | don't have to call | ||
3173 | <function>snd_pcm_period_elapsed()</function> many times. Call | ||
3174 | only once. And the pcm layer will check the current hardware | ||
3175 | pointer and update to the latest status. | ||
3176 | </para> | ||
3177 | </section> | ||
3178 | </section> | ||
3179 | |||
3180 | <section id="pcm-interface-atomicity"> | ||
3181 | <title>Atomicity</title> | ||
3182 | <para> | ||
3183 | One of the most important (and thus difficult to debug) problems | ||
3184 | in kernel programming are race conditions. | ||
3185 | In the Linux kernel, they are usually avoided via spin-locks, mutexes | ||
3186 | or semaphores. In general, if a race condition can happen | ||
3187 | in an interrupt handler, it has to be managed atomically, and you | ||
3188 | have to use a spinlock to protect the critical session. If the | ||
3189 | critical section is not in interrupt handler code and | ||
3190 | if taking a relatively long time to execute is acceptable, you | ||
3191 | should use mutexes or semaphores instead. | ||
3192 | </para> | ||
3193 | |||
3194 | <para> | ||
3195 | As already seen, some pcm callbacks are atomic and some are | ||
3196 | not. For example, the <parameter>hw_params</parameter> callback is | ||
3197 | non-atomic, while <parameter>trigger</parameter> callback is | ||
3198 | atomic. This means, the latter is called already in a spinlock | ||
3199 | held by the PCM middle layer. Please take this atomicity into | ||
3200 | account when you choose a locking scheme in the callbacks. | ||
3201 | </para> | ||
3202 | |||
3203 | <para> | ||
3204 | In the atomic callbacks, you cannot use functions which may call | ||
3205 | <function>schedule</function> or go to | ||
3206 | <function>sleep</function>. Semaphores and mutexes can sleep, | ||
3207 | and hence they cannot be used inside the atomic callbacks | ||
3208 | (e.g. <parameter>trigger</parameter> callback). | ||
3209 | To implement some delay in such a callback, please use | ||
3210 | <function>udelay()</function> or <function>mdelay()</function>. | ||
3211 | </para> | ||
3212 | |||
3213 | <para> | ||
3214 | All three atomic callbacks (trigger, pointer, and ack) are | ||
3215 | called with local interrupts disabled. | ||
3216 | </para> | ||
3217 | |||
3218 | </section> | ||
3219 | <section id="pcm-interface-constraints"> | ||
3220 | <title>Constraints</title> | ||
3221 | <para> | ||
3222 | If your chip supports unconventional sample rates, or only the | ||
3223 | limited samples, you need to set a constraint for the | ||
3224 | condition. | ||
3225 | </para> | ||
3226 | |||
3227 | <para> | ||
3228 | For example, in order to restrict the sample rates in the some | ||
3229 | supported values, use | ||
3230 | <function>snd_pcm_hw_constraint_list()</function>. | ||
3231 | You need to call this function in the open callback. | ||
3232 | |||
3233 | <example> | ||
3234 | <title>Example of Hardware Constraints</title> | ||
3235 | <programlisting> | ||
3236 | <![CDATA[ | ||
3237 | static unsigned int rates[] = | ||
3238 | {4000, 10000, 22050, 44100}; | ||
3239 | static struct snd_pcm_hw_constraint_list constraints_rates = { | ||
3240 | .count = ARRAY_SIZE(rates), | ||
3241 | .list = rates, | ||
3242 | .mask = 0, | ||
3243 | }; | ||
3244 | |||
3245 | static int snd_mychip_pcm_open(struct snd_pcm_substream *substream) | ||
3246 | { | ||
3247 | int err; | ||
3248 | .... | ||
3249 | err = snd_pcm_hw_constraint_list(substream->runtime, 0, | ||
3250 | SNDRV_PCM_HW_PARAM_RATE, | ||
3251 | &constraints_rates); | ||
3252 | if (err < 0) | ||
3253 | return err; | ||
3254 | .... | ||
3255 | } | ||
3256 | ]]> | ||
3257 | </programlisting> | ||
3258 | </example> | ||
3259 | </para> | ||
3260 | |||
3261 | <para> | ||
3262 | There are many different constraints. | ||
3263 | Look at <filename>sound/pcm.h</filename> for a complete list. | ||
3264 | You can even define your own constraint rules. | ||
3265 | For example, let's suppose my_chip can manage a substream of 1 channel | ||
3266 | if and only if the format is S16_LE, otherwise it supports any format | ||
3267 | specified in the <structname>snd_pcm_hardware</structname> structure (or in any | ||
3268 | other constraint_list). You can build a rule like this: | ||
3269 | |||
3270 | <example> | ||
3271 | <title>Example of Hardware Constraints for Channels</title> | ||
3272 | <programlisting> | ||
3273 | <![CDATA[ | ||
3274 | static int hw_rule_format_by_channels(struct snd_pcm_hw_params *params, | ||
3275 | struct snd_pcm_hw_rule *rule) | ||
3276 | { | ||
3277 | struct snd_interval *c = hw_param_interval(params, | ||
3278 | SNDRV_PCM_HW_PARAM_CHANNELS); | ||
3279 | struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT); | ||
3280 | struct snd_mask fmt; | ||
3281 | |||
3282 | snd_mask_any(&fmt); /* Init the struct */ | ||
3283 | if (c->min < 2) { | ||
3284 | fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_LE; | ||
3285 | return snd_mask_refine(f, &fmt); | ||
3286 | } | ||
3287 | return 0; | ||
3288 | } | ||
3289 | ]]> | ||
3290 | </programlisting> | ||
3291 | </example> | ||
3292 | </para> | ||
3293 | |||
3294 | <para> | ||
3295 | Then you need to call this function to add your rule: | ||
3296 | |||
3297 | <informalexample> | ||
3298 | <programlisting> | ||
3299 | <![CDATA[ | ||
3300 | snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, | ||
3301 | hw_rule_channels_by_format, 0, SNDRV_PCM_HW_PARAM_FORMAT, | ||
3302 | -1); | ||
3303 | ]]> | ||
3304 | </programlisting> | ||
3305 | </informalexample> | ||
3306 | </para> | ||
3307 | |||
3308 | <para> | ||
3309 | The rule function is called when an application sets the number of | ||
3310 | channels. But an application can set the format before the number of | ||
3311 | channels. Thus you also need to define the inverse rule: | ||
3312 | |||
3313 | <example> | ||
3314 | <title>Example of Hardware Constraints for Channels</title> | ||
3315 | <programlisting> | ||
3316 | <![CDATA[ | ||
3317 | static int hw_rule_channels_by_format(struct snd_pcm_hw_params *params, | ||
3318 | struct snd_pcm_hw_rule *rule) | ||
3319 | { | ||
3320 | struct snd_interval *c = hw_param_interval(params, | ||
3321 | SNDRV_PCM_HW_PARAM_CHANNELS); | ||
3322 | struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT); | ||
3323 | struct snd_interval ch; | ||
3324 | |||
3325 | snd_interval_any(&ch); | ||
3326 | if (f->bits[0] == SNDRV_PCM_FMTBIT_S16_LE) { | ||
3327 | ch.min = ch.max = 1; | ||
3328 | ch.integer = 1; | ||
3329 | return snd_interval_refine(c, &ch); | ||
3330 | } | ||
3331 | return 0; | ||
3332 | } | ||
3333 | ]]> | ||
3334 | </programlisting> | ||
3335 | </example> | ||
3336 | </para> | ||
3337 | |||
3338 | <para> | ||
3339 | ...and in the open callback: | ||
3340 | <informalexample> | ||
3341 | <programlisting> | ||
3342 | <![CDATA[ | ||
3343 | snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT, | ||
3344 | hw_rule_format_by_channels, 0, SNDRV_PCM_HW_PARAM_CHANNELS, | ||
3345 | -1); | ||
3346 | ]]> | ||
3347 | </programlisting> | ||
3348 | </informalexample> | ||
3349 | </para> | ||
3350 | |||
3351 | <para> | ||
3352 | I won't give more details here, rather I | ||
3353 | would like to say, <quote>Luke, use the source.</quote> | ||
3354 | </para> | ||
3355 | </section> | ||
3356 | |||
3357 | </chapter> | ||
3358 | |||
3359 | |||
3360 | <!-- ****************************************************** --> | ||
3361 | <!-- Control Interface --> | ||
3362 | <!-- ****************************************************** --> | ||
3363 | <chapter id="control-interface"> | ||
3364 | <title>Control Interface</title> | ||
3365 | |||
3366 | <section id="control-interface-general"> | ||
3367 | <title>General</title> | ||
3368 | <para> | ||
3369 | The control interface is used widely for many switches, | ||
3370 | sliders, etc. which are accessed from user-space. Its most | ||
3371 | important use is the mixer interface. In other words, since ALSA | ||
3372 | 0.9.x, all the mixer stuff is implemented on the control kernel API. | ||
3373 | </para> | ||
3374 | |||
3375 | <para> | ||
3376 | ALSA has a well-defined AC97 control module. If your chip | ||
3377 | supports only the AC97 and nothing else, you can skip this | ||
3378 | section. | ||
3379 | </para> | ||
3380 | |||
3381 | <para> | ||
3382 | The control API is defined in | ||
3383 | <filename><sound/control.h></filename>. | ||
3384 | Include this file if you want to add your own controls. | ||
3385 | </para> | ||
3386 | </section> | ||
3387 | |||
3388 | <section id="control-interface-definition"> | ||
3389 | <title>Definition of Controls</title> | ||
3390 | <para> | ||
3391 | To create a new control, you need to define the | ||
3392 | following three | ||
3393 | callbacks: <structfield>info</structfield>, | ||
3394 | <structfield>get</structfield> and | ||
3395 | <structfield>put</structfield>. Then, define a | ||
3396 | struct <structname>snd_kcontrol_new</structname> record, such as: | ||
3397 | |||
3398 | <example> | ||
3399 | <title>Definition of a Control</title> | ||
3400 | <programlisting> | ||
3401 | <![CDATA[ | ||
3402 | static struct snd_kcontrol_new my_control __devinitdata = { | ||
3403 | .iface = SNDRV_CTL_ELEM_IFACE_MIXER, | ||
3404 | .name = "PCM Playback Switch", | ||
3405 | .index = 0, | ||
3406 | .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, | ||
3407 | .private_value = 0xffff, | ||
3408 | .info = my_control_info, | ||
3409 | .get = my_control_get, | ||
3410 | .put = my_control_put | ||
3411 | }; | ||
3412 | ]]> | ||
3413 | </programlisting> | ||
3414 | </example> | ||
3415 | </para> | ||
3416 | |||
3417 | <para> | ||
3418 | Most likely the control is created via | ||
3419 | <function>snd_ctl_new1()</function>, and in such a case, you can | ||
3420 | add the <parameter>__devinitdata</parameter> prefix to the | ||
3421 | definition as above. | ||
3422 | </para> | ||
3423 | |||
3424 | <para> | ||
3425 | The <structfield>iface</structfield> field specifies the control | ||
3426 | type, <constant>SNDRV_CTL_ELEM_IFACE_XXX</constant>, which | ||
3427 | is usually <constant>MIXER</constant>. | ||
3428 | Use <constant>CARD</constant> for global controls that are not | ||
3429 | logically part of the mixer. | ||
3430 | If the control is closely associated with some specific device on | ||
3431 | the sound card, use <constant>HWDEP</constant>, | ||
3432 | <constant>PCM</constant>, <constant>RAWMIDI</constant>, | ||
3433 | <constant>TIMER</constant>, or <constant>SEQUENCER</constant>, and | ||
3434 | specify the device number with the | ||
3435 | <structfield>device</structfield> and | ||
3436 | <structfield>subdevice</structfield> fields. | ||
3437 | </para> | ||
3438 | |||
3439 | <para> | ||
3440 | The <structfield>name</structfield> is the name identifier | ||
3441 | string. Since ALSA 0.9.x, the control name is very important, | ||
3442 | because its role is classified from its name. There are | ||
3443 | pre-defined standard control names. The details are described in | ||
3444 | the <link linkend="control-interface-control-names"><citetitle> | ||
3445 | Control Names</citetitle></link> subsection. | ||
3446 | </para> | ||
3447 | |||
3448 | <para> | ||
3449 | The <structfield>index</structfield> field holds the index number | ||
3450 | of this control. If there are several different controls with | ||
3451 | the same name, they can be distinguished by the index | ||
3452 | number. This is the case when | ||
3453 | several codecs exist on the card. If the index is zero, you can | ||
3454 | omit the definition above. | ||
3455 | </para> | ||
3456 | |||
3457 | <para> | ||
3458 | The <structfield>access</structfield> field contains the access | ||
3459 | type of this control. Give the combination of bit masks, | ||
3460 | <constant>SNDRV_CTL_ELEM_ACCESS_XXX</constant>, there. | ||
3461 | The details will be explained in | ||
3462 | the <link linkend="control-interface-access-flags"><citetitle> | ||
3463 | Access Flags</citetitle></link> subsection. | ||
3464 | </para> | ||
3465 | |||
3466 | <para> | ||
3467 | The <structfield>private_value</structfield> field contains | ||
3468 | an arbitrary long integer value for this record. When using | ||
3469 | the generic <structfield>info</structfield>, | ||
3470 | <structfield>get</structfield> and | ||
3471 | <structfield>put</structfield> callbacks, you can pass a value | ||
3472 | through this field. If several small numbers are necessary, you can | ||
3473 | combine them in bitwise. Or, it's possible to give a pointer | ||
3474 | (casted to unsigned long) of some record to this field, too. | ||
3475 | </para> | ||
3476 | |||
3477 | <para> | ||
3478 | The <structfield>tlv</structfield> field can be used to provide | ||
3479 | metadata about the control; see the | ||
3480 | <link linkend="control-interface-tlv"> | ||
3481 | <citetitle>Metadata</citetitle></link> subsection. | ||
3482 | </para> | ||
3483 | |||
3484 | <para> | ||
3485 | The other three are | ||
3486 | <link linkend="control-interface-callbacks"><citetitle> | ||
3487 | callback functions</citetitle></link>. | ||
3488 | </para> | ||
3489 | </section> | ||
3490 | |||
3491 | <section id="control-interface-control-names"> | ||
3492 | <title>Control Names</title> | ||
3493 | <para> | ||
3494 | There are some standards to define the control names. A | ||
3495 | control is usually defined from the three parts as | ||
3496 | <quote>SOURCE DIRECTION FUNCTION</quote>. | ||
3497 | </para> | ||
3498 | |||
3499 | <para> | ||
3500 | The first, <constant>SOURCE</constant>, specifies the source | ||
3501 | of the control, and is a string such as <quote>Master</quote>, | ||
3502 | <quote>PCM</quote>, <quote>CD</quote> and | ||
3503 | <quote>Line</quote>. There are many pre-defined sources. | ||
3504 | </para> | ||
3505 | |||
3506 | <para> | ||
3507 | The second, <constant>DIRECTION</constant>, is one of the | ||
3508 | following strings according to the direction of the control: | ||
3509 | <quote>Playback</quote>, <quote>Capture</quote>, <quote>Bypass | ||
3510 | Playback</quote> and <quote>Bypass Capture</quote>. Or, it can | ||
3511 | be omitted, meaning both playback and capture directions. | ||
3512 | </para> | ||
3513 | |||
3514 | <para> | ||
3515 | The third, <constant>FUNCTION</constant>, is one of the | ||
3516 | following strings according to the function of the control: | ||
3517 | <quote>Switch</quote>, <quote>Volume</quote> and | ||
3518 | <quote>Route</quote>. | ||
3519 | </para> | ||
3520 | |||
3521 | <para> | ||
3522 | The example of control names are, thus, <quote>Master Capture | ||
3523 | Switch</quote> or <quote>PCM Playback Volume</quote>. | ||
3524 | </para> | ||
3525 | |||
3526 | <para> | ||
3527 | There are some exceptions: | ||
3528 | </para> | ||
3529 | |||
3530 | <section id="control-interface-control-names-global"> | ||
3531 | <title>Global capture and playback</title> | ||
3532 | <para> | ||
3533 | <quote>Capture Source</quote>, <quote>Capture Switch</quote> | ||
3534 | and <quote>Capture Volume</quote> are used for the global | ||
3535 | capture (input) source, switch and volume. Similarly, | ||
3536 | <quote>Playback Switch</quote> and <quote>Playback | ||
3537 | Volume</quote> are used for the global output gain switch and | ||
3538 | volume. | ||
3539 | </para> | ||
3540 | </section> | ||
3541 | |||
3542 | <section id="control-interface-control-names-tone"> | ||
3543 | <title>Tone-controls</title> | ||
3544 | <para> | ||
3545 | tone-control switch and volumes are specified like | ||
3546 | <quote>Tone Control - XXX</quote>, e.g. <quote>Tone Control - | ||
3547 | Switch</quote>, <quote>Tone Control - Bass</quote>, | ||
3548 | <quote>Tone Control - Center</quote>. | ||
3549 | </para> | ||
3550 | </section> | ||
3551 | |||
3552 | <section id="control-interface-control-names-3d"> | ||
3553 | <title>3D controls</title> | ||
3554 | <para> | ||
3555 | 3D-control switches and volumes are specified like <quote>3D | ||
3556 | Control - XXX</quote>, e.g. <quote>3D Control - | ||
3557 | Switch</quote>, <quote>3D Control - Center</quote>, <quote>3D | ||
3558 | Control - Space</quote>. | ||
3559 | </para> | ||
3560 | </section> | ||
3561 | |||
3562 | <section id="control-interface-control-names-mic"> | ||
3563 | <title>Mic boost</title> | ||
3564 | <para> | ||
3565 | Mic-boost switch is set as <quote>Mic Boost</quote> or | ||
3566 | <quote>Mic Boost (6dB)</quote>. | ||
3567 | </para> | ||
3568 | |||
3569 | <para> | ||
3570 | More precise information can be found in | ||
3571 | <filename>Documentation/sound/alsa/ControlNames.txt</filename>. | ||
3572 | </para> | ||
3573 | </section> | ||
3574 | </section> | ||
3575 | |||
3576 | <section id="control-interface-access-flags"> | ||
3577 | <title>Access Flags</title> | ||
3578 | |||
3579 | <para> | ||
3580 | The access flag is the bitmask which specifies the access type | ||
3581 | of the given control. The default access type is | ||
3582 | <constant>SNDRV_CTL_ELEM_ACCESS_READWRITE</constant>, | ||
3583 | which means both read and write are allowed to this control. | ||
3584 | When the access flag is omitted (i.e. = 0), it is | ||
3585 | considered as <constant>READWRITE</constant> access as default. | ||
3586 | </para> | ||
3587 | |||
3588 | <para> | ||
3589 | When the control is read-only, pass | ||
3590 | <constant>SNDRV_CTL_ELEM_ACCESS_READ</constant> instead. | ||
3591 | In this case, you don't have to define | ||
3592 | the <structfield>put</structfield> callback. | ||
3593 | Similarly, when the control is write-only (although it's a rare | ||
3594 | case), you can use the <constant>WRITE</constant> flag instead, and | ||
3595 | you don't need the <structfield>get</structfield> callback. | ||
3596 | </para> | ||
3597 | |||
3598 | <para> | ||
3599 | If the control value changes frequently (e.g. the VU meter), | ||
3600 | <constant>VOLATILE</constant> flag should be given. This means | ||
3601 | that the control may be changed without | ||
3602 | <link linkend="control-interface-change-notification"><citetitle> | ||
3603 | notification</citetitle></link>. Applications should poll such | ||
3604 | a control constantly. | ||
3605 | </para> | ||
3606 | |||
3607 | <para> | ||
3608 | When the control is inactive, set | ||
3609 | the <constant>INACTIVE</constant> flag, too. | ||
3610 | There are <constant>LOCK</constant> and | ||
3611 | <constant>OWNER</constant> flags to change the write | ||
3612 | permissions. | ||
3613 | </para> | ||
3614 | |||
3615 | </section> | ||
3616 | |||
3617 | <section id="control-interface-callbacks"> | ||
3618 | <title>Callbacks</title> | ||
3619 | |||
3620 | <section id="control-interface-callbacks-info"> | ||
3621 | <title>info callback</title> | ||
3622 | <para> | ||
3623 | The <structfield>info</structfield> callback is used to get | ||
3624 | detailed information on this control. This must store the | ||
3625 | values of the given struct <structname>snd_ctl_elem_info</structname> | ||
3626 | object. For example, for a boolean control with a single | ||
3627 | element: | ||
3628 | |||
3629 | <example> | ||
3630 | <title>Example of info callback</title> | ||
3631 | <programlisting> | ||
3632 | <![CDATA[ | ||
3633 | static int snd_myctl_mono_info(struct snd_kcontrol *kcontrol, | ||
3634 | struct snd_ctl_elem_info *uinfo) | ||
3635 | { | ||
3636 | uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; | ||
3637 | uinfo->count = 1; | ||
3638 | uinfo->value.integer.min = 0; | ||
3639 | uinfo->value.integer.max = 1; | ||
3640 | return 0; | ||
3641 | } | ||
3642 | ]]> | ||
3643 | </programlisting> | ||
3644 | </example> | ||
3645 | </para> | ||
3646 | |||
3647 | <para> | ||
3648 | The <structfield>type</structfield> field specifies the type | ||
3649 | of the control. There are <constant>BOOLEAN</constant>, | ||
3650 | <constant>INTEGER</constant>, <constant>ENUMERATED</constant>, | ||
3651 | <constant>BYTES</constant>, <constant>IEC958</constant> and | ||
3652 | <constant>INTEGER64</constant>. The | ||
3653 | <structfield>count</structfield> field specifies the | ||
3654 | number of elements in this control. For example, a stereo | ||
3655 | volume would have count = 2. The | ||
3656 | <structfield>value</structfield> field is a union, and | ||
3657 | the values stored are depending on the type. The boolean and | ||
3658 | integer types are identical. | ||
3659 | </para> | ||
3660 | |||
3661 | <para> | ||
3662 | The enumerated type is a bit different from others. You'll | ||
3663 | need to set the string for the currently given item index. | ||
3664 | |||
3665 | <informalexample> | ||
3666 | <programlisting> | ||
3667 | <![CDATA[ | ||
3668 | static int snd_myctl_enum_info(struct snd_kcontrol *kcontrol, | ||
3669 | struct snd_ctl_elem_info *uinfo) | ||
3670 | { | ||
3671 | static char *texts[4] = { | ||
3672 | "First", "Second", "Third", "Fourth" | ||
3673 | }; | ||
3674 | uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; | ||
3675 | uinfo->count = 1; | ||
3676 | uinfo->value.enumerated.items = 4; | ||
3677 | if (uinfo->value.enumerated.item > 3) | ||
3678 | uinfo->value.enumerated.item = 3; | ||
3679 | strcpy(uinfo->value.enumerated.name, | ||
3680 | texts[uinfo->value.enumerated.item]); | ||
3681 | return 0; | ||
3682 | } | ||
3683 | ]]> | ||
3684 | </programlisting> | ||
3685 | </informalexample> | ||
3686 | </para> | ||
3687 | |||
3688 | <para> | ||
3689 | Some common info callbacks are available for your convenience: | ||
3690 | <function>snd_ctl_boolean_mono_info()</function> and | ||
3691 | <function>snd_ctl_boolean_stereo_info()</function>. | ||
3692 | Obviously, the former is an info callback for a mono channel | ||
3693 | boolean item, just like <function>snd_myctl_mono_info</function> | ||
3694 | above, and the latter is for a stereo channel boolean item. | ||
3695 | </para> | ||
3696 | |||
3697 | </section> | ||
3698 | |||
3699 | <section id="control-interface-callbacks-get"> | ||
3700 | <title>get callback</title> | ||
3701 | |||
3702 | <para> | ||
3703 | This callback is used to read the current value of the | ||
3704 | control and to return to user-space. | ||
3705 | </para> | ||
3706 | |||
3707 | <para> | ||
3708 | For example, | ||
3709 | |||
3710 | <example> | ||
3711 | <title>Example of get callback</title> | ||
3712 | <programlisting> | ||
3713 | <![CDATA[ | ||
3714 | static int snd_myctl_get(struct snd_kcontrol *kcontrol, | ||
3715 | struct snd_ctl_elem_value *ucontrol) | ||
3716 | { | ||
3717 | struct mychip *chip = snd_kcontrol_chip(kcontrol); | ||
3718 | ucontrol->value.integer.value[0] = get_some_value(chip); | ||
3719 | return 0; | ||
3720 | } | ||
3721 | ]]> | ||
3722 | </programlisting> | ||
3723 | </example> | ||
3724 | </para> | ||
3725 | |||
3726 | <para> | ||
3727 | The <structfield>value</structfield> field depends on | ||
3728 | the type of control as well as on the info callback. For example, | ||
3729 | the sb driver uses this field to store the register offset, | ||
3730 | the bit-shift and the bit-mask. The | ||
3731 | <structfield>private_value</structfield> field is set as follows: | ||
3732 | <informalexample> | ||
3733 | <programlisting> | ||
3734 | <![CDATA[ | ||
3735 | .private_value = reg | (shift << 16) | (mask << 24) | ||
3736 | ]]> | ||
3737 | </programlisting> | ||
3738 | </informalexample> | ||
3739 | and is retrieved in callbacks like | ||
3740 | <informalexample> | ||
3741 | <programlisting> | ||
3742 | <![CDATA[ | ||
3743 | static int snd_sbmixer_get_single(struct snd_kcontrol *kcontrol, | ||
3744 | struct snd_ctl_elem_value *ucontrol) | ||
3745 | { | ||
3746 | int reg = kcontrol->private_value & 0xff; | ||
3747 | int shift = (kcontrol->private_value >> 16) & 0xff; | ||
3748 | int mask = (kcontrol->private_value >> 24) & 0xff; | ||
3749 | .... | ||
3750 | } | ||
3751 | ]]> | ||
3752 | </programlisting> | ||
3753 | </informalexample> | ||
3754 | </para> | ||
3755 | |||
3756 | <para> | ||
3757 | In the <structfield>get</structfield> callback, | ||
3758 | you have to fill all the elements if the | ||
3759 | control has more than one elements, | ||
3760 | i.e. <structfield>count</structfield> > 1. | ||
3761 | In the example above, we filled only one element | ||
3762 | (<structfield>value.integer.value[0]</structfield>) since it's | ||
3763 | assumed as <structfield>count</structfield> = 1. | ||
3764 | </para> | ||
3765 | </section> | ||
3766 | |||
3767 | <section id="control-interface-callbacks-put"> | ||
3768 | <title>put callback</title> | ||
3769 | |||
3770 | <para> | ||
3771 | This callback is used to write a value from user-space. | ||
3772 | </para> | ||
3773 | |||
3774 | <para> | ||
3775 | For example, | ||
3776 | |||
3777 | <example> | ||
3778 | <title>Example of put callback</title> | ||
3779 | <programlisting> | ||
3780 | <![CDATA[ | ||
3781 | static int snd_myctl_put(struct snd_kcontrol *kcontrol, | ||
3782 | struct snd_ctl_elem_value *ucontrol) | ||
3783 | { | ||
3784 | struct mychip *chip = snd_kcontrol_chip(kcontrol); | ||
3785 | int changed = 0; | ||
3786 | if (chip->current_value != | ||
3787 | ucontrol->value.integer.value[0]) { | ||
3788 | change_current_value(chip, | ||
3789 | ucontrol->value.integer.value[0]); | ||
3790 | changed = 1; | ||
3791 | } | ||
3792 | return changed; | ||
3793 | } | ||
3794 | ]]> | ||
3795 | </programlisting> | ||
3796 | </example> | ||
3797 | |||
3798 | As seen above, you have to return 1 if the value is | ||
3799 | changed. If the value is not changed, return 0 instead. | ||
3800 | If any fatal error happens, return a negative error code as | ||
3801 | usual. | ||
3802 | </para> | ||
3803 | |||
3804 | <para> | ||
3805 | As in the <structfield>get</structfield> callback, | ||
3806 | when the control has more than one elements, | ||
3807 | all elements must be evaluated in this callback, too. | ||
3808 | </para> | ||
3809 | </section> | ||
3810 | |||
3811 | <section id="control-interface-callbacks-all"> | ||
3812 | <title>Callbacks are not atomic</title> | ||
3813 | <para> | ||
3814 | All these three callbacks are basically not atomic. | ||
3815 | </para> | ||
3816 | </section> | ||
3817 | </section> | ||
3818 | |||
3819 | <section id="control-interface-constructor"> | ||
3820 | <title>Constructor</title> | ||
3821 | <para> | ||
3822 | When everything is ready, finally we can create a new | ||
3823 | control. To create a control, there are two functions to be | ||
3824 | called, <function>snd_ctl_new1()</function> and | ||
3825 | <function>snd_ctl_add()</function>. | ||
3826 | </para> | ||
3827 | |||
3828 | <para> | ||
3829 | In the simplest way, you can do like this: | ||
3830 | |||
3831 | <informalexample> | ||
3832 | <programlisting> | ||
3833 | <![CDATA[ | ||
3834 | err = snd_ctl_add(card, snd_ctl_new1(&my_control, chip)); | ||
3835 | if (err < 0) | ||
3836 | return err; | ||
3837 | ]]> | ||
3838 | </programlisting> | ||
3839 | </informalexample> | ||
3840 | |||
3841 | where <parameter>my_control</parameter> is the | ||
3842 | struct <structname>snd_kcontrol_new</structname> object defined above, and chip | ||
3843 | is the object pointer to be passed to | ||
3844 | kcontrol->private_data | ||
3845 | which can be referred to in callbacks. | ||
3846 | </para> | ||
3847 | |||
3848 | <para> | ||
3849 | <function>snd_ctl_new1()</function> allocates a new | ||
3850 | <structname>snd_kcontrol</structname> instance (that's why the definition | ||
3851 | of <parameter>my_control</parameter> can be with | ||
3852 | the <parameter>__devinitdata</parameter> | ||
3853 | prefix), and <function>snd_ctl_add</function> assigns the given | ||
3854 | control component to the card. | ||
3855 | </para> | ||
3856 | </section> | ||
3857 | |||
3858 | <section id="control-interface-change-notification"> | ||
3859 | <title>Change Notification</title> | ||
3860 | <para> | ||
3861 | If you need to change and update a control in the interrupt | ||
3862 | routine, you can call <function>snd_ctl_notify()</function>. For | ||
3863 | example, | ||
3864 | |||
3865 | <informalexample> | ||
3866 | <programlisting> | ||
3867 | <![CDATA[ | ||
3868 | snd_ctl_notify(card, SNDRV_CTL_EVENT_MASK_VALUE, id_pointer); | ||
3869 | ]]> | ||
3870 | </programlisting> | ||
3871 | </informalexample> | ||
3872 | |||
3873 | This function takes the card pointer, the event-mask, and the | ||
3874 | control id pointer for the notification. The event-mask | ||
3875 | specifies the types of notification, for example, in the above | ||
3876 | example, the change of control values is notified. | ||
3877 | The id pointer is the pointer of struct <structname>snd_ctl_elem_id</structname> | ||
3878 | to be notified. | ||
3879 | You can find some examples in <filename>es1938.c</filename> or | ||
3880 | <filename>es1968.c</filename> for hardware volume interrupts. | ||
3881 | </para> | ||
3882 | </section> | ||
3883 | |||
3884 | <section id="control-interface-tlv"> | ||
3885 | <title>Metadata</title> | ||
3886 | <para> | ||
3887 | To provide information about the dB values of a mixer control, use | ||
3888 | on of the <constant>DECLARE_TLV_xxx</constant> macros from | ||
3889 | <filename><sound/tlv.h></filename> to define a variable | ||
3890 | containing this information, set the<structfield>tlv.p | ||
3891 | </structfield> field to point to this variable, and include the | ||
3892 | <constant>SNDRV_CTL_ELEM_ACCESS_TLV_READ</constant> flag in the | ||
3893 | <structfield>access</structfield> field; like this: | ||
3894 | <informalexample> | ||
3895 | <programlisting> | ||
3896 | <![CDATA[ | ||
3897 | static DECLARE_TLV_DB_SCALE(db_scale_my_control, -4050, 150, 0); | ||
3898 | |||
3899 | static struct snd_kcontrol_new my_control __devinitdata = { | ||
3900 | ... | ||
3901 | .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | | ||
3902 | SNDRV_CTL_ELEM_ACCESS_TLV_READ, | ||
3903 | ... | ||
3904 | .tlv.p = db_scale_my_control, | ||
3905 | }; | ||
3906 | ]]> | ||
3907 | </programlisting> | ||
3908 | </informalexample> | ||
3909 | </para> | ||
3910 | |||
3911 | <para> | ||
3912 | The <function>DECLARE_TLV_DB_SCALE</function> macro defines | ||
3913 | information about a mixer control where each step in the control's | ||
3914 | value changes the dB value by a constant dB amount. | ||
3915 | The first parameter is the name of the variable to be defined. | ||
3916 | The second parameter is the minimum value, in units of 0.01 dB. | ||
3917 | The third parameter is the step size, in units of 0.01 dB. | ||
3918 | Set the fourth parameter to 1 if the minimum value actually mutes | ||
3919 | the control. | ||
3920 | </para> | ||
3921 | |||
3922 | <para> | ||
3923 | The <function>DECLARE_TLV_DB_LINEAR</function> macro defines | ||
3924 | information about a mixer control where the control's value affects | ||
3925 | the output linearly. | ||
3926 | The first parameter is the name of the variable to be defined. | ||
3927 | The second parameter is the minimum value, in units of 0.01 dB. | ||
3928 | The third parameter is the maximum value, in units of 0.01 dB. | ||
3929 | If the minimum value mutes the control, set the second parameter to | ||
3930 | <constant>TLV_DB_GAIN_MUTE</constant>. | ||
3931 | </para> | ||
3932 | </section> | ||
3933 | |||
3934 | </chapter> | ||
3935 | |||
3936 | |||
3937 | <!-- ****************************************************** --> | ||
3938 | <!-- API for AC97 Codec --> | ||
3939 | <!-- ****************************************************** --> | ||
3940 | <chapter id="api-ac97"> | ||
3941 | <title>API for AC97 Codec</title> | ||
3942 | |||
3943 | <section> | ||
3944 | <title>General</title> | ||
3945 | <para> | ||
3946 | The ALSA AC97 codec layer is a well-defined one, and you don't | ||
3947 | have to write much code to control it. Only low-level control | ||
3948 | routines are necessary. The AC97 codec API is defined in | ||
3949 | <filename><sound/ac97_codec.h></filename>. | ||
3950 | </para> | ||
3951 | </section> | ||
3952 | |||
3953 | <section id="api-ac97-example"> | ||
3954 | <title>Full Code Example</title> | ||
3955 | <para> | ||
3956 | <example> | ||
3957 | <title>Example of AC97 Interface</title> | ||
3958 | <programlisting> | ||
3959 | <![CDATA[ | ||
3960 | struct mychip { | ||
3961 | .... | ||
3962 | struct snd_ac97 *ac97; | ||
3963 | .... | ||
3964 | }; | ||
3965 | |||
3966 | static unsigned short snd_mychip_ac97_read(struct snd_ac97 *ac97, | ||
3967 | unsigned short reg) | ||
3968 | { | ||
3969 | struct mychip *chip = ac97->private_data; | ||
3970 | .... | ||
3971 | /* read a register value here from the codec */ | ||
3972 | return the_register_value; | ||
3973 | } | ||
3974 | |||
3975 | static void snd_mychip_ac97_write(struct snd_ac97 *ac97, | ||
3976 | unsigned short reg, unsigned short val) | ||
3977 | { | ||
3978 | struct mychip *chip = ac97->private_data; | ||
3979 | .... | ||
3980 | /* write the given register value to the codec */ | ||
3981 | } | ||
3982 | |||
3983 | static int snd_mychip_ac97(struct mychip *chip) | ||
3984 | { | ||
3985 | struct snd_ac97_bus *bus; | ||
3986 | struct snd_ac97_template ac97; | ||
3987 | int err; | ||
3988 | static struct snd_ac97_bus_ops ops = { | ||
3989 | .write = snd_mychip_ac97_write, | ||
3990 | .read = snd_mychip_ac97_read, | ||
3991 | }; | ||
3992 | |||
3993 | err = snd_ac97_bus(chip->card, 0, &ops, NULL, &bus); | ||
3994 | if (err < 0) | ||
3995 | return err; | ||
3996 | memset(&ac97, 0, sizeof(ac97)); | ||
3997 | ac97.private_data = chip; | ||
3998 | return snd_ac97_mixer(bus, &ac97, &chip->ac97); | ||
3999 | } | ||
4000 | |||
4001 | ]]> | ||
4002 | </programlisting> | ||
4003 | </example> | ||
4004 | </para> | ||
4005 | </section> | ||
4006 | |||
4007 | <section id="api-ac97-constructor"> | ||
4008 | <title>Constructor</title> | ||
4009 | <para> | ||
4010 | To create an ac97 instance, first call <function>snd_ac97_bus</function> | ||
4011 | with an <type>ac97_bus_ops_t</type> record with callback functions. | ||
4012 | |||
4013 | <informalexample> | ||
4014 | <programlisting> | ||
4015 | <![CDATA[ | ||
4016 | struct snd_ac97_bus *bus; | ||
4017 | static struct snd_ac97_bus_ops ops = { | ||
4018 | .write = snd_mychip_ac97_write, | ||
4019 | .read = snd_mychip_ac97_read, | ||
4020 | }; | ||
4021 | |||
4022 | snd_ac97_bus(card, 0, &ops, NULL, &pbus); | ||
4023 | ]]> | ||
4024 | </programlisting> | ||
4025 | </informalexample> | ||
4026 | |||
4027 | The bus record is shared among all belonging ac97 instances. | ||
4028 | </para> | ||
4029 | |||
4030 | <para> | ||
4031 | And then call <function>snd_ac97_mixer()</function> with an | ||
4032 | struct <structname>snd_ac97_template</structname> | ||
4033 | record together with the bus pointer created above. | ||
4034 | |||
4035 | <informalexample> | ||
4036 | <programlisting> | ||
4037 | <![CDATA[ | ||
4038 | struct snd_ac97_template ac97; | ||
4039 | int err; | ||
4040 | |||
4041 | memset(&ac97, 0, sizeof(ac97)); | ||
4042 | ac97.private_data = chip; | ||
4043 | snd_ac97_mixer(bus, &ac97, &chip->ac97); | ||
4044 | ]]> | ||
4045 | </programlisting> | ||
4046 | </informalexample> | ||
4047 | |||
4048 | where chip->ac97 is a pointer to a newly created | ||
4049 | <type>ac97_t</type> instance. | ||
4050 | In this case, the chip pointer is set as the private data, so that | ||
4051 | the read/write callback functions can refer to this chip instance. | ||
4052 | This instance is not necessarily stored in the chip | ||
4053 | record. If you need to change the register values from the | ||
4054 | driver, or need the suspend/resume of ac97 codecs, keep this | ||
4055 | pointer to pass to the corresponding functions. | ||
4056 | </para> | ||
4057 | </section> | ||
4058 | |||
4059 | <section id="api-ac97-callbacks"> | ||
4060 | <title>Callbacks</title> | ||
4061 | <para> | ||
4062 | The standard callbacks are <structfield>read</structfield> and | ||
4063 | <structfield>write</structfield>. Obviously they | ||
4064 | correspond to the functions for read and write accesses to the | ||
4065 | hardware low-level codes. | ||
4066 | </para> | ||
4067 | |||
4068 | <para> | ||
4069 | The <structfield>read</structfield> callback returns the | ||
4070 | register value specified in the argument. | ||
4071 | |||
4072 | <informalexample> | ||
4073 | <programlisting> | ||
4074 | <![CDATA[ | ||
4075 | static unsigned short snd_mychip_ac97_read(struct snd_ac97 *ac97, | ||
4076 | unsigned short reg) | ||
4077 | { | ||
4078 | struct mychip *chip = ac97->private_data; | ||
4079 | .... | ||
4080 | return the_register_value; | ||
4081 | } | ||
4082 | ]]> | ||
4083 | </programlisting> | ||
4084 | </informalexample> | ||
4085 | |||
4086 | Here, the chip can be cast from ac97->private_data. | ||
4087 | </para> | ||
4088 | |||
4089 | <para> | ||
4090 | Meanwhile, the <structfield>write</structfield> callback is | ||
4091 | used to set the register value. | ||
4092 | |||
4093 | <informalexample> | ||
4094 | <programlisting> | ||
4095 | <![CDATA[ | ||
4096 | static void snd_mychip_ac97_write(struct snd_ac97 *ac97, | ||
4097 | unsigned short reg, unsigned short val) | ||
4098 | ]]> | ||
4099 | </programlisting> | ||
4100 | </informalexample> | ||
4101 | </para> | ||
4102 | |||
4103 | <para> | ||
4104 | These callbacks are non-atomic like the control API callbacks. | ||
4105 | </para> | ||
4106 | |||
4107 | <para> | ||
4108 | There are also other callbacks: | ||
4109 | <structfield>reset</structfield>, | ||
4110 | <structfield>wait</structfield> and | ||
4111 | <structfield>init</structfield>. | ||
4112 | </para> | ||
4113 | |||
4114 | <para> | ||
4115 | The <structfield>reset</structfield> callback is used to reset | ||
4116 | the codec. If the chip requires a special kind of reset, you can | ||
4117 | define this callback. | ||
4118 | </para> | ||
4119 | |||
4120 | <para> | ||
4121 | The <structfield>wait</structfield> callback is used to | ||
4122 | add some waiting time in the standard initialization of the codec. If the | ||
4123 | chip requires the extra waiting time, define this callback. | ||
4124 | </para> | ||
4125 | |||
4126 | <para> | ||
4127 | The <structfield>init</structfield> callback is used for | ||
4128 | additional initialization of the codec. | ||
4129 | </para> | ||
4130 | </section> | ||
4131 | |||
4132 | <section id="api-ac97-updating-registers"> | ||
4133 | <title>Updating Registers in The Driver</title> | ||
4134 | <para> | ||
4135 | If you need to access to the codec from the driver, you can | ||
4136 | call the following functions: | ||
4137 | <function>snd_ac97_write()</function>, | ||
4138 | <function>snd_ac97_read()</function>, | ||
4139 | <function>snd_ac97_update()</function> and | ||
4140 | <function>snd_ac97_update_bits()</function>. | ||
4141 | </para> | ||
4142 | |||
4143 | <para> | ||
4144 | Both <function>snd_ac97_write()</function> and | ||
4145 | <function>snd_ac97_update()</function> functions are used to | ||
4146 | set a value to the given register | ||
4147 | (<constant>AC97_XXX</constant>). The difference between them is | ||
4148 | that <function>snd_ac97_update()</function> doesn't write a | ||
4149 | value if the given value has been already set, while | ||
4150 | <function>snd_ac97_write()</function> always rewrites the | ||
4151 | value. | ||
4152 | |||
4153 | <informalexample> | ||
4154 | <programlisting> | ||
4155 | <![CDATA[ | ||
4156 | snd_ac97_write(ac97, AC97_MASTER, 0x8080); | ||
4157 | snd_ac97_update(ac97, AC97_MASTER, 0x8080); | ||
4158 | ]]> | ||
4159 | </programlisting> | ||
4160 | </informalexample> | ||
4161 | </para> | ||
4162 | |||
4163 | <para> | ||
4164 | <function>snd_ac97_read()</function> is used to read the value | ||
4165 | of the given register. For example, | ||
4166 | |||
4167 | <informalexample> | ||
4168 | <programlisting> | ||
4169 | <![CDATA[ | ||
4170 | value = snd_ac97_read(ac97, AC97_MASTER); | ||
4171 | ]]> | ||
4172 | </programlisting> | ||
4173 | </informalexample> | ||
4174 | </para> | ||
4175 | |||
4176 | <para> | ||
4177 | <function>snd_ac97_update_bits()</function> is used to update | ||
4178 | some bits in the given register. | ||
4179 | |||
4180 | <informalexample> | ||
4181 | <programlisting> | ||
4182 | <![CDATA[ | ||
4183 | snd_ac97_update_bits(ac97, reg, mask, value); | ||
4184 | ]]> | ||
4185 | </programlisting> | ||
4186 | </informalexample> | ||
4187 | </para> | ||
4188 | |||
4189 | <para> | ||
4190 | Also, there is a function to change the sample rate (of a | ||
4191 | given register such as | ||
4192 | <constant>AC97_PCM_FRONT_DAC_RATE</constant>) when VRA or | ||
4193 | DRA is supported by the codec: | ||
4194 | <function>snd_ac97_set_rate()</function>. | ||
4195 | |||
4196 | <informalexample> | ||
4197 | <programlisting> | ||
4198 | <![CDATA[ | ||
4199 | snd_ac97_set_rate(ac97, AC97_PCM_FRONT_DAC_RATE, 44100); | ||
4200 | ]]> | ||
4201 | </programlisting> | ||
4202 | </informalexample> | ||
4203 | </para> | ||
4204 | |||
4205 | <para> | ||
4206 | The following registers are available to set the rate: | ||
4207 | <constant>AC97_PCM_MIC_ADC_RATE</constant>, | ||
4208 | <constant>AC97_PCM_FRONT_DAC_RATE</constant>, | ||
4209 | <constant>AC97_PCM_LR_ADC_RATE</constant>, | ||
4210 | <constant>AC97_SPDIF</constant>. When | ||
4211 | <constant>AC97_SPDIF</constant> is specified, the register is | ||
4212 | not really changed but the corresponding IEC958 status bits will | ||
4213 | be updated. | ||
4214 | </para> | ||
4215 | </section> | ||
4216 | |||
4217 | <section id="api-ac97-clock-adjustment"> | ||
4218 | <title>Clock Adjustment</title> | ||
4219 | <para> | ||
4220 | In some chips, the clock of the codec isn't 48000 but using a | ||
4221 | PCI clock (to save a quartz!). In this case, change the field | ||
4222 | bus->clock to the corresponding | ||
4223 | value. For example, intel8x0 | ||
4224 | and es1968 drivers have their own function to read from the clock. | ||
4225 | </para> | ||
4226 | </section> | ||
4227 | |||
4228 | <section id="api-ac97-proc-files"> | ||
4229 | <title>Proc Files</title> | ||
4230 | <para> | ||
4231 | The ALSA AC97 interface will create a proc file such as | ||
4232 | <filename>/proc/asound/card0/codec97#0/ac97#0-0</filename> and | ||
4233 | <filename>ac97#0-0+regs</filename>. You can refer to these files to | ||
4234 | see the current status and registers of the codec. | ||
4235 | </para> | ||
4236 | </section> | ||
4237 | |||
4238 | <section id="api-ac97-multiple-codecs"> | ||
4239 | <title>Multiple Codecs</title> | ||
4240 | <para> | ||
4241 | When there are several codecs on the same card, you need to | ||
4242 | call <function>snd_ac97_mixer()</function> multiple times with | ||
4243 | ac97.num=1 or greater. The <structfield>num</structfield> field | ||
4244 | specifies the codec number. | ||
4245 | </para> | ||
4246 | |||
4247 | <para> | ||
4248 | If you set up multiple codecs, you either need to write | ||
4249 | different callbacks for each codec or check | ||
4250 | ac97->num in the callback routines. | ||
4251 | </para> | ||
4252 | </section> | ||
4253 | |||
4254 | </chapter> | ||
4255 | |||
4256 | |||
4257 | <!-- ****************************************************** --> | ||
4258 | <!-- MIDI (MPU401-UART) Interface --> | ||
4259 | <!-- ****************************************************** --> | ||
4260 | <chapter id="midi-interface"> | ||
4261 | <title>MIDI (MPU401-UART) Interface</title> | ||
4262 | |||
4263 | <section id="midi-interface-general"> | ||
4264 | <title>General</title> | ||
4265 | <para> | ||
4266 | Many soundcards have built-in MIDI (MPU401-UART) | ||
4267 | interfaces. When the soundcard supports the standard MPU401-UART | ||
4268 | interface, most likely you can use the ALSA MPU401-UART API. The | ||
4269 | MPU401-UART API is defined in | ||
4270 | <filename><sound/mpu401.h></filename>. | ||
4271 | </para> | ||
4272 | |||
4273 | <para> | ||
4274 | Some soundchips have a similar but slightly different | ||
4275 | implementation of mpu401 stuff. For example, emu10k1 has its own | ||
4276 | mpu401 routines. | ||
4277 | </para> | ||
4278 | </section> | ||
4279 | |||
4280 | <section id="midi-interface-constructor"> | ||
4281 | <title>Constructor</title> | ||
4282 | <para> | ||
4283 | To create a rawmidi object, call | ||
4284 | <function>snd_mpu401_uart_new()</function>. | ||
4285 | |||
4286 | <informalexample> | ||
4287 | <programlisting> | ||
4288 | <![CDATA[ | ||
4289 | struct snd_rawmidi *rmidi; | ||
4290 | snd_mpu401_uart_new(card, 0, MPU401_HW_MPU401, port, info_flags, | ||
4291 | irq, irq_flags, &rmidi); | ||
4292 | ]]> | ||
4293 | </programlisting> | ||
4294 | </informalexample> | ||
4295 | </para> | ||
4296 | |||
4297 | <para> | ||
4298 | The first argument is the card pointer, and the second is the | ||
4299 | index of this component. You can create up to 8 rawmidi | ||
4300 | devices. | ||
4301 | </para> | ||
4302 | |||
4303 | <para> | ||
4304 | The third argument is the type of the hardware, | ||
4305 | <constant>MPU401_HW_XXX</constant>. If it's not a special one, | ||
4306 | you can use <constant>MPU401_HW_MPU401</constant>. | ||
4307 | </para> | ||
4308 | |||
4309 | <para> | ||
4310 | The 4th argument is the I/O port address. Many | ||
4311 | backward-compatible MPU401 have an I/O port such as 0x330. Or, it | ||
4312 | might be a part of its own PCI I/O region. It depends on the | ||
4313 | chip design. | ||
4314 | </para> | ||
4315 | |||
4316 | <para> | ||
4317 | The 5th argument is a bitflag for additional information. | ||
4318 | When the I/O port address above is part of the PCI I/O | ||
4319 | region, the MPU401 I/O port might have been already allocated | ||
4320 | (reserved) by the driver itself. In such a case, pass a bit flag | ||
4321 | <constant>MPU401_INFO_INTEGRATED</constant>, | ||
4322 | and the mpu401-uart layer will allocate the I/O ports by itself. | ||
4323 | </para> | ||
4324 | |||
4325 | <para> | ||
4326 | When the controller supports only the input or output MIDI stream, | ||
4327 | pass the <constant>MPU401_INFO_INPUT</constant> or | ||
4328 | <constant>MPU401_INFO_OUTPUT</constant> bitflag, respectively. | ||
4329 | Then the rawmidi instance is created as a single stream. | ||
4330 | </para> | ||
4331 | |||
4332 | <para> | ||
4333 | <constant>MPU401_INFO_MMIO</constant> bitflag is used to change | ||
4334 | the access method to MMIO (via readb and writeb) instead of | ||
4335 | iob and outb. In this case, you have to pass the iomapped address | ||
4336 | to <function>snd_mpu401_uart_new()</function>. | ||
4337 | </para> | ||
4338 | |||
4339 | <para> | ||
4340 | When <constant>MPU401_INFO_TX_IRQ</constant> is set, the output | ||
4341 | stream isn't checked in the default interrupt handler. The driver | ||
4342 | needs to call <function>snd_mpu401_uart_interrupt_tx()</function> | ||
4343 | by itself to start processing the output stream in the irq handler. | ||
4344 | </para> | ||
4345 | |||
4346 | <para> | ||
4347 | Usually, the port address corresponds to the command port and | ||
4348 | port + 1 corresponds to the data port. If not, you may change | ||
4349 | the <structfield>cport</structfield> field of | ||
4350 | struct <structname>snd_mpu401</structname> manually | ||
4351 | afterward. However, <structname>snd_mpu401</structname> pointer is not | ||
4352 | returned explicitly by | ||
4353 | <function>snd_mpu401_uart_new()</function>. You need to cast | ||
4354 | rmidi->private_data to | ||
4355 | <structname>snd_mpu401</structname> explicitly, | ||
4356 | |||
4357 | <informalexample> | ||
4358 | <programlisting> | ||
4359 | <![CDATA[ | ||
4360 | struct snd_mpu401 *mpu; | ||
4361 | mpu = rmidi->private_data; | ||
4362 | ]]> | ||
4363 | </programlisting> | ||
4364 | </informalexample> | ||
4365 | |||
4366 | and reset the cport as you like: | ||
4367 | |||
4368 | <informalexample> | ||
4369 | <programlisting> | ||
4370 | <![CDATA[ | ||
4371 | mpu->cport = my_own_control_port; | ||
4372 | ]]> | ||
4373 | </programlisting> | ||
4374 | </informalexample> | ||
4375 | </para> | ||
4376 | |||
4377 | <para> | ||
4378 | The 6th argument specifies the irq number for UART. If the irq | ||
4379 | is already allocated, pass 0 to the 7th argument | ||
4380 | (<parameter>irq_flags</parameter>). Otherwise, pass the flags | ||
4381 | for irq allocation | ||
4382 | (<constant>SA_XXX</constant> bits) to it, and the irq will be | ||
4383 | reserved by the mpu401-uart layer. If the card doesn't generate | ||
4384 | UART interrupts, pass -1 as the irq number. Then a timer | ||
4385 | interrupt will be invoked for polling. | ||
4386 | </para> | ||
4387 | </section> | ||
4388 | |||
4389 | <section id="midi-interface-interrupt-handler"> | ||
4390 | <title>Interrupt Handler</title> | ||
4391 | <para> | ||
4392 | When the interrupt is allocated in | ||
4393 | <function>snd_mpu401_uart_new()</function>, the private | ||
4394 | interrupt handler is used, hence you don't have anything else to do | ||
4395 | than creating the mpu401 stuff. Otherwise, you have to call | ||
4396 | <function>snd_mpu401_uart_interrupt()</function> explicitly when | ||
4397 | a UART interrupt is invoked and checked in your own interrupt | ||
4398 | handler. | ||
4399 | </para> | ||
4400 | |||
4401 | <para> | ||
4402 | In this case, you need to pass the private_data of the | ||
4403 | returned rawmidi object from | ||
4404 | <function>snd_mpu401_uart_new()</function> as the second | ||
4405 | argument of <function>snd_mpu401_uart_interrupt()</function>. | ||
4406 | |||
4407 | <informalexample> | ||
4408 | <programlisting> | ||
4409 | <![CDATA[ | ||
4410 | snd_mpu401_uart_interrupt(irq, rmidi->private_data, regs); | ||
4411 | ]]> | ||
4412 | </programlisting> | ||
4413 | </informalexample> | ||
4414 | </para> | ||
4415 | </section> | ||
4416 | |||
4417 | </chapter> | ||
4418 | |||
4419 | |||
4420 | <!-- ****************************************************** --> | ||
4421 | <!-- RawMIDI Interface --> | ||
4422 | <!-- ****************************************************** --> | ||
4423 | <chapter id="rawmidi-interface"> | ||
4424 | <title>RawMIDI Interface</title> | ||
4425 | |||
4426 | <section id="rawmidi-interface-overview"> | ||
4427 | <title>Overview</title> | ||
4428 | |||
4429 | <para> | ||
4430 | The raw MIDI interface is used for hardware MIDI ports that can | ||
4431 | be accessed as a byte stream. It is not used for synthesizer | ||
4432 | chips that do not directly understand MIDI. | ||
4433 | </para> | ||
4434 | |||
4435 | <para> | ||
4436 | ALSA handles file and buffer management. All you have to do is | ||
4437 | to write some code to move data between the buffer and the | ||
4438 | hardware. | ||
4439 | </para> | ||
4440 | |||
4441 | <para> | ||
4442 | The rawmidi API is defined in | ||
4443 | <filename><sound/rawmidi.h></filename>. | ||
4444 | </para> | ||
4445 | </section> | ||
4446 | |||
4447 | <section id="rawmidi-interface-constructor"> | ||
4448 | <title>Constructor</title> | ||
4449 | |||
4450 | <para> | ||
4451 | To create a rawmidi device, call the | ||
4452 | <function>snd_rawmidi_new</function> function: | ||
4453 | <informalexample> | ||
4454 | <programlisting> | ||
4455 | <![CDATA[ | ||
4456 | struct snd_rawmidi *rmidi; | ||
4457 | err = snd_rawmidi_new(chip->card, "MyMIDI", 0, outs, ins, &rmidi); | ||
4458 | if (err < 0) | ||
4459 | return err; | ||
4460 | rmidi->private_data = chip; | ||
4461 | strcpy(rmidi->name, "My MIDI"); | ||
4462 | rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT | | ||
4463 | SNDRV_RAWMIDI_INFO_INPUT | | ||
4464 | SNDRV_RAWMIDI_INFO_DUPLEX; | ||
4465 | ]]> | ||
4466 | </programlisting> | ||
4467 | </informalexample> | ||
4468 | </para> | ||
4469 | |||
4470 | <para> | ||
4471 | The first argument is the card pointer, the second argument is | ||
4472 | the ID string. | ||
4473 | </para> | ||
4474 | |||
4475 | <para> | ||
4476 | The third argument is the index of this component. You can | ||
4477 | create up to 8 rawmidi devices. | ||
4478 | </para> | ||
4479 | |||
4480 | <para> | ||
4481 | The fourth and fifth arguments are the number of output and | ||
4482 | input substreams, respectively, of this device (a substream is | ||
4483 | the equivalent of a MIDI port). | ||
4484 | </para> | ||
4485 | |||
4486 | <para> | ||
4487 | Set the <structfield>info_flags</structfield> field to specify | ||
4488 | the capabilities of the device. | ||
4489 | Set <constant>SNDRV_RAWMIDI_INFO_OUTPUT</constant> if there is | ||
4490 | at least one output port, | ||
4491 | <constant>SNDRV_RAWMIDI_INFO_INPUT</constant> if there is at | ||
4492 | least one input port, | ||
4493 | and <constant>SNDRV_RAWMIDI_INFO_DUPLEX</constant> if the device | ||
4494 | can handle output and input at the same time. | ||
4495 | </para> | ||
4496 | |||
4497 | <para> | ||
4498 | After the rawmidi device is created, you need to set the | ||
4499 | operators (callbacks) for each substream. There are helper | ||
4500 | functions to set the operators for all the substreams of a device: | ||
4501 | <informalexample> | ||
4502 | <programlisting> | ||
4503 | <![CDATA[ | ||
4504 | snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_mymidi_output_ops); | ||
4505 | snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_mymidi_input_ops); | ||
4506 | ]]> | ||
4507 | </programlisting> | ||
4508 | </informalexample> | ||
4509 | </para> | ||
4510 | |||
4511 | <para> | ||
4512 | The operators are usually defined like this: | ||
4513 | <informalexample> | ||
4514 | <programlisting> | ||
4515 | <![CDATA[ | ||
4516 | static struct snd_rawmidi_ops snd_mymidi_output_ops = { | ||
4517 | .open = snd_mymidi_output_open, | ||
4518 | .close = snd_mymidi_output_close, | ||
4519 | .trigger = snd_mymidi_output_trigger, | ||
4520 | }; | ||
4521 | ]]> | ||
4522 | </programlisting> | ||
4523 | </informalexample> | ||
4524 | These callbacks are explained in the <link | ||
4525 | linkend="rawmidi-interface-callbacks"><citetitle>Callbacks</citetitle></link> | ||
4526 | section. | ||
4527 | </para> | ||
4528 | |||
4529 | <para> | ||
4530 | If there are more than one substream, you should give a | ||
4531 | unique name to each of them: | ||
4532 | <informalexample> | ||
4533 | <programlisting> | ||
4534 | <![CDATA[ | ||
4535 | struct snd_rawmidi_substream *substream; | ||
4536 | list_for_each_entry(substream, | ||
4537 | &rmidi->streams[SNDRV_RAWMIDI_STREAM_OUTPUT].substreams, | ||
4538 | list { | ||
4539 | sprintf(substream->name, "My MIDI Port %d", substream->number + 1); | ||
4540 | } | ||
4541 | /* same for SNDRV_RAWMIDI_STREAM_INPUT */ | ||
4542 | ]]> | ||
4543 | </programlisting> | ||
4544 | </informalexample> | ||
4545 | </para> | ||
4546 | </section> | ||
4547 | |||
4548 | <section id="rawmidi-interface-callbacks"> | ||
4549 | <title>Callbacks</title> | ||
4550 | |||
4551 | <para> | ||
4552 | In all the callbacks, the private data that you've set for the | ||
4553 | rawmidi device can be accessed as | ||
4554 | substream->rmidi->private_data. | ||
4555 | <!-- <code> isn't available before DocBook 4.3 --> | ||
4556 | </para> | ||
4557 | |||
4558 | <para> | ||
4559 | If there is more than one port, your callbacks can determine the | ||
4560 | port index from the struct snd_rawmidi_substream data passed to each | ||
4561 | callback: | ||
4562 | <informalexample> | ||
4563 | <programlisting> | ||
4564 | <![CDATA[ | ||
4565 | struct snd_rawmidi_substream *substream; | ||
4566 | int index = substream->number; | ||
4567 | ]]> | ||
4568 | </programlisting> | ||
4569 | </informalexample> | ||
4570 | </para> | ||
4571 | |||
4572 | <section id="rawmidi-interface-op-open"> | ||
4573 | <title><function>open</function> callback</title> | ||
4574 | |||
4575 | <informalexample> | ||
4576 | <programlisting> | ||
4577 | <![CDATA[ | ||
4578 | static int snd_xxx_open(struct snd_rawmidi_substream *substream); | ||
4579 | ]]> | ||
4580 | </programlisting> | ||
4581 | </informalexample> | ||
4582 | |||
4583 | <para> | ||
4584 | This is called when a substream is opened. | ||
4585 | You can initialize the hardware here, but you shouldn't | ||
4586 | start transmitting/receiving data yet. | ||
4587 | </para> | ||
4588 | </section> | ||
4589 | |||
4590 | <section id="rawmidi-interface-op-close"> | ||
4591 | <title><function>close</function> callback</title> | ||
4592 | |||
4593 | <informalexample> | ||
4594 | <programlisting> | ||
4595 | <![CDATA[ | ||
4596 | static int snd_xxx_close(struct snd_rawmidi_substream *substream); | ||
4597 | ]]> | ||
4598 | </programlisting> | ||
4599 | </informalexample> | ||
4600 | |||
4601 | <para> | ||
4602 | Guess what. | ||
4603 | </para> | ||
4604 | |||
4605 | <para> | ||
4606 | The <function>open</function> and <function>close</function> | ||
4607 | callbacks of a rawmidi device are serialized with a mutex, | ||
4608 | and can sleep. | ||
4609 | </para> | ||
4610 | </section> | ||
4611 | |||
4612 | <section id="rawmidi-interface-op-trigger-out"> | ||
4613 | <title><function>trigger</function> callback for output | ||
4614 | substreams</title> | ||
4615 | |||
4616 | <informalexample> | ||
4617 | <programlisting> | ||
4618 | <![CDATA[ | ||
4619 | static void snd_xxx_output_trigger(struct snd_rawmidi_substream *substream, int up); | ||
4620 | ]]> | ||
4621 | </programlisting> | ||
4622 | </informalexample> | ||
4623 | |||
4624 | <para> | ||
4625 | This is called with a nonzero <parameter>up</parameter> | ||
4626 | parameter when there is some data in the substream buffer that | ||
4627 | must be transmitted. | ||
4628 | </para> | ||
4629 | |||
4630 | <para> | ||
4631 | To read data from the buffer, call | ||
4632 | <function>snd_rawmidi_transmit_peek</function>. It will | ||
4633 | return the number of bytes that have been read; this will be | ||
4634 | less than the number of bytes requested when there are no more | ||
4635 | data in the buffer. | ||
4636 | After the data have been transmitted successfully, call | ||
4637 | <function>snd_rawmidi_transmit_ack</function> to remove the | ||
4638 | data from the substream buffer: | ||
4639 | <informalexample> | ||
4640 | <programlisting> | ||
4641 | <![CDATA[ | ||
4642 | unsigned char data; | ||
4643 | while (snd_rawmidi_transmit_peek(substream, &data, 1) == 1) { | ||
4644 | if (snd_mychip_try_to_transmit(data)) | ||
4645 | snd_rawmidi_transmit_ack(substream, 1); | ||
4646 | else | ||
4647 | break; /* hardware FIFO full */ | ||
4648 | } | ||
4649 | ]]> | ||
4650 | </programlisting> | ||
4651 | </informalexample> | ||
4652 | </para> | ||
4653 | |||
4654 | <para> | ||
4655 | If you know beforehand that the hardware will accept data, you | ||
4656 | can use the <function>snd_rawmidi_transmit</function> function | ||
4657 | which reads some data and removes them from the buffer at once: | ||
4658 | <informalexample> | ||
4659 | <programlisting> | ||
4660 | <![CDATA[ | ||
4661 | while (snd_mychip_transmit_possible()) { | ||
4662 | unsigned char data; | ||
4663 | if (snd_rawmidi_transmit(substream, &data, 1) != 1) | ||
4664 | break; /* no more data */ | ||
4665 | snd_mychip_transmit(data); | ||
4666 | } | ||
4667 | ]]> | ||
4668 | </programlisting> | ||
4669 | </informalexample> | ||
4670 | </para> | ||
4671 | |||
4672 | <para> | ||
4673 | If you know beforehand how many bytes you can accept, you can | ||
4674 | use a buffer size greater than one with the | ||
4675 | <function>snd_rawmidi_transmit*</function> functions. | ||
4676 | </para> | ||
4677 | |||
4678 | <para> | ||
4679 | The <function>trigger</function> callback must not sleep. If | ||
4680 | the hardware FIFO is full before the substream buffer has been | ||
4681 | emptied, you have to continue transmitting data later, either | ||
4682 | in an interrupt handler, or with a timer if the hardware | ||
4683 | doesn't have a MIDI transmit interrupt. | ||
4684 | </para> | ||
4685 | |||
4686 | <para> | ||
4687 | The <function>trigger</function> callback is called with a | ||
4688 | zero <parameter>up</parameter> parameter when the transmission | ||
4689 | of data should be aborted. | ||
4690 | </para> | ||
4691 | </section> | ||
4692 | |||
4693 | <section id="rawmidi-interface-op-trigger-in"> | ||
4694 | <title><function>trigger</function> callback for input | ||
4695 | substreams</title> | ||
4696 | |||
4697 | <informalexample> | ||
4698 | <programlisting> | ||
4699 | <![CDATA[ | ||
4700 | static void snd_xxx_input_trigger(struct snd_rawmidi_substream *substream, int up); | ||
4701 | ]]> | ||
4702 | </programlisting> | ||
4703 | </informalexample> | ||
4704 | |||
4705 | <para> | ||
4706 | This is called with a nonzero <parameter>up</parameter> | ||
4707 | parameter to enable receiving data, or with a zero | ||
4708 | <parameter>up</parameter> parameter do disable receiving data. | ||
4709 | </para> | ||
4710 | |||
4711 | <para> | ||
4712 | The <function>trigger</function> callback must not sleep; the | ||
4713 | actual reading of data from the device is usually done in an | ||
4714 | interrupt handler. | ||
4715 | </para> | ||
4716 | |||
4717 | <para> | ||
4718 | When data reception is enabled, your interrupt handler should | ||
4719 | call <function>snd_rawmidi_receive</function> for all received | ||
4720 | data: | ||
4721 | <informalexample> | ||
4722 | <programlisting> | ||
4723 | <![CDATA[ | ||
4724 | void snd_mychip_midi_interrupt(...) | ||
4725 | { | ||
4726 | while (mychip_midi_available()) { | ||
4727 | unsigned char data; | ||
4728 | data = mychip_midi_read(); | ||
4729 | snd_rawmidi_receive(substream, &data, 1); | ||
4730 | } | ||
4731 | } | ||
4732 | ]]> | ||
4733 | </programlisting> | ||
4734 | </informalexample> | ||
4735 | </para> | ||
4736 | </section> | ||
4737 | |||
4738 | <section id="rawmidi-interface-op-drain"> | ||
4739 | <title><function>drain</function> callback</title> | ||
4740 | |||
4741 | <informalexample> | ||
4742 | <programlisting> | ||
4743 | <![CDATA[ | ||
4744 | static void snd_xxx_drain(struct snd_rawmidi_substream *substream); | ||
4745 | ]]> | ||
4746 | </programlisting> | ||
4747 | </informalexample> | ||
4748 | |||
4749 | <para> | ||
4750 | This is only used with output substreams. This function should wait | ||
4751 | until all data read from the substream buffer have been transmitted. | ||
4752 | This ensures that the device can be closed and the driver unloaded | ||
4753 | without losing data. | ||
4754 | </para> | ||
4755 | |||
4756 | <para> | ||
4757 | This callback is optional. If you do not set | ||
4758 | <structfield>drain</structfield> in the struct snd_rawmidi_ops | ||
4759 | structure, ALSA will simply wait for 50 milliseconds | ||
4760 | instead. | ||
4761 | </para> | ||
4762 | </section> | ||
4763 | </section> | ||
4764 | |||
4765 | </chapter> | ||
4766 | |||
4767 | |||
4768 | <!-- ****************************************************** --> | ||
4769 | <!-- Miscellaneous Devices --> | ||
4770 | <!-- ****************************************************** --> | ||
4771 | <chapter id="misc-devices"> | ||
4772 | <title>Miscellaneous Devices</title> | ||
4773 | |||
4774 | <section id="misc-devices-opl3"> | ||
4775 | <title>FM OPL3</title> | ||
4776 | <para> | ||
4777 | The FM OPL3 is still used in many chips (mainly for backward | ||
4778 | compatibility). ALSA has a nice OPL3 FM control layer, too. The | ||
4779 | OPL3 API is defined in | ||
4780 | <filename><sound/opl3.h></filename>. | ||
4781 | </para> | ||
4782 | |||
4783 | <para> | ||
4784 | FM registers can be directly accessed through the direct-FM API, | ||
4785 | defined in <filename><sound/asound_fm.h></filename>. In | ||
4786 | ALSA native mode, FM registers are accessed through | ||
4787 | the Hardware-Dependant Device direct-FM extension API, whereas in | ||
4788 | OSS compatible mode, FM registers can be accessed with the OSS | ||
4789 | direct-FM compatible API in <filename>/dev/dmfmX</filename> device. | ||
4790 | </para> | ||
4791 | |||
4792 | <para> | ||
4793 | To create the OPL3 component, you have two functions to | ||
4794 | call. The first one is a constructor for the <type>opl3_t</type> | ||
4795 | instance. | ||
4796 | |||
4797 | <informalexample> | ||
4798 | <programlisting> | ||
4799 | <![CDATA[ | ||
4800 | struct snd_opl3 *opl3; | ||
4801 | snd_opl3_create(card, lport, rport, OPL3_HW_OPL3_XXX, | ||
4802 | integrated, &opl3); | ||
4803 | ]]> | ||
4804 | </programlisting> | ||
4805 | </informalexample> | ||
4806 | </para> | ||
4807 | |||
4808 | <para> | ||
4809 | The first argument is the card pointer, the second one is the | ||
4810 | left port address, and the third is the right port address. In | ||
4811 | most cases, the right port is placed at the left port + 2. | ||
4812 | </para> | ||
4813 | |||
4814 | <para> | ||
4815 | The fourth argument is the hardware type. | ||
4816 | </para> | ||
4817 | |||
4818 | <para> | ||
4819 | When the left and right ports have been already allocated by | ||
4820 | the card driver, pass non-zero to the fifth argument | ||
4821 | (<parameter>integrated</parameter>). Otherwise, the opl3 module will | ||
4822 | allocate the specified ports by itself. | ||
4823 | </para> | ||
4824 | |||
4825 | <para> | ||
4826 | When the accessing the hardware requires special method | ||
4827 | instead of the standard I/O access, you can create opl3 instance | ||
4828 | separately with <function>snd_opl3_new()</function>. | ||
4829 | |||
4830 | <informalexample> | ||
4831 | <programlisting> | ||
4832 | <![CDATA[ | ||
4833 | struct snd_opl3 *opl3; | ||
4834 | snd_opl3_new(card, OPL3_HW_OPL3_XXX, &opl3); | ||
4835 | ]]> | ||
4836 | </programlisting> | ||
4837 | </informalexample> | ||
4838 | </para> | ||
4839 | |||
4840 | <para> | ||
4841 | Then set <structfield>command</structfield>, | ||
4842 | <structfield>private_data</structfield> and | ||
4843 | <structfield>private_free</structfield> for the private | ||
4844 | access function, the private data and the destructor. | ||
4845 | The l_port and r_port are not necessarily set. Only the | ||
4846 | command must be set properly. You can retrieve the data | ||
4847 | from the opl3->private_data field. | ||
4848 | </para> | ||
4849 | |||
4850 | <para> | ||
4851 | After creating the opl3 instance via <function>snd_opl3_new()</function>, | ||
4852 | call <function>snd_opl3_init()</function> to initialize the chip to the | ||
4853 | proper state. Note that <function>snd_opl3_create()</function> always | ||
4854 | calls it internally. | ||
4855 | </para> | ||
4856 | |||
4857 | <para> | ||
4858 | If the opl3 instance is created successfully, then create a | ||
4859 | hwdep device for this opl3. | ||
4860 | |||
4861 | <informalexample> | ||
4862 | <programlisting> | ||
4863 | <![CDATA[ | ||
4864 | struct snd_hwdep *opl3hwdep; | ||
4865 | snd_opl3_hwdep_new(opl3, 0, 1, &opl3hwdep); | ||
4866 | ]]> | ||
4867 | </programlisting> | ||
4868 | </informalexample> | ||
4869 | </para> | ||
4870 | |||
4871 | <para> | ||
4872 | The first argument is the <type>opl3_t</type> instance you | ||
4873 | created, and the second is the index number, usually 0. | ||
4874 | </para> | ||
4875 | |||
4876 | <para> | ||
4877 | The third argument is the index-offset for the sequencer | ||
4878 | client assigned to the OPL3 port. When there is an MPU401-UART, | ||
4879 | give 1 for here (UART always takes 0). | ||
4880 | </para> | ||
4881 | </section> | ||
4882 | |||
4883 | <section id="misc-devices-hardware-dependent"> | ||
4884 | <title>Hardware-Dependent Devices</title> | ||
4885 | <para> | ||
4886 | Some chips need user-space access for special | ||
4887 | controls or for loading the micro code. In such a case, you can | ||
4888 | create a hwdep (hardware-dependent) device. The hwdep API is | ||
4889 | defined in <filename><sound/hwdep.h></filename>. You can | ||
4890 | find examples in opl3 driver or | ||
4891 | <filename>isa/sb/sb16_csp.c</filename>. | ||
4892 | </para> | ||
4893 | |||
4894 | <para> | ||
4895 | The creation of the <type>hwdep</type> instance is done via | ||
4896 | <function>snd_hwdep_new()</function>. | ||
4897 | |||
4898 | <informalexample> | ||
4899 | <programlisting> | ||
4900 | <![CDATA[ | ||
4901 | struct snd_hwdep *hw; | ||
4902 | snd_hwdep_new(card, "My HWDEP", 0, &hw); | ||
4903 | ]]> | ||
4904 | </programlisting> | ||
4905 | </informalexample> | ||
4906 | |||
4907 | where the third argument is the index number. | ||
4908 | </para> | ||
4909 | |||
4910 | <para> | ||
4911 | You can then pass any pointer value to the | ||
4912 | <parameter>private_data</parameter>. | ||
4913 | If you assign a private data, you should define the | ||
4914 | destructor, too. The destructor function is set in | ||
4915 | the <structfield>private_free</structfield> field. | ||
4916 | |||
4917 | <informalexample> | ||
4918 | <programlisting> | ||
4919 | <![CDATA[ | ||
4920 | struct mydata *p = kmalloc(sizeof(*p), GFP_KERNEL); | ||
4921 | hw->private_data = p; | ||
4922 | hw->private_free = mydata_free; | ||
4923 | ]]> | ||
4924 | </programlisting> | ||
4925 | </informalexample> | ||
4926 | |||
4927 | and the implementation of the destructor would be: | ||
4928 | |||
4929 | <informalexample> | ||
4930 | <programlisting> | ||
4931 | <![CDATA[ | ||
4932 | static void mydata_free(struct snd_hwdep *hw) | ||
4933 | { | ||
4934 | struct mydata *p = hw->private_data; | ||
4935 | kfree(p); | ||
4936 | } | ||
4937 | ]]> | ||
4938 | </programlisting> | ||
4939 | </informalexample> | ||
4940 | </para> | ||
4941 | |||
4942 | <para> | ||
4943 | The arbitrary file operations can be defined for this | ||
4944 | instance. The file operators are defined in | ||
4945 | the <parameter>ops</parameter> table. For example, assume that | ||
4946 | this chip needs an ioctl. | ||
4947 | |||
4948 | <informalexample> | ||
4949 | <programlisting> | ||
4950 | <![CDATA[ | ||
4951 | hw->ops.open = mydata_open; | ||
4952 | hw->ops.ioctl = mydata_ioctl; | ||
4953 | hw->ops.release = mydata_release; | ||
4954 | ]]> | ||
4955 | </programlisting> | ||
4956 | </informalexample> | ||
4957 | |||
4958 | And implement the callback functions as you like. | ||
4959 | </para> | ||
4960 | </section> | ||
4961 | |||
4962 | <section id="misc-devices-IEC958"> | ||
4963 | <title>IEC958 (S/PDIF)</title> | ||
4964 | <para> | ||
4965 | Usually the controls for IEC958 devices are implemented via | ||
4966 | the control interface. There is a macro to compose a name string for | ||
4967 | IEC958 controls, <function>SNDRV_CTL_NAME_IEC958()</function> | ||
4968 | defined in <filename><include/asound.h></filename>. | ||
4969 | </para> | ||
4970 | |||
4971 | <para> | ||
4972 | There are some standard controls for IEC958 status bits. These | ||
4973 | controls use the type <type>SNDRV_CTL_ELEM_TYPE_IEC958</type>, | ||
4974 | and the size of element is fixed as 4 bytes array | ||
4975 | (value.iec958.status[x]). For the <structfield>info</structfield> | ||
4976 | callback, you don't specify | ||
4977 | the value field for this type (the count field must be set, | ||
4978 | though). | ||
4979 | </para> | ||
4980 | |||
4981 | <para> | ||
4982 | <quote>IEC958 Playback Con Mask</quote> is used to return the | ||
4983 | bit-mask for the IEC958 status bits of consumer mode. Similarly, | ||
4984 | <quote>IEC958 Playback Pro Mask</quote> returns the bitmask for | ||
4985 | professional mode. They are read-only controls, and are defined | ||
4986 | as MIXER controls (iface = | ||
4987 | <constant>SNDRV_CTL_ELEM_IFACE_MIXER</constant>). | ||
4988 | </para> | ||
4989 | |||
4990 | <para> | ||
4991 | Meanwhile, <quote>IEC958 Playback Default</quote> control is | ||
4992 | defined for getting and setting the current default IEC958 | ||
4993 | bits. Note that this one is usually defined as a PCM control | ||
4994 | (iface = <constant>SNDRV_CTL_ELEM_IFACE_PCM</constant>), | ||
4995 | although in some places it's defined as a MIXER control. | ||
4996 | </para> | ||
4997 | |||
4998 | <para> | ||
4999 | In addition, you can define the control switches to | ||
5000 | enable/disable or to set the raw bit mode. The implementation | ||
5001 | will depend on the chip, but the control should be named as | ||
5002 | <quote>IEC958 xxx</quote>, preferably using | ||
5003 | the <function>SNDRV_CTL_NAME_IEC958()</function> macro. | ||
5004 | </para> | ||
5005 | |||
5006 | <para> | ||
5007 | You can find several cases, for example, | ||
5008 | <filename>pci/emu10k1</filename>, | ||
5009 | <filename>pci/ice1712</filename>, or | ||
5010 | <filename>pci/cmipci.c</filename>. | ||
5011 | </para> | ||
5012 | </section> | ||
5013 | |||
5014 | </chapter> | ||
5015 | |||
5016 | |||
5017 | <!-- ****************************************************** --> | ||
5018 | <!-- Buffer and Memory Management --> | ||
5019 | <!-- ****************************************************** --> | ||
5020 | <chapter id="buffer-and-memory"> | ||
5021 | <title>Buffer and Memory Management</title> | ||
5022 | |||
5023 | <section id="buffer-and-memory-buffer-types"> | ||
5024 | <title>Buffer Types</title> | ||
5025 | <para> | ||
5026 | ALSA provides several different buffer allocation functions | ||
5027 | depending on the bus and the architecture. All these have a | ||
5028 | consistent API. The allocation of physically-contiguous pages is | ||
5029 | done via | ||
5030 | <function>snd_malloc_xxx_pages()</function> function, where xxx | ||
5031 | is the bus type. | ||
5032 | </para> | ||
5033 | |||
5034 | <para> | ||
5035 | The allocation of pages with fallback is | ||
5036 | <function>snd_malloc_xxx_pages_fallback()</function>. This | ||
5037 | function tries to allocate the specified pages but if the pages | ||
5038 | are not available, it tries to reduce the page sizes until | ||
5039 | enough space is found. | ||
5040 | </para> | ||
5041 | |||
5042 | <para> | ||
5043 | The release the pages, call | ||
5044 | <function>snd_free_xxx_pages()</function> function. | ||
5045 | </para> | ||
5046 | |||
5047 | <para> | ||
5048 | Usually, ALSA drivers try to allocate and reserve | ||
5049 | a large contiguous physical space | ||
5050 | at the time the module is loaded for the later use. | ||
5051 | This is called <quote>pre-allocation</quote>. | ||
5052 | As already written, you can call the following function at | ||
5053 | pcm instance construction time (in the case of PCI bus). | ||
5054 | |||
5055 | <informalexample> | ||
5056 | <programlisting> | ||
5057 | <![CDATA[ | ||
5058 | snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, | ||
5059 | snd_dma_pci_data(pci), size, max); | ||
5060 | ]]> | ||
5061 | </programlisting> | ||
5062 | </informalexample> | ||
5063 | |||
5064 | where <parameter>size</parameter> is the byte size to be | ||
5065 | pre-allocated and the <parameter>max</parameter> is the maximum | ||
5066 | size to be changed via the <filename>prealloc</filename> proc file. | ||
5067 | The allocator will try to get an area as large as possible | ||
5068 | within the given size. | ||
5069 | </para> | ||
5070 | |||
5071 | <para> | ||
5072 | The second argument (type) and the third argument (device pointer) | ||
5073 | are dependent on the bus. | ||
5074 | In the case of the ISA bus, pass <function>snd_dma_isa_data()</function> | ||
5075 | as the third argument with <constant>SNDRV_DMA_TYPE_DEV</constant> type. | ||
5076 | For the continuous buffer unrelated to the bus can be pre-allocated | ||
5077 | with <constant>SNDRV_DMA_TYPE_CONTINUOUS</constant> type and the | ||
5078 | <function>snd_dma_continuous_data(GFP_KERNEL)</function> device pointer, | ||
5079 | where <constant>GFP_KERNEL</constant> is the kernel allocation flag to | ||
5080 | use. | ||
5081 | For the PCI scatter-gather buffers, use | ||
5082 | <constant>SNDRV_DMA_TYPE_DEV_SG</constant> with | ||
5083 | <function>snd_dma_pci_data(pci)</function> | ||
5084 | (see the | ||
5085 | <link linkend="buffer-and-memory-non-contiguous"><citetitle>Non-Contiguous Buffers | ||
5086 | </citetitle></link> section). | ||
5087 | </para> | ||
5088 | |||
5089 | <para> | ||
5090 | Once the buffer is pre-allocated, you can use the | ||
5091 | allocator in the <structfield>hw_params</structfield> callback: | ||
5092 | |||
5093 | <informalexample> | ||
5094 | <programlisting> | ||
5095 | <![CDATA[ | ||
5096 | snd_pcm_lib_malloc_pages(substream, size); | ||
5097 | ]]> | ||
5098 | </programlisting> | ||
5099 | </informalexample> | ||
5100 | |||
5101 | Note that you have to pre-allocate to use this function. | ||
5102 | </para> | ||
5103 | </section> | ||
5104 | |||
5105 | <section id="buffer-and-memory-external-hardware"> | ||
5106 | <title>External Hardware Buffers</title> | ||
5107 | <para> | ||
5108 | Some chips have their own hardware buffers and the DMA | ||
5109 | transfer from the host memory is not available. In such a case, | ||
5110 | you need to either 1) copy/set the audio data directly to the | ||
5111 | external hardware buffer, or 2) make an intermediate buffer and | ||
5112 | copy/set the data from it to the external hardware buffer in | ||
5113 | interrupts (or in tasklets, preferably). | ||
5114 | </para> | ||
5115 | |||
5116 | <para> | ||
5117 | The first case works fine if the external hardware buffer is large | ||
5118 | enough. This method doesn't need any extra buffers and thus is | ||
5119 | more effective. You need to define the | ||
5120 | <structfield>copy</structfield> and | ||
5121 | <structfield>silence</structfield> callbacks for | ||
5122 | the data transfer. However, there is a drawback: it cannot | ||
5123 | be mmapped. The examples are GUS's GF1 PCM or emu8000's | ||
5124 | wavetable PCM. | ||
5125 | </para> | ||
5126 | |||
5127 | <para> | ||
5128 | The second case allows for mmap on the buffer, although you have | ||
5129 | to handle an interrupt or a tasklet to transfer the data | ||
5130 | from the intermediate buffer to the hardware buffer. You can find an | ||
5131 | example in the vxpocket driver. | ||
5132 | </para> | ||
5133 | |||
5134 | <para> | ||
5135 | Another case is when the chip uses a PCI memory-map | ||
5136 | region for the buffer instead of the host memory. In this case, | ||
5137 | mmap is available only on certain architectures like the Intel one. | ||
5138 | In non-mmap mode, the data cannot be transferred as in the normal | ||
5139 | way. Thus you need to define the <structfield>copy</structfield> and | ||
5140 | <structfield>silence</structfield> callbacks as well, | ||
5141 | as in the cases above. The examples are found in | ||
5142 | <filename>rme32.c</filename> and <filename>rme96.c</filename>. | ||
5143 | </para> | ||
5144 | |||
5145 | <para> | ||
5146 | The implementation of the <structfield>copy</structfield> and | ||
5147 | <structfield>silence</structfield> callbacks depends upon | ||
5148 | whether the hardware supports interleaved or non-interleaved | ||
5149 | samples. The <structfield>copy</structfield> callback is | ||
5150 | defined like below, a bit | ||
5151 | differently depending whether the direction is playback or | ||
5152 | capture: | ||
5153 | |||
5154 | <informalexample> | ||
5155 | <programlisting> | ||
5156 | <![CDATA[ | ||
5157 | static int playback_copy(struct snd_pcm_substream *substream, int channel, | ||
5158 | snd_pcm_uframes_t pos, void *src, snd_pcm_uframes_t count); | ||
5159 | static int capture_copy(struct snd_pcm_substream *substream, int channel, | ||
5160 | snd_pcm_uframes_t pos, void *dst, snd_pcm_uframes_t count); | ||
5161 | ]]> | ||
5162 | </programlisting> | ||
5163 | </informalexample> | ||
5164 | </para> | ||
5165 | |||
5166 | <para> | ||
5167 | In the case of interleaved samples, the second argument | ||
5168 | (<parameter>channel</parameter>) is not used. The third argument | ||
5169 | (<parameter>pos</parameter>) points the | ||
5170 | current position offset in frames. | ||
5171 | </para> | ||
5172 | |||
5173 | <para> | ||
5174 | The meaning of the fourth argument is different between | ||
5175 | playback and capture. For playback, it holds the source data | ||
5176 | pointer, and for capture, it's the destination data pointer. | ||
5177 | </para> | ||
5178 | |||
5179 | <para> | ||
5180 | The last argument is the number of frames to be copied. | ||
5181 | </para> | ||
5182 | |||
5183 | <para> | ||
5184 | What you have to do in this callback is again different | ||
5185 | between playback and capture directions. In the | ||
5186 | playback case, you copy the given amount of data | ||
5187 | (<parameter>count</parameter>) at the specified pointer | ||
5188 | (<parameter>src</parameter>) to the specified offset | ||
5189 | (<parameter>pos</parameter>) on the hardware buffer. When | ||
5190 | coded like memcpy-like way, the copy would be like: | ||
5191 | |||
5192 | <informalexample> | ||
5193 | <programlisting> | ||
5194 | <![CDATA[ | ||
5195 | my_memcpy(my_buffer + frames_to_bytes(runtime, pos), src, | ||
5196 | frames_to_bytes(runtime, count)); | ||
5197 | ]]> | ||
5198 | </programlisting> | ||
5199 | </informalexample> | ||
5200 | </para> | ||
5201 | |||
5202 | <para> | ||
5203 | For the capture direction, you copy the given amount of | ||
5204 | data (<parameter>count</parameter>) at the specified offset | ||
5205 | (<parameter>pos</parameter>) on the hardware buffer to the | ||
5206 | specified pointer (<parameter>dst</parameter>). | ||
5207 | |||
5208 | <informalexample> | ||
5209 | <programlisting> | ||
5210 | <![CDATA[ | ||
5211 | my_memcpy(dst, my_buffer + frames_to_bytes(runtime, pos), | ||
5212 | frames_to_bytes(runtime, count)); | ||
5213 | ]]> | ||
5214 | </programlisting> | ||
5215 | </informalexample> | ||
5216 | |||
5217 | Note that both the position and the amount of data are given | ||
5218 | in frames. | ||
5219 | </para> | ||
5220 | |||
5221 | <para> | ||
5222 | In the case of non-interleaved samples, the implementation | ||
5223 | will be a bit more complicated. | ||
5224 | </para> | ||
5225 | |||
5226 | <para> | ||
5227 | You need to check the channel argument, and if it's -1, copy | ||
5228 | the whole channels. Otherwise, you have to copy only the | ||
5229 | specified channel. Please check | ||
5230 | <filename>isa/gus/gus_pcm.c</filename> as an example. | ||
5231 | </para> | ||
5232 | |||
5233 | <para> | ||
5234 | The <structfield>silence</structfield> callback is also | ||
5235 | implemented in a similar way. | ||
5236 | |||
5237 | <informalexample> | ||
5238 | <programlisting> | ||
5239 | <![CDATA[ | ||
5240 | static int silence(struct snd_pcm_substream *substream, int channel, | ||
5241 | snd_pcm_uframes_t pos, snd_pcm_uframes_t count); | ||
5242 | ]]> | ||
5243 | </programlisting> | ||
5244 | </informalexample> | ||
5245 | </para> | ||
5246 | |||
5247 | <para> | ||
5248 | The meanings of arguments are the same as in the | ||
5249 | <structfield>copy</structfield> | ||
5250 | callback, although there is no <parameter>src/dst</parameter> | ||
5251 | argument. In the case of interleaved samples, the channel | ||
5252 | argument has no meaning, as well as on | ||
5253 | <structfield>copy</structfield> callback. | ||
5254 | </para> | ||
5255 | |||
5256 | <para> | ||
5257 | The role of <structfield>silence</structfield> callback is to | ||
5258 | set the given amount | ||
5259 | (<parameter>count</parameter>) of silence data at the | ||
5260 | specified offset (<parameter>pos</parameter>) on the hardware | ||
5261 | buffer. Suppose that the data format is signed (that is, the | ||
5262 | silent-data is 0), and the implementation using a memset-like | ||
5263 | function would be like: | ||
5264 | |||
5265 | <informalexample> | ||
5266 | <programlisting> | ||
5267 | <![CDATA[ | ||
5268 | my_memcpy(my_buffer + frames_to_bytes(runtime, pos), 0, | ||
5269 | frames_to_bytes(runtime, count)); | ||
5270 | ]]> | ||
5271 | </programlisting> | ||
5272 | </informalexample> | ||
5273 | </para> | ||
5274 | |||
5275 | <para> | ||
5276 | In the case of non-interleaved samples, again, the | ||
5277 | implementation becomes a bit more complicated. See, for example, | ||
5278 | <filename>isa/gus/gus_pcm.c</filename>. | ||
5279 | </para> | ||
5280 | </section> | ||
5281 | |||
5282 | <section id="buffer-and-memory-non-contiguous"> | ||
5283 | <title>Non-Contiguous Buffers</title> | ||
5284 | <para> | ||
5285 | If your hardware supports the page table as in emu10k1 or the | ||
5286 | buffer descriptors as in via82xx, you can use the scatter-gather | ||
5287 | (SG) DMA. ALSA provides an interface for handling SG-buffers. | ||
5288 | The API is provided in <filename><sound/pcm.h></filename>. | ||
5289 | </para> | ||
5290 | |||
5291 | <para> | ||
5292 | For creating the SG-buffer handler, call | ||
5293 | <function>snd_pcm_lib_preallocate_pages()</function> or | ||
5294 | <function>snd_pcm_lib_preallocate_pages_for_all()</function> | ||
5295 | with <constant>SNDRV_DMA_TYPE_DEV_SG</constant> | ||
5296 | in the PCM constructor like other PCI pre-allocator. | ||
5297 | You need to pass <function>snd_dma_pci_data(pci)</function>, | ||
5298 | where pci is the struct <structname>pci_dev</structname> pointer | ||
5299 | of the chip as well. | ||
5300 | The <type>struct snd_sg_buf</type> instance is created as | ||
5301 | substream->dma_private. You can cast | ||
5302 | the pointer like: | ||
5303 | |||
5304 | <informalexample> | ||
5305 | <programlisting> | ||
5306 | <![CDATA[ | ||
5307 | struct snd_sg_buf *sgbuf = (struct snd_sg_buf *)substream->dma_private; | ||
5308 | ]]> | ||
5309 | </programlisting> | ||
5310 | </informalexample> | ||
5311 | </para> | ||
5312 | |||
5313 | <para> | ||
5314 | Then call <function>snd_pcm_lib_malloc_pages()</function> | ||
5315 | in the <structfield>hw_params</structfield> callback | ||
5316 | as well as in the case of normal PCI buffer. | ||
5317 | The SG-buffer handler will allocate the non-contiguous kernel | ||
5318 | pages of the given size and map them onto the virtually contiguous | ||
5319 | memory. The virtual pointer is addressed in runtime->dma_area. | ||
5320 | The physical address (runtime->dma_addr) is set to zero, | ||
5321 | because the buffer is physically non-contigous. | ||
5322 | The physical address table is set up in sgbuf->table. | ||
5323 | You can get the physical address at a certain offset via | ||
5324 | <function>snd_pcm_sgbuf_get_addr()</function>. | ||
5325 | </para> | ||
5326 | |||
5327 | <para> | ||
5328 | When a SG-handler is used, you need to set | ||
5329 | <function>snd_pcm_sgbuf_ops_page</function> as | ||
5330 | the <structfield>page</structfield> callback. | ||
5331 | (See <link linkend="pcm-interface-operators-page-callback"> | ||
5332 | <citetitle>page callback section</citetitle></link>.) | ||
5333 | </para> | ||
5334 | |||
5335 | <para> | ||
5336 | To release the data, call | ||
5337 | <function>snd_pcm_lib_free_pages()</function> in the | ||
5338 | <structfield>hw_free</structfield> callback as usual. | ||
5339 | </para> | ||
5340 | </section> | ||
5341 | |||
5342 | <section id="buffer-and-memory-vmalloced"> | ||
5343 | <title>Vmalloc'ed Buffers</title> | ||
5344 | <para> | ||
5345 | It's possible to use a buffer allocated via | ||
5346 | <function>vmalloc</function>, for example, for an intermediate | ||
5347 | buffer. Since the allocated pages are not contiguous, you need | ||
5348 | to set the <structfield>page</structfield> callback to obtain | ||
5349 | the physical address at every offset. | ||
5350 | </para> | ||
5351 | |||
5352 | <para> | ||
5353 | The implementation of <structfield>page</structfield> callback | ||
5354 | would be like this: | ||
5355 | |||
5356 | <informalexample> | ||
5357 | <programlisting> | ||
5358 | <![CDATA[ | ||
5359 | #include <linux/vmalloc.h> | ||
5360 | |||
5361 | /* get the physical page pointer on the given offset */ | ||
5362 | static struct page *mychip_page(struct snd_pcm_substream *substream, | ||
5363 | unsigned long offset) | ||
5364 | { | ||
5365 | void *pageptr = substream->runtime->dma_area + offset; | ||
5366 | return vmalloc_to_page(pageptr); | ||
5367 | } | ||
5368 | ]]> | ||
5369 | </programlisting> | ||
5370 | </informalexample> | ||
5371 | </para> | ||
5372 | </section> | ||
5373 | |||
5374 | </chapter> | ||
5375 | |||
5376 | |||
5377 | <!-- ****************************************************** --> | ||
5378 | <!-- Proc Interface --> | ||
5379 | <!-- ****************************************************** --> | ||
5380 | <chapter id="proc-interface"> | ||
5381 | <title>Proc Interface</title> | ||
5382 | <para> | ||
5383 | ALSA provides an easy interface for procfs. The proc files are | ||
5384 | very useful for debugging. I recommend you set up proc files if | ||
5385 | you write a driver and want to get a running status or register | ||
5386 | dumps. The API is found in | ||
5387 | <filename><sound/info.h></filename>. | ||
5388 | </para> | ||
5389 | |||
5390 | <para> | ||
5391 | To create a proc file, call | ||
5392 | <function>snd_card_proc_new()</function>. | ||
5393 | |||
5394 | <informalexample> | ||
5395 | <programlisting> | ||
5396 | <![CDATA[ | ||
5397 | struct snd_info_entry *entry; | ||
5398 | int err = snd_card_proc_new(card, "my-file", &entry); | ||
5399 | ]]> | ||
5400 | </programlisting> | ||
5401 | </informalexample> | ||
5402 | |||
5403 | where the second argument specifies the name of the proc file to be | ||
5404 | created. The above example will create a file | ||
5405 | <filename>my-file</filename> under the card directory, | ||
5406 | e.g. <filename>/proc/asound/card0/my-file</filename>. | ||
5407 | </para> | ||
5408 | |||
5409 | <para> | ||
5410 | Like other components, the proc entry created via | ||
5411 | <function>snd_card_proc_new()</function> will be registered and | ||
5412 | released automatically in the card registration and release | ||
5413 | functions. | ||
5414 | </para> | ||
5415 | |||
5416 | <para> | ||
5417 | When the creation is successful, the function stores a new | ||
5418 | instance in the pointer given in the third argument. | ||
5419 | It is initialized as a text proc file for read only. To use | ||
5420 | this proc file as a read-only text file as it is, set the read | ||
5421 | callback with a private data via | ||
5422 | <function>snd_info_set_text_ops()</function>. | ||
5423 | |||
5424 | <informalexample> | ||
5425 | <programlisting> | ||
5426 | <![CDATA[ | ||
5427 | snd_info_set_text_ops(entry, chip, my_proc_read); | ||
5428 | ]]> | ||
5429 | </programlisting> | ||
5430 | </informalexample> | ||
5431 | |||
5432 | where the second argument (<parameter>chip</parameter>) is the | ||
5433 | private data to be used in the callbacks. The third parameter | ||
5434 | specifies the read buffer size and the fourth | ||
5435 | (<parameter>my_proc_read</parameter>) is the callback function, which | ||
5436 | is defined like | ||
5437 | |||
5438 | <informalexample> | ||
5439 | <programlisting> | ||
5440 | <![CDATA[ | ||
5441 | static void my_proc_read(struct snd_info_entry *entry, | ||
5442 | struct snd_info_buffer *buffer); | ||
5443 | ]]> | ||
5444 | </programlisting> | ||
5445 | </informalexample> | ||
5446 | |||
5447 | </para> | ||
5448 | |||
5449 | <para> | ||
5450 | In the read callback, use <function>snd_iprintf()</function> for | ||
5451 | output strings, which works just like normal | ||
5452 | <function>printf()</function>. For example, | ||
5453 | |||
5454 | <informalexample> | ||
5455 | <programlisting> | ||
5456 | <![CDATA[ | ||
5457 | static void my_proc_read(struct snd_info_entry *entry, | ||
5458 | struct snd_info_buffer *buffer) | ||
5459 | { | ||
5460 | struct my_chip *chip = entry->private_data; | ||
5461 | |||
5462 | snd_iprintf(buffer, "This is my chip!\n"); | ||
5463 | snd_iprintf(buffer, "Port = %ld\n", chip->port); | ||
5464 | } | ||
5465 | ]]> | ||
5466 | </programlisting> | ||
5467 | </informalexample> | ||
5468 | </para> | ||
5469 | |||
5470 | <para> | ||
5471 | The file permissions can be changed afterwards. As default, it's | ||
5472 | set as read only for all users. If you want to add write | ||
5473 | permission for the user (root as default), do as follows: | ||
5474 | |||
5475 | <informalexample> | ||
5476 | <programlisting> | ||
5477 | <![CDATA[ | ||
5478 | entry->mode = S_IFREG | S_IRUGO | S_IWUSR; | ||
5479 | ]]> | ||
5480 | </programlisting> | ||
5481 | </informalexample> | ||
5482 | |||
5483 | and set the write buffer size and the callback | ||
5484 | |||
5485 | <informalexample> | ||
5486 | <programlisting> | ||
5487 | <![CDATA[ | ||
5488 | entry->c.text.write = my_proc_write; | ||
5489 | ]]> | ||
5490 | </programlisting> | ||
5491 | </informalexample> | ||
5492 | </para> | ||
5493 | |||
5494 | <para> | ||
5495 | For the write callback, you can use | ||
5496 | <function>snd_info_get_line()</function> to get a text line, and | ||
5497 | <function>snd_info_get_str()</function> to retrieve a string from | ||
5498 | the line. Some examples are found in | ||
5499 | <filename>core/oss/mixer_oss.c</filename>, core/oss/and | ||
5500 | <filename>pcm_oss.c</filename>. | ||
5501 | </para> | ||
5502 | |||
5503 | <para> | ||
5504 | For a raw-data proc-file, set the attributes as follows: | ||
5505 | |||
5506 | <informalexample> | ||
5507 | <programlisting> | ||
5508 | <![CDATA[ | ||
5509 | static struct snd_info_entry_ops my_file_io_ops = { | ||
5510 | .read = my_file_io_read, | ||
5511 | }; | ||
5512 | |||
5513 | entry->content = SNDRV_INFO_CONTENT_DATA; | ||
5514 | entry->private_data = chip; | ||
5515 | entry->c.ops = &my_file_io_ops; | ||
5516 | entry->size = 4096; | ||
5517 | entry->mode = S_IFREG | S_IRUGO; | ||
5518 | ]]> | ||
5519 | </programlisting> | ||
5520 | </informalexample> | ||
5521 | </para> | ||
5522 | |||
5523 | <para> | ||
5524 | The callback is much more complicated than the text-file | ||
5525 | version. You need to use a low-level I/O functions such as | ||
5526 | <function>copy_from/to_user()</function> to transfer the | ||
5527 | data. | ||
5528 | |||
5529 | <informalexample> | ||
5530 | <programlisting> | ||
5531 | <![CDATA[ | ||
5532 | static long my_file_io_read(struct snd_info_entry *entry, | ||
5533 | void *file_private_data, | ||
5534 | struct file *file, | ||
5535 | char *buf, | ||
5536 | unsigned long count, | ||
5537 | unsigned long pos) | ||
5538 | { | ||
5539 | long size = count; | ||
5540 | if (pos + size > local_max_size) | ||
5541 | size = local_max_size - pos; | ||
5542 | if (copy_to_user(buf, local_data + pos, size)) | ||
5543 | return -EFAULT; | ||
5544 | return size; | ||
5545 | } | ||
5546 | ]]> | ||
5547 | </programlisting> | ||
5548 | </informalexample> | ||
5549 | </para> | ||
5550 | |||
5551 | </chapter> | ||
5552 | |||
5553 | |||
5554 | <!-- ****************************************************** --> | ||
5555 | <!-- Power Management --> | ||
5556 | <!-- ****************************************************** --> | ||
5557 | <chapter id="power-management"> | ||
5558 | <title>Power Management</title> | ||
5559 | <para> | ||
5560 | If the chip is supposed to work with suspend/resume | ||
5561 | functions, you need to add power-management code to the | ||
5562 | driver. The additional code for power-management should be | ||
5563 | <function>ifdef</function>'ed with | ||
5564 | <constant>CONFIG_PM</constant>. | ||
5565 | </para> | ||
5566 | |||
5567 | <para> | ||
5568 | If the driver <emphasis>fully</emphasis> supports suspend/resume | ||
5569 | that is, the device can be | ||
5570 | properly resumed to its state when suspend was called, | ||
5571 | you can set the <constant>SNDRV_PCM_INFO_RESUME</constant> flag | ||
5572 | in the pcm info field. Usually, this is possible when the | ||
5573 | registers of the chip can be safely saved and restored to | ||
5574 | RAM. If this is set, the trigger callback is called with | ||
5575 | <constant>SNDRV_PCM_TRIGGER_RESUME</constant> after the resume | ||
5576 | callback completes. | ||
5577 | </para> | ||
5578 | |||
5579 | <para> | ||
5580 | Even if the driver doesn't support PM fully but | ||
5581 | partial suspend/resume is still possible, it's still worthy to | ||
5582 | implement suspend/resume callbacks. In such a case, applications | ||
5583 | would reset the status by calling | ||
5584 | <function>snd_pcm_prepare()</function> and restart the stream | ||
5585 | appropriately. Hence, you can define suspend/resume callbacks | ||
5586 | below but don't set <constant>SNDRV_PCM_INFO_RESUME</constant> | ||
5587 | info flag to the PCM. | ||
5588 | </para> | ||
5589 | |||
5590 | <para> | ||
5591 | Note that the trigger with SUSPEND can always be called when | ||
5592 | <function>snd_pcm_suspend_all</function> is called, | ||
5593 | regardless of the <constant>SNDRV_PCM_INFO_RESUME</constant> flag. | ||
5594 | The <constant>RESUME</constant> flag affects only the behavior | ||
5595 | of <function>snd_pcm_resume()</function>. | ||
5596 | (Thus, in theory, | ||
5597 | <constant>SNDRV_PCM_TRIGGER_RESUME</constant> isn't needed | ||
5598 | to be handled in the trigger callback when no | ||
5599 | <constant>SNDRV_PCM_INFO_RESUME</constant> flag is set. But, | ||
5600 | it's better to keep it for compatibility reasons.) | ||
5601 | </para> | ||
5602 | <para> | ||
5603 | In the earlier version of ALSA drivers, a common | ||
5604 | power-management layer was provided, but it has been removed. | ||
5605 | The driver needs to define the suspend/resume hooks according to | ||
5606 | the bus the device is connected to. In the case of PCI drivers, the | ||
5607 | callbacks look like below: | ||
5608 | |||
5609 | <informalexample> | ||
5610 | <programlisting> | ||
5611 | <![CDATA[ | ||
5612 | #ifdef CONFIG_PM | ||
5613 | static int snd_my_suspend(struct pci_dev *pci, pm_message_t state) | ||
5614 | { | ||
5615 | .... /* do things for suspend */ | ||
5616 | return 0; | ||
5617 | } | ||
5618 | static int snd_my_resume(struct pci_dev *pci) | ||
5619 | { | ||
5620 | .... /* do things for suspend */ | ||
5621 | return 0; | ||
5622 | } | ||
5623 | #endif | ||
5624 | ]]> | ||
5625 | </programlisting> | ||
5626 | </informalexample> | ||
5627 | </para> | ||
5628 | |||
5629 | <para> | ||
5630 | The scheme of the real suspend job is as follows. | ||
5631 | |||
5632 | <orderedlist> | ||
5633 | <listitem><para>Retrieve the card and the chip data.</para></listitem> | ||
5634 | <listitem><para>Call <function>snd_power_change_state()</function> with | ||
5635 | <constant>SNDRV_CTL_POWER_D3hot</constant> to change the | ||
5636 | power status.</para></listitem> | ||
5637 | <listitem><para>Call <function>snd_pcm_suspend_all()</function> to suspend the running PCM streams.</para></listitem> | ||
5638 | <listitem><para>If AC97 codecs are used, call | ||
5639 | <function>snd_ac97_suspend()</function> for each codec.</para></listitem> | ||
5640 | <listitem><para>Save the register values if necessary.</para></listitem> | ||
5641 | <listitem><para>Stop the hardware if necessary.</para></listitem> | ||
5642 | <listitem><para>Disable the PCI device by calling | ||
5643 | <function>pci_disable_device()</function>. Then, call | ||
5644 | <function>pci_save_state()</function> at last.</para></listitem> | ||
5645 | </orderedlist> | ||
5646 | </para> | ||
5647 | |||
5648 | <para> | ||
5649 | A typical code would be like: | ||
5650 | |||
5651 | <informalexample> | ||
5652 | <programlisting> | ||
5653 | <![CDATA[ | ||
5654 | static int mychip_suspend(struct pci_dev *pci, pm_message_t state) | ||
5655 | { | ||
5656 | /* (1) */ | ||
5657 | struct snd_card *card = pci_get_drvdata(pci); | ||
5658 | struct mychip *chip = card->private_data; | ||
5659 | /* (2) */ | ||
5660 | snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); | ||
5661 | /* (3) */ | ||
5662 | snd_pcm_suspend_all(chip->pcm); | ||
5663 | /* (4) */ | ||
5664 | snd_ac97_suspend(chip->ac97); | ||
5665 | /* (5) */ | ||
5666 | snd_mychip_save_registers(chip); | ||
5667 | /* (6) */ | ||
5668 | snd_mychip_stop_hardware(chip); | ||
5669 | /* (7) */ | ||
5670 | pci_disable_device(pci); | ||
5671 | pci_save_state(pci); | ||
5672 | return 0; | ||
5673 | } | ||
5674 | ]]> | ||
5675 | </programlisting> | ||
5676 | </informalexample> | ||
5677 | </para> | ||
5678 | |||
5679 | <para> | ||
5680 | The scheme of the real resume job is as follows. | ||
5681 | |||
5682 | <orderedlist> | ||
5683 | <listitem><para>Retrieve the card and the chip data.</para></listitem> | ||
5684 | <listitem><para>Set up PCI. First, call <function>pci_restore_state()</function>. | ||
5685 | Then enable the pci device again by calling <function>pci_enable_device()</function>. | ||
5686 | Call <function>pci_set_master()</function> if necessary, too.</para></listitem> | ||
5687 | <listitem><para>Re-initialize the chip.</para></listitem> | ||
5688 | <listitem><para>Restore the saved registers if necessary.</para></listitem> | ||
5689 | <listitem><para>Resume the mixer, e.g. calling | ||
5690 | <function>snd_ac97_resume()</function>.</para></listitem> | ||
5691 | <listitem><para>Restart the hardware (if any).</para></listitem> | ||
5692 | <listitem><para>Call <function>snd_power_change_state()</function> with | ||
5693 | <constant>SNDRV_CTL_POWER_D0</constant> to notify the processes.</para></listitem> | ||
5694 | </orderedlist> | ||
5695 | </para> | ||
5696 | |||
5697 | <para> | ||
5698 | A typical code would be like: | ||
5699 | |||
5700 | <informalexample> | ||
5701 | <programlisting> | ||
5702 | <![CDATA[ | ||
5703 | static int mychip_resume(struct pci_dev *pci) | ||
5704 | { | ||
5705 | /* (1) */ | ||
5706 | struct snd_card *card = pci_get_drvdata(pci); | ||
5707 | struct mychip *chip = card->private_data; | ||
5708 | /* (2) */ | ||
5709 | pci_restore_state(pci); | ||
5710 | pci_enable_device(pci); | ||
5711 | pci_set_master(pci); | ||
5712 | /* (3) */ | ||
5713 | snd_mychip_reinit_chip(chip); | ||
5714 | /* (4) */ | ||
5715 | snd_mychip_restore_registers(chip); | ||
5716 | /* (5) */ | ||
5717 | snd_ac97_resume(chip->ac97); | ||
5718 | /* (6) */ | ||
5719 | snd_mychip_restart_chip(chip); | ||
5720 | /* (7) */ | ||
5721 | snd_power_change_state(card, SNDRV_CTL_POWER_D0); | ||
5722 | return 0; | ||
5723 | } | ||
5724 | ]]> | ||
5725 | </programlisting> | ||
5726 | </informalexample> | ||
5727 | </para> | ||
5728 | |||
5729 | <para> | ||
5730 | As shown in the above, it's better to save registers after | ||
5731 | suspending the PCM operations via | ||
5732 | <function>snd_pcm_suspend_all()</function> or | ||
5733 | <function>snd_pcm_suspend()</function>. It means that the PCM | ||
5734 | streams are already stoppped when the register snapshot is | ||
5735 | taken. But, remember that you don't have to restart the PCM | ||
5736 | stream in the resume callback. It'll be restarted via | ||
5737 | trigger call with <constant>SNDRV_PCM_TRIGGER_RESUME</constant> | ||
5738 | when necessary. | ||
5739 | </para> | ||
5740 | |||
5741 | <para> | ||
5742 | OK, we have all callbacks now. Let's set them up. In the | ||
5743 | initialization of the card, make sure that you can get the chip | ||
5744 | data from the card instance, typically via | ||
5745 | <structfield>private_data</structfield> field, in case you | ||
5746 | created the chip data individually. | ||
5747 | |||
5748 | <informalexample> | ||
5749 | <programlisting> | ||
5750 | <![CDATA[ | ||
5751 | static int __devinit snd_mychip_probe(struct pci_dev *pci, | ||
5752 | const struct pci_device_id *pci_id) | ||
5753 | { | ||
5754 | .... | ||
5755 | struct snd_card *card; | ||
5756 | struct mychip *chip; | ||
5757 | int err; | ||
5758 | .... | ||
5759 | err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card); | ||
5760 | .... | ||
5761 | chip = kzalloc(sizeof(*chip), GFP_KERNEL); | ||
5762 | .... | ||
5763 | card->private_data = chip; | ||
5764 | .... | ||
5765 | } | ||
5766 | ]]> | ||
5767 | </programlisting> | ||
5768 | </informalexample> | ||
5769 | |||
5770 | When you created the chip data with | ||
5771 | <function>snd_card_create()</function>, it's anyway accessible | ||
5772 | via <structfield>private_data</structfield> field. | ||
5773 | |||
5774 | <informalexample> | ||
5775 | <programlisting> | ||
5776 | <![CDATA[ | ||
5777 | static int __devinit snd_mychip_probe(struct pci_dev *pci, | ||
5778 | const struct pci_device_id *pci_id) | ||
5779 | { | ||
5780 | .... | ||
5781 | struct snd_card *card; | ||
5782 | struct mychip *chip; | ||
5783 | int err; | ||
5784 | .... | ||
5785 | err = snd_card_create(index[dev], id[dev], THIS_MODULE, | ||
5786 | sizeof(struct mychip), &card); | ||
5787 | .... | ||
5788 | chip = card->private_data; | ||
5789 | .... | ||
5790 | } | ||
5791 | ]]> | ||
5792 | </programlisting> | ||
5793 | </informalexample> | ||
5794 | |||
5795 | </para> | ||
5796 | |||
5797 | <para> | ||
5798 | If you need a space to save the registers, allocate the | ||
5799 | buffer for it here, too, since it would be fatal | ||
5800 | if you cannot allocate a memory in the suspend phase. | ||
5801 | The allocated buffer should be released in the corresponding | ||
5802 | destructor. | ||
5803 | </para> | ||
5804 | |||
5805 | <para> | ||
5806 | And next, set suspend/resume callbacks to the pci_driver. | ||
5807 | |||
5808 | <informalexample> | ||
5809 | <programlisting> | ||
5810 | <![CDATA[ | ||
5811 | static struct pci_driver driver = { | ||
5812 | .name = "My Chip", | ||
5813 | .id_table = snd_my_ids, | ||
5814 | .probe = snd_my_probe, | ||
5815 | .remove = __devexit_p(snd_my_remove), | ||
5816 | #ifdef CONFIG_PM | ||
5817 | .suspend = snd_my_suspend, | ||
5818 | .resume = snd_my_resume, | ||
5819 | #endif | ||
5820 | }; | ||
5821 | ]]> | ||
5822 | </programlisting> | ||
5823 | </informalexample> | ||
5824 | </para> | ||
5825 | |||
5826 | </chapter> | ||
5827 | |||
5828 | |||
5829 | <!-- ****************************************************** --> | ||
5830 | <!-- Module Parameters --> | ||
5831 | <!-- ****************************************************** --> | ||
5832 | <chapter id="module-parameters"> | ||
5833 | <title>Module Parameters</title> | ||
5834 | <para> | ||
5835 | There are standard module options for ALSA. At least, each | ||
5836 | module should have the <parameter>index</parameter>, | ||
5837 | <parameter>id</parameter> and <parameter>enable</parameter> | ||
5838 | options. | ||
5839 | </para> | ||
5840 | |||
5841 | <para> | ||
5842 | If the module supports multiple cards (usually up to | ||
5843 | 8 = <constant>SNDRV_CARDS</constant> cards), they should be | ||
5844 | arrays. The default initial values are defined already as | ||
5845 | constants for easier programming: | ||
5846 | |||
5847 | <informalexample> | ||
5848 | <programlisting> | ||
5849 | <![CDATA[ | ||
5850 | static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; | ||
5851 | static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; | ||
5852 | static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; | ||
5853 | ]]> | ||
5854 | </programlisting> | ||
5855 | </informalexample> | ||
5856 | </para> | ||
5857 | |||
5858 | <para> | ||
5859 | If the module supports only a single card, they could be single | ||
5860 | variables, instead. <parameter>enable</parameter> option is not | ||
5861 | always necessary in this case, but it would be better to have a | ||
5862 | dummy option for compatibility. | ||
5863 | </para> | ||
5864 | |||
5865 | <para> | ||
5866 | The module parameters must be declared with the standard | ||
5867 | <function>module_param()()</function>, | ||
5868 | <function>module_param_array()()</function> and | ||
5869 | <function>MODULE_PARM_DESC()</function> macros. | ||
5870 | </para> | ||
5871 | |||
5872 | <para> | ||
5873 | The typical coding would be like below: | ||
5874 | |||
5875 | <informalexample> | ||
5876 | <programlisting> | ||
5877 | <![CDATA[ | ||
5878 | #define CARD_NAME "My Chip" | ||
5879 | |||
5880 | module_param_array(index, int, NULL, 0444); | ||
5881 | MODULE_PARM_DESC(index, "Index value for " CARD_NAME " soundcard."); | ||
5882 | module_param_array(id, charp, NULL, 0444); | ||
5883 | MODULE_PARM_DESC(id, "ID string for " CARD_NAME " soundcard."); | ||
5884 | module_param_array(enable, bool, NULL, 0444); | ||
5885 | MODULE_PARM_DESC(enable, "Enable " CARD_NAME " soundcard."); | ||
5886 | ]]> | ||
5887 | </programlisting> | ||
5888 | </informalexample> | ||
5889 | </para> | ||
5890 | |||
5891 | <para> | ||
5892 | Also, don't forget to define the module description, classes, | ||
5893 | license and devices. Especially, the recent modprobe requires to | ||
5894 | define the module license as GPL, etc., otherwise the system is | ||
5895 | shown as <quote>tainted</quote>. | ||
5896 | |||
5897 | <informalexample> | ||
5898 | <programlisting> | ||
5899 | <![CDATA[ | ||
5900 | MODULE_DESCRIPTION("My Chip"); | ||
5901 | MODULE_LICENSE("GPL"); | ||
5902 | MODULE_SUPPORTED_DEVICE("{{Vendor,My Chip Name}}"); | ||
5903 | ]]> | ||
5904 | </programlisting> | ||
5905 | </informalexample> | ||
5906 | </para> | ||
5907 | |||
5908 | </chapter> | ||
5909 | |||
5910 | |||
5911 | <!-- ****************************************************** --> | ||
5912 | <!-- How To Put Your Driver --> | ||
5913 | <!-- ****************************************************** --> | ||
5914 | <chapter id="how-to-put-your-driver"> | ||
5915 | <title>How To Put Your Driver Into ALSA Tree</title> | ||
5916 | <section> | ||
5917 | <title>General</title> | ||
5918 | <para> | ||
5919 | So far, you've learned how to write the driver codes. | ||
5920 | And you might have a question now: how to put my own | ||
5921 | driver into the ALSA driver tree? | ||
5922 | Here (finally :) the standard procedure is described briefly. | ||
5923 | </para> | ||
5924 | |||
5925 | <para> | ||
5926 | Suppose that you create a new PCI driver for the card | ||
5927 | <quote>xyz</quote>. The card module name would be | ||
5928 | snd-xyz. The new driver is usually put into the alsa-driver | ||
5929 | tree, <filename>alsa-driver/pci</filename> directory in | ||
5930 | the case of PCI cards. | ||
5931 | Then the driver is evaluated, audited and tested | ||
5932 | by developers and users. After a certain time, the driver | ||
5933 | will go to the alsa-kernel tree (to the corresponding directory, | ||
5934 | such as <filename>alsa-kernel/pci</filename>) and eventually | ||
5935 | will be integrated into the Linux 2.6 tree (the directory would be | ||
5936 | <filename>linux/sound/pci</filename>). | ||
5937 | </para> | ||
5938 | |||
5939 | <para> | ||
5940 | In the following sections, the driver code is supposed | ||
5941 | to be put into alsa-driver tree. The two cases are covered: | ||
5942 | a driver consisting of a single source file and one consisting | ||
5943 | of several source files. | ||
5944 | </para> | ||
5945 | </section> | ||
5946 | |||
5947 | <section> | ||
5948 | <title>Driver with A Single Source File</title> | ||
5949 | <para> | ||
5950 | <orderedlist> | ||
5951 | <listitem> | ||
5952 | <para> | ||
5953 | Modify alsa-driver/pci/Makefile | ||
5954 | </para> | ||
5955 | |||
5956 | <para> | ||
5957 | Suppose you have a file xyz.c. Add the following | ||
5958 | two lines | ||
5959 | <informalexample> | ||
5960 | <programlisting> | ||
5961 | <![CDATA[ | ||
5962 | snd-xyz-objs := xyz.o | ||
5963 | obj-$(CONFIG_SND_XYZ) += snd-xyz.o | ||
5964 | ]]> | ||
5965 | </programlisting> | ||
5966 | </informalexample> | ||
5967 | </para> | ||
5968 | </listitem> | ||
5969 | |||
5970 | <listitem> | ||
5971 | <para> | ||
5972 | Create the Kconfig entry | ||
5973 | </para> | ||
5974 | |||
5975 | <para> | ||
5976 | Add the new entry of Kconfig for your xyz driver. | ||
5977 | <informalexample> | ||
5978 | <programlisting> | ||
5979 | <![CDATA[ | ||
5980 | config SND_XYZ | ||
5981 | tristate "Foobar XYZ" | ||
5982 | depends on SND | ||
5983 | select SND_PCM | ||
5984 | help | ||
5985 | Say Y here to include support for Foobar XYZ soundcard. | ||
5986 | |||
5987 | To compile this driver as a module, choose M here: the module | ||
5988 | will be called snd-xyz. | ||
5989 | ]]> | ||
5990 | </programlisting> | ||
5991 | </informalexample> | ||
5992 | |||
5993 | the line, select SND_PCM, specifies that the driver xyz supports | ||
5994 | PCM. In addition to SND_PCM, the following components are | ||
5995 | supported for select command: | ||
5996 | SND_RAWMIDI, SND_TIMER, SND_HWDEP, SND_MPU401_UART, | ||
5997 | SND_OPL3_LIB, SND_OPL4_LIB, SND_VX_LIB, SND_AC97_CODEC. | ||
5998 | Add the select command for each supported component. | ||
5999 | </para> | ||
6000 | |||
6001 | <para> | ||
6002 | Note that some selections imply the lowlevel selections. | ||
6003 | For example, PCM includes TIMER, MPU401_UART includes RAWMIDI, | ||
6004 | AC97_CODEC includes PCM, and OPL3_LIB includes HWDEP. | ||
6005 | You don't need to give the lowlevel selections again. | ||
6006 | </para> | ||
6007 | |||
6008 | <para> | ||
6009 | For the details of Kconfig script, refer to the kbuild | ||
6010 | documentation. | ||
6011 | </para> | ||
6012 | |||
6013 | </listitem> | ||
6014 | |||
6015 | <listitem> | ||
6016 | <para> | ||
6017 | Run cvscompile script to re-generate the configure script and | ||
6018 | build the whole stuff again. | ||
6019 | </para> | ||
6020 | </listitem> | ||
6021 | </orderedlist> | ||
6022 | </para> | ||
6023 | </section> | ||
6024 | |||
6025 | <section> | ||
6026 | <title>Drivers with Several Source Files</title> | ||
6027 | <para> | ||
6028 | Suppose that the driver snd-xyz have several source files. | ||
6029 | They are located in the new subdirectory, | ||
6030 | pci/xyz. | ||
6031 | |||
6032 | <orderedlist> | ||
6033 | <listitem> | ||
6034 | <para> | ||
6035 | Add a new directory (<filename>xyz</filename>) in | ||
6036 | <filename>alsa-driver/pci/Makefile</filename> as below | ||
6037 | |||
6038 | <informalexample> | ||
6039 | <programlisting> | ||
6040 | <![CDATA[ | ||
6041 | obj-$(CONFIG_SND) += xyz/ | ||
6042 | ]]> | ||
6043 | </programlisting> | ||
6044 | </informalexample> | ||
6045 | </para> | ||
6046 | </listitem> | ||
6047 | |||
6048 | <listitem> | ||
6049 | <para> | ||
6050 | Under the directory <filename>xyz</filename>, create a Makefile | ||
6051 | |||
6052 | <example> | ||
6053 | <title>Sample Makefile for a driver xyz</title> | ||
6054 | <programlisting> | ||
6055 | <![CDATA[ | ||
6056 | ifndef SND_TOPDIR | ||
6057 | SND_TOPDIR=../.. | ||
6058 | endif | ||
6059 | |||
6060 | include $(SND_TOPDIR)/toplevel.config | ||
6061 | include $(SND_TOPDIR)/Makefile.conf | ||
6062 | |||
6063 | snd-xyz-objs := xyz.o abc.o def.o | ||
6064 | |||
6065 | obj-$(CONFIG_SND_XYZ) += snd-xyz.o | ||
6066 | |||
6067 | include $(SND_TOPDIR)/Rules.make | ||
6068 | ]]> | ||
6069 | </programlisting> | ||
6070 | </example> | ||
6071 | </para> | ||
6072 | </listitem> | ||
6073 | |||
6074 | <listitem> | ||
6075 | <para> | ||
6076 | Create the Kconfig entry | ||
6077 | </para> | ||
6078 | |||
6079 | <para> | ||
6080 | This procedure is as same as in the last section. | ||
6081 | </para> | ||
6082 | </listitem> | ||
6083 | |||
6084 | <listitem> | ||
6085 | <para> | ||
6086 | Run cvscompile script to re-generate the configure script and | ||
6087 | build the whole stuff again. | ||
6088 | </para> | ||
6089 | </listitem> | ||
6090 | </orderedlist> | ||
6091 | </para> | ||
6092 | </section> | ||
6093 | |||
6094 | </chapter> | ||
6095 | |||
6096 | <!-- ****************************************************** --> | ||
6097 | <!-- Useful Functions --> | ||
6098 | <!-- ****************************************************** --> | ||
6099 | <chapter id="useful-functions"> | ||
6100 | <title>Useful Functions</title> | ||
6101 | |||
6102 | <section id="useful-functions-snd-printk"> | ||
6103 | <title><function>snd_printk()</function> and friends</title> | ||
6104 | <para> | ||
6105 | ALSA provides a verbose version of the | ||
6106 | <function>printk()</function> function. If a kernel config | ||
6107 | <constant>CONFIG_SND_VERBOSE_PRINTK</constant> is set, this | ||
6108 | function prints the given message together with the file name | ||
6109 | and the line of the caller. The <constant>KERN_XXX</constant> | ||
6110 | prefix is processed as | ||
6111 | well as the original <function>printk()</function> does, so it's | ||
6112 | recommended to add this prefix, e.g. | ||
6113 | |||
6114 | <informalexample> | ||
6115 | <programlisting> | ||
6116 | <![CDATA[ | ||
6117 | snd_printk(KERN_ERR "Oh my, sorry, it's extremely bad!\n"); | ||
6118 | ]]> | ||
6119 | </programlisting> | ||
6120 | </informalexample> | ||
6121 | </para> | ||
6122 | |||
6123 | <para> | ||
6124 | There are also <function>printk()</function>'s for | ||
6125 | debugging. <function>snd_printd()</function> can be used for | ||
6126 | general debugging purposes. If | ||
6127 | <constant>CONFIG_SND_DEBUG</constant> is set, this function is | ||
6128 | compiled, and works just like | ||
6129 | <function>snd_printk()</function>. If the ALSA is compiled | ||
6130 | without the debugging flag, it's ignored. | ||
6131 | </para> | ||
6132 | |||
6133 | <para> | ||
6134 | <function>snd_printdd()</function> is compiled in only when | ||
6135 | <constant>CONFIG_SND_DEBUG_VERBOSE</constant> is set. Please note | ||
6136 | that <constant>CONFIG_SND_DEBUG_VERBOSE</constant> is not set as default | ||
6137 | even if you configure the alsa-driver with | ||
6138 | <option>--with-debug=full</option> option. You need to give | ||
6139 | explicitly <option>--with-debug=detect</option> option instead. | ||
6140 | </para> | ||
6141 | </section> | ||
6142 | |||
6143 | <section id="useful-functions-snd-bug"> | ||
6144 | <title><function>snd_BUG()</function></title> | ||
6145 | <para> | ||
6146 | It shows the <computeroutput>BUG?</computeroutput> message and | ||
6147 | stack trace as well as <function>snd_BUG_ON</function> at the point. | ||
6148 | It's useful to show that a fatal error happens there. | ||
6149 | </para> | ||
6150 | <para> | ||
6151 | When no debug flag is set, this macro is ignored. | ||
6152 | </para> | ||
6153 | </section> | ||
6154 | |||
6155 | <section id="useful-functions-snd-bug-on"> | ||
6156 | <title><function>snd_BUG_ON()</function></title> | ||
6157 | <para> | ||
6158 | <function>snd_BUG_ON()</function> macro is similar with | ||
6159 | <function>WARN_ON()</function> macro. For example, | ||
6160 | |||
6161 | <informalexample> | ||
6162 | <programlisting> | ||
6163 | <![CDATA[ | ||
6164 | snd_BUG_ON(!pointer); | ||
6165 | ]]> | ||
6166 | </programlisting> | ||
6167 | </informalexample> | ||
6168 | |||
6169 | or it can be used as the condition, | ||
6170 | <informalexample> | ||
6171 | <programlisting> | ||
6172 | <![CDATA[ | ||
6173 | if (snd_BUG_ON(non_zero_is_bug)) | ||
6174 | return -EINVAL; | ||
6175 | ]]> | ||
6176 | </programlisting> | ||
6177 | </informalexample> | ||
6178 | |||
6179 | </para> | ||
6180 | |||
6181 | <para> | ||
6182 | The macro takes an conditional expression to evaluate. | ||
6183 | When <constant>CONFIG_SND_DEBUG</constant>, is set, the | ||
6184 | expression is actually evaluated. If it's non-zero, it shows | ||
6185 | the warning message such as | ||
6186 | <computeroutput>BUG? (xxx)</computeroutput> | ||
6187 | normally followed by stack trace. It returns the evaluated | ||
6188 | value. | ||
6189 | When no <constant>CONFIG_SND_DEBUG</constant> is set, this | ||
6190 | macro always returns zero. | ||
6191 | </para> | ||
6192 | |||
6193 | </section> | ||
6194 | |||
6195 | </chapter> | ||
6196 | |||
6197 | |||
6198 | <!-- ****************************************************** --> | ||
6199 | <!-- Acknowledgments --> | ||
6200 | <!-- ****************************************************** --> | ||
6201 | <chapter id="acknowledgments"> | ||
6202 | <title>Acknowledgments</title> | ||
6203 | <para> | ||
6204 | I would like to thank Phil Kerr for his help for improvement and | ||
6205 | corrections of this document. | ||
6206 | </para> | ||
6207 | <para> | ||
6208 | Kevin Conder reformatted the original plain-text to the | ||
6209 | DocBook format. | ||
6210 | </para> | ||
6211 | <para> | ||
6212 | Giuliano Pochini corrected typos and contributed the example codes | ||
6213 | in the hardware constraints section. | ||
6214 | </para> | ||
6215 | </chapter> | ||
6216 | </book> | ||