aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/DocBook/writing-an-alsa-driver.tmpl
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/DocBook/writing-an-alsa-driver.tmpl')
-rw-r--r--Documentation/DocBook/writing-an-alsa-driver.tmpl6216
1 files changed, 6216 insertions, 0 deletions
diff --git a/Documentation/DocBook/writing-an-alsa-driver.tmpl b/Documentation/DocBook/writing-an-alsa-driver.tmpl
new file mode 100644
index 000000000000..7a2e0e98986a
--- /dev/null
+++ b/Documentation/DocBook/writing-an-alsa-driver.tmpl
@@ -0,0 +1,6216 @@
1<?xml version="1.0" encoding="UTF-8"?>
2<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
3 "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
4
5<!-- ****************************************************** -->
6<!-- Header -->
7<!-- ****************************************************** -->
8<book id="Writing-an-ALSA-Driver">
9 <bookinfo>
10 <title>Writing an ALSA Driver</title>
11 <author>
12 <firstname>Takashi</firstname>
13 <surname>Iwai</surname>
14 <affiliation>
15 <address>
16 <email>tiwai@suse.de</email>
17 </address>
18 </affiliation>
19 </author>
20
21 <date>Oct 15, 2007</date>
22 <edition>0.3.7</edition>
23
24 <abstract>
25 <para>
26 This document describes how to write an ALSA (Advanced Linux
27 Sound Architecture) driver.
28 </para>
29 </abstract>
30
31 <legalnotice>
32 <para>
33 Copyright (c) 2002-2005 Takashi Iwai <email>tiwai@suse.de</email>
34 </para>
35
36 <para>
37 This document is free; you can redistribute it and/or modify it
38 under the terms of the GNU General Public License as published by
39 the Free Software Foundation; either version 2 of the License, or
40 (at your option) any later version.
41 </para>
42
43 <para>
44 This document is distributed in the hope that it will be useful,
45 but <emphasis>WITHOUT ANY WARRANTY</emphasis>; without even the
46 implied warranty of <emphasis>MERCHANTABILITY or FITNESS FOR A
47 PARTICULAR PURPOSE</emphasis>. See the GNU General Public License
48 for more details.
49 </para>
50
51 <para>
52 You should have received a copy of the GNU General Public
53 License along with this program; if not, write to the Free
54 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
55 MA 02111-1307 USA
56 </para>
57 </legalnotice>
58
59 </bookinfo>
60
61<!-- ****************************************************** -->
62<!-- Preface -->
63<!-- ****************************************************** -->
64 <preface id="preface">
65 <title>Preface</title>
66 <para>
67 This document describes how to write an
68 <ulink url="http://www.alsa-project.org/"><citetitle>
69 ALSA (Advanced Linux Sound Architecture)</citetitle></ulink>
70 driver. The document focuses mainly on PCI soundcards.
71 In the case of other device types, the API might
72 be different, too. However, at least the ALSA kernel API is
73 consistent, and therefore it would be still a bit help for
74 writing them.
75 </para>
76
77 <para>
78 This document targets people who already have enough
79 C language skills and have basic linux kernel programming
80 knowledge. This document doesn't explain the general
81 topic of linux kernel coding and doesn't cover low-level
82 driver implementation details. It only describes
83 the standard way to write a PCI sound driver on ALSA.
84 </para>
85
86 <para>
87 If you are already familiar with the older ALSA ver.0.5.x API, you
88 can check the drivers such as <filename>sound/pci/es1938.c</filename> or
89 <filename>sound/pci/maestro3.c</filename> which have also almost the same
90 code-base in the ALSA 0.5.x tree, so you can compare the differences.
91 </para>
92
93 <para>
94 This document is still a draft version. Any feedback and
95 corrections, please!!
96 </para>
97 </preface>
98
99
100<!-- ****************************************************** -->
101<!-- File Tree Structure -->
102<!-- ****************************************************** -->
103 <chapter id="file-tree">
104 <title>File Tree Structure</title>
105
106 <section id="file-tree-general">
107 <title>General</title>
108 <para>
109 The ALSA drivers are provided in two ways.
110 </para>
111
112 <para>
113 One is the trees provided as a tarball or via cvs from the
114 ALSA's ftp site, and another is the 2.6 (or later) Linux kernel
115 tree. To synchronize both, the ALSA driver tree is split into
116 two different trees: alsa-kernel and alsa-driver. The former
117 contains purely the source code for the Linux 2.6 (or later)
118 tree. This tree is designed only for compilation on 2.6 or
119 later environment. The latter, alsa-driver, contains many subtle
120 files for compiling ALSA drivers outside of the Linux kernel tree,
121 wrapper functions for older 2.2 and 2.4 kernels, to adapt the latest kernel API,
122 and additional drivers which are still in development or in
123 tests. The drivers in alsa-driver tree will be moved to
124 alsa-kernel (and eventually to the 2.6 kernel tree) when they are
125 finished and confirmed to work fine.
126 </para>
127
128 <para>
129 The file tree structure of ALSA driver is depicted below. Both
130 alsa-kernel and alsa-driver have almost the same file
131 structure, except for <quote>core</quote> directory. It's
132 named as <quote>acore</quote> in alsa-driver tree.
133
134 <example>
135 <title>ALSA File Tree Structure</title>
136 <literallayout>
137 sound
138 /core
139 /oss
140 /seq
141 /oss
142 /instr
143 /ioctl32
144 /include
145 /drivers
146 /mpu401
147 /opl3
148 /i2c
149 /l3
150 /synth
151 /emux
152 /pci
153 /(cards)
154 /isa
155 /(cards)
156 /arm
157 /ppc
158 /sparc
159 /usb
160 /pcmcia /(cards)
161 /oss
162 </literallayout>
163 </example>
164 </para>
165 </section>
166
167 <section id="file-tree-core-directory">
168 <title>core directory</title>
169 <para>
170 This directory contains the middle layer which is the heart
171 of ALSA drivers. In this directory, the native ALSA modules are
172 stored. The sub-directories contain different modules and are
173 dependent upon the kernel config.
174 </para>
175
176 <section id="file-tree-core-directory-oss">
177 <title>core/oss</title>
178
179 <para>
180 The codes for PCM and mixer OSS emulation modules are stored
181 in this directory. The rawmidi OSS emulation is included in
182 the ALSA rawmidi code since it's quite small. The sequencer
183 code is stored in <filename>core/seq/oss</filename> directory (see
184 <link linkend="file-tree-core-directory-seq-oss"><citetitle>
185 below</citetitle></link>).
186 </para>
187 </section>
188
189 <section id="file-tree-core-directory-ioctl32">
190 <title>core/ioctl32</title>
191
192 <para>
193 This directory contains the 32bit-ioctl wrappers for 64bit
194 architectures such like x86-64, ppc64 and sparc64. For 32bit
195 and alpha architectures, these are not compiled.
196 </para>
197 </section>
198
199 <section id="file-tree-core-directory-seq">
200 <title>core/seq</title>
201 <para>
202 This directory and its sub-directories are for the ALSA
203 sequencer. This directory contains the sequencer core and
204 primary sequencer modules such like snd-seq-midi,
205 snd-seq-virmidi, etc. They are compiled only when
206 <constant>CONFIG_SND_SEQUENCER</constant> is set in the kernel
207 config.
208 </para>
209 </section>
210
211 <section id="file-tree-core-directory-seq-oss">
212 <title>core/seq/oss</title>
213 <para>
214 This contains the OSS sequencer emulation codes.
215 </para>
216 </section>
217
218 <section id="file-tree-core-directory-deq-instr">
219 <title>core/seq/instr</title>
220 <para>
221 This directory contains the modules for the sequencer
222 instrument layer.
223 </para>
224 </section>
225 </section>
226
227 <section id="file-tree-include-directory">
228 <title>include directory</title>
229 <para>
230 This is the place for the public header files of ALSA drivers,
231 which are to be exported to user-space, or included by
232 several files at different directories. Basically, the private
233 header files should not be placed in this directory, but you may
234 still find files there, due to historical reasons :)
235 </para>
236 </section>
237
238 <section id="file-tree-drivers-directory">
239 <title>drivers directory</title>
240 <para>
241 This directory contains code shared among different drivers
242 on different architectures. They are hence supposed not to be
243 architecture-specific.
244 For example, the dummy pcm driver and the serial MIDI
245 driver are found in this directory. In the sub-directories,
246 there is code for components which are independent from
247 bus and cpu architectures.
248 </para>
249
250 <section id="file-tree-drivers-directory-mpu401">
251 <title>drivers/mpu401</title>
252 <para>
253 The MPU401 and MPU401-UART modules are stored here.
254 </para>
255 </section>
256
257 <section id="file-tree-drivers-directory-opl3">
258 <title>drivers/opl3 and opl4</title>
259 <para>
260 The OPL3 and OPL4 FM-synth stuff is found here.
261 </para>
262 </section>
263 </section>
264
265 <section id="file-tree-i2c-directory">
266 <title>i2c directory</title>
267 <para>
268 This contains the ALSA i2c components.
269 </para>
270
271 <para>
272 Although there is a standard i2c layer on Linux, ALSA has its
273 own i2c code for some cards, because the soundcard needs only a
274 simple operation and the standard i2c API is too complicated for
275 such a purpose.
276 </para>
277
278 <section id="file-tree-i2c-directory-l3">
279 <title>i2c/l3</title>
280 <para>
281 This is a sub-directory for ARM L3 i2c.
282 </para>
283 </section>
284 </section>
285
286 <section id="file-tree-synth-directory">
287 <title>synth directory</title>
288 <para>
289 This contains the synth middle-level modules.
290 </para>
291
292 <para>
293 So far, there is only Emu8000/Emu10k1 synth driver under
294 the <filename>synth/emux</filename> sub-directory.
295 </para>
296 </section>
297
298 <section id="file-tree-pci-directory">
299 <title>pci directory</title>
300 <para>
301 This directory and its sub-directories hold the top-level card modules
302 for PCI soundcards and the code specific to the PCI BUS.
303 </para>
304
305 <para>
306 The drivers compiled from a single file are stored directly
307 in the pci directory, while the drivers with several source files are
308 stored on their own sub-directory (e.g. emu10k1, ice1712).
309 </para>
310 </section>
311
312 <section id="file-tree-isa-directory">
313 <title>isa directory</title>
314 <para>
315 This directory and its sub-directories hold the top-level card modules
316 for ISA soundcards.
317 </para>
318 </section>
319
320 <section id="file-tree-arm-ppc-sparc-directories">
321 <title>arm, ppc, and sparc directories</title>
322 <para>
323 They are used for top-level card modules which are
324 specific to one of these architectures.
325 </para>
326 </section>
327
328 <section id="file-tree-usb-directory">
329 <title>usb directory</title>
330 <para>
331 This directory contains the USB-audio driver. In the latest version, the
332 USB MIDI driver is integrated in the usb-audio driver.
333 </para>
334 </section>
335
336 <section id="file-tree-pcmcia-directory">
337 <title>pcmcia directory</title>
338 <para>
339 The PCMCIA, especially PCCard drivers will go here. CardBus
340 drivers will be in the pci directory, because their API is identical
341 to that of standard PCI cards.
342 </para>
343 </section>
344
345 <section id="file-tree-oss-directory">
346 <title>oss directory</title>
347 <para>
348 The OSS/Lite source files are stored here in Linux 2.6 (or
349 later) tree. In the ALSA driver tarball, this directory is empty,
350 of course :)
351 </para>
352 </section>
353 </chapter>
354
355
356<!-- ****************************************************** -->
357<!-- Basic Flow for PCI Drivers -->
358<!-- ****************************************************** -->
359 <chapter id="basic-flow">
360 <title>Basic Flow for PCI Drivers</title>
361
362 <section id="basic-flow-outline">
363 <title>Outline</title>
364 <para>
365 The minimum flow for PCI soundcards is as follows:
366
367 <itemizedlist>
368 <listitem><para>define the PCI ID table (see the section
369 <link linkend="pci-resource-entries"><citetitle>PCI Entries
370 </citetitle></link>).</para></listitem>
371 <listitem><para>create <function>probe()</function> callback.</para></listitem>
372 <listitem><para>create <function>remove()</function> callback.</para></listitem>
373 <listitem><para>create a <structname>pci_driver</structname> structure
374 containing the three pointers above.</para></listitem>
375 <listitem><para>create an <function>init()</function> function just calling
376 the <function>pci_register_driver()</function> to register the pci_driver table
377 defined above.</para></listitem>
378 <listitem><para>create an <function>exit()</function> function to call
379 the <function>pci_unregister_driver()</function> function.</para></listitem>
380 </itemizedlist>
381 </para>
382 </section>
383
384 <section id="basic-flow-example">
385 <title>Full Code Example</title>
386 <para>
387 The code example is shown below. Some parts are kept
388 unimplemented at this moment but will be filled in the
389 next sections. The numbers in the comment lines of the
390 <function>snd_mychip_probe()</function> function
391 refer to details explained in the following section.
392
393 <example>
394 <title>Basic Flow for PCI Drivers - Example</title>
395 <programlisting>
396<![CDATA[
397 #include <linux/init.h>
398 #include <linux/pci.h>
399 #include <linux/slab.h>
400 #include <sound/core.h>
401 #include <sound/initval.h>
402
403 /* module parameters (see "Module Parameters") */
404 /* SNDRV_CARDS: maximum number of cards supported by this module */
405 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
406 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
407 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
408
409 /* definition of the chip-specific record */
410 struct mychip {
411 struct snd_card *card;
412 /* the rest of the implementation will be in section
413 * "PCI Resource Management"
414 */
415 };
416
417 /* chip-specific destructor
418 * (see "PCI Resource Management")
419 */
420 static int snd_mychip_free(struct mychip *chip)
421 {
422 .... /* will be implemented later... */
423 }
424
425 /* component-destructor
426 * (see "Management of Cards and Components")
427 */
428 static int snd_mychip_dev_free(struct snd_device *device)
429 {
430 return snd_mychip_free(device->device_data);
431 }
432
433 /* chip-specific constructor
434 * (see "Management of Cards and Components")
435 */
436 static int __devinit snd_mychip_create(struct snd_card *card,
437 struct pci_dev *pci,
438 struct mychip **rchip)
439 {
440 struct mychip *chip;
441 int err;
442 static struct snd_device_ops ops = {
443 .dev_free = snd_mychip_dev_free,
444 };
445
446 *rchip = NULL;
447
448 /* check PCI availability here
449 * (see "PCI Resource Management")
450 */
451 ....
452
453 /* allocate a chip-specific data with zero filled */
454 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
455 if (chip == NULL)
456 return -ENOMEM;
457
458 chip->card = card;
459
460 /* rest of initialization here; will be implemented
461 * later, see "PCI Resource Management"
462 */
463 ....
464
465 err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
466 if (err < 0) {
467 snd_mychip_free(chip);
468 return err;
469 }
470
471 snd_card_set_dev(card, &pci->dev);
472
473 *rchip = chip;
474 return 0;
475 }
476
477 /* constructor -- see "Constructor" sub-section */
478 static int __devinit snd_mychip_probe(struct pci_dev *pci,
479 const struct pci_device_id *pci_id)
480 {
481 static int dev;
482 struct snd_card *card;
483 struct mychip *chip;
484 int err;
485
486 /* (1) */
487 if (dev >= SNDRV_CARDS)
488 return -ENODEV;
489 if (!enable[dev]) {
490 dev++;
491 return -ENOENT;
492 }
493
494 /* (2) */
495 err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card);
496 if (err < 0)
497 return err;
498
499 /* (3) */
500 err = snd_mychip_create(card, pci, &chip);
501 if (err < 0) {
502 snd_card_free(card);
503 return err;
504 }
505
506 /* (4) */
507 strcpy(card->driver, "My Chip");
508 strcpy(card->shortname, "My Own Chip 123");
509 sprintf(card->longname, "%s at 0x%lx irq %i",
510 card->shortname, chip->ioport, chip->irq);
511
512 /* (5) */
513 .... /* implemented later */
514
515 /* (6) */
516 err = snd_card_register(card);
517 if (err < 0) {
518 snd_card_free(card);
519 return err;
520 }
521
522 /* (7) */
523 pci_set_drvdata(pci, card);
524 dev++;
525 return 0;
526 }
527
528 /* destructor -- see the "Destructor" sub-section */
529 static void __devexit snd_mychip_remove(struct pci_dev *pci)
530 {
531 snd_card_free(pci_get_drvdata(pci));
532 pci_set_drvdata(pci, NULL);
533 }
534]]>
535 </programlisting>
536 </example>
537 </para>
538 </section>
539
540 <section id="basic-flow-constructor">
541 <title>Constructor</title>
542 <para>
543 The real constructor of PCI drivers is the <function>probe</function> callback.
544 The <function>probe</function> callback and other component-constructors which are called
545 from the <function>probe</function> callback should be defined with
546 the <parameter>__devinit</parameter> prefix. You
547 cannot use the <parameter>__init</parameter> prefix for them,
548 because any PCI device could be a hotplug device.
549 </para>
550
551 <para>
552 In the <function>probe</function> callback, the following scheme is often used.
553 </para>
554
555 <section id="basic-flow-constructor-device-index">
556 <title>1) Check and increment the device index.</title>
557 <para>
558 <informalexample>
559 <programlisting>
560<![CDATA[
561 static int dev;
562 ....
563 if (dev >= SNDRV_CARDS)
564 return -ENODEV;
565 if (!enable[dev]) {
566 dev++;
567 return -ENOENT;
568 }
569]]>
570 </programlisting>
571 </informalexample>
572
573 where enable[dev] is the module option.
574 </para>
575
576 <para>
577 Each time the <function>probe</function> callback is called, check the
578 availability of the device. If not available, simply increment
579 the device index and returns. dev will be incremented also
580 later (<link
581 linkend="basic-flow-constructor-set-pci"><citetitle>step
582 7</citetitle></link>).
583 </para>
584 </section>
585
586 <section id="basic-flow-constructor-create-card">
587 <title>2) Create a card instance</title>
588 <para>
589 <informalexample>
590 <programlisting>
591<![CDATA[
592 struct snd_card *card;
593 int err;
594 ....
595 err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card);
596]]>
597 </programlisting>
598 </informalexample>
599 </para>
600
601 <para>
602 The details will be explained in the section
603 <link linkend="card-management-card-instance"><citetitle>
604 Management of Cards and Components</citetitle></link>.
605 </para>
606 </section>
607
608 <section id="basic-flow-constructor-create-main">
609 <title>3) Create a main component</title>
610 <para>
611 In this part, the PCI resources are allocated.
612
613 <informalexample>
614 <programlisting>
615<![CDATA[
616 struct mychip *chip;
617 ....
618 err = snd_mychip_create(card, pci, &chip);
619 if (err < 0) {
620 snd_card_free(card);
621 return err;
622 }
623]]>
624 </programlisting>
625 </informalexample>
626
627 The details will be explained in the section <link
628 linkend="pci-resource"><citetitle>PCI Resource
629 Management</citetitle></link>.
630 </para>
631 </section>
632
633 <section id="basic-flow-constructor-main-component">
634 <title>4) Set the driver ID and name strings.</title>
635 <para>
636 <informalexample>
637 <programlisting>
638<![CDATA[
639 strcpy(card->driver, "My Chip");
640 strcpy(card->shortname, "My Own Chip 123");
641 sprintf(card->longname, "%s at 0x%lx irq %i",
642 card->shortname, chip->ioport, chip->irq);
643]]>
644 </programlisting>
645 </informalexample>
646
647 The driver field holds the minimal ID string of the
648 chip. This is used by alsa-lib's configurator, so keep it
649 simple but unique.
650 Even the same driver can have different driver IDs to
651 distinguish the functionality of each chip type.
652 </para>
653
654 <para>
655 The shortname field is a string shown as more verbose
656 name. The longname field contains the information
657 shown in <filename>/proc/asound/cards</filename>.
658 </para>
659 </section>
660
661 <section id="basic-flow-constructor-create-other">
662 <title>5) Create other components, such as mixer, MIDI, etc.</title>
663 <para>
664 Here you define the basic components such as
665 <link linkend="pcm-interface"><citetitle>PCM</citetitle></link>,
666 mixer (e.g. <link linkend="api-ac97"><citetitle>AC97</citetitle></link>),
667 MIDI (e.g. <link linkend="midi-interface"><citetitle>MPU-401</citetitle></link>),
668 and other interfaces.
669 Also, if you want a <link linkend="proc-interface"><citetitle>proc
670 file</citetitle></link>, define it here, too.
671 </para>
672 </section>
673
674 <section id="basic-flow-constructor-register-card">
675 <title>6) Register the card instance.</title>
676 <para>
677 <informalexample>
678 <programlisting>
679<![CDATA[
680 err = snd_card_register(card);
681 if (err < 0) {
682 snd_card_free(card);
683 return err;
684 }
685]]>
686 </programlisting>
687 </informalexample>
688 </para>
689
690 <para>
691 Will be explained in the section <link
692 linkend="card-management-registration"><citetitle>Management
693 of Cards and Components</citetitle></link>, too.
694 </para>
695 </section>
696
697 <section id="basic-flow-constructor-set-pci">
698 <title>7) Set the PCI driver data and return zero.</title>
699 <para>
700 <informalexample>
701 <programlisting>
702<![CDATA[
703 pci_set_drvdata(pci, card);
704 dev++;
705 return 0;
706]]>
707 </programlisting>
708 </informalexample>
709
710 In the above, the card record is stored. This pointer is
711 used in the remove callback and power-management
712 callbacks, too.
713 </para>
714 </section>
715 </section>
716
717 <section id="basic-flow-destructor">
718 <title>Destructor</title>
719 <para>
720 The destructor, remove callback, simply releases the card
721 instance. Then the ALSA middle layer will release all the
722 attached components automatically.
723 </para>
724
725 <para>
726 It would be typically like the following:
727
728 <informalexample>
729 <programlisting>
730<![CDATA[
731 static void __devexit snd_mychip_remove(struct pci_dev *pci)
732 {
733 snd_card_free(pci_get_drvdata(pci));
734 pci_set_drvdata(pci, NULL);
735 }
736]]>
737 </programlisting>
738 </informalexample>
739
740 The above code assumes that the card pointer is set to the PCI
741 driver data.
742 </para>
743 </section>
744
745 <section id="basic-flow-header-files">
746 <title>Header Files</title>
747 <para>
748 For the above example, at least the following include files
749 are necessary.
750
751 <informalexample>
752 <programlisting>
753<![CDATA[
754 #include <linux/init.h>
755 #include <linux/pci.h>
756 #include <linux/slab.h>
757 #include <sound/core.h>
758 #include <sound/initval.h>
759]]>
760 </programlisting>
761 </informalexample>
762
763 where the last one is necessary only when module options are
764 defined in the source file. If the code is split into several
765 files, the files without module options don't need them.
766 </para>
767
768 <para>
769 In addition to these headers, you'll need
770 <filename>&lt;linux/interrupt.h&gt;</filename> for interrupt
771 handling, and <filename>&lt;asm/io.h&gt;</filename> for I/O
772 access. If you use the <function>mdelay()</function> or
773 <function>udelay()</function> functions, you'll need to include
774 <filename>&lt;linux/delay.h&gt;</filename> too.
775 </para>
776
777 <para>
778 The ALSA interfaces like the PCM and control APIs are defined in other
779 <filename>&lt;sound/xxx.h&gt;</filename> header files.
780 They have to be included after
781 <filename>&lt;sound/core.h&gt;</filename>.
782 </para>
783
784 </section>
785 </chapter>
786
787
788<!-- ****************************************************** -->
789<!-- Management of Cards and Components -->
790<!-- ****************************************************** -->
791 <chapter id="card-management">
792 <title>Management of Cards and Components</title>
793
794 <section id="card-management-card-instance">
795 <title>Card Instance</title>
796 <para>
797 For each soundcard, a <quote>card</quote> record must be allocated.
798 </para>
799
800 <para>
801 A card record is the headquarters of the soundcard. It manages
802 the whole list of devices (components) on the soundcard, such as
803 PCM, mixers, MIDI, synthesizer, and so on. Also, the card
804 record holds the ID and the name strings of the card, manages
805 the root of proc files, and controls the power-management states
806 and hotplug disconnections. The component list on the card
807 record is used to manage the correct release of resources at
808 destruction.
809 </para>
810
811 <para>
812 As mentioned above, to create a card instance, call
813 <function>snd_card_create()</function>.
814
815 <informalexample>
816 <programlisting>
817<![CDATA[
818 struct snd_card *card;
819 int err;
820 err = snd_card_create(index, id, module, extra_size, &card);
821]]>
822 </programlisting>
823 </informalexample>
824 </para>
825
826 <para>
827 The function takes five arguments, the card-index number, the
828 id string, the module pointer (usually
829 <constant>THIS_MODULE</constant>),
830 the size of extra-data space, and the pointer to return the
831 card instance. The extra_size argument is used to
832 allocate card-&gt;private_data for the
833 chip-specific data. Note that these data
834 are allocated by <function>snd_card_create()</function>.
835 </para>
836 </section>
837
838 <section id="card-management-component">
839 <title>Components</title>
840 <para>
841 After the card is created, you can attach the components
842 (devices) to the card instance. In an ALSA driver, a component is
843 represented as a struct <structname>snd_device</structname> object.
844 A component can be a PCM instance, a control interface, a raw
845 MIDI interface, etc. Each such instance has one component
846 entry.
847 </para>
848
849 <para>
850 A component can be created via
851 <function>snd_device_new()</function> function.
852
853 <informalexample>
854 <programlisting>
855<![CDATA[
856 snd_device_new(card, SNDRV_DEV_XXX, chip, &ops);
857]]>
858 </programlisting>
859 </informalexample>
860 </para>
861
862 <para>
863 This takes the card pointer, the device-level
864 (<constant>SNDRV_DEV_XXX</constant>), the data pointer, and the
865 callback pointers (<parameter>&amp;ops</parameter>). The
866 device-level defines the type of components and the order of
867 registration and de-registration. For most components, the
868 device-level is already defined. For a user-defined component,
869 you can use <constant>SNDRV_DEV_LOWLEVEL</constant>.
870 </para>
871
872 <para>
873 This function itself doesn't allocate the data space. The data
874 must be allocated manually beforehand, and its pointer is passed
875 as the argument. This pointer is used as the
876 (<parameter>chip</parameter> identifier in the above example)
877 for the instance.
878 </para>
879
880 <para>
881 Each pre-defined ALSA component such as ac97 and pcm calls
882 <function>snd_device_new()</function> inside its
883 constructor. The destructor for each component is defined in the
884 callback pointers. Hence, you don't need to take care of
885 calling a destructor for such a component.
886 </para>
887
888 <para>
889 If you wish to create your own component, you need to
890 set the destructor function to the dev_free callback in
891 the <parameter>ops</parameter>, so that it can be released
892 automatically via <function>snd_card_free()</function>.
893 The next example will show an implementation of chip-specific
894 data.
895 </para>
896 </section>
897
898 <section id="card-management-chip-specific">
899 <title>Chip-Specific Data</title>
900 <para>
901 Chip-specific information, e.g. the I/O port address, its
902 resource pointer, or the irq number, is stored in the
903 chip-specific record.
904
905 <informalexample>
906 <programlisting>
907<![CDATA[
908 struct mychip {
909 ....
910 };
911]]>
912 </programlisting>
913 </informalexample>
914 </para>
915
916 <para>
917 In general, there are two ways of allocating the chip record.
918 </para>
919
920 <section id="card-management-chip-specific-snd-card-new">
921 <title>1. Allocating via <function>snd_card_create()</function>.</title>
922 <para>
923 As mentioned above, you can pass the extra-data-length
924 to the 4th argument of <function>snd_card_create()</function>, i.e.
925
926 <informalexample>
927 <programlisting>
928<![CDATA[
929 err = snd_card_create(index[dev], id[dev], THIS_MODULE,
930 sizeof(struct mychip), &card);
931]]>
932 </programlisting>
933 </informalexample>
934
935 struct <structname>mychip</structname> is the type of the chip record.
936 </para>
937
938 <para>
939 In return, the allocated record can be accessed as
940
941 <informalexample>
942 <programlisting>
943<![CDATA[
944 struct mychip *chip = card->private_data;
945]]>
946 </programlisting>
947 </informalexample>
948
949 With this method, you don't have to allocate twice.
950 The record is released together with the card instance.
951 </para>
952 </section>
953
954 <section id="card-management-chip-specific-allocate-extra">
955 <title>2. Allocating an extra device.</title>
956
957 <para>
958 After allocating a card instance via
959 <function>snd_card_create()</function> (with
960 <constant>0</constant> on the 4th arg), call
961 <function>kzalloc()</function>.
962
963 <informalexample>
964 <programlisting>
965<![CDATA[
966 struct snd_card *card;
967 struct mychip *chip;
968 err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card);
969 .....
970 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
971]]>
972 </programlisting>
973 </informalexample>
974 </para>
975
976 <para>
977 The chip record should have the field to hold the card
978 pointer at least,
979
980 <informalexample>
981 <programlisting>
982<![CDATA[
983 struct mychip {
984 struct snd_card *card;
985 ....
986 };
987]]>
988 </programlisting>
989 </informalexample>
990 </para>
991
992 <para>
993 Then, set the card pointer in the returned chip instance.
994
995 <informalexample>
996 <programlisting>
997<![CDATA[
998 chip->card = card;
999]]>
1000 </programlisting>
1001 </informalexample>
1002 </para>
1003
1004 <para>
1005 Next, initialize the fields, and register this chip
1006 record as a low-level device with a specified
1007 <parameter>ops</parameter>,
1008
1009 <informalexample>
1010 <programlisting>
1011<![CDATA[
1012 static struct snd_device_ops ops = {
1013 .dev_free = snd_mychip_dev_free,
1014 };
1015 ....
1016 snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
1017]]>
1018 </programlisting>
1019 </informalexample>
1020
1021 <function>snd_mychip_dev_free()</function> is the
1022 device-destructor function, which will call the real
1023 destructor.
1024 </para>
1025
1026 <para>
1027 <informalexample>
1028 <programlisting>
1029<![CDATA[
1030 static int snd_mychip_dev_free(struct snd_device *device)
1031 {
1032 return snd_mychip_free(device->device_data);
1033 }
1034]]>
1035 </programlisting>
1036 </informalexample>
1037
1038 where <function>snd_mychip_free()</function> is the real destructor.
1039 </para>
1040 </section>
1041 </section>
1042
1043 <section id="card-management-registration">
1044 <title>Registration and Release</title>
1045 <para>
1046 After all components are assigned, register the card instance
1047 by calling <function>snd_card_register()</function>. Access
1048 to the device files is enabled at this point. That is, before
1049 <function>snd_card_register()</function> is called, the
1050 components are safely inaccessible from external side. If this
1051 call fails, exit the probe function after releasing the card via
1052 <function>snd_card_free()</function>.
1053 </para>
1054
1055 <para>
1056 For releasing the card instance, you can call simply
1057 <function>snd_card_free()</function>. As mentioned earlier, all
1058 components are released automatically by this call.
1059 </para>
1060
1061 <para>
1062 As further notes, the destructors (both
1063 <function>snd_mychip_dev_free</function> and
1064 <function>snd_mychip_free</function>) cannot be defined with
1065 the <parameter>__devexit</parameter> prefix, because they may be
1066 called from the constructor, too, at the false path.
1067 </para>
1068
1069 <para>
1070 For a device which allows hotplugging, you can use
1071 <function>snd_card_free_when_closed</function>. This one will
1072 postpone the destruction until all devices are closed.
1073 </para>
1074
1075 </section>
1076
1077 </chapter>
1078
1079
1080<!-- ****************************************************** -->
1081<!-- PCI Resource Management -->
1082<!-- ****************************************************** -->
1083 <chapter id="pci-resource">
1084 <title>PCI Resource Management</title>
1085
1086 <section id="pci-resource-example">
1087 <title>Full Code Example</title>
1088 <para>
1089 In this section, we'll complete the chip-specific constructor,
1090 destructor and PCI entries. Example code is shown first,
1091 below.
1092
1093 <example>
1094 <title>PCI Resource Management Example</title>
1095 <programlisting>
1096<![CDATA[
1097 struct mychip {
1098 struct snd_card *card;
1099 struct pci_dev *pci;
1100
1101 unsigned long port;
1102 int irq;
1103 };
1104
1105 static int snd_mychip_free(struct mychip *chip)
1106 {
1107 /* disable hardware here if any */
1108 .... /* (not implemented in this document) */
1109
1110 /* release the irq */
1111 if (chip->irq >= 0)
1112 free_irq(chip->irq, chip);
1113 /* release the I/O ports & memory */
1114 pci_release_regions(chip->pci);
1115 /* disable the PCI entry */
1116 pci_disable_device(chip->pci);
1117 /* release the data */
1118 kfree(chip);
1119 return 0;
1120 }
1121
1122 /* chip-specific constructor */
1123 static int __devinit snd_mychip_create(struct snd_card *card,
1124 struct pci_dev *pci,
1125 struct mychip **rchip)
1126 {
1127 struct mychip *chip;
1128 int err;
1129 static struct snd_device_ops ops = {
1130 .dev_free = snd_mychip_dev_free,
1131 };
1132
1133 *rchip = NULL;
1134
1135 /* initialize the PCI entry */
1136 err = pci_enable_device(pci);
1137 if (err < 0)
1138 return err;
1139 /* check PCI availability (28bit DMA) */
1140 if (pci_set_dma_mask(pci, DMA_BIT_MASK(28)) < 0 ||
1141 pci_set_consistent_dma_mask(pci, DMA_BIT_MASK(28)) < 0) {
1142 printk(KERN_ERR "error to set 28bit mask DMA\n");
1143 pci_disable_device(pci);
1144 return -ENXIO;
1145 }
1146
1147 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1148 if (chip == NULL) {
1149 pci_disable_device(pci);
1150 return -ENOMEM;
1151 }
1152
1153 /* initialize the stuff */
1154 chip->card = card;
1155 chip->pci = pci;
1156 chip->irq = -1;
1157
1158 /* (1) PCI resource allocation */
1159 err = pci_request_regions(pci, "My Chip");
1160 if (err < 0) {
1161 kfree(chip);
1162 pci_disable_device(pci);
1163 return err;
1164 }
1165 chip->port = pci_resource_start(pci, 0);
1166 if (request_irq(pci->irq, snd_mychip_interrupt,
1167 IRQF_SHARED, "My Chip", chip)) {
1168 printk(KERN_ERR "cannot grab irq %d\n", pci->irq);
1169 snd_mychip_free(chip);
1170 return -EBUSY;
1171 }
1172 chip->irq = pci->irq;
1173
1174 /* (2) initialization of the chip hardware */
1175 .... /* (not implemented in this document) */
1176
1177 err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
1178 if (err < 0) {
1179 snd_mychip_free(chip);
1180 return err;
1181 }
1182
1183 snd_card_set_dev(card, &pci->dev);
1184
1185 *rchip = chip;
1186 return 0;
1187 }
1188
1189 /* PCI IDs */
1190 static struct pci_device_id snd_mychip_ids[] = {
1191 { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR,
1192 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, },
1193 ....
1194 { 0, }
1195 };
1196 MODULE_DEVICE_TABLE(pci, snd_mychip_ids);
1197
1198 /* pci_driver definition */
1199 static struct pci_driver driver = {
1200 .name = "My Own Chip",
1201 .id_table = snd_mychip_ids,
1202 .probe = snd_mychip_probe,
1203 .remove = __devexit_p(snd_mychip_remove),
1204 };
1205
1206 /* module initialization */
1207 static int __init alsa_card_mychip_init(void)
1208 {
1209 return pci_register_driver(&driver);
1210 }
1211
1212 /* module clean up */
1213 static void __exit alsa_card_mychip_exit(void)
1214 {
1215 pci_unregister_driver(&driver);
1216 }
1217
1218 module_init(alsa_card_mychip_init)
1219 module_exit(alsa_card_mychip_exit)
1220
1221 EXPORT_NO_SYMBOLS; /* for old kernels only */
1222]]>
1223 </programlisting>
1224 </example>
1225 </para>
1226 </section>
1227
1228 <section id="pci-resource-some-haftas">
1229 <title>Some Hafta's</title>
1230 <para>
1231 The allocation of PCI resources is done in the
1232 <function>probe()</function> function, and usually an extra
1233 <function>xxx_create()</function> function is written for this
1234 purpose.
1235 </para>
1236
1237 <para>
1238 In the case of PCI devices, you first have to call
1239 the <function>pci_enable_device()</function> function before
1240 allocating resources. Also, you need to set the proper PCI DMA
1241 mask to limit the accessed I/O range. In some cases, you might
1242 need to call <function>pci_set_master()</function> function,
1243 too.
1244 </para>
1245
1246 <para>
1247 Suppose the 28bit mask, and the code to be added would be like:
1248
1249 <informalexample>
1250 <programlisting>
1251<![CDATA[
1252 err = pci_enable_device(pci);
1253 if (err < 0)
1254 return err;
1255 if (pci_set_dma_mask(pci, DMA_BIT_MASK(28)) < 0 ||
1256 pci_set_consistent_dma_mask(pci, DMA_BIT_MASK(28)) < 0) {
1257 printk(KERN_ERR "error to set 28bit mask DMA\n");
1258 pci_disable_device(pci);
1259 return -ENXIO;
1260 }
1261
1262]]>
1263 </programlisting>
1264 </informalexample>
1265 </para>
1266 </section>
1267
1268 <section id="pci-resource-resource-allocation">
1269 <title>Resource Allocation</title>
1270 <para>
1271 The allocation of I/O ports and irqs is done via standard kernel
1272 functions. Unlike ALSA ver.0.5.x., there are no helpers for
1273 that. And these resources must be released in the destructor
1274 function (see below). Also, on ALSA 0.9.x, you don't need to
1275 allocate (pseudo-)DMA for PCI like in ALSA 0.5.x.
1276 </para>
1277
1278 <para>
1279 Now assume that the PCI device has an I/O port with 8 bytes
1280 and an interrupt. Then struct <structname>mychip</structname> will have the
1281 following fields:
1282
1283 <informalexample>
1284 <programlisting>
1285<![CDATA[
1286 struct mychip {
1287 struct snd_card *card;
1288
1289 unsigned long port;
1290 int irq;
1291 };
1292]]>
1293 </programlisting>
1294 </informalexample>
1295 </para>
1296
1297 <para>
1298 For an I/O port (and also a memory region), you need to have
1299 the resource pointer for the standard resource management. For
1300 an irq, you have to keep only the irq number (integer). But you
1301 need to initialize this number as -1 before actual allocation,
1302 since irq 0 is valid. The port address and its resource pointer
1303 can be initialized as null by
1304 <function>kzalloc()</function> automatically, so you
1305 don't have to take care of resetting them.
1306 </para>
1307
1308 <para>
1309 The allocation of an I/O port is done like this:
1310
1311 <informalexample>
1312 <programlisting>
1313<![CDATA[
1314 err = pci_request_regions(pci, "My Chip");
1315 if (err < 0) {
1316 kfree(chip);
1317 pci_disable_device(pci);
1318 return err;
1319 }
1320 chip->port = pci_resource_start(pci, 0);
1321]]>
1322 </programlisting>
1323 </informalexample>
1324 </para>
1325
1326 <para>
1327 <!-- obsolete -->
1328 It will reserve the I/O port region of 8 bytes of the given
1329 PCI device. The returned value, chip-&gt;res_port, is allocated
1330 via <function>kmalloc()</function> by
1331 <function>request_region()</function>. The pointer must be
1332 released via <function>kfree()</function>, but there is a
1333 problem with this. This issue will be explained later.
1334 </para>
1335
1336 <para>
1337 The allocation of an interrupt source is done like this:
1338
1339 <informalexample>
1340 <programlisting>
1341<![CDATA[
1342 if (request_irq(pci->irq, snd_mychip_interrupt,
1343 IRQF_SHARED, "My Chip", chip)) {
1344 printk(KERN_ERR "cannot grab irq %d\n", pci->irq);
1345 snd_mychip_free(chip);
1346 return -EBUSY;
1347 }
1348 chip->irq = pci->irq;
1349]]>
1350 </programlisting>
1351 </informalexample>
1352
1353 where <function>snd_mychip_interrupt()</function> is the
1354 interrupt handler defined <link
1355 linkend="pcm-interface-interrupt-handler"><citetitle>later</citetitle></link>.
1356 Note that chip-&gt;irq should be defined
1357 only when <function>request_irq()</function> succeeded.
1358 </para>
1359
1360 <para>
1361 On the PCI bus, interrupts can be shared. Thus,
1362 <constant>IRQF_SHARED</constant> is used as the interrupt flag of
1363 <function>request_irq()</function>.
1364 </para>
1365
1366 <para>
1367 The last argument of <function>request_irq()</function> is the
1368 data pointer passed to the interrupt handler. Usually, the
1369 chip-specific record is used for that, but you can use what you
1370 like, too.
1371 </para>
1372
1373 <para>
1374 I won't give details about the interrupt handler at this
1375 point, but at least its appearance can be explained now. The
1376 interrupt handler looks usually like the following:
1377
1378 <informalexample>
1379 <programlisting>
1380<![CDATA[
1381 static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id)
1382 {
1383 struct mychip *chip = dev_id;
1384 ....
1385 return IRQ_HANDLED;
1386 }
1387]]>
1388 </programlisting>
1389 </informalexample>
1390 </para>
1391
1392 <para>
1393 Now let's write the corresponding destructor for the resources
1394 above. The role of destructor is simple: disable the hardware
1395 (if already activated) and release the resources. So far, we
1396 have no hardware part, so the disabling code is not written here.
1397 </para>
1398
1399 <para>
1400 To release the resources, the <quote>check-and-release</quote>
1401 method is a safer way. For the interrupt, do like this:
1402
1403 <informalexample>
1404 <programlisting>
1405<![CDATA[
1406 if (chip->irq >= 0)
1407 free_irq(chip->irq, chip);
1408]]>
1409 </programlisting>
1410 </informalexample>
1411
1412 Since the irq number can start from 0, you should initialize
1413 chip-&gt;irq with a negative value (e.g. -1), so that you can
1414 check the validity of the irq number as above.
1415 </para>
1416
1417 <para>
1418 When you requested I/O ports or memory regions via
1419 <function>pci_request_region()</function> or
1420 <function>pci_request_regions()</function> like in this example,
1421 release the resource(s) using the corresponding function,
1422 <function>pci_release_region()</function> or
1423 <function>pci_release_regions()</function>.
1424
1425 <informalexample>
1426 <programlisting>
1427<![CDATA[
1428 pci_release_regions(chip->pci);
1429]]>
1430 </programlisting>
1431 </informalexample>
1432 </para>
1433
1434 <para>
1435 When you requested manually via <function>request_region()</function>
1436 or <function>request_mem_region</function>, you can release it via
1437 <function>release_resource()</function>. Suppose that you keep
1438 the resource pointer returned from <function>request_region()</function>
1439 in chip-&gt;res_port, the release procedure looks like:
1440
1441 <informalexample>
1442 <programlisting>
1443<![CDATA[
1444 release_and_free_resource(chip->res_port);
1445]]>
1446 </programlisting>
1447 </informalexample>
1448 </para>
1449
1450 <para>
1451 Don't forget to call <function>pci_disable_device()</function>
1452 before the end.
1453 </para>
1454
1455 <para>
1456 And finally, release the chip-specific record.
1457
1458 <informalexample>
1459 <programlisting>
1460<![CDATA[
1461 kfree(chip);
1462]]>
1463 </programlisting>
1464 </informalexample>
1465 </para>
1466
1467 <para>
1468 Again, remember that you cannot
1469 use the <parameter>__devexit</parameter> prefix for this destructor.
1470 </para>
1471
1472 <para>
1473 We didn't implement the hardware disabling part in the above.
1474 If you need to do this, please note that the destructor may be
1475 called even before the initialization of the chip is completed.
1476 It would be better to have a flag to skip hardware disabling
1477 if the hardware was not initialized yet.
1478 </para>
1479
1480 <para>
1481 When the chip-data is assigned to the card using
1482 <function>snd_device_new()</function> with
1483 <constant>SNDRV_DEV_LOWLELVEL</constant> , its destructor is
1484 called at the last. That is, it is assured that all other
1485 components like PCMs and controls have already been released.
1486 You don't have to stop PCMs, etc. explicitly, but just
1487 call low-level hardware stopping.
1488 </para>
1489
1490 <para>
1491 The management of a memory-mapped region is almost as same as
1492 the management of an I/O port. You'll need three fields like
1493 the following:
1494
1495 <informalexample>
1496 <programlisting>
1497<![CDATA[
1498 struct mychip {
1499 ....
1500 unsigned long iobase_phys;
1501 void __iomem *iobase_virt;
1502 };
1503]]>
1504 </programlisting>
1505 </informalexample>
1506
1507 and the allocation would be like below:
1508
1509 <informalexample>
1510 <programlisting>
1511<![CDATA[
1512 if ((err = pci_request_regions(pci, "My Chip")) < 0) {
1513 kfree(chip);
1514 return err;
1515 }
1516 chip->iobase_phys = pci_resource_start(pci, 0);
1517 chip->iobase_virt = ioremap_nocache(chip->iobase_phys,
1518 pci_resource_len(pci, 0));
1519]]>
1520 </programlisting>
1521 </informalexample>
1522
1523 and the corresponding destructor would be:
1524
1525 <informalexample>
1526 <programlisting>
1527<![CDATA[
1528 static int snd_mychip_free(struct mychip *chip)
1529 {
1530 ....
1531 if (chip->iobase_virt)
1532 iounmap(chip->iobase_virt);
1533 ....
1534 pci_release_regions(chip->pci);
1535 ....
1536 }
1537]]>
1538 </programlisting>
1539 </informalexample>
1540 </para>
1541
1542 </section>
1543
1544 <section id="pci-resource-device-struct">
1545 <title>Registration of Device Struct</title>
1546 <para>
1547 At some point, typically after calling <function>snd_device_new()</function>,
1548 you need to register the struct <structname>device</structname> of the chip
1549 you're handling for udev and co. ALSA provides a macro for compatibility with
1550 older kernels. Simply call like the following:
1551 <informalexample>
1552 <programlisting>
1553<![CDATA[
1554 snd_card_set_dev(card, &pci->dev);
1555]]>
1556 </programlisting>
1557 </informalexample>
1558 so that it stores the PCI's device pointer to the card. This will be
1559 referred by ALSA core functions later when the devices are registered.
1560 </para>
1561 <para>
1562 In the case of non-PCI, pass the proper device struct pointer of the BUS
1563 instead. (In the case of legacy ISA without PnP, you don't have to do
1564 anything.)
1565 </para>
1566 </section>
1567
1568 <section id="pci-resource-entries">
1569 <title>PCI Entries</title>
1570 <para>
1571 So far, so good. Let's finish the missing PCI
1572 stuff. At first, we need a
1573 <structname>pci_device_id</structname> table for this
1574 chipset. It's a table of PCI vendor/device ID number, and some
1575 masks.
1576 </para>
1577
1578 <para>
1579 For example,
1580
1581 <informalexample>
1582 <programlisting>
1583<![CDATA[
1584 static struct pci_device_id snd_mychip_ids[] = {
1585 { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR,
1586 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, },
1587 ....
1588 { 0, }
1589 };
1590 MODULE_DEVICE_TABLE(pci, snd_mychip_ids);
1591]]>
1592 </programlisting>
1593 </informalexample>
1594 </para>
1595
1596 <para>
1597 The first and second fields of
1598 the <structname>pci_device_id</structname> structure are the vendor and
1599 device IDs. If you have no reason to filter the matching
1600 devices, you can leave the remaining fields as above. The last
1601 field of the <structname>pci_device_id</structname> struct contains
1602 private data for this entry. You can specify any value here, for
1603 example, to define specific operations for supported device IDs.
1604 Such an example is found in the intel8x0 driver.
1605 </para>
1606
1607 <para>
1608 The last entry of this list is the terminator. You must
1609 specify this all-zero entry.
1610 </para>
1611
1612 <para>
1613 Then, prepare the <structname>pci_driver</structname> record:
1614
1615 <informalexample>
1616 <programlisting>
1617<![CDATA[
1618 static struct pci_driver driver = {
1619 .name = "My Own Chip",
1620 .id_table = snd_mychip_ids,
1621 .probe = snd_mychip_probe,
1622 .remove = __devexit_p(snd_mychip_remove),
1623 };
1624]]>
1625 </programlisting>
1626 </informalexample>
1627 </para>
1628
1629 <para>
1630 The <structfield>probe</structfield> and
1631 <structfield>remove</structfield> functions have already
1632 been defined in the previous sections.
1633 The <structfield>remove</structfield> function should
1634 be defined with the
1635 <function>__devexit_p()</function> macro, so that it's not
1636 defined for built-in (and non-hot-pluggable) case. The
1637 <structfield>name</structfield>
1638 field is the name string of this device. Note that you must not
1639 use a slash <quote>/</quote> in this string.
1640 </para>
1641
1642 <para>
1643 And at last, the module entries:
1644
1645 <informalexample>
1646 <programlisting>
1647<![CDATA[
1648 static int __init alsa_card_mychip_init(void)
1649 {
1650 return pci_register_driver(&driver);
1651 }
1652
1653 static void __exit alsa_card_mychip_exit(void)
1654 {
1655 pci_unregister_driver(&driver);
1656 }
1657
1658 module_init(alsa_card_mychip_init)
1659 module_exit(alsa_card_mychip_exit)
1660]]>
1661 </programlisting>
1662 </informalexample>
1663 </para>
1664
1665 <para>
1666 Note that these module entries are tagged with
1667 <parameter>__init</parameter> and
1668 <parameter>__exit</parameter> prefixes, not
1669 <parameter>__devinit</parameter> nor
1670 <parameter>__devexit</parameter>.
1671 </para>
1672
1673 <para>
1674 Oh, one thing was forgotten. If you have no exported symbols,
1675 you need to declare it in 2.2 or 2.4 kernels (it's not necessary in 2.6 kernels).
1676
1677 <informalexample>
1678 <programlisting>
1679<![CDATA[
1680 EXPORT_NO_SYMBOLS;
1681]]>
1682 </programlisting>
1683 </informalexample>
1684
1685 That's all!
1686 </para>
1687 </section>
1688 </chapter>
1689
1690
1691<!-- ****************************************************** -->
1692<!-- PCM Interface -->
1693<!-- ****************************************************** -->
1694 <chapter id="pcm-interface">
1695 <title>PCM Interface</title>
1696
1697 <section id="pcm-interface-general">
1698 <title>General</title>
1699 <para>
1700 The PCM middle layer of ALSA is quite powerful and it is only
1701 necessary for each driver to implement the low-level functions
1702 to access its hardware.
1703 </para>
1704
1705 <para>
1706 For accessing to the PCM layer, you need to include
1707 <filename>&lt;sound/pcm.h&gt;</filename> first. In addition,
1708 <filename>&lt;sound/pcm_params.h&gt;</filename> might be needed
1709 if you access to some functions related with hw_param.
1710 </para>
1711
1712 <para>
1713 Each card device can have up to four pcm instances. A pcm
1714 instance corresponds to a pcm device file. The limitation of
1715 number of instances comes only from the available bit size of
1716 the Linux's device numbers. Once when 64bit device number is
1717 used, we'll have more pcm instances available.
1718 </para>
1719
1720 <para>
1721 A pcm instance consists of pcm playback and capture streams,
1722 and each pcm stream consists of one or more pcm substreams. Some
1723 soundcards support multiple playback functions. For example,
1724 emu10k1 has a PCM playback of 32 stereo substreams. In this case, at
1725 each open, a free substream is (usually) automatically chosen
1726 and opened. Meanwhile, when only one substream exists and it was
1727 already opened, the successful open will either block
1728 or error with <constant>EAGAIN</constant> according to the
1729 file open mode. But you don't have to care about such details in your
1730 driver. The PCM middle layer will take care of such work.
1731 </para>
1732 </section>
1733
1734 <section id="pcm-interface-example">
1735 <title>Full Code Example</title>
1736 <para>
1737 The example code below does not include any hardware access
1738 routines but shows only the skeleton, how to build up the PCM
1739 interfaces.
1740
1741 <example>
1742 <title>PCM Example Code</title>
1743 <programlisting>
1744<![CDATA[
1745 #include <sound/pcm.h>
1746 ....
1747
1748 /* hardware definition */
1749 static struct snd_pcm_hardware snd_mychip_playback_hw = {
1750 .info = (SNDRV_PCM_INFO_MMAP |
1751 SNDRV_PCM_INFO_INTERLEAVED |
1752 SNDRV_PCM_INFO_BLOCK_TRANSFER |
1753 SNDRV_PCM_INFO_MMAP_VALID),
1754 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1755 .rates = SNDRV_PCM_RATE_8000_48000,
1756 .rate_min = 8000,
1757 .rate_max = 48000,
1758 .channels_min = 2,
1759 .channels_max = 2,
1760 .buffer_bytes_max = 32768,
1761 .period_bytes_min = 4096,
1762 .period_bytes_max = 32768,
1763 .periods_min = 1,
1764 .periods_max = 1024,
1765 };
1766
1767 /* hardware definition */
1768 static struct snd_pcm_hardware snd_mychip_capture_hw = {
1769 .info = (SNDRV_PCM_INFO_MMAP |
1770 SNDRV_PCM_INFO_INTERLEAVED |
1771 SNDRV_PCM_INFO_BLOCK_TRANSFER |
1772 SNDRV_PCM_INFO_MMAP_VALID),
1773 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1774 .rates = SNDRV_PCM_RATE_8000_48000,
1775 .rate_min = 8000,
1776 .rate_max = 48000,
1777 .channels_min = 2,
1778 .channels_max = 2,
1779 .buffer_bytes_max = 32768,
1780 .period_bytes_min = 4096,
1781 .period_bytes_max = 32768,
1782 .periods_min = 1,
1783 .periods_max = 1024,
1784 };
1785
1786 /* open callback */
1787 static int snd_mychip_playback_open(struct snd_pcm_substream *substream)
1788 {
1789 struct mychip *chip = snd_pcm_substream_chip(substream);
1790 struct snd_pcm_runtime *runtime = substream->runtime;
1791
1792 runtime->hw = snd_mychip_playback_hw;
1793 /* more hardware-initialization will be done here */
1794 ....
1795 return 0;
1796 }
1797
1798 /* close callback */
1799 static int snd_mychip_playback_close(struct snd_pcm_substream *substream)
1800 {
1801 struct mychip *chip = snd_pcm_substream_chip(substream);
1802 /* the hardware-specific codes will be here */
1803 ....
1804 return 0;
1805
1806 }
1807
1808 /* open callback */
1809 static int snd_mychip_capture_open(struct snd_pcm_substream *substream)
1810 {
1811 struct mychip *chip = snd_pcm_substream_chip(substream);
1812 struct snd_pcm_runtime *runtime = substream->runtime;
1813
1814 runtime->hw = snd_mychip_capture_hw;
1815 /* more hardware-initialization will be done here */
1816 ....
1817 return 0;
1818 }
1819
1820 /* close callback */
1821 static int snd_mychip_capture_close(struct snd_pcm_substream *substream)
1822 {
1823 struct mychip *chip = snd_pcm_substream_chip(substream);
1824 /* the hardware-specific codes will be here */
1825 ....
1826 return 0;
1827
1828 }
1829
1830 /* hw_params callback */
1831 static int snd_mychip_pcm_hw_params(struct snd_pcm_substream *substream,
1832 struct snd_pcm_hw_params *hw_params)
1833 {
1834 return snd_pcm_lib_malloc_pages(substream,
1835 params_buffer_bytes(hw_params));
1836 }
1837
1838 /* hw_free callback */
1839 static int snd_mychip_pcm_hw_free(struct snd_pcm_substream *substream)
1840 {
1841 return snd_pcm_lib_free_pages(substream);
1842 }
1843
1844 /* prepare callback */
1845 static int snd_mychip_pcm_prepare(struct snd_pcm_substream *substream)
1846 {
1847 struct mychip *chip = snd_pcm_substream_chip(substream);
1848 struct snd_pcm_runtime *runtime = substream->runtime;
1849
1850 /* set up the hardware with the current configuration
1851 * for example...
1852 */
1853 mychip_set_sample_format(chip, runtime->format);
1854 mychip_set_sample_rate(chip, runtime->rate);
1855 mychip_set_channels(chip, runtime->channels);
1856 mychip_set_dma_setup(chip, runtime->dma_addr,
1857 chip->buffer_size,
1858 chip->period_size);
1859 return 0;
1860 }
1861
1862 /* trigger callback */
1863 static int snd_mychip_pcm_trigger(struct snd_pcm_substream *substream,
1864 int cmd)
1865 {
1866 switch (cmd) {
1867 case SNDRV_PCM_TRIGGER_START:
1868 /* do something to start the PCM engine */
1869 ....
1870 break;
1871 case SNDRV_PCM_TRIGGER_STOP:
1872 /* do something to stop the PCM engine */
1873 ....
1874 break;
1875 default:
1876 return -EINVAL;
1877 }
1878 }
1879
1880 /* pointer callback */
1881 static snd_pcm_uframes_t
1882 snd_mychip_pcm_pointer(struct snd_pcm_substream *substream)
1883 {
1884 struct mychip *chip = snd_pcm_substream_chip(substream);
1885 unsigned int current_ptr;
1886
1887 /* get the current hardware pointer */
1888 current_ptr = mychip_get_hw_pointer(chip);
1889 return current_ptr;
1890 }
1891
1892 /* operators */
1893 static struct snd_pcm_ops snd_mychip_playback_ops = {
1894 .open = snd_mychip_playback_open,
1895 .close = snd_mychip_playback_close,
1896 .ioctl = snd_pcm_lib_ioctl,
1897 .hw_params = snd_mychip_pcm_hw_params,
1898 .hw_free = snd_mychip_pcm_hw_free,
1899 .prepare = snd_mychip_pcm_prepare,
1900 .trigger = snd_mychip_pcm_trigger,
1901 .pointer = snd_mychip_pcm_pointer,
1902 };
1903
1904 /* operators */
1905 static struct snd_pcm_ops snd_mychip_capture_ops = {
1906 .open = snd_mychip_capture_open,
1907 .close = snd_mychip_capture_close,
1908 .ioctl = snd_pcm_lib_ioctl,
1909 .hw_params = snd_mychip_pcm_hw_params,
1910 .hw_free = snd_mychip_pcm_hw_free,
1911 .prepare = snd_mychip_pcm_prepare,
1912 .trigger = snd_mychip_pcm_trigger,
1913 .pointer = snd_mychip_pcm_pointer,
1914 };
1915
1916 /*
1917 * definitions of capture are omitted here...
1918 */
1919
1920 /* create a pcm device */
1921 static int __devinit snd_mychip_new_pcm(struct mychip *chip)
1922 {
1923 struct snd_pcm *pcm;
1924 int err;
1925
1926 err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1, &pcm);
1927 if (err < 0)
1928 return err;
1929 pcm->private_data = chip;
1930 strcpy(pcm->name, "My Chip");
1931 chip->pcm = pcm;
1932 /* set operators */
1933 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1934 &snd_mychip_playback_ops);
1935 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
1936 &snd_mychip_capture_ops);
1937 /* pre-allocation of buffers */
1938 /* NOTE: this may fail */
1939 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1940 snd_dma_pci_data(chip->pci),
1941 64*1024, 64*1024);
1942 return 0;
1943 }
1944]]>
1945 </programlisting>
1946 </example>
1947 </para>
1948 </section>
1949
1950 <section id="pcm-interface-constructor">
1951 <title>Constructor</title>
1952 <para>
1953 A pcm instance is allocated by the <function>snd_pcm_new()</function>
1954 function. It would be better to create a constructor for pcm,
1955 namely,
1956
1957 <informalexample>
1958 <programlisting>
1959<![CDATA[
1960 static int __devinit snd_mychip_new_pcm(struct mychip *chip)
1961 {
1962 struct snd_pcm *pcm;
1963 int err;
1964
1965 err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1, &pcm);
1966 if (err < 0)
1967 return err;
1968 pcm->private_data = chip;
1969 strcpy(pcm->name, "My Chip");
1970 chip->pcm = pcm;
1971 ....
1972 return 0;
1973 }
1974]]>
1975 </programlisting>
1976 </informalexample>
1977 </para>
1978
1979 <para>
1980 The <function>snd_pcm_new()</function> function takes four
1981 arguments. The first argument is the card pointer to which this
1982 pcm is assigned, and the second is the ID string.
1983 </para>
1984
1985 <para>
1986 The third argument (<parameter>index</parameter>, 0 in the
1987 above) is the index of this new pcm. It begins from zero. If
1988 you create more than one pcm instances, specify the
1989 different numbers in this argument. For example,
1990 <parameter>index</parameter> = 1 for the second PCM device.
1991 </para>
1992
1993 <para>
1994 The fourth and fifth arguments are the number of substreams
1995 for playback and capture, respectively. Here 1 is used for
1996 both arguments. When no playback or capture substreams are available,
1997 pass 0 to the corresponding argument.
1998 </para>
1999
2000 <para>
2001 If a chip supports multiple playbacks or captures, you can
2002 specify more numbers, but they must be handled properly in
2003 open/close, etc. callbacks. When you need to know which
2004 substream you are referring to, then it can be obtained from
2005 struct <structname>snd_pcm_substream</structname> data passed to each callback
2006 as follows:
2007
2008 <informalexample>
2009 <programlisting>
2010<![CDATA[
2011 struct snd_pcm_substream *substream;
2012 int index = substream->number;
2013]]>
2014 </programlisting>
2015 </informalexample>
2016 </para>
2017
2018 <para>
2019 After the pcm is created, you need to set operators for each
2020 pcm stream.
2021
2022 <informalexample>
2023 <programlisting>
2024<![CDATA[
2025 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
2026 &snd_mychip_playback_ops);
2027 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
2028 &snd_mychip_capture_ops);
2029]]>
2030 </programlisting>
2031 </informalexample>
2032 </para>
2033
2034 <para>
2035 The operators are defined typically like this:
2036
2037 <informalexample>
2038 <programlisting>
2039<![CDATA[
2040 static struct snd_pcm_ops snd_mychip_playback_ops = {
2041 .open = snd_mychip_pcm_open,
2042 .close = snd_mychip_pcm_close,
2043 .ioctl = snd_pcm_lib_ioctl,
2044 .hw_params = snd_mychip_pcm_hw_params,
2045 .hw_free = snd_mychip_pcm_hw_free,
2046 .prepare = snd_mychip_pcm_prepare,
2047 .trigger = snd_mychip_pcm_trigger,
2048 .pointer = snd_mychip_pcm_pointer,
2049 };
2050]]>
2051 </programlisting>
2052 </informalexample>
2053
2054 All the callbacks are described in the
2055 <link linkend="pcm-interface-operators"><citetitle>
2056 Operators</citetitle></link> subsection.
2057 </para>
2058
2059 <para>
2060 After setting the operators, you probably will want to
2061 pre-allocate the buffer. For the pre-allocation, simply call
2062 the following:
2063
2064 <informalexample>
2065 <programlisting>
2066<![CDATA[
2067 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
2068 snd_dma_pci_data(chip->pci),
2069 64*1024, 64*1024);
2070]]>
2071 </programlisting>
2072 </informalexample>
2073
2074 It will allocate a buffer up to 64kB as default.
2075 Buffer management details will be described in the later section <link
2076 linkend="buffer-and-memory"><citetitle>Buffer and Memory
2077 Management</citetitle></link>.
2078 </para>
2079
2080 <para>
2081 Additionally, you can set some extra information for this pcm
2082 in pcm-&gt;info_flags.
2083 The available values are defined as
2084 <constant>SNDRV_PCM_INFO_XXX</constant> in
2085 <filename>&lt;sound/asound.h&gt;</filename>, which is used for
2086 the hardware definition (described later). When your soundchip
2087 supports only half-duplex, specify like this:
2088
2089 <informalexample>
2090 <programlisting>
2091<![CDATA[
2092 pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
2093]]>
2094 </programlisting>
2095 </informalexample>
2096 </para>
2097 </section>
2098
2099 <section id="pcm-interface-destructor">
2100 <title>... And the Destructor?</title>
2101 <para>
2102 The destructor for a pcm instance is not always
2103 necessary. Since the pcm device will be released by the middle
2104 layer code automatically, you don't have to call the destructor
2105 explicitly.
2106 </para>
2107
2108 <para>
2109 The destructor would be necessary if you created
2110 special records internally and needed to release them. In such a
2111 case, set the destructor function to
2112 pcm-&gt;private_free:
2113
2114 <example>
2115 <title>PCM Instance with a Destructor</title>
2116 <programlisting>
2117<![CDATA[
2118 static void mychip_pcm_free(struct snd_pcm *pcm)
2119 {
2120 struct mychip *chip = snd_pcm_chip(pcm);
2121 /* free your own data */
2122 kfree(chip->my_private_pcm_data);
2123 /* do what you like else */
2124 ....
2125 }
2126
2127 static int __devinit snd_mychip_new_pcm(struct mychip *chip)
2128 {
2129 struct snd_pcm *pcm;
2130 ....
2131 /* allocate your own data */
2132 chip->my_private_pcm_data = kmalloc(...);
2133 /* set the destructor */
2134 pcm->private_data = chip;
2135 pcm->private_free = mychip_pcm_free;
2136 ....
2137 }
2138]]>
2139 </programlisting>
2140 </example>
2141 </para>
2142 </section>
2143
2144 <section id="pcm-interface-runtime">
2145 <title>Runtime Pointer - The Chest of PCM Information</title>
2146 <para>
2147 When the PCM substream is opened, a PCM runtime instance is
2148 allocated and assigned to the substream. This pointer is
2149 accessible via <constant>substream-&gt;runtime</constant>.
2150 This runtime pointer holds most information you need
2151 to control the PCM: the copy of hw_params and sw_params configurations, the buffer
2152 pointers, mmap records, spinlocks, etc.
2153 </para>
2154
2155 <para>
2156 The definition of runtime instance is found in
2157 <filename>&lt;sound/pcm.h&gt;</filename>. Here are
2158 the contents of this file:
2159 <informalexample>
2160 <programlisting>
2161<![CDATA[
2162struct _snd_pcm_runtime {
2163 /* -- Status -- */
2164 struct snd_pcm_substream *trigger_master;
2165 snd_timestamp_t trigger_tstamp; /* trigger timestamp */
2166 int overrange;
2167 snd_pcm_uframes_t avail_max;
2168 snd_pcm_uframes_t hw_ptr_base; /* Position at buffer restart */
2169 snd_pcm_uframes_t hw_ptr_interrupt; /* Position at interrupt time*/
2170
2171 /* -- HW params -- */
2172 snd_pcm_access_t access; /* access mode */
2173 snd_pcm_format_t format; /* SNDRV_PCM_FORMAT_* */
2174 snd_pcm_subformat_t subformat; /* subformat */
2175 unsigned int rate; /* rate in Hz */
2176 unsigned int channels; /* channels */
2177 snd_pcm_uframes_t period_size; /* period size */
2178 unsigned int periods; /* periods */
2179 snd_pcm_uframes_t buffer_size; /* buffer size */
2180 unsigned int tick_time; /* tick time */
2181 snd_pcm_uframes_t min_align; /* Min alignment for the format */
2182 size_t byte_align;
2183 unsigned int frame_bits;
2184 unsigned int sample_bits;
2185 unsigned int info;
2186 unsigned int rate_num;
2187 unsigned int rate_den;
2188
2189 /* -- SW params -- */
2190 struct timespec tstamp_mode; /* mmap timestamp is updated */
2191 unsigned int period_step;
2192 unsigned int sleep_min; /* min ticks to sleep */
2193 snd_pcm_uframes_t start_threshold;
2194 snd_pcm_uframes_t stop_threshold;
2195 snd_pcm_uframes_t silence_threshold; /* Silence filling happens when
2196 noise is nearest than this */
2197 snd_pcm_uframes_t silence_size; /* Silence filling size */
2198 snd_pcm_uframes_t boundary; /* pointers wrap point */
2199
2200 snd_pcm_uframes_t silenced_start;
2201 snd_pcm_uframes_t silenced_size;
2202
2203 snd_pcm_sync_id_t sync; /* hardware synchronization ID */
2204
2205 /* -- mmap -- */
2206 volatile struct snd_pcm_mmap_status *status;
2207 volatile struct snd_pcm_mmap_control *control;
2208 atomic_t mmap_count;
2209
2210 /* -- locking / scheduling -- */
2211 spinlock_t lock;
2212 wait_queue_head_t sleep;
2213 struct timer_list tick_timer;
2214 struct fasync_struct *fasync;
2215
2216 /* -- private section -- */
2217 void *private_data;
2218 void (*private_free)(struct snd_pcm_runtime *runtime);
2219
2220 /* -- hardware description -- */
2221 struct snd_pcm_hardware hw;
2222 struct snd_pcm_hw_constraints hw_constraints;
2223
2224 /* -- interrupt callbacks -- */
2225 void (*transfer_ack_begin)(struct snd_pcm_substream *substream);
2226 void (*transfer_ack_end)(struct snd_pcm_substream *substream);
2227
2228 /* -- timer -- */
2229 unsigned int timer_resolution; /* timer resolution */
2230
2231 /* -- DMA -- */
2232 unsigned char *dma_area; /* DMA area */
2233 dma_addr_t dma_addr; /* physical bus address (not accessible from main CPU) */
2234 size_t dma_bytes; /* size of DMA area */
2235
2236 struct snd_dma_buffer *dma_buffer_p; /* allocated buffer */
2237
2238#if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
2239 /* -- OSS things -- */
2240 struct snd_pcm_oss_runtime oss;
2241#endif
2242};
2243]]>
2244 </programlisting>
2245 </informalexample>
2246 </para>
2247
2248 <para>
2249 For the operators (callbacks) of each sound driver, most of
2250 these records are supposed to be read-only. Only the PCM
2251 middle-layer changes / updates them. The exceptions are
2252 the hardware description (hw), interrupt callbacks
2253 (transfer_ack_xxx), DMA buffer information, and the private
2254 data. Besides, if you use the standard buffer allocation
2255 method via <function>snd_pcm_lib_malloc_pages()</function>,
2256 you don't need to set the DMA buffer information by yourself.
2257 </para>
2258
2259 <para>
2260 In the sections below, important records are explained.
2261 </para>
2262
2263 <section id="pcm-interface-runtime-hw">
2264 <title>Hardware Description</title>
2265 <para>
2266 The hardware descriptor (struct <structname>snd_pcm_hardware</structname>)
2267 contains the definitions of the fundamental hardware
2268 configuration. Above all, you'll need to define this in
2269 <link linkend="pcm-interface-operators-open-callback"><citetitle>
2270 the open callback</citetitle></link>.
2271 Note that the runtime instance holds the copy of the
2272 descriptor, not the pointer to the existing descriptor. That
2273 is, in the open callback, you can modify the copied descriptor
2274 (<constant>runtime-&gt;hw</constant>) as you need. For example, if the maximum
2275 number of channels is 1 only on some chip models, you can
2276 still use the same hardware descriptor and change the
2277 channels_max later:
2278 <informalexample>
2279 <programlisting>
2280<![CDATA[
2281 struct snd_pcm_runtime *runtime = substream->runtime;
2282 ...
2283 runtime->hw = snd_mychip_playback_hw; /* common definition */
2284 if (chip->model == VERY_OLD_ONE)
2285 runtime->hw.channels_max = 1;
2286]]>
2287 </programlisting>
2288 </informalexample>
2289 </para>
2290
2291 <para>
2292 Typically, you'll have a hardware descriptor as below:
2293 <informalexample>
2294 <programlisting>
2295<![CDATA[
2296 static struct snd_pcm_hardware snd_mychip_playback_hw = {
2297 .info = (SNDRV_PCM_INFO_MMAP |
2298 SNDRV_PCM_INFO_INTERLEAVED |
2299 SNDRV_PCM_INFO_BLOCK_TRANSFER |
2300 SNDRV_PCM_INFO_MMAP_VALID),
2301 .formats = SNDRV_PCM_FMTBIT_S16_LE,
2302 .rates = SNDRV_PCM_RATE_8000_48000,
2303 .rate_min = 8000,
2304 .rate_max = 48000,
2305 .channels_min = 2,
2306 .channels_max = 2,
2307 .buffer_bytes_max = 32768,
2308 .period_bytes_min = 4096,
2309 .period_bytes_max = 32768,
2310 .periods_min = 1,
2311 .periods_max = 1024,
2312 };
2313]]>
2314 </programlisting>
2315 </informalexample>
2316 </para>
2317
2318 <para>
2319 <itemizedlist>
2320 <listitem><para>
2321 The <structfield>info</structfield> field contains the type and
2322 capabilities of this pcm. The bit flags are defined in
2323 <filename>&lt;sound/asound.h&gt;</filename> as
2324 <constant>SNDRV_PCM_INFO_XXX</constant>. Here, at least, you
2325 have to specify whether the mmap is supported and which
2326 interleaved format is supported.
2327 When the is supported, add the
2328 <constant>SNDRV_PCM_INFO_MMAP</constant> flag here. When the
2329 hardware supports the interleaved or the non-interleaved
2330 formats, <constant>SNDRV_PCM_INFO_INTERLEAVED</constant> or
2331 <constant>SNDRV_PCM_INFO_NONINTERLEAVED</constant> flag must
2332 be set, respectively. If both are supported, you can set both,
2333 too.
2334 </para>
2335
2336 <para>
2337 In the above example, <constant>MMAP_VALID</constant> and
2338 <constant>BLOCK_TRANSFER</constant> are specified for the OSS mmap
2339 mode. Usually both are set. Of course,
2340 <constant>MMAP_VALID</constant> is set only if the mmap is
2341 really supported.
2342 </para>
2343
2344 <para>
2345 The other possible flags are
2346 <constant>SNDRV_PCM_INFO_PAUSE</constant> and
2347 <constant>SNDRV_PCM_INFO_RESUME</constant>. The
2348 <constant>PAUSE</constant> bit means that the pcm supports the
2349 <quote>pause</quote> operation, while the
2350 <constant>RESUME</constant> bit means that the pcm supports
2351 the full <quote>suspend/resume</quote> operation.
2352 If the <constant>PAUSE</constant> flag is set,
2353 the <structfield>trigger</structfield> callback below
2354 must handle the corresponding (pause push/release) commands.
2355 The suspend/resume trigger commands can be defined even without
2356 the <constant>RESUME</constant> flag. See <link
2357 linkend="power-management"><citetitle>
2358 Power Management</citetitle></link> section for details.
2359 </para>
2360
2361 <para>
2362 When the PCM substreams can be synchronized (typically,
2363 synchronized start/stop of a playback and a capture streams),
2364 you can give <constant>SNDRV_PCM_INFO_SYNC_START</constant>,
2365 too. In this case, you'll need to check the linked-list of
2366 PCM substreams in the trigger callback. This will be
2367 described in the later section.
2368 </para>
2369 </listitem>
2370
2371 <listitem>
2372 <para>
2373 <structfield>formats</structfield> field contains the bit-flags
2374 of supported formats (<constant>SNDRV_PCM_FMTBIT_XXX</constant>).
2375 If the hardware supports more than one format, give all or'ed
2376 bits. In the example above, the signed 16bit little-endian
2377 format is specified.
2378 </para>
2379 </listitem>
2380
2381 <listitem>
2382 <para>
2383 <structfield>rates</structfield> field contains the bit-flags of
2384 supported rates (<constant>SNDRV_PCM_RATE_XXX</constant>).
2385 When the chip supports continuous rates, pass
2386 <constant>CONTINUOUS</constant> bit additionally.
2387 The pre-defined rate bits are provided only for typical
2388 rates. If your chip supports unconventional rates, you need to add
2389 the <constant>KNOT</constant> bit and set up the hardware
2390 constraint manually (explained later).
2391 </para>
2392 </listitem>
2393
2394 <listitem>
2395 <para>
2396 <structfield>rate_min</structfield> and
2397 <structfield>rate_max</structfield> define the minimum and
2398 maximum sample rate. This should correspond somehow to
2399 <structfield>rates</structfield> bits.
2400 </para>
2401 </listitem>
2402
2403 <listitem>
2404 <para>
2405 <structfield>channel_min</structfield> and
2406 <structfield>channel_max</structfield>
2407 define, as you might already expected, the minimum and maximum
2408 number of channels.
2409 </para>
2410 </listitem>
2411
2412 <listitem>
2413 <para>
2414 <structfield>buffer_bytes_max</structfield> defines the
2415 maximum buffer size in bytes. There is no
2416 <structfield>buffer_bytes_min</structfield> field, since
2417 it can be calculated from the minimum period size and the
2418 minimum number of periods.
2419 Meanwhile, <structfield>period_bytes_min</structfield> and
2420 define the minimum and maximum size of the period in bytes.
2421 <structfield>periods_max</structfield> and
2422 <structfield>periods_min</structfield> define the maximum and
2423 minimum number of periods in the buffer.
2424 </para>
2425
2426 <para>
2427 The <quote>period</quote> is a term that corresponds to
2428 a fragment in the OSS world. The period defines the size at
2429 which a PCM interrupt is generated. This size strongly
2430 depends on the hardware.
2431 Generally, the smaller period size will give you more
2432 interrupts, that is, more controls.
2433 In the case of capture, this size defines the input latency.
2434 On the other hand, the whole buffer size defines the
2435 output latency for the playback direction.
2436 </para>
2437 </listitem>
2438
2439 <listitem>
2440 <para>
2441 There is also a field <structfield>fifo_size</structfield>.
2442 This specifies the size of the hardware FIFO, but currently it
2443 is neither used in the driver nor in the alsa-lib. So, you
2444 can ignore this field.
2445 </para>
2446 </listitem>
2447 </itemizedlist>
2448 </para>
2449 </section>
2450
2451 <section id="pcm-interface-runtime-config">
2452 <title>PCM Configurations</title>
2453 <para>
2454 Ok, let's go back again to the PCM runtime records.
2455 The most frequently referred records in the runtime instance are
2456 the PCM configurations.
2457 The PCM configurations are stored in the runtime instance
2458 after the application sends <type>hw_params</type> data via
2459 alsa-lib. There are many fields copied from hw_params and
2460 sw_params structs. For example,
2461 <structfield>format</structfield> holds the format type
2462 chosen by the application. This field contains the enum value
2463 <constant>SNDRV_PCM_FORMAT_XXX</constant>.
2464 </para>
2465
2466 <para>
2467 One thing to be noted is that the configured buffer and period
2468 sizes are stored in <quote>frames</quote> in the runtime.
2469 In the ALSA world, 1 frame = channels * samples-size.
2470 For conversion between frames and bytes, you can use the
2471 <function>frames_to_bytes()</function> and
2472 <function>bytes_to_frames()</function> helper functions.
2473 <informalexample>
2474 <programlisting>
2475<![CDATA[
2476 period_bytes = frames_to_bytes(runtime, runtime->period_size);
2477]]>
2478 </programlisting>
2479 </informalexample>
2480 </para>
2481
2482 <para>
2483 Also, many software parameters (sw_params) are
2484 stored in frames, too. Please check the type of the field.
2485 <type>snd_pcm_uframes_t</type> is for the frames as unsigned
2486 integer while <type>snd_pcm_sframes_t</type> is for the frames
2487 as signed integer.
2488 </para>
2489 </section>
2490
2491 <section id="pcm-interface-runtime-dma">
2492 <title>DMA Buffer Information</title>
2493 <para>
2494 The DMA buffer is defined by the following four fields,
2495 <structfield>dma_area</structfield>,
2496 <structfield>dma_addr</structfield>,
2497 <structfield>dma_bytes</structfield> and
2498 <structfield>dma_private</structfield>.
2499 The <structfield>dma_area</structfield> holds the buffer
2500 pointer (the logical address). You can call
2501 <function>memcpy</function> from/to
2502 this pointer. Meanwhile, <structfield>dma_addr</structfield>
2503 holds the physical address of the buffer. This field is
2504 specified only when the buffer is a linear buffer.
2505 <structfield>dma_bytes</structfield> holds the size of buffer
2506 in bytes. <structfield>dma_private</structfield> is used for
2507 the ALSA DMA allocator.
2508 </para>
2509
2510 <para>
2511 If you use a standard ALSA function,
2512 <function>snd_pcm_lib_malloc_pages()</function>, for
2513 allocating the buffer, these fields are set by the ALSA middle
2514 layer, and you should <emphasis>not</emphasis> change them by
2515 yourself. You can read them but not write them.
2516 On the other hand, if you want to allocate the buffer by
2517 yourself, you'll need to manage it in hw_params callback.
2518 At least, <structfield>dma_bytes</structfield> is mandatory.
2519 <structfield>dma_area</structfield> is necessary when the
2520 buffer is mmapped. If your driver doesn't support mmap, this
2521 field is not necessary. <structfield>dma_addr</structfield>
2522 is also optional. You can use
2523 <structfield>dma_private</structfield> as you like, too.
2524 </para>
2525 </section>
2526
2527 <section id="pcm-interface-runtime-status">
2528 <title>Running Status</title>
2529 <para>
2530 The running status can be referred via <constant>runtime-&gt;status</constant>.
2531 This is the pointer to the struct <structname>snd_pcm_mmap_status</structname>
2532 record. For example, you can get the current DMA hardware
2533 pointer via <constant>runtime-&gt;status-&gt;hw_ptr</constant>.
2534 </para>
2535
2536 <para>
2537 The DMA application pointer can be referred via
2538 <constant>runtime-&gt;control</constant>, which points to the
2539 struct <structname>snd_pcm_mmap_control</structname> record.
2540 However, accessing directly to this value is not recommended.
2541 </para>
2542 </section>
2543
2544 <section id="pcm-interface-runtime-private">
2545 <title>Private Data</title>
2546 <para>
2547 You can allocate a record for the substream and store it in
2548 <constant>runtime-&gt;private_data</constant>. Usually, this
2549 is done in
2550 <link linkend="pcm-interface-operators-open-callback"><citetitle>
2551 the open callback</citetitle></link>.
2552 Don't mix this with <constant>pcm-&gt;private_data</constant>.
2553 The <constant>pcm-&gt;private_data</constant> usually points to the
2554 chip instance assigned statically at the creation of PCM, while the
2555 <constant>runtime-&gt;private_data</constant> points to a dynamic
2556 data structure created at the PCM open callback.
2557
2558 <informalexample>
2559 <programlisting>
2560<![CDATA[
2561 static int snd_xxx_open(struct snd_pcm_substream *substream)
2562 {
2563 struct my_pcm_data *data;
2564 ....
2565 data = kmalloc(sizeof(*data), GFP_KERNEL);
2566 substream->runtime->private_data = data;
2567 ....
2568 }
2569]]>
2570 </programlisting>
2571 </informalexample>
2572 </para>
2573
2574 <para>
2575 The allocated object must be released in
2576 <link linkend="pcm-interface-operators-open-callback"><citetitle>
2577 the close callback</citetitle></link>.
2578 </para>
2579 </section>
2580
2581 <section id="pcm-interface-runtime-intr">
2582 <title>Interrupt Callbacks</title>
2583 <para>
2584 The field <structfield>transfer_ack_begin</structfield> and
2585 <structfield>transfer_ack_end</structfield> are called at
2586 the beginning and at the end of
2587 <function>snd_pcm_period_elapsed()</function>, respectively.
2588 </para>
2589 </section>
2590
2591 </section>
2592
2593 <section id="pcm-interface-operators">
2594 <title>Operators</title>
2595 <para>
2596 OK, now let me give details about each pcm callback
2597 (<parameter>ops</parameter>). In general, every callback must
2598 return 0 if successful, or a negative error number
2599 such as <constant>-EINVAL</constant>. To choose an appropriate
2600 error number, it is advised to check what value other parts of
2601 the kernel return when the same kind of request fails.
2602 </para>
2603
2604 <para>
2605 The callback function takes at least the argument with
2606 <structname>snd_pcm_substream</structname> pointer. To retrieve
2607 the chip record from the given substream instance, you can use the
2608 following macro.
2609
2610 <informalexample>
2611 <programlisting>
2612<![CDATA[
2613 int xxx() {
2614 struct mychip *chip = snd_pcm_substream_chip(substream);
2615 ....
2616 }
2617]]>
2618 </programlisting>
2619 </informalexample>
2620
2621 The macro reads <constant>substream-&gt;private_data</constant>,
2622 which is a copy of <constant>pcm-&gt;private_data</constant>.
2623 You can override the former if you need to assign different data
2624 records per PCM substream. For example, the cmi8330 driver assigns
2625 different private_data for playback and capture directions,
2626 because it uses two different codecs (SB- and AD-compatible) for
2627 different directions.
2628 </para>
2629
2630 <section id="pcm-interface-operators-open-callback">
2631 <title>open callback</title>
2632 <para>
2633 <informalexample>
2634 <programlisting>
2635<![CDATA[
2636 static int snd_xxx_open(struct snd_pcm_substream *substream);
2637]]>
2638 </programlisting>
2639 </informalexample>
2640
2641 This is called when a pcm substream is opened.
2642 </para>
2643
2644 <para>
2645 At least, here you have to initialize the runtime-&gt;hw
2646 record. Typically, this is done by like this:
2647
2648 <informalexample>
2649 <programlisting>
2650<![CDATA[
2651 static int snd_xxx_open(struct snd_pcm_substream *substream)
2652 {
2653 struct mychip *chip = snd_pcm_substream_chip(substream);
2654 struct snd_pcm_runtime *runtime = substream->runtime;
2655
2656 runtime->hw = snd_mychip_playback_hw;
2657 return 0;
2658 }
2659]]>
2660 </programlisting>
2661 </informalexample>
2662
2663 where <parameter>snd_mychip_playback_hw</parameter> is the
2664 pre-defined hardware description.
2665 </para>
2666
2667 <para>
2668 You can allocate a private data in this callback, as described
2669 in <link linkend="pcm-interface-runtime-private"><citetitle>
2670 Private Data</citetitle></link> section.
2671 </para>
2672
2673 <para>
2674 If the hardware configuration needs more constraints, set the
2675 hardware constraints here, too.
2676 See <link linkend="pcm-interface-constraints"><citetitle>
2677 Constraints</citetitle></link> for more details.
2678 </para>
2679 </section>
2680
2681 <section id="pcm-interface-operators-close-callback">
2682 <title>close callback</title>
2683 <para>
2684 <informalexample>
2685 <programlisting>
2686<![CDATA[
2687 static int snd_xxx_close(struct snd_pcm_substream *substream);
2688]]>
2689 </programlisting>
2690 </informalexample>
2691
2692 Obviously, this is called when a pcm substream is closed.
2693 </para>
2694
2695 <para>
2696 Any private instance for a pcm substream allocated in the
2697 open callback will be released here.
2698
2699 <informalexample>
2700 <programlisting>
2701<![CDATA[
2702 static int snd_xxx_close(struct snd_pcm_substream *substream)
2703 {
2704 ....
2705 kfree(substream->runtime->private_data);
2706 ....
2707 }
2708]]>
2709 </programlisting>
2710 </informalexample>
2711 </para>
2712 </section>
2713
2714 <section id="pcm-interface-operators-ioctl-callback">
2715 <title>ioctl callback</title>
2716 <para>
2717 This is used for any special call to pcm ioctls. But
2718 usually you can pass a generic ioctl callback,
2719 <function>snd_pcm_lib_ioctl</function>.
2720 </para>
2721 </section>
2722
2723 <section id="pcm-interface-operators-hw-params-callback">
2724 <title>hw_params callback</title>
2725 <para>
2726 <informalexample>
2727 <programlisting>
2728<![CDATA[
2729 static int snd_xxx_hw_params(struct snd_pcm_substream *substream,
2730 struct snd_pcm_hw_params *hw_params);
2731]]>
2732 </programlisting>
2733 </informalexample>
2734 </para>
2735
2736 <para>
2737 This is called when the hardware parameter
2738 (<structfield>hw_params</structfield>) is set
2739 up by the application,
2740 that is, once when the buffer size, the period size, the
2741 format, etc. are defined for the pcm substream.
2742 </para>
2743
2744 <para>
2745 Many hardware setups should be done in this callback,
2746 including the allocation of buffers.
2747 </para>
2748
2749 <para>
2750 Parameters to be initialized are retrieved by
2751 <function>params_xxx()</function> macros. To allocate
2752 buffer, you can call a helper function,
2753
2754 <informalexample>
2755 <programlisting>
2756<![CDATA[
2757 snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
2758]]>
2759 </programlisting>
2760 </informalexample>
2761
2762 <function>snd_pcm_lib_malloc_pages()</function> is available
2763 only when the DMA buffers have been pre-allocated.
2764 See the section <link
2765 linkend="buffer-and-memory-buffer-types"><citetitle>
2766 Buffer Types</citetitle></link> for more details.
2767 </para>
2768
2769 <para>
2770 Note that this and <structfield>prepare</structfield> callbacks
2771 may be called multiple times per initialization.
2772 For example, the OSS emulation may
2773 call these callbacks at each change via its ioctl.
2774 </para>
2775
2776 <para>
2777 Thus, you need to be careful not to allocate the same buffers
2778 many times, which will lead to memory leaks! Calling the
2779 helper function above many times is OK. It will release the
2780 previous buffer automatically when it was already allocated.
2781 </para>
2782
2783 <para>
2784 Another note is that this callback is non-atomic
2785 (schedulable). This is important, because the
2786 <structfield>trigger</structfield> callback
2787 is atomic (non-schedulable). That is, mutexes or any
2788 schedule-related functions are not available in
2789 <structfield>trigger</structfield> callback.
2790 Please see the subsection
2791 <link linkend="pcm-interface-atomicity"><citetitle>
2792 Atomicity</citetitle></link> for details.
2793 </para>
2794 </section>
2795
2796 <section id="pcm-interface-operators-hw-free-callback">
2797 <title>hw_free callback</title>
2798 <para>
2799 <informalexample>
2800 <programlisting>
2801<![CDATA[
2802 static int snd_xxx_hw_free(struct snd_pcm_substream *substream);
2803]]>
2804 </programlisting>
2805 </informalexample>
2806 </para>
2807
2808 <para>
2809 This is called to release the resources allocated via
2810 <structfield>hw_params</structfield>. For example, releasing the
2811 buffer via
2812 <function>snd_pcm_lib_malloc_pages()</function> is done by
2813 calling the following:
2814
2815 <informalexample>
2816 <programlisting>
2817<![CDATA[
2818 snd_pcm_lib_free_pages(substream);
2819]]>
2820 </programlisting>
2821 </informalexample>
2822 </para>
2823
2824 <para>
2825 This function is always called before the close callback is called.
2826 Also, the callback may be called multiple times, too.
2827 Keep track whether the resource was already released.
2828 </para>
2829 </section>
2830
2831 <section id="pcm-interface-operators-prepare-callback">
2832 <title>prepare callback</title>
2833 <para>
2834 <informalexample>
2835 <programlisting>
2836<![CDATA[
2837 static int snd_xxx_prepare(struct snd_pcm_substream *substream);
2838]]>
2839 </programlisting>
2840 </informalexample>
2841 </para>
2842
2843 <para>
2844 This callback is called when the pcm is
2845 <quote>prepared</quote>. You can set the format type, sample
2846 rate, etc. here. The difference from
2847 <structfield>hw_params</structfield> is that the
2848 <structfield>prepare</structfield> callback will be called each
2849 time
2850 <function>snd_pcm_prepare()</function> is called, i.e. when
2851 recovering after underruns, etc.
2852 </para>
2853
2854 <para>
2855 Note that this callback is now non-atomic.
2856 You can use schedule-related functions safely in this callback.
2857 </para>
2858
2859 <para>
2860 In this and the following callbacks, you can refer to the
2861 values via the runtime record,
2862 substream-&gt;runtime.
2863 For example, to get the current
2864 rate, format or channels, access to
2865 runtime-&gt;rate,
2866 runtime-&gt;format or
2867 runtime-&gt;channels, respectively.
2868 The physical address of the allocated buffer is set to
2869 runtime-&gt;dma_area. The buffer and period sizes are
2870 in runtime-&gt;buffer_size and runtime-&gt;period_size,
2871 respectively.
2872 </para>
2873
2874 <para>
2875 Be careful that this callback will be called many times at
2876 each setup, too.
2877 </para>
2878 </section>
2879
2880 <section id="pcm-interface-operators-trigger-callback">
2881 <title>trigger callback</title>
2882 <para>
2883 <informalexample>
2884 <programlisting>
2885<![CDATA[
2886 static int snd_xxx_trigger(struct snd_pcm_substream *substream, int cmd);
2887]]>
2888 </programlisting>
2889 </informalexample>
2890
2891 This is called when the pcm is started, stopped or paused.
2892 </para>
2893
2894 <para>
2895 Which action is specified in the second argument,
2896 <constant>SNDRV_PCM_TRIGGER_XXX</constant> in
2897 <filename>&lt;sound/pcm.h&gt;</filename>. At least,
2898 the <constant>START</constant> and <constant>STOP</constant>
2899 commands must be defined in this callback.
2900
2901 <informalexample>
2902 <programlisting>
2903<![CDATA[
2904 switch (cmd) {
2905 case SNDRV_PCM_TRIGGER_START:
2906 /* do something to start the PCM engine */
2907 break;
2908 case SNDRV_PCM_TRIGGER_STOP:
2909 /* do something to stop the PCM engine */
2910 break;
2911 default:
2912 return -EINVAL;
2913 }
2914]]>
2915 </programlisting>
2916 </informalexample>
2917 </para>
2918
2919 <para>
2920 When the pcm supports the pause operation (given in the info
2921 field of the hardware table), the <constant>PAUSE_PUSE</constant>
2922 and <constant>PAUSE_RELEASE</constant> commands must be
2923 handled here, too. The former is the command to pause the pcm,
2924 and the latter to restart the pcm again.
2925 </para>
2926
2927 <para>
2928 When the pcm supports the suspend/resume operation,
2929 regardless of full or partial suspend/resume support,
2930 the <constant>SUSPEND</constant> and <constant>RESUME</constant>
2931 commands must be handled, too.
2932 These commands are issued when the power-management status is
2933 changed. Obviously, the <constant>SUSPEND</constant> and
2934 <constant>RESUME</constant> commands
2935 suspend and resume the pcm substream, and usually, they
2936 are identical to the <constant>STOP</constant> and
2937 <constant>START</constant> commands, respectively.
2938 See the <link linkend="power-management"><citetitle>
2939 Power Management</citetitle></link> section for details.
2940 </para>
2941
2942 <para>
2943 As mentioned, this callback is atomic. You cannot call
2944 functions which may sleep.
2945 The trigger callback should be as minimal as possible,
2946 just really triggering the DMA. The other stuff should be
2947 initialized hw_params and prepare callbacks properly
2948 beforehand.
2949 </para>
2950 </section>
2951
2952 <section id="pcm-interface-operators-pointer-callback">
2953 <title>pointer callback</title>
2954 <para>
2955 <informalexample>
2956 <programlisting>
2957<![CDATA[
2958 static snd_pcm_uframes_t snd_xxx_pointer(struct snd_pcm_substream *substream)
2959]]>
2960 </programlisting>
2961 </informalexample>
2962
2963 This callback is called when the PCM middle layer inquires
2964 the current hardware position on the buffer. The position must
2965 be returned in frames,
2966 ranging from 0 to buffer_size - 1.
2967 </para>
2968
2969 <para>
2970 This is called usually from the buffer-update routine in the
2971 pcm middle layer, which is invoked when
2972 <function>snd_pcm_period_elapsed()</function> is called in the
2973 interrupt routine. Then the pcm middle layer updates the
2974 position and calculates the available space, and wakes up the
2975 sleeping poll threads, etc.
2976 </para>
2977
2978 <para>
2979 This callback is also atomic.
2980 </para>
2981 </section>
2982
2983 <section id="pcm-interface-operators-copy-silence">
2984 <title>copy and silence callbacks</title>
2985 <para>
2986 These callbacks are not mandatory, and can be omitted in
2987 most cases. These callbacks are used when the hardware buffer
2988 cannot be in the normal memory space. Some chips have their
2989 own buffer on the hardware which is not mappable. In such a
2990 case, you have to transfer the data manually from the memory
2991 buffer to the hardware buffer. Or, if the buffer is
2992 non-contiguous on both physical and virtual memory spaces,
2993 these callbacks must be defined, too.
2994 </para>
2995
2996 <para>
2997 If these two callbacks are defined, copy and set-silence
2998 operations are done by them. The detailed will be described in
2999 the later section <link
3000 linkend="buffer-and-memory"><citetitle>Buffer and Memory
3001 Management</citetitle></link>.
3002 </para>
3003 </section>
3004
3005 <section id="pcm-interface-operators-ack">
3006 <title>ack callback</title>
3007 <para>
3008 This callback is also not mandatory. This callback is called
3009 when the appl_ptr is updated in read or write operations.
3010 Some drivers like emu10k1-fx and cs46xx need to track the
3011 current appl_ptr for the internal buffer, and this callback
3012 is useful only for such a purpose.
3013 </para>
3014 <para>
3015 This callback is atomic.
3016 </para>
3017 </section>
3018
3019 <section id="pcm-interface-operators-page-callback">
3020 <title>page callback</title>
3021
3022 <para>
3023 This callback is optional too. This callback is used
3024 mainly for non-contiguous buffers. The mmap calls this
3025 callback to get the page address. Some examples will be
3026 explained in the later section <link
3027 linkend="buffer-and-memory"><citetitle>Buffer and Memory
3028 Management</citetitle></link>, too.
3029 </para>
3030 </section>
3031 </section>
3032
3033 <section id="pcm-interface-interrupt-handler">
3034 <title>Interrupt Handler</title>
3035 <para>
3036 The rest of pcm stuff is the PCM interrupt handler. The
3037 role of PCM interrupt handler in the sound driver is to update
3038 the buffer position and to tell the PCM middle layer when the
3039 buffer position goes across the prescribed period size. To
3040 inform this, call the <function>snd_pcm_period_elapsed()</function>
3041 function.
3042 </para>
3043
3044 <para>
3045 There are several types of sound chips to generate the interrupts.
3046 </para>
3047
3048 <section id="pcm-interface-interrupt-handler-boundary">
3049 <title>Interrupts at the period (fragment) boundary</title>
3050 <para>
3051 This is the most frequently found type: the hardware
3052 generates an interrupt at each period boundary.
3053 In this case, you can call
3054 <function>snd_pcm_period_elapsed()</function> at each
3055 interrupt.
3056 </para>
3057
3058 <para>
3059 <function>snd_pcm_period_elapsed()</function> takes the
3060 substream pointer as its argument. Thus, you need to keep the
3061 substream pointer accessible from the chip instance. For
3062 example, define substream field in the chip record to hold the
3063 current running substream pointer, and set the pointer value
3064 at open callback (and reset at close callback).
3065 </para>
3066
3067 <para>
3068 If you acquire a spinlock in the interrupt handler, and the
3069 lock is used in other pcm callbacks, too, then you have to
3070 release the lock before calling
3071 <function>snd_pcm_period_elapsed()</function>, because
3072 <function>snd_pcm_period_elapsed()</function> calls other pcm
3073 callbacks inside.
3074 </para>
3075
3076 <para>
3077 Typical code would be like:
3078
3079 <example>
3080 <title>Interrupt Handler Case #1</title>
3081 <programlisting>
3082<![CDATA[
3083 static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id)
3084 {
3085 struct mychip *chip = dev_id;
3086 spin_lock(&chip->lock);
3087 ....
3088 if (pcm_irq_invoked(chip)) {
3089 /* call updater, unlock before it */
3090 spin_unlock(&chip->lock);
3091 snd_pcm_period_elapsed(chip->substream);
3092 spin_lock(&chip->lock);
3093 /* acknowledge the interrupt if necessary */
3094 }
3095 ....
3096 spin_unlock(&chip->lock);
3097 return IRQ_HANDLED;
3098 }
3099]]>
3100 </programlisting>
3101 </example>
3102 </para>
3103 </section>
3104
3105 <section id="pcm-interface-interrupt-handler-timer">
3106 <title>High frequency timer interrupts</title>
3107 <para>
3108 This happense when the hardware doesn't generate interrupts
3109 at the period boundary but issues timer interrupts at a fixed
3110 timer rate (e.g. es1968 or ymfpci drivers).
3111 In this case, you need to check the current hardware
3112 position and accumulate the processed sample length at each
3113 interrupt. When the accumulated size exceeds the period
3114 size, call
3115 <function>snd_pcm_period_elapsed()</function> and reset the
3116 accumulator.
3117 </para>
3118
3119 <para>
3120 Typical code would be like the following.
3121
3122 <example>
3123 <title>Interrupt Handler Case #2</title>
3124 <programlisting>
3125<![CDATA[
3126 static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id)
3127 {
3128 struct mychip *chip = dev_id;
3129 spin_lock(&chip->lock);
3130 ....
3131 if (pcm_irq_invoked(chip)) {
3132 unsigned int last_ptr, size;
3133 /* get the current hardware pointer (in frames) */
3134 last_ptr = get_hw_ptr(chip);
3135 /* calculate the processed frames since the
3136 * last update
3137 */
3138 if (last_ptr < chip->last_ptr)
3139 size = runtime->buffer_size + last_ptr
3140 - chip->last_ptr;
3141 else
3142 size = last_ptr - chip->last_ptr;
3143 /* remember the last updated point */
3144 chip->last_ptr = last_ptr;
3145 /* accumulate the size */
3146 chip->size += size;
3147 /* over the period boundary? */
3148 if (chip->size >= runtime->period_size) {
3149 /* reset the accumulator */
3150 chip->size %= runtime->period_size;
3151 /* call updater */
3152 spin_unlock(&chip->lock);
3153 snd_pcm_period_elapsed(substream);
3154 spin_lock(&chip->lock);
3155 }
3156 /* acknowledge the interrupt if necessary */
3157 }
3158 ....
3159 spin_unlock(&chip->lock);
3160 return IRQ_HANDLED;
3161 }
3162]]>
3163 </programlisting>
3164 </example>
3165 </para>
3166 </section>
3167
3168 <section id="pcm-interface-interrupt-handler-both">
3169 <title>On calling <function>snd_pcm_period_elapsed()</function></title>
3170 <para>
3171 In both cases, even if more than one period are elapsed, you
3172 don't have to call
3173 <function>snd_pcm_period_elapsed()</function> many times. Call
3174 only once. And the pcm layer will check the current hardware
3175 pointer and update to the latest status.
3176 </para>
3177 </section>
3178 </section>
3179
3180 <section id="pcm-interface-atomicity">
3181 <title>Atomicity</title>
3182 <para>
3183 One of the most important (and thus difficult to debug) problems
3184 in kernel programming are race conditions.
3185 In the Linux kernel, they are usually avoided via spin-locks, mutexes
3186 or semaphores. In general, if a race condition can happen
3187 in an interrupt handler, it has to be managed atomically, and you
3188 have to use a spinlock to protect the critical session. If the
3189 critical section is not in interrupt handler code and
3190 if taking a relatively long time to execute is acceptable, you
3191 should use mutexes or semaphores instead.
3192 </para>
3193
3194 <para>
3195 As already seen, some pcm callbacks are atomic and some are
3196 not. For example, the <parameter>hw_params</parameter> callback is
3197 non-atomic, while <parameter>trigger</parameter> callback is
3198 atomic. This means, the latter is called already in a spinlock
3199 held by the PCM middle layer. Please take this atomicity into
3200 account when you choose a locking scheme in the callbacks.
3201 </para>
3202
3203 <para>
3204 In the atomic callbacks, you cannot use functions which may call
3205 <function>schedule</function> or go to
3206 <function>sleep</function>. Semaphores and mutexes can sleep,
3207 and hence they cannot be used inside the atomic callbacks
3208 (e.g. <parameter>trigger</parameter> callback).
3209 To implement some delay in such a callback, please use
3210 <function>udelay()</function> or <function>mdelay()</function>.
3211 </para>
3212
3213 <para>
3214 All three atomic callbacks (trigger, pointer, and ack) are
3215 called with local interrupts disabled.
3216 </para>
3217
3218 </section>
3219 <section id="pcm-interface-constraints">
3220 <title>Constraints</title>
3221 <para>
3222 If your chip supports unconventional sample rates, or only the
3223 limited samples, you need to set a constraint for the
3224 condition.
3225 </para>
3226
3227 <para>
3228 For example, in order to restrict the sample rates in the some
3229 supported values, use
3230 <function>snd_pcm_hw_constraint_list()</function>.
3231 You need to call this function in the open callback.
3232
3233 <example>
3234 <title>Example of Hardware Constraints</title>
3235 <programlisting>
3236<![CDATA[
3237 static unsigned int rates[] =
3238 {4000, 10000, 22050, 44100};
3239 static struct snd_pcm_hw_constraint_list constraints_rates = {
3240 .count = ARRAY_SIZE(rates),
3241 .list = rates,
3242 .mask = 0,
3243 };
3244
3245 static int snd_mychip_pcm_open(struct snd_pcm_substream *substream)
3246 {
3247 int err;
3248 ....
3249 err = snd_pcm_hw_constraint_list(substream->runtime, 0,
3250 SNDRV_PCM_HW_PARAM_RATE,
3251 &constraints_rates);
3252 if (err < 0)
3253 return err;
3254 ....
3255 }
3256]]>
3257 </programlisting>
3258 </example>
3259 </para>
3260
3261 <para>
3262 There are many different constraints.
3263 Look at <filename>sound/pcm.h</filename> for a complete list.
3264 You can even define your own constraint rules.
3265 For example, let's suppose my_chip can manage a substream of 1 channel
3266 if and only if the format is S16_LE, otherwise it supports any format
3267 specified in the <structname>snd_pcm_hardware</structname> structure (or in any
3268 other constraint_list). You can build a rule like this:
3269
3270 <example>
3271 <title>Example of Hardware Constraints for Channels</title>
3272 <programlisting>
3273<![CDATA[
3274 static int hw_rule_format_by_channels(struct snd_pcm_hw_params *params,
3275 struct snd_pcm_hw_rule *rule)
3276 {
3277 struct snd_interval *c = hw_param_interval(params,
3278 SNDRV_PCM_HW_PARAM_CHANNELS);
3279 struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
3280 struct snd_mask fmt;
3281
3282 snd_mask_any(&fmt); /* Init the struct */
3283 if (c->min < 2) {
3284 fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_LE;
3285 return snd_mask_refine(f, &fmt);
3286 }
3287 return 0;
3288 }
3289]]>
3290 </programlisting>
3291 </example>
3292 </para>
3293
3294 <para>
3295 Then you need to call this function to add your rule:
3296
3297 <informalexample>
3298 <programlisting>
3299<![CDATA[
3300 snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
3301 hw_rule_channels_by_format, 0, SNDRV_PCM_HW_PARAM_FORMAT,
3302 -1);
3303]]>
3304 </programlisting>
3305 </informalexample>
3306 </para>
3307
3308 <para>
3309 The rule function is called when an application sets the number of
3310 channels. But an application can set the format before the number of
3311 channels. Thus you also need to define the inverse rule:
3312
3313 <example>
3314 <title>Example of Hardware Constraints for Channels</title>
3315 <programlisting>
3316<![CDATA[
3317 static int hw_rule_channels_by_format(struct snd_pcm_hw_params *params,
3318 struct snd_pcm_hw_rule *rule)
3319 {
3320 struct snd_interval *c = hw_param_interval(params,
3321 SNDRV_PCM_HW_PARAM_CHANNELS);
3322 struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
3323 struct snd_interval ch;
3324
3325 snd_interval_any(&ch);
3326 if (f->bits[0] == SNDRV_PCM_FMTBIT_S16_LE) {
3327 ch.min = ch.max = 1;
3328 ch.integer = 1;
3329 return snd_interval_refine(c, &ch);
3330 }
3331 return 0;
3332 }
3333]]>
3334 </programlisting>
3335 </example>
3336 </para>
3337
3338 <para>
3339 ...and in the open callback:
3340 <informalexample>
3341 <programlisting>
3342<![CDATA[
3343 snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
3344 hw_rule_format_by_channels, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
3345 -1);
3346]]>
3347 </programlisting>
3348 </informalexample>
3349 </para>
3350
3351 <para>
3352 I won't give more details here, rather I
3353 would like to say, <quote>Luke, use the source.</quote>
3354 </para>
3355 </section>
3356
3357 </chapter>
3358
3359
3360<!-- ****************************************************** -->
3361<!-- Control Interface -->
3362<!-- ****************************************************** -->
3363 <chapter id="control-interface">
3364 <title>Control Interface</title>
3365
3366 <section id="control-interface-general">
3367 <title>General</title>
3368 <para>
3369 The control interface is used widely for many switches,
3370 sliders, etc. which are accessed from user-space. Its most
3371 important use is the mixer interface. In other words, since ALSA
3372 0.9.x, all the mixer stuff is implemented on the control kernel API.
3373 </para>
3374
3375 <para>
3376 ALSA has a well-defined AC97 control module. If your chip
3377 supports only the AC97 and nothing else, you can skip this
3378 section.
3379 </para>
3380
3381 <para>
3382 The control API is defined in
3383 <filename>&lt;sound/control.h&gt;</filename>.
3384 Include this file if you want to add your own controls.
3385 </para>
3386 </section>
3387
3388 <section id="control-interface-definition">
3389 <title>Definition of Controls</title>
3390 <para>
3391 To create a new control, you need to define the
3392 following three
3393 callbacks: <structfield>info</structfield>,
3394 <structfield>get</structfield> and
3395 <structfield>put</structfield>. Then, define a
3396 struct <structname>snd_kcontrol_new</structname> record, such as:
3397
3398 <example>
3399 <title>Definition of a Control</title>
3400 <programlisting>
3401<![CDATA[
3402 static struct snd_kcontrol_new my_control __devinitdata = {
3403 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3404 .name = "PCM Playback Switch",
3405 .index = 0,
3406 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
3407 .private_value = 0xffff,
3408 .info = my_control_info,
3409 .get = my_control_get,
3410 .put = my_control_put
3411 };
3412]]>
3413 </programlisting>
3414 </example>
3415 </para>
3416
3417 <para>
3418 Most likely the control is created via
3419 <function>snd_ctl_new1()</function>, and in such a case, you can
3420 add the <parameter>__devinitdata</parameter> prefix to the
3421 definition as above.
3422 </para>
3423
3424 <para>
3425 The <structfield>iface</structfield> field specifies the control
3426 type, <constant>SNDRV_CTL_ELEM_IFACE_XXX</constant>, which
3427 is usually <constant>MIXER</constant>.
3428 Use <constant>CARD</constant> for global controls that are not
3429 logically part of the mixer.
3430 If the control is closely associated with some specific device on
3431 the sound card, use <constant>HWDEP</constant>,
3432 <constant>PCM</constant>, <constant>RAWMIDI</constant>,
3433 <constant>TIMER</constant>, or <constant>SEQUENCER</constant>, and
3434 specify the device number with the
3435 <structfield>device</structfield> and
3436 <structfield>subdevice</structfield> fields.
3437 </para>
3438
3439 <para>
3440 The <structfield>name</structfield> is the name identifier
3441 string. Since ALSA 0.9.x, the control name is very important,
3442 because its role is classified from its name. There are
3443 pre-defined standard control names. The details are described in
3444 the <link linkend="control-interface-control-names"><citetitle>
3445 Control Names</citetitle></link> subsection.
3446 </para>
3447
3448 <para>
3449 The <structfield>index</structfield> field holds the index number
3450 of this control. If there are several different controls with
3451 the same name, they can be distinguished by the index
3452 number. This is the case when
3453 several codecs exist on the card. If the index is zero, you can
3454 omit the definition above.
3455 </para>
3456
3457 <para>
3458 The <structfield>access</structfield> field contains the access
3459 type of this control. Give the combination of bit masks,
3460 <constant>SNDRV_CTL_ELEM_ACCESS_XXX</constant>, there.
3461 The details will be explained in
3462 the <link linkend="control-interface-access-flags"><citetitle>
3463 Access Flags</citetitle></link> subsection.
3464 </para>
3465
3466 <para>
3467 The <structfield>private_value</structfield> field contains
3468 an arbitrary long integer value for this record. When using
3469 the generic <structfield>info</structfield>,
3470 <structfield>get</structfield> and
3471 <structfield>put</structfield> callbacks, you can pass a value
3472 through this field. If several small numbers are necessary, you can
3473 combine them in bitwise. Or, it's possible to give a pointer
3474 (casted to unsigned long) of some record to this field, too.
3475 </para>
3476
3477 <para>
3478 The <structfield>tlv</structfield> field can be used to provide
3479 metadata about the control; see the
3480 <link linkend="control-interface-tlv">
3481 <citetitle>Metadata</citetitle></link> subsection.
3482 </para>
3483
3484 <para>
3485 The other three are
3486 <link linkend="control-interface-callbacks"><citetitle>
3487 callback functions</citetitle></link>.
3488 </para>
3489 </section>
3490
3491 <section id="control-interface-control-names">
3492 <title>Control Names</title>
3493 <para>
3494 There are some standards to define the control names. A
3495 control is usually defined from the three parts as
3496 <quote>SOURCE DIRECTION FUNCTION</quote>.
3497 </para>
3498
3499 <para>
3500 The first, <constant>SOURCE</constant>, specifies the source
3501 of the control, and is a string such as <quote>Master</quote>,
3502 <quote>PCM</quote>, <quote>CD</quote> and
3503 <quote>Line</quote>. There are many pre-defined sources.
3504 </para>
3505
3506 <para>
3507 The second, <constant>DIRECTION</constant>, is one of the
3508 following strings according to the direction of the control:
3509 <quote>Playback</quote>, <quote>Capture</quote>, <quote>Bypass
3510 Playback</quote> and <quote>Bypass Capture</quote>. Or, it can
3511 be omitted, meaning both playback and capture directions.
3512 </para>
3513
3514 <para>
3515 The third, <constant>FUNCTION</constant>, is one of the
3516 following strings according to the function of the control:
3517 <quote>Switch</quote>, <quote>Volume</quote> and
3518 <quote>Route</quote>.
3519 </para>
3520
3521 <para>
3522 The example of control names are, thus, <quote>Master Capture
3523 Switch</quote> or <quote>PCM Playback Volume</quote>.
3524 </para>
3525
3526 <para>
3527 There are some exceptions:
3528 </para>
3529
3530 <section id="control-interface-control-names-global">
3531 <title>Global capture and playback</title>
3532 <para>
3533 <quote>Capture Source</quote>, <quote>Capture Switch</quote>
3534 and <quote>Capture Volume</quote> are used for the global
3535 capture (input) source, switch and volume. Similarly,
3536 <quote>Playback Switch</quote> and <quote>Playback
3537 Volume</quote> are used for the global output gain switch and
3538 volume.
3539 </para>
3540 </section>
3541
3542 <section id="control-interface-control-names-tone">
3543 <title>Tone-controls</title>
3544 <para>
3545 tone-control switch and volumes are specified like
3546 <quote>Tone Control - XXX</quote>, e.g. <quote>Tone Control -
3547 Switch</quote>, <quote>Tone Control - Bass</quote>,
3548 <quote>Tone Control - Center</quote>.
3549 </para>
3550 </section>
3551
3552 <section id="control-interface-control-names-3d">
3553 <title>3D controls</title>
3554 <para>
3555 3D-control switches and volumes are specified like <quote>3D
3556 Control - XXX</quote>, e.g. <quote>3D Control -
3557 Switch</quote>, <quote>3D Control - Center</quote>, <quote>3D
3558 Control - Space</quote>.
3559 </para>
3560 </section>
3561
3562 <section id="control-interface-control-names-mic">
3563 <title>Mic boost</title>
3564 <para>
3565 Mic-boost switch is set as <quote>Mic Boost</quote> or
3566 <quote>Mic Boost (6dB)</quote>.
3567 </para>
3568
3569 <para>
3570 More precise information can be found in
3571 <filename>Documentation/sound/alsa/ControlNames.txt</filename>.
3572 </para>
3573 </section>
3574 </section>
3575
3576 <section id="control-interface-access-flags">
3577 <title>Access Flags</title>
3578
3579 <para>
3580 The access flag is the bitmask which specifies the access type
3581 of the given control. The default access type is
3582 <constant>SNDRV_CTL_ELEM_ACCESS_READWRITE</constant>,
3583 which means both read and write are allowed to this control.
3584 When the access flag is omitted (i.e. = 0), it is
3585 considered as <constant>READWRITE</constant> access as default.
3586 </para>
3587
3588 <para>
3589 When the control is read-only, pass
3590 <constant>SNDRV_CTL_ELEM_ACCESS_READ</constant> instead.
3591 In this case, you don't have to define
3592 the <structfield>put</structfield> callback.
3593 Similarly, when the control is write-only (although it's a rare
3594 case), you can use the <constant>WRITE</constant> flag instead, and
3595 you don't need the <structfield>get</structfield> callback.
3596 </para>
3597
3598 <para>
3599 If the control value changes frequently (e.g. the VU meter),
3600 <constant>VOLATILE</constant> flag should be given. This means
3601 that the control may be changed without
3602 <link linkend="control-interface-change-notification"><citetitle>
3603 notification</citetitle></link>. Applications should poll such
3604 a control constantly.
3605 </para>
3606
3607 <para>
3608 When the control is inactive, set
3609 the <constant>INACTIVE</constant> flag, too.
3610 There are <constant>LOCK</constant> and
3611 <constant>OWNER</constant> flags to change the write
3612 permissions.
3613 </para>
3614
3615 </section>
3616
3617 <section id="control-interface-callbacks">
3618 <title>Callbacks</title>
3619
3620 <section id="control-interface-callbacks-info">
3621 <title>info callback</title>
3622 <para>
3623 The <structfield>info</structfield> callback is used to get
3624 detailed information on this control. This must store the
3625 values of the given struct <structname>snd_ctl_elem_info</structname>
3626 object. For example, for a boolean control with a single
3627 element:
3628
3629 <example>
3630 <title>Example of info callback</title>
3631 <programlisting>
3632<![CDATA[
3633 static int snd_myctl_mono_info(struct snd_kcontrol *kcontrol,
3634 struct snd_ctl_elem_info *uinfo)
3635 {
3636 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
3637 uinfo->count = 1;
3638 uinfo->value.integer.min = 0;
3639 uinfo->value.integer.max = 1;
3640 return 0;
3641 }
3642]]>
3643 </programlisting>
3644 </example>
3645 </para>
3646
3647 <para>
3648 The <structfield>type</structfield> field specifies the type
3649 of the control. There are <constant>BOOLEAN</constant>,
3650 <constant>INTEGER</constant>, <constant>ENUMERATED</constant>,
3651 <constant>BYTES</constant>, <constant>IEC958</constant> and
3652 <constant>INTEGER64</constant>. The
3653 <structfield>count</structfield> field specifies the
3654 number of elements in this control. For example, a stereo
3655 volume would have count = 2. The
3656 <structfield>value</structfield> field is a union, and
3657 the values stored are depending on the type. The boolean and
3658 integer types are identical.
3659 </para>
3660
3661 <para>
3662 The enumerated type is a bit different from others. You'll
3663 need to set the string for the currently given item index.
3664
3665 <informalexample>
3666 <programlisting>
3667<![CDATA[
3668 static int snd_myctl_enum_info(struct snd_kcontrol *kcontrol,
3669 struct snd_ctl_elem_info *uinfo)
3670 {
3671 static char *texts[4] = {
3672 "First", "Second", "Third", "Fourth"
3673 };
3674 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
3675 uinfo->count = 1;
3676 uinfo->value.enumerated.items = 4;
3677 if (uinfo->value.enumerated.item > 3)
3678 uinfo->value.enumerated.item = 3;
3679 strcpy(uinfo->value.enumerated.name,
3680 texts[uinfo->value.enumerated.item]);
3681 return 0;
3682 }
3683]]>
3684 </programlisting>
3685 </informalexample>
3686 </para>
3687
3688 <para>
3689 Some common info callbacks are available for your convenience:
3690 <function>snd_ctl_boolean_mono_info()</function> and
3691 <function>snd_ctl_boolean_stereo_info()</function>.
3692 Obviously, the former is an info callback for a mono channel
3693 boolean item, just like <function>snd_myctl_mono_info</function>
3694 above, and the latter is for a stereo channel boolean item.
3695 </para>
3696
3697 </section>
3698
3699 <section id="control-interface-callbacks-get">
3700 <title>get callback</title>
3701
3702 <para>
3703 This callback is used to read the current value of the
3704 control and to return to user-space.
3705 </para>
3706
3707 <para>
3708 For example,
3709
3710 <example>
3711 <title>Example of get callback</title>
3712 <programlisting>
3713<![CDATA[
3714 static int snd_myctl_get(struct snd_kcontrol *kcontrol,
3715 struct snd_ctl_elem_value *ucontrol)
3716 {
3717 struct mychip *chip = snd_kcontrol_chip(kcontrol);
3718 ucontrol->value.integer.value[0] = get_some_value(chip);
3719 return 0;
3720 }
3721]]>
3722 </programlisting>
3723 </example>
3724 </para>
3725
3726 <para>
3727 The <structfield>value</structfield> field depends on
3728 the type of control as well as on the info callback. For example,
3729 the sb driver uses this field to store the register offset,
3730 the bit-shift and the bit-mask. The
3731 <structfield>private_value</structfield> field is set as follows:
3732 <informalexample>
3733 <programlisting>
3734<![CDATA[
3735 .private_value = reg | (shift << 16) | (mask << 24)
3736]]>
3737 </programlisting>
3738 </informalexample>
3739 and is retrieved in callbacks like
3740 <informalexample>
3741 <programlisting>
3742<![CDATA[
3743 static int snd_sbmixer_get_single(struct snd_kcontrol *kcontrol,
3744 struct snd_ctl_elem_value *ucontrol)
3745 {
3746 int reg = kcontrol->private_value & 0xff;
3747 int shift = (kcontrol->private_value >> 16) & 0xff;
3748 int mask = (kcontrol->private_value >> 24) & 0xff;
3749 ....
3750 }
3751]]>
3752 </programlisting>
3753 </informalexample>
3754 </para>
3755
3756 <para>
3757 In the <structfield>get</structfield> callback,
3758 you have to fill all the elements if the
3759 control has more than one elements,
3760 i.e. <structfield>count</structfield> &gt; 1.
3761 In the example above, we filled only one element
3762 (<structfield>value.integer.value[0]</structfield>) since it's
3763 assumed as <structfield>count</structfield> = 1.
3764 </para>
3765 </section>
3766
3767 <section id="control-interface-callbacks-put">
3768 <title>put callback</title>
3769
3770 <para>
3771 This callback is used to write a value from user-space.
3772 </para>
3773
3774 <para>
3775 For example,
3776
3777 <example>
3778 <title>Example of put callback</title>
3779 <programlisting>
3780<![CDATA[
3781 static int snd_myctl_put(struct snd_kcontrol *kcontrol,
3782 struct snd_ctl_elem_value *ucontrol)
3783 {
3784 struct mychip *chip = snd_kcontrol_chip(kcontrol);
3785 int changed = 0;
3786 if (chip->current_value !=
3787 ucontrol->value.integer.value[0]) {
3788 change_current_value(chip,
3789 ucontrol->value.integer.value[0]);
3790 changed = 1;
3791 }
3792 return changed;
3793 }
3794]]>
3795 </programlisting>
3796 </example>
3797
3798 As seen above, you have to return 1 if the value is
3799 changed. If the value is not changed, return 0 instead.
3800 If any fatal error happens, return a negative error code as
3801 usual.
3802 </para>
3803
3804 <para>
3805 As in the <structfield>get</structfield> callback,
3806 when the control has more than one elements,
3807 all elements must be evaluated in this callback, too.
3808 </para>
3809 </section>
3810
3811 <section id="control-interface-callbacks-all">
3812 <title>Callbacks are not atomic</title>
3813 <para>
3814 All these three callbacks are basically not atomic.
3815 </para>
3816 </section>
3817 </section>
3818
3819 <section id="control-interface-constructor">
3820 <title>Constructor</title>
3821 <para>
3822 When everything is ready, finally we can create a new
3823 control. To create a control, there are two functions to be
3824 called, <function>snd_ctl_new1()</function> and
3825 <function>snd_ctl_add()</function>.
3826 </para>
3827
3828 <para>
3829 In the simplest way, you can do like this:
3830
3831 <informalexample>
3832 <programlisting>
3833<![CDATA[
3834 err = snd_ctl_add(card, snd_ctl_new1(&my_control, chip));
3835 if (err < 0)
3836 return err;
3837]]>
3838 </programlisting>
3839 </informalexample>
3840
3841 where <parameter>my_control</parameter> is the
3842 struct <structname>snd_kcontrol_new</structname> object defined above, and chip
3843 is the object pointer to be passed to
3844 kcontrol-&gt;private_data
3845 which can be referred to in callbacks.
3846 </para>
3847
3848 <para>
3849 <function>snd_ctl_new1()</function> allocates a new
3850 <structname>snd_kcontrol</structname> instance (that's why the definition
3851 of <parameter>my_control</parameter> can be with
3852 the <parameter>__devinitdata</parameter>
3853 prefix), and <function>snd_ctl_add</function> assigns the given
3854 control component to the card.
3855 </para>
3856 </section>
3857
3858 <section id="control-interface-change-notification">
3859 <title>Change Notification</title>
3860 <para>
3861 If you need to change and update a control in the interrupt
3862 routine, you can call <function>snd_ctl_notify()</function>. For
3863 example,
3864
3865 <informalexample>
3866 <programlisting>
3867<![CDATA[
3868 snd_ctl_notify(card, SNDRV_CTL_EVENT_MASK_VALUE, id_pointer);
3869]]>
3870 </programlisting>
3871 </informalexample>
3872
3873 This function takes the card pointer, the event-mask, and the
3874 control id pointer for the notification. The event-mask
3875 specifies the types of notification, for example, in the above
3876 example, the change of control values is notified.
3877 The id pointer is the pointer of struct <structname>snd_ctl_elem_id</structname>
3878 to be notified.
3879 You can find some examples in <filename>es1938.c</filename> or
3880 <filename>es1968.c</filename> for hardware volume interrupts.
3881 </para>
3882 </section>
3883
3884 <section id="control-interface-tlv">
3885 <title>Metadata</title>
3886 <para>
3887 To provide information about the dB values of a mixer control, use
3888 on of the <constant>DECLARE_TLV_xxx</constant> macros from
3889 <filename>&lt;sound/tlv.h&gt;</filename> to define a variable
3890 containing this information, set the<structfield>tlv.p
3891 </structfield> field to point to this variable, and include the
3892 <constant>SNDRV_CTL_ELEM_ACCESS_TLV_READ</constant> flag in the
3893 <structfield>access</structfield> field; like this:
3894 <informalexample>
3895 <programlisting>
3896<![CDATA[
3897 static DECLARE_TLV_DB_SCALE(db_scale_my_control, -4050, 150, 0);
3898
3899 static struct snd_kcontrol_new my_control __devinitdata = {
3900 ...
3901 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
3902 SNDRV_CTL_ELEM_ACCESS_TLV_READ,
3903 ...
3904 .tlv.p = db_scale_my_control,
3905 };
3906]]>
3907 </programlisting>
3908 </informalexample>
3909 </para>
3910
3911 <para>
3912 The <function>DECLARE_TLV_DB_SCALE</function> macro defines
3913 information about a mixer control where each step in the control's
3914 value changes the dB value by a constant dB amount.
3915 The first parameter is the name of the variable to be defined.
3916 The second parameter is the minimum value, in units of 0.01 dB.
3917 The third parameter is the step size, in units of 0.01 dB.
3918 Set the fourth parameter to 1 if the minimum value actually mutes
3919 the control.
3920 </para>
3921
3922 <para>
3923 The <function>DECLARE_TLV_DB_LINEAR</function> macro defines
3924 information about a mixer control where the control's value affects
3925 the output linearly.
3926 The first parameter is the name of the variable to be defined.
3927 The second parameter is the minimum value, in units of 0.01 dB.
3928 The third parameter is the maximum value, in units of 0.01 dB.
3929 If the minimum value mutes the control, set the second parameter to
3930 <constant>TLV_DB_GAIN_MUTE</constant>.
3931 </para>
3932 </section>
3933
3934 </chapter>
3935
3936
3937<!-- ****************************************************** -->
3938<!-- API for AC97 Codec -->
3939<!-- ****************************************************** -->
3940 <chapter id="api-ac97">
3941 <title>API for AC97 Codec</title>
3942
3943 <section>
3944 <title>General</title>
3945 <para>
3946 The ALSA AC97 codec layer is a well-defined one, and you don't
3947 have to write much code to control it. Only low-level control
3948 routines are necessary. The AC97 codec API is defined in
3949 <filename>&lt;sound/ac97_codec.h&gt;</filename>.
3950 </para>
3951 </section>
3952
3953 <section id="api-ac97-example">
3954 <title>Full Code Example</title>
3955 <para>
3956 <example>
3957 <title>Example of AC97 Interface</title>
3958 <programlisting>
3959<![CDATA[
3960 struct mychip {
3961 ....
3962 struct snd_ac97 *ac97;
3963 ....
3964 };
3965
3966 static unsigned short snd_mychip_ac97_read(struct snd_ac97 *ac97,
3967 unsigned short reg)
3968 {
3969 struct mychip *chip = ac97->private_data;
3970 ....
3971 /* read a register value here from the codec */
3972 return the_register_value;
3973 }
3974
3975 static void snd_mychip_ac97_write(struct snd_ac97 *ac97,
3976 unsigned short reg, unsigned short val)
3977 {
3978 struct mychip *chip = ac97->private_data;
3979 ....
3980 /* write the given register value to the codec */
3981 }
3982
3983 static int snd_mychip_ac97(struct mychip *chip)
3984 {
3985 struct snd_ac97_bus *bus;
3986 struct snd_ac97_template ac97;
3987 int err;
3988 static struct snd_ac97_bus_ops ops = {
3989 .write = snd_mychip_ac97_write,
3990 .read = snd_mychip_ac97_read,
3991 };
3992
3993 err = snd_ac97_bus(chip->card, 0, &ops, NULL, &bus);
3994 if (err < 0)
3995 return err;
3996 memset(&ac97, 0, sizeof(ac97));
3997 ac97.private_data = chip;
3998 return snd_ac97_mixer(bus, &ac97, &chip->ac97);
3999 }
4000
4001]]>
4002 </programlisting>
4003 </example>
4004 </para>
4005 </section>
4006
4007 <section id="api-ac97-constructor">
4008 <title>Constructor</title>
4009 <para>
4010 To create an ac97 instance, first call <function>snd_ac97_bus</function>
4011 with an <type>ac97_bus_ops_t</type> record with callback functions.
4012
4013 <informalexample>
4014 <programlisting>
4015<![CDATA[
4016 struct snd_ac97_bus *bus;
4017 static struct snd_ac97_bus_ops ops = {
4018 .write = snd_mychip_ac97_write,
4019 .read = snd_mychip_ac97_read,
4020 };
4021
4022 snd_ac97_bus(card, 0, &ops, NULL, &pbus);
4023]]>
4024 </programlisting>
4025 </informalexample>
4026
4027 The bus record is shared among all belonging ac97 instances.
4028 </para>
4029
4030 <para>
4031 And then call <function>snd_ac97_mixer()</function> with an
4032 struct <structname>snd_ac97_template</structname>
4033 record together with the bus pointer created above.
4034
4035 <informalexample>
4036 <programlisting>
4037<![CDATA[
4038 struct snd_ac97_template ac97;
4039 int err;
4040
4041 memset(&ac97, 0, sizeof(ac97));
4042 ac97.private_data = chip;
4043 snd_ac97_mixer(bus, &ac97, &chip->ac97);
4044]]>
4045 </programlisting>
4046 </informalexample>
4047
4048 where chip-&gt;ac97 is a pointer to a newly created
4049 <type>ac97_t</type> instance.
4050 In this case, the chip pointer is set as the private data, so that
4051 the read/write callback functions can refer to this chip instance.
4052 This instance is not necessarily stored in the chip
4053 record. If you need to change the register values from the
4054 driver, or need the suspend/resume of ac97 codecs, keep this
4055 pointer to pass to the corresponding functions.
4056 </para>
4057 </section>
4058
4059 <section id="api-ac97-callbacks">
4060 <title>Callbacks</title>
4061 <para>
4062 The standard callbacks are <structfield>read</structfield> and
4063 <structfield>write</structfield>. Obviously they
4064 correspond to the functions for read and write accesses to the
4065 hardware low-level codes.
4066 </para>
4067
4068 <para>
4069 The <structfield>read</structfield> callback returns the
4070 register value specified in the argument.
4071
4072 <informalexample>
4073 <programlisting>
4074<![CDATA[
4075 static unsigned short snd_mychip_ac97_read(struct snd_ac97 *ac97,
4076 unsigned short reg)
4077 {
4078 struct mychip *chip = ac97->private_data;
4079 ....
4080 return the_register_value;
4081 }
4082]]>
4083 </programlisting>
4084 </informalexample>
4085
4086 Here, the chip can be cast from ac97-&gt;private_data.
4087 </para>
4088
4089 <para>
4090 Meanwhile, the <structfield>write</structfield> callback is
4091 used to set the register value.
4092
4093 <informalexample>
4094 <programlisting>
4095<![CDATA[
4096 static void snd_mychip_ac97_write(struct snd_ac97 *ac97,
4097 unsigned short reg, unsigned short val)
4098]]>
4099 </programlisting>
4100 </informalexample>
4101 </para>
4102
4103 <para>
4104 These callbacks are non-atomic like the control API callbacks.
4105 </para>
4106
4107 <para>
4108 There are also other callbacks:
4109 <structfield>reset</structfield>,
4110 <structfield>wait</structfield> and
4111 <structfield>init</structfield>.
4112 </para>
4113
4114 <para>
4115 The <structfield>reset</structfield> callback is used to reset
4116 the codec. If the chip requires a special kind of reset, you can
4117 define this callback.
4118 </para>
4119
4120 <para>
4121 The <structfield>wait</structfield> callback is used to
4122 add some waiting time in the standard initialization of the codec. If the
4123 chip requires the extra waiting time, define this callback.
4124 </para>
4125
4126 <para>
4127 The <structfield>init</structfield> callback is used for
4128 additional initialization of the codec.
4129 </para>
4130 </section>
4131
4132 <section id="api-ac97-updating-registers">
4133 <title>Updating Registers in The Driver</title>
4134 <para>
4135 If you need to access to the codec from the driver, you can
4136 call the following functions:
4137 <function>snd_ac97_write()</function>,
4138 <function>snd_ac97_read()</function>,
4139 <function>snd_ac97_update()</function> and
4140 <function>snd_ac97_update_bits()</function>.
4141 </para>
4142
4143 <para>
4144 Both <function>snd_ac97_write()</function> and
4145 <function>snd_ac97_update()</function> functions are used to
4146 set a value to the given register
4147 (<constant>AC97_XXX</constant>). The difference between them is
4148 that <function>snd_ac97_update()</function> doesn't write a
4149 value if the given value has been already set, while
4150 <function>snd_ac97_write()</function> always rewrites the
4151 value.
4152
4153 <informalexample>
4154 <programlisting>
4155<![CDATA[
4156 snd_ac97_write(ac97, AC97_MASTER, 0x8080);
4157 snd_ac97_update(ac97, AC97_MASTER, 0x8080);
4158]]>
4159 </programlisting>
4160 </informalexample>
4161 </para>
4162
4163 <para>
4164 <function>snd_ac97_read()</function> is used to read the value
4165 of the given register. For example,
4166
4167 <informalexample>
4168 <programlisting>
4169<![CDATA[
4170 value = snd_ac97_read(ac97, AC97_MASTER);
4171]]>
4172 </programlisting>
4173 </informalexample>
4174 </para>
4175
4176 <para>
4177 <function>snd_ac97_update_bits()</function> is used to update
4178 some bits in the given register.
4179
4180 <informalexample>
4181 <programlisting>
4182<![CDATA[
4183 snd_ac97_update_bits(ac97, reg, mask, value);
4184]]>
4185 </programlisting>
4186 </informalexample>
4187 </para>
4188
4189 <para>
4190 Also, there is a function to change the sample rate (of a
4191 given register such as
4192 <constant>AC97_PCM_FRONT_DAC_RATE</constant>) when VRA or
4193 DRA is supported by the codec:
4194 <function>snd_ac97_set_rate()</function>.
4195
4196 <informalexample>
4197 <programlisting>
4198<![CDATA[
4199 snd_ac97_set_rate(ac97, AC97_PCM_FRONT_DAC_RATE, 44100);
4200]]>
4201 </programlisting>
4202 </informalexample>
4203 </para>
4204
4205 <para>
4206 The following registers are available to set the rate:
4207 <constant>AC97_PCM_MIC_ADC_RATE</constant>,
4208 <constant>AC97_PCM_FRONT_DAC_RATE</constant>,
4209 <constant>AC97_PCM_LR_ADC_RATE</constant>,
4210 <constant>AC97_SPDIF</constant>. When
4211 <constant>AC97_SPDIF</constant> is specified, the register is
4212 not really changed but the corresponding IEC958 status bits will
4213 be updated.
4214 </para>
4215 </section>
4216
4217 <section id="api-ac97-clock-adjustment">
4218 <title>Clock Adjustment</title>
4219 <para>
4220 In some chips, the clock of the codec isn't 48000 but using a
4221 PCI clock (to save a quartz!). In this case, change the field
4222 bus-&gt;clock to the corresponding
4223 value. For example, intel8x0
4224 and es1968 drivers have their own function to read from the clock.
4225 </para>
4226 </section>
4227
4228 <section id="api-ac97-proc-files">
4229 <title>Proc Files</title>
4230 <para>
4231 The ALSA AC97 interface will create a proc file such as
4232 <filename>/proc/asound/card0/codec97#0/ac97#0-0</filename> and
4233 <filename>ac97#0-0+regs</filename>. You can refer to these files to
4234 see the current status and registers of the codec.
4235 </para>
4236 </section>
4237
4238 <section id="api-ac97-multiple-codecs">
4239 <title>Multiple Codecs</title>
4240 <para>
4241 When there are several codecs on the same card, you need to
4242 call <function>snd_ac97_mixer()</function> multiple times with
4243 ac97.num=1 or greater. The <structfield>num</structfield> field
4244 specifies the codec number.
4245 </para>
4246
4247 <para>
4248 If you set up multiple codecs, you either need to write
4249 different callbacks for each codec or check
4250 ac97-&gt;num in the callback routines.
4251 </para>
4252 </section>
4253
4254 </chapter>
4255
4256
4257<!-- ****************************************************** -->
4258<!-- MIDI (MPU401-UART) Interface -->
4259<!-- ****************************************************** -->
4260 <chapter id="midi-interface">
4261 <title>MIDI (MPU401-UART) Interface</title>
4262
4263 <section id="midi-interface-general">
4264 <title>General</title>
4265 <para>
4266 Many soundcards have built-in MIDI (MPU401-UART)
4267 interfaces. When the soundcard supports the standard MPU401-UART
4268 interface, most likely you can use the ALSA MPU401-UART API. The
4269 MPU401-UART API is defined in
4270 <filename>&lt;sound/mpu401.h&gt;</filename>.
4271 </para>
4272
4273 <para>
4274 Some soundchips have a similar but slightly different
4275 implementation of mpu401 stuff. For example, emu10k1 has its own
4276 mpu401 routines.
4277 </para>
4278 </section>
4279
4280 <section id="midi-interface-constructor">
4281 <title>Constructor</title>
4282 <para>
4283 To create a rawmidi object, call
4284 <function>snd_mpu401_uart_new()</function>.
4285
4286 <informalexample>
4287 <programlisting>
4288<![CDATA[
4289 struct snd_rawmidi *rmidi;
4290 snd_mpu401_uart_new(card, 0, MPU401_HW_MPU401, port, info_flags,
4291 irq, irq_flags, &rmidi);
4292]]>
4293 </programlisting>
4294 </informalexample>
4295 </para>
4296
4297 <para>
4298 The first argument is the card pointer, and the second is the
4299 index of this component. You can create up to 8 rawmidi
4300 devices.
4301 </para>
4302
4303 <para>
4304 The third argument is the type of the hardware,
4305 <constant>MPU401_HW_XXX</constant>. If it's not a special one,
4306 you can use <constant>MPU401_HW_MPU401</constant>.
4307 </para>
4308
4309 <para>
4310 The 4th argument is the I/O port address. Many
4311 backward-compatible MPU401 have an I/O port such as 0x330. Or, it
4312 might be a part of its own PCI I/O region. It depends on the
4313 chip design.
4314 </para>
4315
4316 <para>
4317 The 5th argument is a bitflag for additional information.
4318 When the I/O port address above is part of the PCI I/O
4319 region, the MPU401 I/O port might have been already allocated
4320 (reserved) by the driver itself. In such a case, pass a bit flag
4321 <constant>MPU401_INFO_INTEGRATED</constant>,
4322 and the mpu401-uart layer will allocate the I/O ports by itself.
4323 </para>
4324
4325 <para>
4326 When the controller supports only the input or output MIDI stream,
4327 pass the <constant>MPU401_INFO_INPUT</constant> or
4328 <constant>MPU401_INFO_OUTPUT</constant> bitflag, respectively.
4329 Then the rawmidi instance is created as a single stream.
4330 </para>
4331
4332 <para>
4333 <constant>MPU401_INFO_MMIO</constant> bitflag is used to change
4334 the access method to MMIO (via readb and writeb) instead of
4335 iob and outb. In this case, you have to pass the iomapped address
4336 to <function>snd_mpu401_uart_new()</function>.
4337 </para>
4338
4339 <para>
4340 When <constant>MPU401_INFO_TX_IRQ</constant> is set, the output
4341 stream isn't checked in the default interrupt handler. The driver
4342 needs to call <function>snd_mpu401_uart_interrupt_tx()</function>
4343 by itself to start processing the output stream in the irq handler.
4344 </para>
4345
4346 <para>
4347 Usually, the port address corresponds to the command port and
4348 port + 1 corresponds to the data port. If not, you may change
4349 the <structfield>cport</structfield> field of
4350 struct <structname>snd_mpu401</structname> manually
4351 afterward. However, <structname>snd_mpu401</structname> pointer is not
4352 returned explicitly by
4353 <function>snd_mpu401_uart_new()</function>. You need to cast
4354 rmidi-&gt;private_data to
4355 <structname>snd_mpu401</structname> explicitly,
4356
4357 <informalexample>
4358 <programlisting>
4359<![CDATA[
4360 struct snd_mpu401 *mpu;
4361 mpu = rmidi->private_data;
4362]]>
4363 </programlisting>
4364 </informalexample>
4365
4366 and reset the cport as you like:
4367
4368 <informalexample>
4369 <programlisting>
4370<![CDATA[
4371 mpu->cport = my_own_control_port;
4372]]>
4373 </programlisting>
4374 </informalexample>
4375 </para>
4376
4377 <para>
4378 The 6th argument specifies the irq number for UART. If the irq
4379 is already allocated, pass 0 to the 7th argument
4380 (<parameter>irq_flags</parameter>). Otherwise, pass the flags
4381 for irq allocation
4382 (<constant>SA_XXX</constant> bits) to it, and the irq will be
4383 reserved by the mpu401-uart layer. If the card doesn't generate
4384 UART interrupts, pass -1 as the irq number. Then a timer
4385 interrupt will be invoked for polling.
4386 </para>
4387 </section>
4388
4389 <section id="midi-interface-interrupt-handler">
4390 <title>Interrupt Handler</title>
4391 <para>
4392 When the interrupt is allocated in
4393 <function>snd_mpu401_uart_new()</function>, the private
4394 interrupt handler is used, hence you don't have anything else to do
4395 than creating the mpu401 stuff. Otherwise, you have to call
4396 <function>snd_mpu401_uart_interrupt()</function> explicitly when
4397 a UART interrupt is invoked and checked in your own interrupt
4398 handler.
4399 </para>
4400
4401 <para>
4402 In this case, you need to pass the private_data of the
4403 returned rawmidi object from
4404 <function>snd_mpu401_uart_new()</function> as the second
4405 argument of <function>snd_mpu401_uart_interrupt()</function>.
4406
4407 <informalexample>
4408 <programlisting>
4409<![CDATA[
4410 snd_mpu401_uart_interrupt(irq, rmidi->private_data, regs);
4411]]>
4412 </programlisting>
4413 </informalexample>
4414 </para>
4415 </section>
4416
4417 </chapter>
4418
4419
4420<!-- ****************************************************** -->
4421<!-- RawMIDI Interface -->
4422<!-- ****************************************************** -->
4423 <chapter id="rawmidi-interface">
4424 <title>RawMIDI Interface</title>
4425
4426 <section id="rawmidi-interface-overview">
4427 <title>Overview</title>
4428
4429 <para>
4430 The raw MIDI interface is used for hardware MIDI ports that can
4431 be accessed as a byte stream. It is not used for synthesizer
4432 chips that do not directly understand MIDI.
4433 </para>
4434
4435 <para>
4436 ALSA handles file and buffer management. All you have to do is
4437 to write some code to move data between the buffer and the
4438 hardware.
4439 </para>
4440
4441 <para>
4442 The rawmidi API is defined in
4443 <filename>&lt;sound/rawmidi.h&gt;</filename>.
4444 </para>
4445 </section>
4446
4447 <section id="rawmidi-interface-constructor">
4448 <title>Constructor</title>
4449
4450 <para>
4451 To create a rawmidi device, call the
4452 <function>snd_rawmidi_new</function> function:
4453 <informalexample>
4454 <programlisting>
4455<![CDATA[
4456 struct snd_rawmidi *rmidi;
4457 err = snd_rawmidi_new(chip->card, "MyMIDI", 0, outs, ins, &rmidi);
4458 if (err < 0)
4459 return err;
4460 rmidi->private_data = chip;
4461 strcpy(rmidi->name, "My MIDI");
4462 rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT |
4463 SNDRV_RAWMIDI_INFO_INPUT |
4464 SNDRV_RAWMIDI_INFO_DUPLEX;
4465]]>
4466 </programlisting>
4467 </informalexample>
4468 </para>
4469
4470 <para>
4471 The first argument is the card pointer, the second argument is
4472 the ID string.
4473 </para>
4474
4475 <para>
4476 The third argument is the index of this component. You can
4477 create up to 8 rawmidi devices.
4478 </para>
4479
4480 <para>
4481 The fourth and fifth arguments are the number of output and
4482 input substreams, respectively, of this device (a substream is
4483 the equivalent of a MIDI port).
4484 </para>
4485
4486 <para>
4487 Set the <structfield>info_flags</structfield> field to specify
4488 the capabilities of the device.
4489 Set <constant>SNDRV_RAWMIDI_INFO_OUTPUT</constant> if there is
4490 at least one output port,
4491 <constant>SNDRV_RAWMIDI_INFO_INPUT</constant> if there is at
4492 least one input port,
4493 and <constant>SNDRV_RAWMIDI_INFO_DUPLEX</constant> if the device
4494 can handle output and input at the same time.
4495 </para>
4496
4497 <para>
4498 After the rawmidi device is created, you need to set the
4499 operators (callbacks) for each substream. There are helper
4500 functions to set the operators for all the substreams of a device:
4501 <informalexample>
4502 <programlisting>
4503<![CDATA[
4504 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_mymidi_output_ops);
4505 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_mymidi_input_ops);
4506]]>
4507 </programlisting>
4508 </informalexample>
4509 </para>
4510
4511 <para>
4512 The operators are usually defined like this:
4513 <informalexample>
4514 <programlisting>
4515<![CDATA[
4516 static struct snd_rawmidi_ops snd_mymidi_output_ops = {
4517 .open = snd_mymidi_output_open,
4518 .close = snd_mymidi_output_close,
4519 .trigger = snd_mymidi_output_trigger,
4520 };
4521]]>
4522 </programlisting>
4523 </informalexample>
4524 These callbacks are explained in the <link
4525 linkend="rawmidi-interface-callbacks"><citetitle>Callbacks</citetitle></link>
4526 section.
4527 </para>
4528
4529 <para>
4530 If there are more than one substream, you should give a
4531 unique name to each of them:
4532 <informalexample>
4533 <programlisting>
4534<![CDATA[
4535 struct snd_rawmidi_substream *substream;
4536 list_for_each_entry(substream,
4537 &rmidi->streams[SNDRV_RAWMIDI_STREAM_OUTPUT].substreams,
4538 list {
4539 sprintf(substream->name, "My MIDI Port %d", substream->number + 1);
4540 }
4541 /* same for SNDRV_RAWMIDI_STREAM_INPUT */
4542]]>
4543 </programlisting>
4544 </informalexample>
4545 </para>
4546 </section>
4547
4548 <section id="rawmidi-interface-callbacks">
4549 <title>Callbacks</title>
4550
4551 <para>
4552 In all the callbacks, the private data that you've set for the
4553 rawmidi device can be accessed as
4554 substream-&gt;rmidi-&gt;private_data.
4555 <!-- <code> isn't available before DocBook 4.3 -->
4556 </para>
4557
4558 <para>
4559 If there is more than one port, your callbacks can determine the
4560 port index from the struct snd_rawmidi_substream data passed to each
4561 callback:
4562 <informalexample>
4563 <programlisting>
4564<![CDATA[
4565 struct snd_rawmidi_substream *substream;
4566 int index = substream->number;
4567]]>
4568 </programlisting>
4569 </informalexample>
4570 </para>
4571
4572 <section id="rawmidi-interface-op-open">
4573 <title><function>open</function> callback</title>
4574
4575 <informalexample>
4576 <programlisting>
4577<![CDATA[
4578 static int snd_xxx_open(struct snd_rawmidi_substream *substream);
4579]]>
4580 </programlisting>
4581 </informalexample>
4582
4583 <para>
4584 This is called when a substream is opened.
4585 You can initialize the hardware here, but you shouldn't
4586 start transmitting/receiving data yet.
4587 </para>
4588 </section>
4589
4590 <section id="rawmidi-interface-op-close">
4591 <title><function>close</function> callback</title>
4592
4593 <informalexample>
4594 <programlisting>
4595<![CDATA[
4596 static int snd_xxx_close(struct snd_rawmidi_substream *substream);
4597]]>
4598 </programlisting>
4599 </informalexample>
4600
4601 <para>
4602 Guess what.
4603 </para>
4604
4605 <para>
4606 The <function>open</function> and <function>close</function>
4607 callbacks of a rawmidi device are serialized with a mutex,
4608 and can sleep.
4609 </para>
4610 </section>
4611
4612 <section id="rawmidi-interface-op-trigger-out">
4613 <title><function>trigger</function> callback for output
4614 substreams</title>
4615
4616 <informalexample>
4617 <programlisting>
4618<![CDATA[
4619 static void snd_xxx_output_trigger(struct snd_rawmidi_substream *substream, int up);
4620]]>
4621 </programlisting>
4622 </informalexample>
4623
4624 <para>
4625 This is called with a nonzero <parameter>up</parameter>
4626 parameter when there is some data in the substream buffer that
4627 must be transmitted.
4628 </para>
4629
4630 <para>
4631 To read data from the buffer, call
4632 <function>snd_rawmidi_transmit_peek</function>. It will
4633 return the number of bytes that have been read; this will be
4634 less than the number of bytes requested when there are no more
4635 data in the buffer.
4636 After the data have been transmitted successfully, call
4637 <function>snd_rawmidi_transmit_ack</function> to remove the
4638 data from the substream buffer:
4639 <informalexample>
4640 <programlisting>
4641<![CDATA[
4642 unsigned char data;
4643 while (snd_rawmidi_transmit_peek(substream, &data, 1) == 1) {
4644 if (snd_mychip_try_to_transmit(data))
4645 snd_rawmidi_transmit_ack(substream, 1);
4646 else
4647 break; /* hardware FIFO full */
4648 }
4649]]>
4650 </programlisting>
4651 </informalexample>
4652 </para>
4653
4654 <para>
4655 If you know beforehand that the hardware will accept data, you
4656 can use the <function>snd_rawmidi_transmit</function> function
4657 which reads some data and removes them from the buffer at once:
4658 <informalexample>
4659 <programlisting>
4660<![CDATA[
4661 while (snd_mychip_transmit_possible()) {
4662 unsigned char data;
4663 if (snd_rawmidi_transmit(substream, &data, 1) != 1)
4664 break; /* no more data */
4665 snd_mychip_transmit(data);
4666 }
4667]]>
4668 </programlisting>
4669 </informalexample>
4670 </para>
4671
4672 <para>
4673 If you know beforehand how many bytes you can accept, you can
4674 use a buffer size greater than one with the
4675 <function>snd_rawmidi_transmit*</function> functions.
4676 </para>
4677
4678 <para>
4679 The <function>trigger</function> callback must not sleep. If
4680 the hardware FIFO is full before the substream buffer has been
4681 emptied, you have to continue transmitting data later, either
4682 in an interrupt handler, or with a timer if the hardware
4683 doesn't have a MIDI transmit interrupt.
4684 </para>
4685
4686 <para>
4687 The <function>trigger</function> callback is called with a
4688 zero <parameter>up</parameter> parameter when the transmission
4689 of data should be aborted.
4690 </para>
4691 </section>
4692
4693 <section id="rawmidi-interface-op-trigger-in">
4694 <title><function>trigger</function> callback for input
4695 substreams</title>
4696
4697 <informalexample>
4698 <programlisting>
4699<![CDATA[
4700 static void snd_xxx_input_trigger(struct snd_rawmidi_substream *substream, int up);
4701]]>
4702 </programlisting>
4703 </informalexample>
4704
4705 <para>
4706 This is called with a nonzero <parameter>up</parameter>
4707 parameter to enable receiving data, or with a zero
4708 <parameter>up</parameter> parameter do disable receiving data.
4709 </para>
4710
4711 <para>
4712 The <function>trigger</function> callback must not sleep; the
4713 actual reading of data from the device is usually done in an
4714 interrupt handler.
4715 </para>
4716
4717 <para>
4718 When data reception is enabled, your interrupt handler should
4719 call <function>snd_rawmidi_receive</function> for all received
4720 data:
4721 <informalexample>
4722 <programlisting>
4723<![CDATA[
4724 void snd_mychip_midi_interrupt(...)
4725 {
4726 while (mychip_midi_available()) {
4727 unsigned char data;
4728 data = mychip_midi_read();
4729 snd_rawmidi_receive(substream, &data, 1);
4730 }
4731 }
4732]]>
4733 </programlisting>
4734 </informalexample>
4735 </para>
4736 </section>
4737
4738 <section id="rawmidi-interface-op-drain">
4739 <title><function>drain</function> callback</title>
4740
4741 <informalexample>
4742 <programlisting>
4743<![CDATA[
4744 static void snd_xxx_drain(struct snd_rawmidi_substream *substream);
4745]]>
4746 </programlisting>
4747 </informalexample>
4748
4749 <para>
4750 This is only used with output substreams. This function should wait
4751 until all data read from the substream buffer have been transmitted.
4752 This ensures that the device can be closed and the driver unloaded
4753 without losing data.
4754 </para>
4755
4756 <para>
4757 This callback is optional. If you do not set
4758 <structfield>drain</structfield> in the struct snd_rawmidi_ops
4759 structure, ALSA will simply wait for 50&nbsp;milliseconds
4760 instead.
4761 </para>
4762 </section>
4763 </section>
4764
4765 </chapter>
4766
4767
4768<!-- ****************************************************** -->
4769<!-- Miscellaneous Devices -->
4770<!-- ****************************************************** -->
4771 <chapter id="misc-devices">
4772 <title>Miscellaneous Devices</title>
4773
4774 <section id="misc-devices-opl3">
4775 <title>FM OPL3</title>
4776 <para>
4777 The FM OPL3 is still used in many chips (mainly for backward
4778 compatibility). ALSA has a nice OPL3 FM control layer, too. The
4779 OPL3 API is defined in
4780 <filename>&lt;sound/opl3.h&gt;</filename>.
4781 </para>
4782
4783 <para>
4784 FM registers can be directly accessed through the direct-FM API,
4785 defined in <filename>&lt;sound/asound_fm.h&gt;</filename>. In
4786 ALSA native mode, FM registers are accessed through
4787 the Hardware-Dependant Device direct-FM extension API, whereas in
4788 OSS compatible mode, FM registers can be accessed with the OSS
4789 direct-FM compatible API in <filename>/dev/dmfmX</filename> device.
4790 </para>
4791
4792 <para>
4793 To create the OPL3 component, you have two functions to
4794 call. The first one is a constructor for the <type>opl3_t</type>
4795 instance.
4796
4797 <informalexample>
4798 <programlisting>
4799<![CDATA[
4800 struct snd_opl3 *opl3;
4801 snd_opl3_create(card, lport, rport, OPL3_HW_OPL3_XXX,
4802 integrated, &opl3);
4803]]>
4804 </programlisting>
4805 </informalexample>
4806 </para>
4807
4808 <para>
4809 The first argument is the card pointer, the second one is the
4810 left port address, and the third is the right port address. In
4811 most cases, the right port is placed at the left port + 2.
4812 </para>
4813
4814 <para>
4815 The fourth argument is the hardware type.
4816 </para>
4817
4818 <para>
4819 When the left and right ports have been already allocated by
4820 the card driver, pass non-zero to the fifth argument
4821 (<parameter>integrated</parameter>). Otherwise, the opl3 module will
4822 allocate the specified ports by itself.
4823 </para>
4824
4825 <para>
4826 When the accessing the hardware requires special method
4827 instead of the standard I/O access, you can create opl3 instance
4828 separately with <function>snd_opl3_new()</function>.
4829
4830 <informalexample>
4831 <programlisting>
4832<![CDATA[
4833 struct snd_opl3 *opl3;
4834 snd_opl3_new(card, OPL3_HW_OPL3_XXX, &opl3);
4835]]>
4836 </programlisting>
4837 </informalexample>
4838 </para>
4839
4840 <para>
4841 Then set <structfield>command</structfield>,
4842 <structfield>private_data</structfield> and
4843 <structfield>private_free</structfield> for the private
4844 access function, the private data and the destructor.
4845 The l_port and r_port are not necessarily set. Only the
4846 command must be set properly. You can retrieve the data
4847 from the opl3-&gt;private_data field.
4848 </para>
4849
4850 <para>
4851 After creating the opl3 instance via <function>snd_opl3_new()</function>,
4852 call <function>snd_opl3_init()</function> to initialize the chip to the
4853 proper state. Note that <function>snd_opl3_create()</function> always
4854 calls it internally.
4855 </para>
4856
4857 <para>
4858 If the opl3 instance is created successfully, then create a
4859 hwdep device for this opl3.
4860
4861 <informalexample>
4862 <programlisting>
4863<![CDATA[
4864 struct snd_hwdep *opl3hwdep;
4865 snd_opl3_hwdep_new(opl3, 0, 1, &opl3hwdep);
4866]]>
4867 </programlisting>
4868 </informalexample>
4869 </para>
4870
4871 <para>
4872 The first argument is the <type>opl3_t</type> instance you
4873 created, and the second is the index number, usually 0.
4874 </para>
4875
4876 <para>
4877 The third argument is the index-offset for the sequencer
4878 client assigned to the OPL3 port. When there is an MPU401-UART,
4879 give 1 for here (UART always takes 0).
4880 </para>
4881 </section>
4882
4883 <section id="misc-devices-hardware-dependent">
4884 <title>Hardware-Dependent Devices</title>
4885 <para>
4886 Some chips need user-space access for special
4887 controls or for loading the micro code. In such a case, you can
4888 create a hwdep (hardware-dependent) device. The hwdep API is
4889 defined in <filename>&lt;sound/hwdep.h&gt;</filename>. You can
4890 find examples in opl3 driver or
4891 <filename>isa/sb/sb16_csp.c</filename>.
4892 </para>
4893
4894 <para>
4895 The creation of the <type>hwdep</type> instance is done via
4896 <function>snd_hwdep_new()</function>.
4897
4898 <informalexample>
4899 <programlisting>
4900<![CDATA[
4901 struct snd_hwdep *hw;
4902 snd_hwdep_new(card, "My HWDEP", 0, &hw);
4903]]>
4904 </programlisting>
4905 </informalexample>
4906
4907 where the third argument is the index number.
4908 </para>
4909
4910 <para>
4911 You can then pass any pointer value to the
4912 <parameter>private_data</parameter>.
4913 If you assign a private data, you should define the
4914 destructor, too. The destructor function is set in
4915 the <structfield>private_free</structfield> field.
4916
4917 <informalexample>
4918 <programlisting>
4919<![CDATA[
4920 struct mydata *p = kmalloc(sizeof(*p), GFP_KERNEL);
4921 hw->private_data = p;
4922 hw->private_free = mydata_free;
4923]]>
4924 </programlisting>
4925 </informalexample>
4926
4927 and the implementation of the destructor would be:
4928
4929 <informalexample>
4930 <programlisting>
4931<![CDATA[
4932 static void mydata_free(struct snd_hwdep *hw)
4933 {
4934 struct mydata *p = hw->private_data;
4935 kfree(p);
4936 }
4937]]>
4938 </programlisting>
4939 </informalexample>
4940 </para>
4941
4942 <para>
4943 The arbitrary file operations can be defined for this
4944 instance. The file operators are defined in
4945 the <parameter>ops</parameter> table. For example, assume that
4946 this chip needs an ioctl.
4947
4948 <informalexample>
4949 <programlisting>
4950<![CDATA[
4951 hw->ops.open = mydata_open;
4952 hw->ops.ioctl = mydata_ioctl;
4953 hw->ops.release = mydata_release;
4954]]>
4955 </programlisting>
4956 </informalexample>
4957
4958 And implement the callback functions as you like.
4959 </para>
4960 </section>
4961
4962 <section id="misc-devices-IEC958">
4963 <title>IEC958 (S/PDIF)</title>
4964 <para>
4965 Usually the controls for IEC958 devices are implemented via
4966 the control interface. There is a macro to compose a name string for
4967 IEC958 controls, <function>SNDRV_CTL_NAME_IEC958()</function>
4968 defined in <filename>&lt;include/asound.h&gt;</filename>.
4969 </para>
4970
4971 <para>
4972 There are some standard controls for IEC958 status bits. These
4973 controls use the type <type>SNDRV_CTL_ELEM_TYPE_IEC958</type>,
4974 and the size of element is fixed as 4 bytes array
4975 (value.iec958.status[x]). For the <structfield>info</structfield>
4976 callback, you don't specify
4977 the value field for this type (the count field must be set,
4978 though).
4979 </para>
4980
4981 <para>
4982 <quote>IEC958 Playback Con Mask</quote> is used to return the
4983 bit-mask for the IEC958 status bits of consumer mode. Similarly,
4984 <quote>IEC958 Playback Pro Mask</quote> returns the bitmask for
4985 professional mode. They are read-only controls, and are defined
4986 as MIXER controls (iface =
4987 <constant>SNDRV_CTL_ELEM_IFACE_MIXER</constant>).
4988 </para>
4989
4990 <para>
4991 Meanwhile, <quote>IEC958 Playback Default</quote> control is
4992 defined for getting and setting the current default IEC958
4993 bits. Note that this one is usually defined as a PCM control
4994 (iface = <constant>SNDRV_CTL_ELEM_IFACE_PCM</constant>),
4995 although in some places it's defined as a MIXER control.
4996 </para>
4997
4998 <para>
4999 In addition, you can define the control switches to
5000 enable/disable or to set the raw bit mode. The implementation
5001 will depend on the chip, but the control should be named as
5002 <quote>IEC958 xxx</quote>, preferably using
5003 the <function>SNDRV_CTL_NAME_IEC958()</function> macro.
5004 </para>
5005
5006 <para>
5007 You can find several cases, for example,
5008 <filename>pci/emu10k1</filename>,
5009 <filename>pci/ice1712</filename>, or
5010 <filename>pci/cmipci.c</filename>.
5011 </para>
5012 </section>
5013
5014 </chapter>
5015
5016
5017<!-- ****************************************************** -->
5018<!-- Buffer and Memory Management -->
5019<!-- ****************************************************** -->
5020 <chapter id="buffer-and-memory">
5021 <title>Buffer and Memory Management</title>
5022
5023 <section id="buffer-and-memory-buffer-types">
5024 <title>Buffer Types</title>
5025 <para>
5026 ALSA provides several different buffer allocation functions
5027 depending on the bus and the architecture. All these have a
5028 consistent API. The allocation of physically-contiguous pages is
5029 done via
5030 <function>snd_malloc_xxx_pages()</function> function, where xxx
5031 is the bus type.
5032 </para>
5033
5034 <para>
5035 The allocation of pages with fallback is
5036 <function>snd_malloc_xxx_pages_fallback()</function>. This
5037 function tries to allocate the specified pages but if the pages
5038 are not available, it tries to reduce the page sizes until
5039 enough space is found.
5040 </para>
5041
5042 <para>
5043 The release the pages, call
5044 <function>snd_free_xxx_pages()</function> function.
5045 </para>
5046
5047 <para>
5048 Usually, ALSA drivers try to allocate and reserve
5049 a large contiguous physical space
5050 at the time the module is loaded for the later use.
5051 This is called <quote>pre-allocation</quote>.
5052 As already written, you can call the following function at
5053 pcm instance construction time (in the case of PCI bus).
5054
5055 <informalexample>
5056 <programlisting>
5057<![CDATA[
5058 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
5059 snd_dma_pci_data(pci), size, max);
5060]]>
5061 </programlisting>
5062 </informalexample>
5063
5064 where <parameter>size</parameter> is the byte size to be
5065 pre-allocated and the <parameter>max</parameter> is the maximum
5066 size to be changed via the <filename>prealloc</filename> proc file.
5067 The allocator will try to get an area as large as possible
5068 within the given size.
5069 </para>
5070
5071 <para>
5072 The second argument (type) and the third argument (device pointer)
5073 are dependent on the bus.
5074 In the case of the ISA bus, pass <function>snd_dma_isa_data()</function>
5075 as the third argument with <constant>SNDRV_DMA_TYPE_DEV</constant> type.
5076 For the continuous buffer unrelated to the bus can be pre-allocated
5077 with <constant>SNDRV_DMA_TYPE_CONTINUOUS</constant> type and the
5078 <function>snd_dma_continuous_data(GFP_KERNEL)</function> device pointer,
5079 where <constant>GFP_KERNEL</constant> is the kernel allocation flag to
5080 use.
5081 For the PCI scatter-gather buffers, use
5082 <constant>SNDRV_DMA_TYPE_DEV_SG</constant> with
5083 <function>snd_dma_pci_data(pci)</function>
5084 (see the
5085 <link linkend="buffer-and-memory-non-contiguous"><citetitle>Non-Contiguous Buffers
5086 </citetitle></link> section).
5087 </para>
5088
5089 <para>
5090 Once the buffer is pre-allocated, you can use the
5091 allocator in the <structfield>hw_params</structfield> callback:
5092
5093 <informalexample>
5094 <programlisting>
5095<![CDATA[
5096 snd_pcm_lib_malloc_pages(substream, size);
5097]]>
5098 </programlisting>
5099 </informalexample>
5100
5101 Note that you have to pre-allocate to use this function.
5102 </para>
5103 </section>
5104
5105 <section id="buffer-and-memory-external-hardware">
5106 <title>External Hardware Buffers</title>
5107 <para>
5108 Some chips have their own hardware buffers and the DMA
5109 transfer from the host memory is not available. In such a case,
5110 you need to either 1) copy/set the audio data directly to the
5111 external hardware buffer, or 2) make an intermediate buffer and
5112 copy/set the data from it to the external hardware buffer in
5113 interrupts (or in tasklets, preferably).
5114 </para>
5115
5116 <para>
5117 The first case works fine if the external hardware buffer is large
5118 enough. This method doesn't need any extra buffers and thus is
5119 more effective. You need to define the
5120 <structfield>copy</structfield> and
5121 <structfield>silence</structfield> callbacks for
5122 the data transfer. However, there is a drawback: it cannot
5123 be mmapped. The examples are GUS's GF1 PCM or emu8000's
5124 wavetable PCM.
5125 </para>
5126
5127 <para>
5128 The second case allows for mmap on the buffer, although you have
5129 to handle an interrupt or a tasklet to transfer the data
5130 from the intermediate buffer to the hardware buffer. You can find an
5131 example in the vxpocket driver.
5132 </para>
5133
5134 <para>
5135 Another case is when the chip uses a PCI memory-map
5136 region for the buffer instead of the host memory. In this case,
5137 mmap is available only on certain architectures like the Intel one.
5138 In non-mmap mode, the data cannot be transferred as in the normal
5139 way. Thus you need to define the <structfield>copy</structfield> and
5140 <structfield>silence</structfield> callbacks as well,
5141 as in the cases above. The examples are found in
5142 <filename>rme32.c</filename> and <filename>rme96.c</filename>.
5143 </para>
5144
5145 <para>
5146 The implementation of the <structfield>copy</structfield> and
5147 <structfield>silence</structfield> callbacks depends upon
5148 whether the hardware supports interleaved or non-interleaved
5149 samples. The <structfield>copy</structfield> callback is
5150 defined like below, a bit
5151 differently depending whether the direction is playback or
5152 capture:
5153
5154 <informalexample>
5155 <programlisting>
5156<![CDATA[
5157 static int playback_copy(struct snd_pcm_substream *substream, int channel,
5158 snd_pcm_uframes_t pos, void *src, snd_pcm_uframes_t count);
5159 static int capture_copy(struct snd_pcm_substream *substream, int channel,
5160 snd_pcm_uframes_t pos, void *dst, snd_pcm_uframes_t count);
5161]]>
5162 </programlisting>
5163 </informalexample>
5164 </para>
5165
5166 <para>
5167 In the case of interleaved samples, the second argument
5168 (<parameter>channel</parameter>) is not used. The third argument
5169 (<parameter>pos</parameter>) points the
5170 current position offset in frames.
5171 </para>
5172
5173 <para>
5174 The meaning of the fourth argument is different between
5175 playback and capture. For playback, it holds the source data
5176 pointer, and for capture, it's the destination data pointer.
5177 </para>
5178
5179 <para>
5180 The last argument is the number of frames to be copied.
5181 </para>
5182
5183 <para>
5184 What you have to do in this callback is again different
5185 between playback and capture directions. In the
5186 playback case, you copy the given amount of data
5187 (<parameter>count</parameter>) at the specified pointer
5188 (<parameter>src</parameter>) to the specified offset
5189 (<parameter>pos</parameter>) on the hardware buffer. When
5190 coded like memcpy-like way, the copy would be like:
5191
5192 <informalexample>
5193 <programlisting>
5194<![CDATA[
5195 my_memcpy(my_buffer + frames_to_bytes(runtime, pos), src,
5196 frames_to_bytes(runtime, count));
5197]]>
5198 </programlisting>
5199 </informalexample>
5200 </para>
5201
5202 <para>
5203 For the capture direction, you copy the given amount of
5204 data (<parameter>count</parameter>) at the specified offset
5205 (<parameter>pos</parameter>) on the hardware buffer to the
5206 specified pointer (<parameter>dst</parameter>).
5207
5208 <informalexample>
5209 <programlisting>
5210<![CDATA[
5211 my_memcpy(dst, my_buffer + frames_to_bytes(runtime, pos),
5212 frames_to_bytes(runtime, count));
5213]]>
5214 </programlisting>
5215 </informalexample>
5216
5217 Note that both the position and the amount of data are given
5218 in frames.
5219 </para>
5220
5221 <para>
5222 In the case of non-interleaved samples, the implementation
5223 will be a bit more complicated.
5224 </para>
5225
5226 <para>
5227 You need to check the channel argument, and if it's -1, copy
5228 the whole channels. Otherwise, you have to copy only the
5229 specified channel. Please check
5230 <filename>isa/gus/gus_pcm.c</filename> as an example.
5231 </para>
5232
5233 <para>
5234 The <structfield>silence</structfield> callback is also
5235 implemented in a similar way.
5236
5237 <informalexample>
5238 <programlisting>
5239<![CDATA[
5240 static int silence(struct snd_pcm_substream *substream, int channel,
5241 snd_pcm_uframes_t pos, snd_pcm_uframes_t count);
5242]]>
5243 </programlisting>
5244 </informalexample>
5245 </para>
5246
5247 <para>
5248 The meanings of arguments are the same as in the
5249 <structfield>copy</structfield>
5250 callback, although there is no <parameter>src/dst</parameter>
5251 argument. In the case of interleaved samples, the channel
5252 argument has no meaning, as well as on
5253 <structfield>copy</structfield> callback.
5254 </para>
5255
5256 <para>
5257 The role of <structfield>silence</structfield> callback is to
5258 set the given amount
5259 (<parameter>count</parameter>) of silence data at the
5260 specified offset (<parameter>pos</parameter>) on the hardware
5261 buffer. Suppose that the data format is signed (that is, the
5262 silent-data is 0), and the implementation using a memset-like
5263 function would be like:
5264
5265 <informalexample>
5266 <programlisting>
5267<![CDATA[
5268 my_memcpy(my_buffer + frames_to_bytes(runtime, pos), 0,
5269 frames_to_bytes(runtime, count));
5270]]>
5271 </programlisting>
5272 </informalexample>
5273 </para>
5274
5275 <para>
5276 In the case of non-interleaved samples, again, the
5277 implementation becomes a bit more complicated. See, for example,
5278 <filename>isa/gus/gus_pcm.c</filename>.
5279 </para>
5280 </section>
5281
5282 <section id="buffer-and-memory-non-contiguous">
5283 <title>Non-Contiguous Buffers</title>
5284 <para>
5285 If your hardware supports the page table as in emu10k1 or the
5286 buffer descriptors as in via82xx, you can use the scatter-gather
5287 (SG) DMA. ALSA provides an interface for handling SG-buffers.
5288 The API is provided in <filename>&lt;sound/pcm.h&gt;</filename>.
5289 </para>
5290
5291 <para>
5292 For creating the SG-buffer handler, call
5293 <function>snd_pcm_lib_preallocate_pages()</function> or
5294 <function>snd_pcm_lib_preallocate_pages_for_all()</function>
5295 with <constant>SNDRV_DMA_TYPE_DEV_SG</constant>
5296 in the PCM constructor like other PCI pre-allocator.
5297 You need to pass <function>snd_dma_pci_data(pci)</function>,
5298 where pci is the struct <structname>pci_dev</structname> pointer
5299 of the chip as well.
5300 The <type>struct snd_sg_buf</type> instance is created as
5301 substream-&gt;dma_private. You can cast
5302 the pointer like:
5303
5304 <informalexample>
5305 <programlisting>
5306<![CDATA[
5307 struct snd_sg_buf *sgbuf = (struct snd_sg_buf *)substream->dma_private;
5308]]>
5309 </programlisting>
5310 </informalexample>
5311 </para>
5312
5313 <para>
5314 Then call <function>snd_pcm_lib_malloc_pages()</function>
5315 in the <structfield>hw_params</structfield> callback
5316 as well as in the case of normal PCI buffer.
5317 The SG-buffer handler will allocate the non-contiguous kernel
5318 pages of the given size and map them onto the virtually contiguous
5319 memory. The virtual pointer is addressed in runtime-&gt;dma_area.
5320 The physical address (runtime-&gt;dma_addr) is set to zero,
5321 because the buffer is physically non-contigous.
5322 The physical address table is set up in sgbuf-&gt;table.
5323 You can get the physical address at a certain offset via
5324 <function>snd_pcm_sgbuf_get_addr()</function>.
5325 </para>
5326
5327 <para>
5328 When a SG-handler is used, you need to set
5329 <function>snd_pcm_sgbuf_ops_page</function> as
5330 the <structfield>page</structfield> callback.
5331 (See <link linkend="pcm-interface-operators-page-callback">
5332 <citetitle>page callback section</citetitle></link>.)
5333 </para>
5334
5335 <para>
5336 To release the data, call
5337 <function>snd_pcm_lib_free_pages()</function> in the
5338 <structfield>hw_free</structfield> callback as usual.
5339 </para>
5340 </section>
5341
5342 <section id="buffer-and-memory-vmalloced">
5343 <title>Vmalloc'ed Buffers</title>
5344 <para>
5345 It's possible to use a buffer allocated via
5346 <function>vmalloc</function>, for example, for an intermediate
5347 buffer. Since the allocated pages are not contiguous, you need
5348 to set the <structfield>page</structfield> callback to obtain
5349 the physical address at every offset.
5350 </para>
5351
5352 <para>
5353 The implementation of <structfield>page</structfield> callback
5354 would be like this:
5355
5356 <informalexample>
5357 <programlisting>
5358<![CDATA[
5359 #include <linux/vmalloc.h>
5360
5361 /* get the physical page pointer on the given offset */
5362 static struct page *mychip_page(struct snd_pcm_substream *substream,
5363 unsigned long offset)
5364 {
5365 void *pageptr = substream->runtime->dma_area + offset;
5366 return vmalloc_to_page(pageptr);
5367 }
5368]]>
5369 </programlisting>
5370 </informalexample>
5371 </para>
5372 </section>
5373
5374 </chapter>
5375
5376
5377<!-- ****************************************************** -->
5378<!-- Proc Interface -->
5379<!-- ****************************************************** -->
5380 <chapter id="proc-interface">
5381 <title>Proc Interface</title>
5382 <para>
5383 ALSA provides an easy interface for procfs. The proc files are
5384 very useful for debugging. I recommend you set up proc files if
5385 you write a driver and want to get a running status or register
5386 dumps. The API is found in
5387 <filename>&lt;sound/info.h&gt;</filename>.
5388 </para>
5389
5390 <para>
5391 To create a proc file, call
5392 <function>snd_card_proc_new()</function>.
5393
5394 <informalexample>
5395 <programlisting>
5396<![CDATA[
5397 struct snd_info_entry *entry;
5398 int err = snd_card_proc_new(card, "my-file", &entry);
5399]]>
5400 </programlisting>
5401 </informalexample>
5402
5403 where the second argument specifies the name of the proc file to be
5404 created. The above example will create a file
5405 <filename>my-file</filename> under the card directory,
5406 e.g. <filename>/proc/asound/card0/my-file</filename>.
5407 </para>
5408
5409 <para>
5410 Like other components, the proc entry created via
5411 <function>snd_card_proc_new()</function> will be registered and
5412 released automatically in the card registration and release
5413 functions.
5414 </para>
5415
5416 <para>
5417 When the creation is successful, the function stores a new
5418 instance in the pointer given in the third argument.
5419 It is initialized as a text proc file for read only. To use
5420 this proc file as a read-only text file as it is, set the read
5421 callback with a private data via
5422 <function>snd_info_set_text_ops()</function>.
5423
5424 <informalexample>
5425 <programlisting>
5426<![CDATA[
5427 snd_info_set_text_ops(entry, chip, my_proc_read);
5428]]>
5429 </programlisting>
5430 </informalexample>
5431
5432 where the second argument (<parameter>chip</parameter>) is the
5433 private data to be used in the callbacks. The third parameter
5434 specifies the read buffer size and the fourth
5435 (<parameter>my_proc_read</parameter>) is the callback function, which
5436 is defined like
5437
5438 <informalexample>
5439 <programlisting>
5440<![CDATA[
5441 static void my_proc_read(struct snd_info_entry *entry,
5442 struct snd_info_buffer *buffer);
5443]]>
5444 </programlisting>
5445 </informalexample>
5446
5447 </para>
5448
5449 <para>
5450 In the read callback, use <function>snd_iprintf()</function> for
5451 output strings, which works just like normal
5452 <function>printf()</function>. For example,
5453
5454 <informalexample>
5455 <programlisting>
5456<![CDATA[
5457 static void my_proc_read(struct snd_info_entry *entry,
5458 struct snd_info_buffer *buffer)
5459 {
5460 struct my_chip *chip = entry->private_data;
5461
5462 snd_iprintf(buffer, "This is my chip!\n");
5463 snd_iprintf(buffer, "Port = %ld\n", chip->port);
5464 }
5465]]>
5466 </programlisting>
5467 </informalexample>
5468 </para>
5469
5470 <para>
5471 The file permissions can be changed afterwards. As default, it's
5472 set as read only for all users. If you want to add write
5473 permission for the user (root as default), do as follows:
5474
5475 <informalexample>
5476 <programlisting>
5477<![CDATA[
5478 entry->mode = S_IFREG | S_IRUGO | S_IWUSR;
5479]]>
5480 </programlisting>
5481 </informalexample>
5482
5483 and set the write buffer size and the callback
5484
5485 <informalexample>
5486 <programlisting>
5487<![CDATA[
5488 entry->c.text.write = my_proc_write;
5489]]>
5490 </programlisting>
5491 </informalexample>
5492 </para>
5493
5494 <para>
5495 For the write callback, you can use
5496 <function>snd_info_get_line()</function> to get a text line, and
5497 <function>snd_info_get_str()</function> to retrieve a string from
5498 the line. Some examples are found in
5499 <filename>core/oss/mixer_oss.c</filename>, core/oss/and
5500 <filename>pcm_oss.c</filename>.
5501 </para>
5502
5503 <para>
5504 For a raw-data proc-file, set the attributes as follows:
5505
5506 <informalexample>
5507 <programlisting>
5508<![CDATA[
5509 static struct snd_info_entry_ops my_file_io_ops = {
5510 .read = my_file_io_read,
5511 };
5512
5513 entry->content = SNDRV_INFO_CONTENT_DATA;
5514 entry->private_data = chip;
5515 entry->c.ops = &my_file_io_ops;
5516 entry->size = 4096;
5517 entry->mode = S_IFREG | S_IRUGO;
5518]]>
5519 </programlisting>
5520 </informalexample>
5521 </para>
5522
5523 <para>
5524 The callback is much more complicated than the text-file
5525 version. You need to use a low-level I/O functions such as
5526 <function>copy_from/to_user()</function> to transfer the
5527 data.
5528
5529 <informalexample>
5530 <programlisting>
5531<![CDATA[
5532 static long my_file_io_read(struct snd_info_entry *entry,
5533 void *file_private_data,
5534 struct file *file,
5535 char *buf,
5536 unsigned long count,
5537 unsigned long pos)
5538 {
5539 long size = count;
5540 if (pos + size > local_max_size)
5541 size = local_max_size - pos;
5542 if (copy_to_user(buf, local_data + pos, size))
5543 return -EFAULT;
5544 return size;
5545 }
5546]]>
5547 </programlisting>
5548 </informalexample>
5549 </para>
5550
5551 </chapter>
5552
5553
5554<!-- ****************************************************** -->
5555<!-- Power Management -->
5556<!-- ****************************************************** -->
5557 <chapter id="power-management">
5558 <title>Power Management</title>
5559 <para>
5560 If the chip is supposed to work with suspend/resume
5561 functions, you need to add power-management code to the
5562 driver. The additional code for power-management should be
5563 <function>ifdef</function>'ed with
5564 <constant>CONFIG_PM</constant>.
5565 </para>
5566
5567 <para>
5568 If the driver <emphasis>fully</emphasis> supports suspend/resume
5569 that is, the device can be
5570 properly resumed to its state when suspend was called,
5571 you can set the <constant>SNDRV_PCM_INFO_RESUME</constant> flag
5572 in the pcm info field. Usually, this is possible when the
5573 registers of the chip can be safely saved and restored to
5574 RAM. If this is set, the trigger callback is called with
5575 <constant>SNDRV_PCM_TRIGGER_RESUME</constant> after the resume
5576 callback completes.
5577 </para>
5578
5579 <para>
5580 Even if the driver doesn't support PM fully but
5581 partial suspend/resume is still possible, it's still worthy to
5582 implement suspend/resume callbacks. In such a case, applications
5583 would reset the status by calling
5584 <function>snd_pcm_prepare()</function> and restart the stream
5585 appropriately. Hence, you can define suspend/resume callbacks
5586 below but don't set <constant>SNDRV_PCM_INFO_RESUME</constant>
5587 info flag to the PCM.
5588 </para>
5589
5590 <para>
5591 Note that the trigger with SUSPEND can always be called when
5592 <function>snd_pcm_suspend_all</function> is called,
5593 regardless of the <constant>SNDRV_PCM_INFO_RESUME</constant> flag.
5594 The <constant>RESUME</constant> flag affects only the behavior
5595 of <function>snd_pcm_resume()</function>.
5596 (Thus, in theory,
5597 <constant>SNDRV_PCM_TRIGGER_RESUME</constant> isn't needed
5598 to be handled in the trigger callback when no
5599 <constant>SNDRV_PCM_INFO_RESUME</constant> flag is set. But,
5600 it's better to keep it for compatibility reasons.)
5601 </para>
5602 <para>
5603 In the earlier version of ALSA drivers, a common
5604 power-management layer was provided, but it has been removed.
5605 The driver needs to define the suspend/resume hooks according to
5606 the bus the device is connected to. In the case of PCI drivers, the
5607 callbacks look like below:
5608
5609 <informalexample>
5610 <programlisting>
5611<![CDATA[
5612 #ifdef CONFIG_PM
5613 static int snd_my_suspend(struct pci_dev *pci, pm_message_t state)
5614 {
5615 .... /* do things for suspend */
5616 return 0;
5617 }
5618 static int snd_my_resume(struct pci_dev *pci)
5619 {
5620 .... /* do things for suspend */
5621 return 0;
5622 }
5623 #endif
5624]]>
5625 </programlisting>
5626 </informalexample>
5627 </para>
5628
5629 <para>
5630 The scheme of the real suspend job is as follows.
5631
5632 <orderedlist>
5633 <listitem><para>Retrieve the card and the chip data.</para></listitem>
5634 <listitem><para>Call <function>snd_power_change_state()</function> with
5635 <constant>SNDRV_CTL_POWER_D3hot</constant> to change the
5636 power status.</para></listitem>
5637 <listitem><para>Call <function>snd_pcm_suspend_all()</function> to suspend the running PCM streams.</para></listitem>
5638 <listitem><para>If AC97 codecs are used, call
5639 <function>snd_ac97_suspend()</function> for each codec.</para></listitem>
5640 <listitem><para>Save the register values if necessary.</para></listitem>
5641 <listitem><para>Stop the hardware if necessary.</para></listitem>
5642 <listitem><para>Disable the PCI device by calling
5643 <function>pci_disable_device()</function>. Then, call
5644 <function>pci_save_state()</function> at last.</para></listitem>
5645 </orderedlist>
5646 </para>
5647
5648 <para>
5649 A typical code would be like:
5650
5651 <informalexample>
5652 <programlisting>
5653<![CDATA[
5654 static int mychip_suspend(struct pci_dev *pci, pm_message_t state)
5655 {
5656 /* (1) */
5657 struct snd_card *card = pci_get_drvdata(pci);
5658 struct mychip *chip = card->private_data;
5659 /* (2) */
5660 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
5661 /* (3) */
5662 snd_pcm_suspend_all(chip->pcm);
5663 /* (4) */
5664 snd_ac97_suspend(chip->ac97);
5665 /* (5) */
5666 snd_mychip_save_registers(chip);
5667 /* (6) */
5668 snd_mychip_stop_hardware(chip);
5669 /* (7) */
5670 pci_disable_device(pci);
5671 pci_save_state(pci);
5672 return 0;
5673 }
5674]]>
5675 </programlisting>
5676 </informalexample>
5677 </para>
5678
5679 <para>
5680 The scheme of the real resume job is as follows.
5681
5682 <orderedlist>
5683 <listitem><para>Retrieve the card and the chip data.</para></listitem>
5684 <listitem><para>Set up PCI. First, call <function>pci_restore_state()</function>.
5685 Then enable the pci device again by calling <function>pci_enable_device()</function>.
5686 Call <function>pci_set_master()</function> if necessary, too.</para></listitem>
5687 <listitem><para>Re-initialize the chip.</para></listitem>
5688 <listitem><para>Restore the saved registers if necessary.</para></listitem>
5689 <listitem><para>Resume the mixer, e.g. calling
5690 <function>snd_ac97_resume()</function>.</para></listitem>
5691 <listitem><para>Restart the hardware (if any).</para></listitem>
5692 <listitem><para>Call <function>snd_power_change_state()</function> with
5693 <constant>SNDRV_CTL_POWER_D0</constant> to notify the processes.</para></listitem>
5694 </orderedlist>
5695 </para>
5696
5697 <para>
5698 A typical code would be like:
5699
5700 <informalexample>
5701 <programlisting>
5702<![CDATA[
5703 static int mychip_resume(struct pci_dev *pci)
5704 {
5705 /* (1) */
5706 struct snd_card *card = pci_get_drvdata(pci);
5707 struct mychip *chip = card->private_data;
5708 /* (2) */
5709 pci_restore_state(pci);
5710 pci_enable_device(pci);
5711 pci_set_master(pci);
5712 /* (3) */
5713 snd_mychip_reinit_chip(chip);
5714 /* (4) */
5715 snd_mychip_restore_registers(chip);
5716 /* (5) */
5717 snd_ac97_resume(chip->ac97);
5718 /* (6) */
5719 snd_mychip_restart_chip(chip);
5720 /* (7) */
5721 snd_power_change_state(card, SNDRV_CTL_POWER_D0);
5722 return 0;
5723 }
5724]]>
5725 </programlisting>
5726 </informalexample>
5727 </para>
5728
5729 <para>
5730 As shown in the above, it's better to save registers after
5731 suspending the PCM operations via
5732 <function>snd_pcm_suspend_all()</function> or
5733 <function>snd_pcm_suspend()</function>. It means that the PCM
5734 streams are already stoppped when the register snapshot is
5735 taken. But, remember that you don't have to restart the PCM
5736 stream in the resume callback. It'll be restarted via
5737 trigger call with <constant>SNDRV_PCM_TRIGGER_RESUME</constant>
5738 when necessary.
5739 </para>
5740
5741 <para>
5742 OK, we have all callbacks now. Let's set them up. In the
5743 initialization of the card, make sure that you can get the chip
5744 data from the card instance, typically via
5745 <structfield>private_data</structfield> field, in case you
5746 created the chip data individually.
5747
5748 <informalexample>
5749 <programlisting>
5750<![CDATA[
5751 static int __devinit snd_mychip_probe(struct pci_dev *pci,
5752 const struct pci_device_id *pci_id)
5753 {
5754 ....
5755 struct snd_card *card;
5756 struct mychip *chip;
5757 int err;
5758 ....
5759 err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card);
5760 ....
5761 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
5762 ....
5763 card->private_data = chip;
5764 ....
5765 }
5766]]>
5767 </programlisting>
5768 </informalexample>
5769
5770 When you created the chip data with
5771 <function>snd_card_create()</function>, it's anyway accessible
5772 via <structfield>private_data</structfield> field.
5773
5774 <informalexample>
5775 <programlisting>
5776<![CDATA[
5777 static int __devinit snd_mychip_probe(struct pci_dev *pci,
5778 const struct pci_device_id *pci_id)
5779 {
5780 ....
5781 struct snd_card *card;
5782 struct mychip *chip;
5783 int err;
5784 ....
5785 err = snd_card_create(index[dev], id[dev], THIS_MODULE,
5786 sizeof(struct mychip), &card);
5787 ....
5788 chip = card->private_data;
5789 ....
5790 }
5791]]>
5792 </programlisting>
5793 </informalexample>
5794
5795 </para>
5796
5797 <para>
5798 If you need a space to save the registers, allocate the
5799 buffer for it here, too, since it would be fatal
5800 if you cannot allocate a memory in the suspend phase.
5801 The allocated buffer should be released in the corresponding
5802 destructor.
5803 </para>
5804
5805 <para>
5806 And next, set suspend/resume callbacks to the pci_driver.
5807
5808 <informalexample>
5809 <programlisting>
5810<![CDATA[
5811 static struct pci_driver driver = {
5812 .name = "My Chip",
5813 .id_table = snd_my_ids,
5814 .probe = snd_my_probe,
5815 .remove = __devexit_p(snd_my_remove),
5816 #ifdef CONFIG_PM
5817 .suspend = snd_my_suspend,
5818 .resume = snd_my_resume,
5819 #endif
5820 };
5821]]>
5822 </programlisting>
5823 </informalexample>
5824 </para>
5825
5826 </chapter>
5827
5828
5829<!-- ****************************************************** -->
5830<!-- Module Parameters -->
5831<!-- ****************************************************** -->
5832 <chapter id="module-parameters">
5833 <title>Module Parameters</title>
5834 <para>
5835 There are standard module options for ALSA. At least, each
5836 module should have the <parameter>index</parameter>,
5837 <parameter>id</parameter> and <parameter>enable</parameter>
5838 options.
5839 </para>
5840
5841 <para>
5842 If the module supports multiple cards (usually up to
5843 8 = <constant>SNDRV_CARDS</constant> cards), they should be
5844 arrays. The default initial values are defined already as
5845 constants for easier programming:
5846
5847 <informalexample>
5848 <programlisting>
5849<![CDATA[
5850 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
5851 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
5852 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
5853]]>
5854 </programlisting>
5855 </informalexample>
5856 </para>
5857
5858 <para>
5859 If the module supports only a single card, they could be single
5860 variables, instead. <parameter>enable</parameter> option is not
5861 always necessary in this case, but it would be better to have a
5862 dummy option for compatibility.
5863 </para>
5864
5865 <para>
5866 The module parameters must be declared with the standard
5867 <function>module_param()()</function>,
5868 <function>module_param_array()()</function> and
5869 <function>MODULE_PARM_DESC()</function> macros.
5870 </para>
5871
5872 <para>
5873 The typical coding would be like below:
5874
5875 <informalexample>
5876 <programlisting>
5877<![CDATA[
5878 #define CARD_NAME "My Chip"
5879
5880 module_param_array(index, int, NULL, 0444);
5881 MODULE_PARM_DESC(index, "Index value for " CARD_NAME " soundcard.");
5882 module_param_array(id, charp, NULL, 0444);
5883 MODULE_PARM_DESC(id, "ID string for " CARD_NAME " soundcard.");
5884 module_param_array(enable, bool, NULL, 0444);
5885 MODULE_PARM_DESC(enable, "Enable " CARD_NAME " soundcard.");
5886]]>
5887 </programlisting>
5888 </informalexample>
5889 </para>
5890
5891 <para>
5892 Also, don't forget to define the module description, classes,
5893 license and devices. Especially, the recent modprobe requires to
5894 define the module license as GPL, etc., otherwise the system is
5895 shown as <quote>tainted</quote>.
5896
5897 <informalexample>
5898 <programlisting>
5899<![CDATA[
5900 MODULE_DESCRIPTION("My Chip");
5901 MODULE_LICENSE("GPL");
5902 MODULE_SUPPORTED_DEVICE("{{Vendor,My Chip Name}}");
5903]]>
5904 </programlisting>
5905 </informalexample>
5906 </para>
5907
5908 </chapter>
5909
5910
5911<!-- ****************************************************** -->
5912<!-- How To Put Your Driver -->
5913<!-- ****************************************************** -->
5914 <chapter id="how-to-put-your-driver">
5915 <title>How To Put Your Driver Into ALSA Tree</title>
5916 <section>
5917 <title>General</title>
5918 <para>
5919 So far, you've learned how to write the driver codes.
5920 And you might have a question now: how to put my own
5921 driver into the ALSA driver tree?
5922 Here (finally :) the standard procedure is described briefly.
5923 </para>
5924
5925 <para>
5926 Suppose that you create a new PCI driver for the card
5927 <quote>xyz</quote>. The card module name would be
5928 snd-xyz. The new driver is usually put into the alsa-driver
5929 tree, <filename>alsa-driver/pci</filename> directory in
5930 the case of PCI cards.
5931 Then the driver is evaluated, audited and tested
5932 by developers and users. After a certain time, the driver
5933 will go to the alsa-kernel tree (to the corresponding directory,
5934 such as <filename>alsa-kernel/pci</filename>) and eventually
5935 will be integrated into the Linux 2.6 tree (the directory would be
5936 <filename>linux/sound/pci</filename>).
5937 </para>
5938
5939 <para>
5940 In the following sections, the driver code is supposed
5941 to be put into alsa-driver tree. The two cases are covered:
5942 a driver consisting of a single source file and one consisting
5943 of several source files.
5944 </para>
5945 </section>
5946
5947 <section>
5948 <title>Driver with A Single Source File</title>
5949 <para>
5950 <orderedlist>
5951 <listitem>
5952 <para>
5953 Modify alsa-driver/pci/Makefile
5954 </para>
5955
5956 <para>
5957 Suppose you have a file xyz.c. Add the following
5958 two lines
5959 <informalexample>
5960 <programlisting>
5961<![CDATA[
5962 snd-xyz-objs := xyz.o
5963 obj-$(CONFIG_SND_XYZ) += snd-xyz.o
5964]]>
5965 </programlisting>
5966 </informalexample>
5967 </para>
5968 </listitem>
5969
5970 <listitem>
5971 <para>
5972 Create the Kconfig entry
5973 </para>
5974
5975 <para>
5976 Add the new entry of Kconfig for your xyz driver.
5977 <informalexample>
5978 <programlisting>
5979<![CDATA[
5980 config SND_XYZ
5981 tristate "Foobar XYZ"
5982 depends on SND
5983 select SND_PCM
5984 help
5985 Say Y here to include support for Foobar XYZ soundcard.
5986
5987 To compile this driver as a module, choose M here: the module
5988 will be called snd-xyz.
5989]]>
5990 </programlisting>
5991 </informalexample>
5992
5993 the line, select SND_PCM, specifies that the driver xyz supports
5994 PCM. In addition to SND_PCM, the following components are
5995 supported for select command:
5996 SND_RAWMIDI, SND_TIMER, SND_HWDEP, SND_MPU401_UART,
5997 SND_OPL3_LIB, SND_OPL4_LIB, SND_VX_LIB, SND_AC97_CODEC.
5998 Add the select command for each supported component.
5999 </para>
6000
6001 <para>
6002 Note that some selections imply the lowlevel selections.
6003 For example, PCM includes TIMER, MPU401_UART includes RAWMIDI,
6004 AC97_CODEC includes PCM, and OPL3_LIB includes HWDEP.
6005 You don't need to give the lowlevel selections again.
6006 </para>
6007
6008 <para>
6009 For the details of Kconfig script, refer to the kbuild
6010 documentation.
6011 </para>
6012
6013 </listitem>
6014
6015 <listitem>
6016 <para>
6017 Run cvscompile script to re-generate the configure script and
6018 build the whole stuff again.
6019 </para>
6020 </listitem>
6021 </orderedlist>
6022 </para>
6023 </section>
6024
6025 <section>
6026 <title>Drivers with Several Source Files</title>
6027 <para>
6028 Suppose that the driver snd-xyz have several source files.
6029 They are located in the new subdirectory,
6030 pci/xyz.
6031
6032 <orderedlist>
6033 <listitem>
6034 <para>
6035 Add a new directory (<filename>xyz</filename>) in
6036 <filename>alsa-driver/pci/Makefile</filename> as below
6037
6038 <informalexample>
6039 <programlisting>
6040<![CDATA[
6041 obj-$(CONFIG_SND) += xyz/
6042]]>
6043 </programlisting>
6044 </informalexample>
6045 </para>
6046 </listitem>
6047
6048 <listitem>
6049 <para>
6050 Under the directory <filename>xyz</filename>, create a Makefile
6051
6052 <example>
6053 <title>Sample Makefile for a driver xyz</title>
6054 <programlisting>
6055<![CDATA[
6056 ifndef SND_TOPDIR
6057 SND_TOPDIR=../..
6058 endif
6059
6060 include $(SND_TOPDIR)/toplevel.config
6061 include $(SND_TOPDIR)/Makefile.conf
6062
6063 snd-xyz-objs := xyz.o abc.o def.o
6064
6065 obj-$(CONFIG_SND_XYZ) += snd-xyz.o
6066
6067 include $(SND_TOPDIR)/Rules.make
6068]]>
6069 </programlisting>
6070 </example>
6071 </para>
6072 </listitem>
6073
6074 <listitem>
6075 <para>
6076 Create the Kconfig entry
6077 </para>
6078
6079 <para>
6080 This procedure is as same as in the last section.
6081 </para>
6082 </listitem>
6083
6084 <listitem>
6085 <para>
6086 Run cvscompile script to re-generate the configure script and
6087 build the whole stuff again.
6088 </para>
6089 </listitem>
6090 </orderedlist>
6091 </para>
6092 </section>
6093
6094 </chapter>
6095
6096<!-- ****************************************************** -->
6097<!-- Useful Functions -->
6098<!-- ****************************************************** -->
6099 <chapter id="useful-functions">
6100 <title>Useful Functions</title>
6101
6102 <section id="useful-functions-snd-printk">
6103 <title><function>snd_printk()</function> and friends</title>
6104 <para>
6105 ALSA provides a verbose version of the
6106 <function>printk()</function> function. If a kernel config
6107 <constant>CONFIG_SND_VERBOSE_PRINTK</constant> is set, this
6108 function prints the given message together with the file name
6109 and the line of the caller. The <constant>KERN_XXX</constant>
6110 prefix is processed as
6111 well as the original <function>printk()</function> does, so it's
6112 recommended to add this prefix, e.g.
6113
6114 <informalexample>
6115 <programlisting>
6116<![CDATA[
6117 snd_printk(KERN_ERR "Oh my, sorry, it's extremely bad!\n");
6118]]>
6119 </programlisting>
6120 </informalexample>
6121 </para>
6122
6123 <para>
6124 There are also <function>printk()</function>'s for
6125 debugging. <function>snd_printd()</function> can be used for
6126 general debugging purposes. If
6127 <constant>CONFIG_SND_DEBUG</constant> is set, this function is
6128 compiled, and works just like
6129 <function>snd_printk()</function>. If the ALSA is compiled
6130 without the debugging flag, it's ignored.
6131 </para>
6132
6133 <para>
6134 <function>snd_printdd()</function> is compiled in only when
6135 <constant>CONFIG_SND_DEBUG_VERBOSE</constant> is set. Please note
6136 that <constant>CONFIG_SND_DEBUG_VERBOSE</constant> is not set as default
6137 even if you configure the alsa-driver with
6138 <option>--with-debug=full</option> option. You need to give
6139 explicitly <option>--with-debug=detect</option> option instead.
6140 </para>
6141 </section>
6142
6143 <section id="useful-functions-snd-bug">
6144 <title><function>snd_BUG()</function></title>
6145 <para>
6146 It shows the <computeroutput>BUG?</computeroutput> message and
6147 stack trace as well as <function>snd_BUG_ON</function> at the point.
6148 It's useful to show that a fatal error happens there.
6149 </para>
6150 <para>
6151 When no debug flag is set, this macro is ignored.
6152 </para>
6153 </section>
6154
6155 <section id="useful-functions-snd-bug-on">
6156 <title><function>snd_BUG_ON()</function></title>
6157 <para>
6158 <function>snd_BUG_ON()</function> macro is similar with
6159 <function>WARN_ON()</function> macro. For example,
6160
6161 <informalexample>
6162 <programlisting>
6163<![CDATA[
6164 snd_BUG_ON(!pointer);
6165]]>
6166 </programlisting>
6167 </informalexample>
6168
6169 or it can be used as the condition,
6170 <informalexample>
6171 <programlisting>
6172<![CDATA[
6173 if (snd_BUG_ON(non_zero_is_bug))
6174 return -EINVAL;
6175]]>
6176 </programlisting>
6177 </informalexample>
6178
6179 </para>
6180
6181 <para>
6182 The macro takes an conditional expression to evaluate.
6183 When <constant>CONFIG_SND_DEBUG</constant>, is set, the
6184 expression is actually evaluated. If it's non-zero, it shows
6185 the warning message such as
6186 <computeroutput>BUG? (xxx)</computeroutput>
6187 normally followed by stack trace. It returns the evaluated
6188 value.
6189 When no <constant>CONFIG_SND_DEBUG</constant> is set, this
6190 macro always returns zero.
6191 </para>
6192
6193 </section>
6194
6195 </chapter>
6196
6197
6198<!-- ****************************************************** -->
6199<!-- Acknowledgments -->
6200<!-- ****************************************************** -->
6201 <chapter id="acknowledgments">
6202 <title>Acknowledgments</title>
6203 <para>
6204 I would like to thank Phil Kerr for his help for improvement and
6205 corrections of this document.
6206 </para>
6207 <para>
6208 Kevin Conder reformatted the original plain-text to the
6209 DocBook format.
6210 </para>
6211 <para>
6212 Giuliano Pochini corrected typos and contributed the example codes
6213 in the hardware constraints section.
6214 </para>
6215 </chapter>
6216</book>