aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--drivers/iommu/Kconfig1
-rw-r--r--drivers/iommu/ipmmu-vmsa.c554
2 files changed, 61 insertions, 494 deletions
diff --git a/drivers/iommu/Kconfig b/drivers/iommu/Kconfig
index 87060ad6829d..b7c656c84f51 100644
--- a/drivers/iommu/Kconfig
+++ b/drivers/iommu/Kconfig
@@ -313,6 +313,7 @@ config IPMMU_VMSA
313 depends on ARM_LPAE 313 depends on ARM_LPAE
314 depends on ARCH_SHMOBILE || COMPILE_TEST 314 depends on ARCH_SHMOBILE || COMPILE_TEST
315 select IOMMU_API 315 select IOMMU_API
316 select IOMMU_IO_PGTABLE_LPAE
316 select ARM_DMA_USE_IOMMU 317 select ARM_DMA_USE_IOMMU
317 help 318 help
318 Support for the Renesas VMSA-compatible IPMMU Renesas found in the 319 Support for the Renesas VMSA-compatible IPMMU Renesas found in the
diff --git a/drivers/iommu/ipmmu-vmsa.c b/drivers/iommu/ipmmu-vmsa.c
index 791c3daec7c0..3d7e7325a1e5 100644
--- a/drivers/iommu/ipmmu-vmsa.c
+++ b/drivers/iommu/ipmmu-vmsa.c
@@ -24,6 +24,8 @@
24#include <asm/dma-iommu.h> 24#include <asm/dma-iommu.h>
25#include <asm/pgalloc.h> 25#include <asm/pgalloc.h>
26 26
27#include "io-pgtable.h"
28
27struct ipmmu_vmsa_device { 29struct ipmmu_vmsa_device {
28 struct device *dev; 30 struct device *dev;
29 void __iomem *base; 31 void __iomem *base;
@@ -38,9 +40,11 @@ struct ipmmu_vmsa_domain {
38 struct ipmmu_vmsa_device *mmu; 40 struct ipmmu_vmsa_device *mmu;
39 struct iommu_domain *io_domain; 41 struct iommu_domain *io_domain;
40 42
43 struct io_pgtable_cfg cfg;
44 struct io_pgtable_ops *iop;
45
41 unsigned int context_id; 46 unsigned int context_id;
42 spinlock_t lock; /* Protects mappings */ 47 spinlock_t lock; /* Protects mappings */
43 pgd_t *pgd;
44}; 48};
45 49
46struct ipmmu_vmsa_archdata { 50struct ipmmu_vmsa_archdata {
@@ -173,52 +177,6 @@ static LIST_HEAD(ipmmu_devices);
173#define IMUASID_ASID0_SHIFT 0 177#define IMUASID_ASID0_SHIFT 0
174 178
175/* ----------------------------------------------------------------------------- 179/* -----------------------------------------------------------------------------
176 * Page Table Bits
177 */
178
179/*
180 * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory access,
181 * Long-descriptor format" that the NStable bit being set in a table descriptor
182 * will result in the NStable and NS bits of all child entries being ignored and
183 * considered as being set. The IPMMU seems not to comply with this, as it
184 * generates a secure access page fault if any of the NStable and NS bits isn't
185 * set when running in non-secure mode.
186 */
187#ifndef PMD_NSTABLE
188#define PMD_NSTABLE (_AT(pmdval_t, 1) << 63)
189#endif
190
191#define ARM_VMSA_PTE_XN (((pteval_t)3) << 53)
192#define ARM_VMSA_PTE_CONT (((pteval_t)1) << 52)
193#define ARM_VMSA_PTE_AF (((pteval_t)1) << 10)
194#define ARM_VMSA_PTE_SH_NS (((pteval_t)0) << 8)
195#define ARM_VMSA_PTE_SH_OS (((pteval_t)2) << 8)
196#define ARM_VMSA_PTE_SH_IS (((pteval_t)3) << 8)
197#define ARM_VMSA_PTE_SH_MASK (((pteval_t)3) << 8)
198#define ARM_VMSA_PTE_NS (((pteval_t)1) << 5)
199#define ARM_VMSA_PTE_PAGE (((pteval_t)3) << 0)
200
201/* Stage-1 PTE */
202#define ARM_VMSA_PTE_nG (((pteval_t)1) << 11)
203#define ARM_VMSA_PTE_AP_UNPRIV (((pteval_t)1) << 6)
204#define ARM_VMSA_PTE_AP_RDONLY (((pteval_t)2) << 6)
205#define ARM_VMSA_PTE_AP_MASK (((pteval_t)3) << 6)
206#define ARM_VMSA_PTE_ATTRINDX_MASK (((pteval_t)3) << 2)
207#define ARM_VMSA_PTE_ATTRINDX_SHIFT 2
208
209#define ARM_VMSA_PTE_ATTRS_MASK \
210 (ARM_VMSA_PTE_XN | ARM_VMSA_PTE_CONT | ARM_VMSA_PTE_nG | \
211 ARM_VMSA_PTE_AF | ARM_VMSA_PTE_SH_MASK | ARM_VMSA_PTE_AP_MASK | \
212 ARM_VMSA_PTE_NS | ARM_VMSA_PTE_ATTRINDX_MASK)
213
214#define ARM_VMSA_PTE_CONT_ENTRIES 16
215#define ARM_VMSA_PTE_CONT_SIZE (PAGE_SIZE * ARM_VMSA_PTE_CONT_ENTRIES)
216
217#define IPMMU_PTRS_PER_PTE 512
218#define IPMMU_PTRS_PER_PMD 512
219#define IPMMU_PTRS_PER_PGD 4
220
221/* -----------------------------------------------------------------------------
222 * Read/Write Access 180 * Read/Write Access
223 */ 181 */
224 182
@@ -307,18 +265,39 @@ static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
307 ipmmu_write(mmu, IMUCTR(utlb), 0); 265 ipmmu_write(mmu, IMUCTR(utlb), 0);
308} 266}
309 267
310static void ipmmu_flush_pgtable(struct ipmmu_vmsa_device *mmu, void *addr, 268static void ipmmu_tlb_flush_all(void *cookie)
311 size_t size)
312{ 269{
313 unsigned long offset = (unsigned long)addr & ~PAGE_MASK; 270 struct ipmmu_vmsa_domain *domain = cookie;
271
272 ipmmu_tlb_invalidate(domain);
273}
274
275static void ipmmu_tlb_add_flush(unsigned long iova, size_t size, bool leaf,
276 void *cookie)
277{
278 /* The hardware doesn't support selective TLB flush. */
279}
280
281static void ipmmu_flush_pgtable(void *ptr, size_t size, void *cookie)
282{
283 unsigned long offset = (unsigned long)ptr & ~PAGE_MASK;
284 struct ipmmu_vmsa_domain *domain = cookie;
314 285
315 /* 286 /*
316 * TODO: Add support for coherent walk through CCI with DVM and remove 287 * TODO: Add support for coherent walk through CCI with DVM and remove
317 * cache handling. 288 * cache handling.
318 */ 289 */
319 dma_map_page(mmu->dev, virt_to_page(addr), offset, size, DMA_TO_DEVICE); 290 dma_map_page(domain->mmu->dev, virt_to_page(ptr), offset, size,
291 DMA_TO_DEVICE);
320} 292}
321 293
294static struct iommu_gather_ops ipmmu_gather_ops = {
295 .tlb_flush_all = ipmmu_tlb_flush_all,
296 .tlb_add_flush = ipmmu_tlb_add_flush,
297 .tlb_sync = ipmmu_tlb_flush_all,
298 .flush_pgtable = ipmmu_flush_pgtable,
299};
300
322/* ----------------------------------------------------------------------------- 301/* -----------------------------------------------------------------------------
323 * Domain/Context Management 302 * Domain/Context Management
324 */ 303 */
@@ -326,7 +305,28 @@ static void ipmmu_flush_pgtable(struct ipmmu_vmsa_device *mmu, void *addr,
326static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain) 305static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
327{ 306{
328 phys_addr_t ttbr; 307 phys_addr_t ttbr;
329 u32 reg; 308
309 /*
310 * Allocate the page table operations.
311 *
312 * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
313 * access, Long-descriptor format" that the NStable bit being set in a
314 * table descriptor will result in the NStable and NS bits of all child
315 * entries being ignored and considered as being set. The IPMMU seems
316 * not to comply with this, as it generates a secure access page fault
317 * if any of the NStable and NS bits isn't set when running in
318 * non-secure mode.
319 */
320 domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS;
321 domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
322 domain->cfg.ias = 32;
323 domain->cfg.oas = 40;
324 domain->cfg.tlb = &ipmmu_gather_ops;
325
326 domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg,
327 domain);
328 if (!domain->iop)
329 return -EINVAL;
330 330
331 /* 331 /*
332 * TODO: When adding support for multiple contexts, find an unused 332 * TODO: When adding support for multiple contexts, find an unused
@@ -335,9 +335,7 @@ static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
335 domain->context_id = 0; 335 domain->context_id = 0;
336 336
337 /* TTBR0 */ 337 /* TTBR0 */
338 ipmmu_flush_pgtable(domain->mmu, domain->pgd, 338 ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr[0];
339 IPMMU_PTRS_PER_PGD * sizeof(*domain->pgd));
340 ttbr = __pa(domain->pgd);
341 ipmmu_ctx_write(domain, IMTTLBR0, ttbr); 339 ipmmu_ctx_write(domain, IMTTLBR0, ttbr);
342 ipmmu_ctx_write(domain, IMTTUBR0, ttbr >> 32); 340 ipmmu_ctx_write(domain, IMTTUBR0, ttbr >> 32);
343 341
@@ -350,15 +348,8 @@ static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
350 IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA | 348 IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
351 IMTTBCR_IRGN0_WB_WA | IMTTBCR_SL0_LVL_1); 349 IMTTBCR_IRGN0_WB_WA | IMTTBCR_SL0_LVL_1);
352 350
353 /* 351 /* MAIR0 */
354 * MAIR0 352 ipmmu_ctx_write(domain, IMMAIR0, domain->cfg.arm_lpae_s1_cfg.mair[0]);
355 * We need three attributes only, non-cacheable, write-back read/write
356 * allocate and device memory.
357 */
358 reg = (IMMAIR_ATTR_NC << IMMAIR_ATTR_SHIFT(IMMAIR_ATTR_IDX_NC))
359 | (IMMAIR_ATTR_WBRWA << IMMAIR_ATTR_SHIFT(IMMAIR_ATTR_IDX_WBRWA))
360 | (IMMAIR_ATTR_DEVICE << IMMAIR_ATTR_SHIFT(IMMAIR_ATTR_IDX_DEV));
361 ipmmu_ctx_write(domain, IMMAIR0, reg);
362 353
363 /* IMBUSCR */ 354 /* IMBUSCR */
364 ipmmu_ctx_write(domain, IMBUSCR, 355 ipmmu_ctx_write(domain, IMBUSCR,
@@ -463,397 +454,6 @@ static irqreturn_t ipmmu_irq(int irq, void *dev)
463} 454}
464 455
465/* ----------------------------------------------------------------------------- 456/* -----------------------------------------------------------------------------
466 * Page Table Management
467 */
468
469#define pud_pgtable(pud) pfn_to_page(__phys_to_pfn(pud_val(pud) & PHYS_MASK))
470
471static void ipmmu_free_ptes(pmd_t *pmd)
472{
473 pgtable_t table = pmd_pgtable(*pmd);
474 __free_page(table);
475}
476
477static void ipmmu_free_pmds(pud_t *pud)
478{
479 pmd_t *pmd = pmd_offset(pud, 0);
480 pgtable_t table;
481 unsigned int i;
482
483 for (i = 0; i < IPMMU_PTRS_PER_PMD; ++i) {
484 if (!pmd_table(*pmd))
485 continue;
486
487 ipmmu_free_ptes(pmd);
488 pmd++;
489 }
490
491 table = pud_pgtable(*pud);
492 __free_page(table);
493}
494
495static void ipmmu_free_pgtables(struct ipmmu_vmsa_domain *domain)
496{
497 pgd_t *pgd, *pgd_base = domain->pgd;
498 unsigned int i;
499
500 /*
501 * Recursively free the page tables for this domain. We don't care about
502 * speculative TLB filling, because the TLB will be nuked next time this
503 * context bank is re-allocated and no devices currently map to these
504 * tables.
505 */
506 pgd = pgd_base;
507 for (i = 0; i < IPMMU_PTRS_PER_PGD; ++i) {
508 if (pgd_none(*pgd))
509 continue;
510 ipmmu_free_pmds((pud_t *)pgd);
511 pgd++;
512 }
513
514 kfree(pgd_base);
515}
516
517/*
518 * We can't use the (pgd|pud|pmd|pte)_populate or the set_(pgd|pud|pmd|pte)
519 * functions as they would flush the CPU TLB.
520 */
521
522static pte_t *ipmmu_alloc_pte(struct ipmmu_vmsa_device *mmu, pmd_t *pmd,
523 unsigned long iova)
524{
525 pte_t *pte;
526
527 if (!pmd_none(*pmd))
528 return pte_offset_kernel(pmd, iova);
529
530 pte = (pte_t *)get_zeroed_page(GFP_ATOMIC);
531 if (!pte)
532 return NULL;
533
534 ipmmu_flush_pgtable(mmu, pte, PAGE_SIZE);
535 *pmd = __pmd(__pa(pte) | PMD_NSTABLE | PMD_TYPE_TABLE);
536 ipmmu_flush_pgtable(mmu, pmd, sizeof(*pmd));
537
538 return pte + pte_index(iova);
539}
540
541static pmd_t *ipmmu_alloc_pmd(struct ipmmu_vmsa_device *mmu, pgd_t *pgd,
542 unsigned long iova)
543{
544 pud_t *pud = (pud_t *)pgd;
545 pmd_t *pmd;
546
547 if (!pud_none(*pud))
548 return pmd_offset(pud, iova);
549
550 pmd = (pmd_t *)get_zeroed_page(GFP_ATOMIC);
551 if (!pmd)
552 return NULL;
553
554 ipmmu_flush_pgtable(mmu, pmd, PAGE_SIZE);
555 *pud = __pud(__pa(pmd) | PMD_NSTABLE | PMD_TYPE_TABLE);
556 ipmmu_flush_pgtable(mmu, pud, sizeof(*pud));
557
558 return pmd + pmd_index(iova);
559}
560
561static u64 ipmmu_page_prot(unsigned int prot, u64 type)
562{
563 u64 pgprot = ARM_VMSA_PTE_nG | ARM_VMSA_PTE_AF
564 | ARM_VMSA_PTE_SH_IS | ARM_VMSA_PTE_AP_UNPRIV
565 | ARM_VMSA_PTE_NS | type;
566
567 if (!(prot & IOMMU_WRITE) && (prot & IOMMU_READ))
568 pgprot |= ARM_VMSA_PTE_AP_RDONLY;
569
570 if (prot & IOMMU_CACHE)
571 pgprot |= IMMAIR_ATTR_IDX_WBRWA << ARM_VMSA_PTE_ATTRINDX_SHIFT;
572
573 if (prot & IOMMU_NOEXEC)
574 pgprot |= ARM_VMSA_PTE_XN;
575 else if (!(prot & (IOMMU_READ | IOMMU_WRITE)))
576 /* If no access create a faulting entry to avoid TLB fills. */
577 pgprot &= ~ARM_VMSA_PTE_PAGE;
578
579 return pgprot;
580}
581
582static int ipmmu_alloc_init_pte(struct ipmmu_vmsa_device *mmu, pmd_t *pmd,
583 unsigned long iova, unsigned long pfn,
584 size_t size, int prot)
585{
586 pteval_t pteval = ipmmu_page_prot(prot, ARM_VMSA_PTE_PAGE);
587 unsigned int num_ptes = 1;
588 pte_t *pte, *start;
589 unsigned int i;
590
591 pte = ipmmu_alloc_pte(mmu, pmd, iova);
592 if (!pte)
593 return -ENOMEM;
594
595 start = pte;
596
597 /*
598 * Install the page table entries. We can be called both for a single
599 * page or for a block of 16 physically contiguous pages. In the latter
600 * case set the PTE contiguous hint.
601 */
602 if (size == SZ_64K) {
603 pteval |= ARM_VMSA_PTE_CONT;
604 num_ptes = ARM_VMSA_PTE_CONT_ENTRIES;
605 }
606
607 for (i = num_ptes; i; --i)
608 *pte++ = pfn_pte(pfn++, __pgprot(pteval));
609
610 ipmmu_flush_pgtable(mmu, start, sizeof(*pte) * num_ptes);
611
612 return 0;
613}
614
615static int ipmmu_alloc_init_pmd(struct ipmmu_vmsa_device *mmu, pmd_t *pmd,
616 unsigned long iova, unsigned long pfn,
617 int prot)
618{
619 pmdval_t pmdval = ipmmu_page_prot(prot, PMD_TYPE_SECT);
620
621 *pmd = pfn_pmd(pfn, __pgprot(pmdval));
622 ipmmu_flush_pgtable(mmu, pmd, sizeof(*pmd));
623
624 return 0;
625}
626
627static int ipmmu_create_mapping(struct ipmmu_vmsa_domain *domain,
628 unsigned long iova, phys_addr_t paddr,
629 size_t size, int prot)
630{
631 struct ipmmu_vmsa_device *mmu = domain->mmu;
632 pgd_t *pgd = domain->pgd;
633 unsigned long flags;
634 unsigned long pfn;
635 pmd_t *pmd;
636 int ret;
637
638 if (!pgd)
639 return -EINVAL;
640
641 if (size & ~PAGE_MASK)
642 return -EINVAL;
643
644 if (paddr & ~((1ULL << 40) - 1))
645 return -ERANGE;
646
647 pfn = __phys_to_pfn(paddr);
648 pgd += pgd_index(iova);
649
650 /* Update the page tables. */
651 spin_lock_irqsave(&domain->lock, flags);
652
653 pmd = ipmmu_alloc_pmd(mmu, pgd, iova);
654 if (!pmd) {
655 ret = -ENOMEM;
656 goto done;
657 }
658
659 switch (size) {
660 case SZ_2M:
661 ret = ipmmu_alloc_init_pmd(mmu, pmd, iova, pfn, prot);
662 break;
663 case SZ_64K:
664 case SZ_4K:
665 ret = ipmmu_alloc_init_pte(mmu, pmd, iova, pfn, size, prot);
666 break;
667 default:
668 ret = -EINVAL;
669 break;
670 }
671
672done:
673 spin_unlock_irqrestore(&domain->lock, flags);
674
675 if (!ret)
676 ipmmu_tlb_invalidate(domain);
677
678 return ret;
679}
680
681static void ipmmu_clear_pud(struct ipmmu_vmsa_device *mmu, pud_t *pud)
682{
683 pgtable_t table = pud_pgtable(*pud);
684
685 /* Clear the PUD. */
686 *pud = __pud(0);
687 ipmmu_flush_pgtable(mmu, pud, sizeof(*pud));
688
689 /* Free the page table. */
690 __free_page(table);
691}
692
693static void ipmmu_clear_pmd(struct ipmmu_vmsa_device *mmu, pud_t *pud,
694 pmd_t *pmd)
695{
696 pmd_t pmdval = *pmd;
697 unsigned int i;
698
699 /* Clear the PMD. */
700 *pmd = __pmd(0);
701 ipmmu_flush_pgtable(mmu, pmd, sizeof(*pmd));
702
703 /* Free the page table. */
704 if (pmd_table(pmdval)) {
705 pgtable_t table = pmd_pgtable(pmdval);
706
707 __free_page(table);
708 }
709
710 /* Check whether the PUD is still needed. */
711 pmd = pmd_offset(pud, 0);
712 for (i = 0; i < IPMMU_PTRS_PER_PMD; ++i) {
713 if (!pmd_none(pmd[i]))
714 return;
715 }
716
717 /* Clear the parent PUD. */
718 ipmmu_clear_pud(mmu, pud);
719}
720
721static void ipmmu_clear_pte(struct ipmmu_vmsa_device *mmu, pud_t *pud,
722 pmd_t *pmd, pte_t *pte, unsigned int num_ptes)
723{
724 unsigned int i;
725
726 /* Clear the PTE. */
727 for (i = num_ptes; i; --i)
728 pte[i-1] = __pte(0);
729
730 ipmmu_flush_pgtable(mmu, pte, sizeof(*pte) * num_ptes);
731
732 /* Check whether the PMD is still needed. */
733 pte = pte_offset_kernel(pmd, 0);
734 for (i = 0; i < IPMMU_PTRS_PER_PTE; ++i) {
735 if (!pte_none(pte[i]))
736 return;
737 }
738
739 /* Clear the parent PMD. */
740 ipmmu_clear_pmd(mmu, pud, pmd);
741}
742
743static int ipmmu_split_pmd(struct ipmmu_vmsa_device *mmu, pmd_t *pmd)
744{
745 pte_t *pte, *start;
746 pteval_t pteval;
747 unsigned long pfn;
748 unsigned int i;
749
750 pte = (pte_t *)get_zeroed_page(GFP_ATOMIC);
751 if (!pte)
752 return -ENOMEM;
753
754 /* Copy the PMD attributes. */
755 pteval = (pmd_val(*pmd) & ARM_VMSA_PTE_ATTRS_MASK)
756 | ARM_VMSA_PTE_CONT | ARM_VMSA_PTE_PAGE;
757
758 pfn = pmd_pfn(*pmd);
759 start = pte;
760
761 for (i = IPMMU_PTRS_PER_PTE; i; --i)
762 *pte++ = pfn_pte(pfn++, __pgprot(pteval));
763
764 ipmmu_flush_pgtable(mmu, start, PAGE_SIZE);
765 *pmd = __pmd(__pa(start) | PMD_NSTABLE | PMD_TYPE_TABLE);
766 ipmmu_flush_pgtable(mmu, pmd, sizeof(*pmd));
767
768 return 0;
769}
770
771static void ipmmu_split_pte(struct ipmmu_vmsa_device *mmu, pte_t *pte)
772{
773 unsigned int i;
774
775 for (i = ARM_VMSA_PTE_CONT_ENTRIES; i; --i)
776 pte[i-1] = __pte(pte_val(*pte) & ~ARM_VMSA_PTE_CONT);
777
778 ipmmu_flush_pgtable(mmu, pte, sizeof(*pte) * ARM_VMSA_PTE_CONT_ENTRIES);
779}
780
781static int ipmmu_clear_mapping(struct ipmmu_vmsa_domain *domain,
782 unsigned long iova, size_t size)
783{
784 struct ipmmu_vmsa_device *mmu = domain->mmu;
785 unsigned long flags;
786 pgd_t *pgd = domain->pgd;
787 pud_t *pud;
788 pmd_t *pmd;
789 pte_t *pte;
790
791 if (!pgd)
792 return -EINVAL;
793
794 if (size & ~PAGE_MASK)
795 return -EINVAL;
796
797 pgd += pgd_index(iova);
798 pud = (pud_t *)pgd;
799
800 spin_lock_irqsave(&domain->lock, flags);
801
802 /* If there's no PUD or PMD we're done. */
803 if (pud_none(*pud))
804 goto done;
805
806 pmd = pmd_offset(pud, iova);
807 if (pmd_none(*pmd))
808 goto done;
809
810 /*
811 * When freeing a 2MB block just clear the PMD. In the unlikely case the
812 * block is mapped as individual pages this will free the corresponding
813 * PTE page table.
814 */
815 if (size == SZ_2M) {
816 ipmmu_clear_pmd(mmu, pud, pmd);
817 goto done;
818 }
819
820 /*
821 * If the PMD has been mapped as a section remap it as pages to allow
822 * freeing individual pages.
823 */
824 if (pmd_sect(*pmd))
825 ipmmu_split_pmd(mmu, pmd);
826
827 pte = pte_offset_kernel(pmd, iova);
828
829 /*
830 * When freeing a 64kB block just clear the PTE entries. We don't have
831 * to care about the contiguous hint of the surrounding entries.
832 */
833 if (size == SZ_64K) {
834 ipmmu_clear_pte(mmu, pud, pmd, pte, ARM_VMSA_PTE_CONT_ENTRIES);
835 goto done;
836 }
837
838 /*
839 * If the PTE has been mapped with the contiguous hint set remap it and
840 * its surrounding PTEs to allow unmapping a single page.
841 */
842 if (pte_val(*pte) & ARM_VMSA_PTE_CONT)
843 ipmmu_split_pte(mmu, pte);
844
845 /* Clear the PTE. */
846 ipmmu_clear_pte(mmu, pud, pmd, pte, 1);
847
848done:
849 spin_unlock_irqrestore(&domain->lock, flags);
850
851 ipmmu_tlb_invalidate(domain);
852
853 return 0;
854}
855
856/* -----------------------------------------------------------------------------
857 * IOMMU Operations 457 * IOMMU Operations
858 */ 458 */
859 459
@@ -867,12 +467,6 @@ static int ipmmu_domain_init(struct iommu_domain *io_domain)
867 467
868 spin_lock_init(&domain->lock); 468 spin_lock_init(&domain->lock);
869 469
870 domain->pgd = kzalloc(IPMMU_PTRS_PER_PGD * sizeof(pgd_t), GFP_KERNEL);
871 if (!domain->pgd) {
872 kfree(domain);
873 return -ENOMEM;
874 }
875
876 io_domain->priv = domain; 470 io_domain->priv = domain;
877 domain->io_domain = io_domain; 471 domain->io_domain = io_domain;
878 472
@@ -888,7 +482,7 @@ static void ipmmu_domain_destroy(struct iommu_domain *io_domain)
888 * been detached. 482 * been detached.
889 */ 483 */
890 ipmmu_domain_destroy_context(domain); 484 ipmmu_domain_destroy_context(domain);
891 ipmmu_free_pgtables(domain); 485 free_io_pgtable_ops(domain->iop);
892 kfree(domain); 486 kfree(domain);
893} 487}
894 488
@@ -957,53 +551,25 @@ static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
957 if (!domain) 551 if (!domain)
958 return -ENODEV; 552 return -ENODEV;
959 553
960 return ipmmu_create_mapping(domain, iova, paddr, size, prot); 554 return domain->iop->map(domain->iop, iova, paddr, size, prot);
961} 555}
962 556
963static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova, 557static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
964 size_t size) 558 size_t size)
965{ 559{
966 struct ipmmu_vmsa_domain *domain = io_domain->priv; 560 struct ipmmu_vmsa_domain *domain = io_domain->priv;
967 int ret;
968 561
969 ret = ipmmu_clear_mapping(domain, iova, size); 562 return domain->iop->unmap(domain->iop, iova, size);
970 return ret ? 0 : size;
971} 563}
972 564
973static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain, 565static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
974 dma_addr_t iova) 566 dma_addr_t iova)
975{ 567{
976 struct ipmmu_vmsa_domain *domain = io_domain->priv; 568 struct ipmmu_vmsa_domain *domain = io_domain->priv;
977 pgd_t pgd;
978 pud_t pud;
979 pmd_t pmd;
980 pte_t pte;
981 569
982 /* TODO: Is locking needed ? */ 570 /* TODO: Is locking needed ? */
983 571
984 if (!domain->pgd) 572 return domain->iop->iova_to_phys(domain->iop, iova);
985 return 0;
986
987 pgd = *(domain->pgd + pgd_index(iova));
988 if (pgd_none(pgd))
989 return 0;
990
991 pud = *pud_offset(&pgd, iova);
992 if (pud_none(pud))
993 return 0;
994
995 pmd = *pmd_offset(&pud, iova);
996 if (pmd_none(pmd))
997 return 0;
998
999 if (pmd_sect(pmd))
1000 return __pfn_to_phys(pmd_pfn(pmd)) | (iova & ~PMD_MASK);
1001
1002 pte = *(pmd_page_vaddr(pmd) + pte_index(iova));
1003 if (pte_none(pte))
1004 return 0;
1005
1006 return __pfn_to_phys(pte_pfn(pte)) | (iova & ~PAGE_MASK);
1007} 573}
1008 574
1009static int ipmmu_find_utlbs(struct ipmmu_vmsa_device *mmu, struct device *dev, 575static int ipmmu_find_utlbs(struct ipmmu_vmsa_device *mmu, struct device *dev,
@@ -1188,7 +754,7 @@ static const struct iommu_ops ipmmu_ops = {
1188 .iova_to_phys = ipmmu_iova_to_phys, 754 .iova_to_phys = ipmmu_iova_to_phys,
1189 .add_device = ipmmu_add_device, 755 .add_device = ipmmu_add_device,
1190 .remove_device = ipmmu_remove_device, 756 .remove_device = ipmmu_remove_device,
1191 .pgsize_bitmap = SZ_2M | SZ_64K | SZ_4K, 757 .pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
1192}; 758};
1193 759
1194/* ----------------------------------------------------------------------------- 760/* -----------------------------------------------------------------------------