diff options
-rw-r--r-- | Documentation/devicetree/bindings/dma/fsl-edma.txt | 76 | ||||
-rw-r--r-- | drivers/dma/Kconfig | 10 | ||||
-rw-r--r-- | drivers/dma/Makefile | 1 | ||||
-rw-r--r-- | drivers/dma/fsl-edma.c | 975 |
4 files changed, 1062 insertions, 0 deletions
diff --git a/Documentation/devicetree/bindings/dma/fsl-edma.txt b/Documentation/devicetree/bindings/dma/fsl-edma.txt new file mode 100644 index 000000000000..191d7bd8a6fe --- /dev/null +++ b/Documentation/devicetree/bindings/dma/fsl-edma.txt | |||
@@ -0,0 +1,76 @@ | |||
1 | * Freescale enhanced Direct Memory Access(eDMA) Controller | ||
2 | |||
3 | The eDMA channels have multiplex capability by programmble memory-mapped | ||
4 | registers. channels are split into two groups, called DMAMUX0 and DMAMUX1, | ||
5 | specific DMA request source can only be multiplexed by any channel of certain | ||
6 | group, DMAMUX0 or DMAMUX1, but not both. | ||
7 | |||
8 | * eDMA Controller | ||
9 | Required properties: | ||
10 | - compatible : | ||
11 | - "fsl,vf610-edma" for eDMA used similar to that on Vybrid vf610 SoC | ||
12 | - reg : Specifies base physical address(s) and size of the eDMA registers. | ||
13 | The 1st region is eDMA control register's address and size. | ||
14 | The 2nd and the 3rd regions are programmable channel multiplexing | ||
15 | control register's address and size. | ||
16 | - interrupts : A list of interrupt-specifiers, one for each entry in | ||
17 | interrupt-names. | ||
18 | - interrupt-names : Should contain: | ||
19 | "edma-tx" - the transmission interrupt | ||
20 | "edma-err" - the error interrupt | ||
21 | - #dma-cells : Must be <2>. | ||
22 | The 1st cell specifies the DMAMUX(0 for DMAMUX0 and 1 for DMAMUX1). | ||
23 | Specific request source can only be multiplexed by specific channels | ||
24 | group called DMAMUX. | ||
25 | The 2nd cell specifies the request source(slot) ID. | ||
26 | See the SoC's reference manual for all the supported request sources. | ||
27 | - dma-channels : Number of channels supported by the controller | ||
28 | - clock-names : A list of channel group clock names. Should contain: | ||
29 | "dmamux0" - clock name of mux0 group | ||
30 | "dmamux1" - clock name of mux1 group | ||
31 | - clocks : A list of phandle and clock-specifier pairs, one for each entry in | ||
32 | clock-names. | ||
33 | |||
34 | Optional properties: | ||
35 | - big-endian: If present registers and hardware scatter/gather descriptors | ||
36 | of the eDMA are implemented in big endian mode, otherwise in little | ||
37 | mode. | ||
38 | |||
39 | |||
40 | Examples: | ||
41 | |||
42 | edma0: dma-controller@40018000 { | ||
43 | #dma-cells = <2>; | ||
44 | compatible = "fsl,vf610-edma"; | ||
45 | reg = <0x40018000 0x2000>, | ||
46 | <0x40024000 0x1000>, | ||
47 | <0x40025000 0x1000>; | ||
48 | interrupts = <0 8 IRQ_TYPE_LEVEL_HIGH>, | ||
49 | <0 9 IRQ_TYPE_LEVEL_HIGH>; | ||
50 | interrupt-names = "edma-tx", "edma-err"; | ||
51 | dma-channels = <32>; | ||
52 | clock-names = "dmamux0", "dmamux1"; | ||
53 | clocks = <&clks VF610_CLK_DMAMUX0>, | ||
54 | <&clks VF610_CLK_DMAMUX1>; | ||
55 | }; | ||
56 | |||
57 | |||
58 | * DMA clients | ||
59 | DMA client drivers that uses the DMA function must use the format described | ||
60 | in the dma.txt file, using a two-cell specifier for each channel: the 1st | ||
61 | specifies the channel group(DMAMUX) in which this request can be multiplexed, | ||
62 | and the 2nd specifies the request source. | ||
63 | |||
64 | Examples: | ||
65 | |||
66 | sai2: sai@40031000 { | ||
67 | compatible = "fsl,vf610-sai"; | ||
68 | reg = <0x40031000 0x1000>; | ||
69 | interrupts = <0 86 IRQ_TYPE_LEVEL_HIGH>; | ||
70 | clock-names = "sai"; | ||
71 | clocks = <&clks VF610_CLK_SAI2>; | ||
72 | dma-names = "tx", "rx"; | ||
73 | dmas = <&edma0 0 21>, | ||
74 | <&edma0 0 20>; | ||
75 | status = "disabled"; | ||
76 | }; | ||
diff --git a/drivers/dma/Kconfig b/drivers/dma/Kconfig index e4382ecc22a2..830b88d8744c 100644 --- a/drivers/dma/Kconfig +++ b/drivers/dma/Kconfig | |||
@@ -349,6 +349,16 @@ config MOXART_DMA | |||
349 | select DMA_VIRTUAL_CHANNELS | 349 | select DMA_VIRTUAL_CHANNELS |
350 | help | 350 | help |
351 | Enable support for the MOXA ART SoC DMA controller. | 351 | Enable support for the MOXA ART SoC DMA controller. |
352 | |||
353 | config FSL_EDMA | ||
354 | tristate "Freescale eDMA engine support" | ||
355 | depends on OF | ||
356 | select DMA_ENGINE | ||
357 | select DMA_VIRTUAL_CHANNELS | ||
358 | help | ||
359 | Support the Freescale eDMA engine with programmable channel | ||
360 | multiplexing capability for DMA request sources(slot). | ||
361 | This module can be found on Freescale Vybrid and LS-1 SoCs. | ||
352 | 362 | ||
353 | config DMA_ENGINE | 363 | config DMA_ENGINE |
354 | bool | 364 | bool |
diff --git a/drivers/dma/Makefile b/drivers/dma/Makefile index a029d0f4a1be..995946283f8d 100644 --- a/drivers/dma/Makefile +++ b/drivers/dma/Makefile | |||
@@ -44,3 +44,4 @@ obj-$(CONFIG_DMA_JZ4740) += dma-jz4740.o | |||
44 | obj-$(CONFIG_TI_CPPI41) += cppi41.o | 44 | obj-$(CONFIG_TI_CPPI41) += cppi41.o |
45 | obj-$(CONFIG_K3_DMA) += k3dma.o | 45 | obj-$(CONFIG_K3_DMA) += k3dma.o |
46 | obj-$(CONFIG_MOXART_DMA) += moxart-dma.o | 46 | obj-$(CONFIG_MOXART_DMA) += moxart-dma.o |
47 | obj-$(CONFIG_FSL_EDMA) += fsl-edma.o | ||
diff --git a/drivers/dma/fsl-edma.c b/drivers/dma/fsl-edma.c new file mode 100644 index 000000000000..9025300a1670 --- /dev/null +++ b/drivers/dma/fsl-edma.c | |||
@@ -0,0 +1,975 @@ | |||
1 | /* | ||
2 | * drivers/dma/fsl-edma.c | ||
3 | * | ||
4 | * Copyright 2013-2014 Freescale Semiconductor, Inc. | ||
5 | * | ||
6 | * Driver for the Freescale eDMA engine with flexible channel multiplexing | ||
7 | * capability for DMA request sources. The eDMA block can be found on some | ||
8 | * Vybrid and Layerscape SoCs. | ||
9 | * | ||
10 | * This program is free software; you can redistribute it and/or modify it | ||
11 | * under the terms of the GNU General Public License as published by the | ||
12 | * Free Software Foundation; either version 2 of the License, or (at your | ||
13 | * option) any later version. | ||
14 | */ | ||
15 | |||
16 | #include <linux/init.h> | ||
17 | #include <linux/module.h> | ||
18 | #include <linux/interrupt.h> | ||
19 | #include <linux/clk.h> | ||
20 | #include <linux/dma-mapping.h> | ||
21 | #include <linux/dmapool.h> | ||
22 | #include <linux/slab.h> | ||
23 | #include <linux/spinlock.h> | ||
24 | #include <linux/of.h> | ||
25 | #include <linux/of_device.h> | ||
26 | #include <linux/of_address.h> | ||
27 | #include <linux/of_irq.h> | ||
28 | #include <linux/of_dma.h> | ||
29 | |||
30 | #include "virt-dma.h" | ||
31 | |||
32 | #define EDMA_CR 0x00 | ||
33 | #define EDMA_ES 0x04 | ||
34 | #define EDMA_ERQ 0x0C | ||
35 | #define EDMA_EEI 0x14 | ||
36 | #define EDMA_SERQ 0x1B | ||
37 | #define EDMA_CERQ 0x1A | ||
38 | #define EDMA_SEEI 0x19 | ||
39 | #define EDMA_CEEI 0x18 | ||
40 | #define EDMA_CINT 0x1F | ||
41 | #define EDMA_CERR 0x1E | ||
42 | #define EDMA_SSRT 0x1D | ||
43 | #define EDMA_CDNE 0x1C | ||
44 | #define EDMA_INTR 0x24 | ||
45 | #define EDMA_ERR 0x2C | ||
46 | |||
47 | #define EDMA_TCD_SADDR(x) (0x1000 + 32 * (x)) | ||
48 | #define EDMA_TCD_SOFF(x) (0x1004 + 32 * (x)) | ||
49 | #define EDMA_TCD_ATTR(x) (0x1006 + 32 * (x)) | ||
50 | #define EDMA_TCD_NBYTES(x) (0x1008 + 32 * (x)) | ||
51 | #define EDMA_TCD_SLAST(x) (0x100C + 32 * (x)) | ||
52 | #define EDMA_TCD_DADDR(x) (0x1010 + 32 * (x)) | ||
53 | #define EDMA_TCD_DOFF(x) (0x1014 + 32 * (x)) | ||
54 | #define EDMA_TCD_CITER_ELINK(x) (0x1016 + 32 * (x)) | ||
55 | #define EDMA_TCD_CITER(x) (0x1016 + 32 * (x)) | ||
56 | #define EDMA_TCD_DLAST_SGA(x) (0x1018 + 32 * (x)) | ||
57 | #define EDMA_TCD_CSR(x) (0x101C + 32 * (x)) | ||
58 | #define EDMA_TCD_BITER_ELINK(x) (0x101E + 32 * (x)) | ||
59 | #define EDMA_TCD_BITER(x) (0x101E + 32 * (x)) | ||
60 | |||
61 | #define EDMA_CR_EDBG BIT(1) | ||
62 | #define EDMA_CR_ERCA BIT(2) | ||
63 | #define EDMA_CR_ERGA BIT(3) | ||
64 | #define EDMA_CR_HOE BIT(4) | ||
65 | #define EDMA_CR_HALT BIT(5) | ||
66 | #define EDMA_CR_CLM BIT(6) | ||
67 | #define EDMA_CR_EMLM BIT(7) | ||
68 | #define EDMA_CR_ECX BIT(16) | ||
69 | #define EDMA_CR_CX BIT(17) | ||
70 | |||
71 | #define EDMA_SEEI_SEEI(x) ((x) & 0x1F) | ||
72 | #define EDMA_CEEI_CEEI(x) ((x) & 0x1F) | ||
73 | #define EDMA_CINT_CINT(x) ((x) & 0x1F) | ||
74 | #define EDMA_CERR_CERR(x) ((x) & 0x1F) | ||
75 | |||
76 | #define EDMA_TCD_ATTR_DSIZE(x) (((x) & 0x0007)) | ||
77 | #define EDMA_TCD_ATTR_DMOD(x) (((x) & 0x001F) << 3) | ||
78 | #define EDMA_TCD_ATTR_SSIZE(x) (((x) & 0x0007) << 8) | ||
79 | #define EDMA_TCD_ATTR_SMOD(x) (((x) & 0x001F) << 11) | ||
80 | #define EDMA_TCD_ATTR_SSIZE_8BIT (0x0000) | ||
81 | #define EDMA_TCD_ATTR_SSIZE_16BIT (0x0100) | ||
82 | #define EDMA_TCD_ATTR_SSIZE_32BIT (0x0200) | ||
83 | #define EDMA_TCD_ATTR_SSIZE_64BIT (0x0300) | ||
84 | #define EDMA_TCD_ATTR_SSIZE_32BYTE (0x0500) | ||
85 | #define EDMA_TCD_ATTR_DSIZE_8BIT (0x0000) | ||
86 | #define EDMA_TCD_ATTR_DSIZE_16BIT (0x0001) | ||
87 | #define EDMA_TCD_ATTR_DSIZE_32BIT (0x0002) | ||
88 | #define EDMA_TCD_ATTR_DSIZE_64BIT (0x0003) | ||
89 | #define EDMA_TCD_ATTR_DSIZE_32BYTE (0x0005) | ||
90 | |||
91 | #define EDMA_TCD_SOFF_SOFF(x) (x) | ||
92 | #define EDMA_TCD_NBYTES_NBYTES(x) (x) | ||
93 | #define EDMA_TCD_SLAST_SLAST(x) (x) | ||
94 | #define EDMA_TCD_DADDR_DADDR(x) (x) | ||
95 | #define EDMA_TCD_CITER_CITER(x) ((x) & 0x7FFF) | ||
96 | #define EDMA_TCD_DOFF_DOFF(x) (x) | ||
97 | #define EDMA_TCD_DLAST_SGA_DLAST_SGA(x) (x) | ||
98 | #define EDMA_TCD_BITER_BITER(x) ((x) & 0x7FFF) | ||
99 | |||
100 | #define EDMA_TCD_CSR_START BIT(0) | ||
101 | #define EDMA_TCD_CSR_INT_MAJOR BIT(1) | ||
102 | #define EDMA_TCD_CSR_INT_HALF BIT(2) | ||
103 | #define EDMA_TCD_CSR_D_REQ BIT(3) | ||
104 | #define EDMA_TCD_CSR_E_SG BIT(4) | ||
105 | #define EDMA_TCD_CSR_E_LINK BIT(5) | ||
106 | #define EDMA_TCD_CSR_ACTIVE BIT(6) | ||
107 | #define EDMA_TCD_CSR_DONE BIT(7) | ||
108 | |||
109 | #define EDMAMUX_CHCFG_DIS 0x0 | ||
110 | #define EDMAMUX_CHCFG_ENBL 0x80 | ||
111 | #define EDMAMUX_CHCFG_SOURCE(n) ((n) & 0x3F) | ||
112 | |||
113 | #define DMAMUX_NR 2 | ||
114 | |||
115 | #define FSL_EDMA_BUSWIDTHS BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ | ||
116 | BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ | ||
117 | BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \ | ||
118 | BIT(DMA_SLAVE_BUSWIDTH_8_BYTES) | ||
119 | |||
120 | struct fsl_edma_hw_tcd { | ||
121 | u32 saddr; | ||
122 | u16 soff; | ||
123 | u16 attr; | ||
124 | u32 nbytes; | ||
125 | u32 slast; | ||
126 | u32 daddr; | ||
127 | u16 doff; | ||
128 | u16 citer; | ||
129 | u32 dlast_sga; | ||
130 | u16 csr; | ||
131 | u16 biter; | ||
132 | }; | ||
133 | |||
134 | struct fsl_edma_sw_tcd { | ||
135 | dma_addr_t ptcd; | ||
136 | struct fsl_edma_hw_tcd *vtcd; | ||
137 | }; | ||
138 | |||
139 | struct fsl_edma_slave_config { | ||
140 | enum dma_transfer_direction dir; | ||
141 | enum dma_slave_buswidth addr_width; | ||
142 | u32 dev_addr; | ||
143 | u32 burst; | ||
144 | u32 attr; | ||
145 | }; | ||
146 | |||
147 | struct fsl_edma_chan { | ||
148 | struct virt_dma_chan vchan; | ||
149 | enum dma_status status; | ||
150 | struct fsl_edma_engine *edma; | ||
151 | struct fsl_edma_desc *edesc; | ||
152 | struct fsl_edma_slave_config fsc; | ||
153 | struct dma_pool *tcd_pool; | ||
154 | }; | ||
155 | |||
156 | struct fsl_edma_desc { | ||
157 | struct virt_dma_desc vdesc; | ||
158 | struct fsl_edma_chan *echan; | ||
159 | bool iscyclic; | ||
160 | unsigned int n_tcds; | ||
161 | struct fsl_edma_sw_tcd tcd[]; | ||
162 | }; | ||
163 | |||
164 | struct fsl_edma_engine { | ||
165 | struct dma_device dma_dev; | ||
166 | void __iomem *membase; | ||
167 | void __iomem *muxbase[DMAMUX_NR]; | ||
168 | struct clk *muxclk[DMAMUX_NR]; | ||
169 | struct mutex fsl_edma_mutex; | ||
170 | u32 n_chans; | ||
171 | int txirq; | ||
172 | int errirq; | ||
173 | bool big_endian; | ||
174 | struct fsl_edma_chan chans[]; | ||
175 | }; | ||
176 | |||
177 | /* | ||
178 | * R/W functions for big- or little-endian registers | ||
179 | * the eDMA controller's endian is independent of the CPU core's endian. | ||
180 | */ | ||
181 | |||
182 | static u16 edma_readw(struct fsl_edma_engine *edma, void __iomem *addr) | ||
183 | { | ||
184 | if (edma->big_endian) | ||
185 | return ioread16be(addr); | ||
186 | else | ||
187 | return ioread16(addr); | ||
188 | } | ||
189 | |||
190 | static u32 edma_readl(struct fsl_edma_engine *edma, void __iomem *addr) | ||
191 | { | ||
192 | if (edma->big_endian) | ||
193 | return ioread32be(addr); | ||
194 | else | ||
195 | return ioread32(addr); | ||
196 | } | ||
197 | |||
198 | static void edma_writeb(struct fsl_edma_engine *edma, u8 val, void __iomem *addr) | ||
199 | { | ||
200 | iowrite8(val, addr); | ||
201 | } | ||
202 | |||
203 | static void edma_writew(struct fsl_edma_engine *edma, u16 val, void __iomem *addr) | ||
204 | { | ||
205 | if (edma->big_endian) | ||
206 | iowrite16be(val, addr); | ||
207 | else | ||
208 | iowrite16(val, addr); | ||
209 | } | ||
210 | |||
211 | static void edma_writel(struct fsl_edma_engine *edma, u32 val, void __iomem *addr) | ||
212 | { | ||
213 | if (edma->big_endian) | ||
214 | iowrite32be(val, addr); | ||
215 | else | ||
216 | iowrite32(val, addr); | ||
217 | } | ||
218 | |||
219 | static struct fsl_edma_chan *to_fsl_edma_chan(struct dma_chan *chan) | ||
220 | { | ||
221 | return container_of(chan, struct fsl_edma_chan, vchan.chan); | ||
222 | } | ||
223 | |||
224 | static struct fsl_edma_desc *to_fsl_edma_desc(struct virt_dma_desc *vd) | ||
225 | { | ||
226 | return container_of(vd, struct fsl_edma_desc, vdesc); | ||
227 | } | ||
228 | |||
229 | static void fsl_edma_enable_request(struct fsl_edma_chan *fsl_chan) | ||
230 | { | ||
231 | void __iomem *addr = fsl_chan->edma->membase; | ||
232 | u32 ch = fsl_chan->vchan.chan.chan_id; | ||
233 | |||
234 | edma_writeb(fsl_chan->edma, EDMA_SEEI_SEEI(ch), addr + EDMA_SEEI); | ||
235 | edma_writeb(fsl_chan->edma, ch, addr + EDMA_SERQ); | ||
236 | } | ||
237 | |||
238 | static void fsl_edma_disable_request(struct fsl_edma_chan *fsl_chan) | ||
239 | { | ||
240 | void __iomem *addr = fsl_chan->edma->membase; | ||
241 | u32 ch = fsl_chan->vchan.chan.chan_id; | ||
242 | |||
243 | edma_writeb(fsl_chan->edma, ch, addr + EDMA_CERQ); | ||
244 | edma_writeb(fsl_chan->edma, EDMA_CEEI_CEEI(ch), addr + EDMA_CEEI); | ||
245 | } | ||
246 | |||
247 | static void fsl_edma_chan_mux(struct fsl_edma_chan *fsl_chan, | ||
248 | unsigned int slot, bool enable) | ||
249 | { | ||
250 | u32 ch = fsl_chan->vchan.chan.chan_id; | ||
251 | void __iomem *muxaddr = fsl_chan->edma->muxbase[ch / DMAMUX_NR]; | ||
252 | unsigned chans_per_mux, ch_off; | ||
253 | |||
254 | chans_per_mux = fsl_chan->edma->n_chans / DMAMUX_NR; | ||
255 | ch_off = fsl_chan->vchan.chan.chan_id % chans_per_mux; | ||
256 | |||
257 | if (enable) | ||
258 | edma_writeb(fsl_chan->edma, | ||
259 | EDMAMUX_CHCFG_ENBL | EDMAMUX_CHCFG_SOURCE(slot), | ||
260 | muxaddr + ch_off); | ||
261 | else | ||
262 | edma_writeb(fsl_chan->edma, EDMAMUX_CHCFG_DIS, muxaddr + ch_off); | ||
263 | } | ||
264 | |||
265 | static unsigned int fsl_edma_get_tcd_attr(enum dma_slave_buswidth addr_width) | ||
266 | { | ||
267 | switch (addr_width) { | ||
268 | case 1: | ||
269 | return EDMA_TCD_ATTR_SSIZE_8BIT | EDMA_TCD_ATTR_DSIZE_8BIT; | ||
270 | case 2: | ||
271 | return EDMA_TCD_ATTR_SSIZE_16BIT | EDMA_TCD_ATTR_DSIZE_16BIT; | ||
272 | case 4: | ||
273 | return EDMA_TCD_ATTR_SSIZE_32BIT | EDMA_TCD_ATTR_DSIZE_32BIT; | ||
274 | case 8: | ||
275 | return EDMA_TCD_ATTR_SSIZE_64BIT | EDMA_TCD_ATTR_DSIZE_64BIT; | ||
276 | default: | ||
277 | return EDMA_TCD_ATTR_SSIZE_32BIT | EDMA_TCD_ATTR_DSIZE_32BIT; | ||
278 | } | ||
279 | } | ||
280 | |||
281 | static void fsl_edma_free_desc(struct virt_dma_desc *vdesc) | ||
282 | { | ||
283 | struct fsl_edma_desc *fsl_desc; | ||
284 | int i; | ||
285 | |||
286 | fsl_desc = to_fsl_edma_desc(vdesc); | ||
287 | for (i = 0; i < fsl_desc->n_tcds; i++) | ||
288 | dma_pool_free(fsl_desc->echan->tcd_pool, | ||
289 | fsl_desc->tcd[i].vtcd, | ||
290 | fsl_desc->tcd[i].ptcd); | ||
291 | kfree(fsl_desc); | ||
292 | } | ||
293 | |||
294 | static int fsl_edma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, | ||
295 | unsigned long arg) | ||
296 | { | ||
297 | struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); | ||
298 | struct dma_slave_config *cfg = (void *)arg; | ||
299 | unsigned long flags; | ||
300 | LIST_HEAD(head); | ||
301 | |||
302 | switch (cmd) { | ||
303 | case DMA_TERMINATE_ALL: | ||
304 | spin_lock_irqsave(&fsl_chan->vchan.lock, flags); | ||
305 | fsl_edma_disable_request(fsl_chan); | ||
306 | fsl_chan->edesc = NULL; | ||
307 | vchan_get_all_descriptors(&fsl_chan->vchan, &head); | ||
308 | spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); | ||
309 | vchan_dma_desc_free_list(&fsl_chan->vchan, &head); | ||
310 | return 0; | ||
311 | |||
312 | case DMA_SLAVE_CONFIG: | ||
313 | fsl_chan->fsc.dir = cfg->direction; | ||
314 | if (cfg->direction == DMA_DEV_TO_MEM) { | ||
315 | fsl_chan->fsc.dev_addr = cfg->src_addr; | ||
316 | fsl_chan->fsc.addr_width = cfg->src_addr_width; | ||
317 | fsl_chan->fsc.burst = cfg->src_maxburst; | ||
318 | fsl_chan->fsc.attr = fsl_edma_get_tcd_attr(cfg->src_addr_width); | ||
319 | } else if (cfg->direction == DMA_MEM_TO_DEV) { | ||
320 | fsl_chan->fsc.dev_addr = cfg->dst_addr; | ||
321 | fsl_chan->fsc.addr_width = cfg->dst_addr_width; | ||
322 | fsl_chan->fsc.burst = cfg->dst_maxburst; | ||
323 | fsl_chan->fsc.attr = fsl_edma_get_tcd_attr(cfg->dst_addr_width); | ||
324 | } else { | ||
325 | return -EINVAL; | ||
326 | } | ||
327 | return 0; | ||
328 | |||
329 | case DMA_PAUSE: | ||
330 | spin_lock_irqsave(&fsl_chan->vchan.lock, flags); | ||
331 | if (fsl_chan->edesc) { | ||
332 | fsl_edma_disable_request(fsl_chan); | ||
333 | fsl_chan->status = DMA_PAUSED; | ||
334 | } | ||
335 | spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); | ||
336 | return 0; | ||
337 | |||
338 | case DMA_RESUME: | ||
339 | spin_lock_irqsave(&fsl_chan->vchan.lock, flags); | ||
340 | if (fsl_chan->edesc) { | ||
341 | fsl_edma_enable_request(fsl_chan); | ||
342 | fsl_chan->status = DMA_IN_PROGRESS; | ||
343 | } | ||
344 | spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); | ||
345 | return 0; | ||
346 | |||
347 | default: | ||
348 | return -ENXIO; | ||
349 | } | ||
350 | } | ||
351 | |||
352 | static size_t fsl_edma_desc_residue(struct fsl_edma_chan *fsl_chan, | ||
353 | struct virt_dma_desc *vdesc, bool in_progress) | ||
354 | { | ||
355 | struct fsl_edma_desc *edesc = fsl_chan->edesc; | ||
356 | void __iomem *addr = fsl_chan->edma->membase; | ||
357 | u32 ch = fsl_chan->vchan.chan.chan_id; | ||
358 | enum dma_transfer_direction dir = fsl_chan->fsc.dir; | ||
359 | dma_addr_t cur_addr, dma_addr; | ||
360 | size_t len, size; | ||
361 | int i; | ||
362 | |||
363 | /* calculate the total size in this desc */ | ||
364 | for (len = i = 0; i < fsl_chan->edesc->n_tcds; i++) | ||
365 | len += edma_readl(fsl_chan->edma, &(edesc->tcd[i].vtcd->nbytes)) | ||
366 | * edma_readw(fsl_chan->edma, &(edesc->tcd[i].vtcd->biter)); | ||
367 | |||
368 | if (!in_progress) | ||
369 | return len; | ||
370 | |||
371 | if (dir == DMA_MEM_TO_DEV) | ||
372 | cur_addr = edma_readl(fsl_chan->edma, addr + EDMA_TCD_SADDR(ch)); | ||
373 | else | ||
374 | cur_addr = edma_readl(fsl_chan->edma, addr + EDMA_TCD_DADDR(ch)); | ||
375 | |||
376 | /* figure out the finished and calculate the residue */ | ||
377 | for (i = 0; i < fsl_chan->edesc->n_tcds; i++) { | ||
378 | size = edma_readl(fsl_chan->edma, &(edesc->tcd[i].vtcd->nbytes)) | ||
379 | * edma_readw(fsl_chan->edma, &(edesc->tcd[i].vtcd->biter)); | ||
380 | if (dir == DMA_MEM_TO_DEV) | ||
381 | dma_addr = edma_readl(fsl_chan->edma, | ||
382 | &(edesc->tcd[i].vtcd->saddr)); | ||
383 | else | ||
384 | dma_addr = edma_readl(fsl_chan->edma, | ||
385 | &(edesc->tcd[i].vtcd->daddr)); | ||
386 | |||
387 | len -= size; | ||
388 | if (cur_addr > dma_addr && cur_addr < dma_addr + size) { | ||
389 | len += dma_addr + size - cur_addr; | ||
390 | break; | ||
391 | } | ||
392 | } | ||
393 | |||
394 | return len; | ||
395 | } | ||
396 | |||
397 | static enum dma_status fsl_edma_tx_status(struct dma_chan *chan, | ||
398 | dma_cookie_t cookie, struct dma_tx_state *txstate) | ||
399 | { | ||
400 | struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); | ||
401 | struct virt_dma_desc *vdesc; | ||
402 | enum dma_status status; | ||
403 | unsigned long flags; | ||
404 | |||
405 | status = dma_cookie_status(chan, cookie, txstate); | ||
406 | if (status == DMA_COMPLETE) | ||
407 | return status; | ||
408 | |||
409 | if (!txstate) | ||
410 | return fsl_chan->status; | ||
411 | |||
412 | spin_lock_irqsave(&fsl_chan->vchan.lock, flags); | ||
413 | vdesc = vchan_find_desc(&fsl_chan->vchan, cookie); | ||
414 | if (fsl_chan->edesc && cookie == fsl_chan->edesc->vdesc.tx.cookie) | ||
415 | txstate->residue = fsl_edma_desc_residue(fsl_chan, vdesc, true); | ||
416 | else if (vdesc) | ||
417 | txstate->residue = fsl_edma_desc_residue(fsl_chan, vdesc, false); | ||
418 | else | ||
419 | txstate->residue = 0; | ||
420 | |||
421 | spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); | ||
422 | |||
423 | return fsl_chan->status; | ||
424 | } | ||
425 | |||
426 | static void fsl_edma_set_tcd_params(struct fsl_edma_chan *fsl_chan, | ||
427 | u32 src, u32 dst, u16 attr, u16 soff, u32 nbytes, | ||
428 | u32 slast, u16 citer, u16 biter, u32 doff, u32 dlast_sga, | ||
429 | u16 csr) | ||
430 | { | ||
431 | void __iomem *addr = fsl_chan->edma->membase; | ||
432 | u32 ch = fsl_chan->vchan.chan.chan_id; | ||
433 | |||
434 | /* | ||
435 | * TCD parameters have been swapped in fill_tcd_params(), | ||
436 | * so just write them to registers in the cpu endian here | ||
437 | */ | ||
438 | writew(0, addr + EDMA_TCD_CSR(ch)); | ||
439 | writel(src, addr + EDMA_TCD_SADDR(ch)); | ||
440 | writel(dst, addr + EDMA_TCD_DADDR(ch)); | ||
441 | writew(attr, addr + EDMA_TCD_ATTR(ch)); | ||
442 | writew(soff, addr + EDMA_TCD_SOFF(ch)); | ||
443 | writel(nbytes, addr + EDMA_TCD_NBYTES(ch)); | ||
444 | writel(slast, addr + EDMA_TCD_SLAST(ch)); | ||
445 | writew(citer, addr + EDMA_TCD_CITER(ch)); | ||
446 | writew(biter, addr + EDMA_TCD_BITER(ch)); | ||
447 | writew(doff, addr + EDMA_TCD_DOFF(ch)); | ||
448 | writel(dlast_sga, addr + EDMA_TCD_DLAST_SGA(ch)); | ||
449 | writew(csr, addr + EDMA_TCD_CSR(ch)); | ||
450 | } | ||
451 | |||
452 | static void fill_tcd_params(struct fsl_edma_engine *edma, | ||
453 | struct fsl_edma_hw_tcd *tcd, u32 src, u32 dst, | ||
454 | u16 attr, u16 soff, u32 nbytes, u32 slast, u16 citer, | ||
455 | u16 biter, u16 doff, u32 dlast_sga, bool major_int, | ||
456 | bool disable_req, bool enable_sg) | ||
457 | { | ||
458 | u16 csr = 0; | ||
459 | |||
460 | /* | ||
461 | * eDMA hardware SGs require the TCD parameters stored in memory | ||
462 | * the same endian as the eDMA module so that they can be loaded | ||
463 | * automatically by the engine | ||
464 | */ | ||
465 | edma_writel(edma, src, &(tcd->saddr)); | ||
466 | edma_writel(edma, dst, &(tcd->daddr)); | ||
467 | edma_writew(edma, attr, &(tcd->attr)); | ||
468 | edma_writew(edma, EDMA_TCD_SOFF_SOFF(soff), &(tcd->soff)); | ||
469 | edma_writel(edma, EDMA_TCD_NBYTES_NBYTES(nbytes), &(tcd->nbytes)); | ||
470 | edma_writel(edma, EDMA_TCD_SLAST_SLAST(slast), &(tcd->slast)); | ||
471 | edma_writew(edma, EDMA_TCD_CITER_CITER(citer), &(tcd->citer)); | ||
472 | edma_writew(edma, EDMA_TCD_DOFF_DOFF(doff), &(tcd->doff)); | ||
473 | edma_writel(edma, EDMA_TCD_DLAST_SGA_DLAST_SGA(dlast_sga), &(tcd->dlast_sga)); | ||
474 | edma_writew(edma, EDMA_TCD_BITER_BITER(biter), &(tcd->biter)); | ||
475 | if (major_int) | ||
476 | csr |= EDMA_TCD_CSR_INT_MAJOR; | ||
477 | |||
478 | if (disable_req) | ||
479 | csr |= EDMA_TCD_CSR_D_REQ; | ||
480 | |||
481 | if (enable_sg) | ||
482 | csr |= EDMA_TCD_CSR_E_SG; | ||
483 | |||
484 | edma_writew(edma, csr, &(tcd->csr)); | ||
485 | } | ||
486 | |||
487 | static struct fsl_edma_desc *fsl_edma_alloc_desc(struct fsl_edma_chan *fsl_chan, | ||
488 | int sg_len) | ||
489 | { | ||
490 | struct fsl_edma_desc *fsl_desc; | ||
491 | int i; | ||
492 | |||
493 | fsl_desc = kzalloc(sizeof(*fsl_desc) + sizeof(struct fsl_edma_sw_tcd) * sg_len, | ||
494 | GFP_NOWAIT); | ||
495 | if (!fsl_desc) | ||
496 | return NULL; | ||
497 | |||
498 | fsl_desc->echan = fsl_chan; | ||
499 | fsl_desc->n_tcds = sg_len; | ||
500 | for (i = 0; i < sg_len; i++) { | ||
501 | fsl_desc->tcd[i].vtcd = dma_pool_alloc(fsl_chan->tcd_pool, | ||
502 | GFP_NOWAIT, &fsl_desc->tcd[i].ptcd); | ||
503 | if (!fsl_desc->tcd[i].vtcd) | ||
504 | goto err; | ||
505 | } | ||
506 | return fsl_desc; | ||
507 | |||
508 | err: | ||
509 | while (--i >= 0) | ||
510 | dma_pool_free(fsl_chan->tcd_pool, fsl_desc->tcd[i].vtcd, | ||
511 | fsl_desc->tcd[i].ptcd); | ||
512 | kfree(fsl_desc); | ||
513 | return NULL; | ||
514 | } | ||
515 | |||
516 | static struct dma_async_tx_descriptor *fsl_edma_prep_dma_cyclic( | ||
517 | struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len, | ||
518 | size_t period_len, enum dma_transfer_direction direction, | ||
519 | unsigned long flags, void *context) | ||
520 | { | ||
521 | struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); | ||
522 | struct fsl_edma_desc *fsl_desc; | ||
523 | dma_addr_t dma_buf_next; | ||
524 | int sg_len, i; | ||
525 | u32 src_addr, dst_addr, last_sg, nbytes; | ||
526 | u16 soff, doff, iter; | ||
527 | |||
528 | if (!is_slave_direction(fsl_chan->fsc.dir)) | ||
529 | return NULL; | ||
530 | |||
531 | sg_len = buf_len / period_len; | ||
532 | fsl_desc = fsl_edma_alloc_desc(fsl_chan, sg_len); | ||
533 | if (!fsl_desc) | ||
534 | return NULL; | ||
535 | fsl_desc->iscyclic = true; | ||
536 | |||
537 | dma_buf_next = dma_addr; | ||
538 | nbytes = fsl_chan->fsc.addr_width * fsl_chan->fsc.burst; | ||
539 | iter = period_len / nbytes; | ||
540 | |||
541 | for (i = 0; i < sg_len; i++) { | ||
542 | if (dma_buf_next >= dma_addr + buf_len) | ||
543 | dma_buf_next = dma_addr; | ||
544 | |||
545 | /* get next sg's physical address */ | ||
546 | last_sg = fsl_desc->tcd[(i + 1) % sg_len].ptcd; | ||
547 | |||
548 | if (fsl_chan->fsc.dir == DMA_MEM_TO_DEV) { | ||
549 | src_addr = dma_buf_next; | ||
550 | dst_addr = fsl_chan->fsc.dev_addr; | ||
551 | soff = fsl_chan->fsc.addr_width; | ||
552 | doff = 0; | ||
553 | } else { | ||
554 | src_addr = fsl_chan->fsc.dev_addr; | ||
555 | dst_addr = dma_buf_next; | ||
556 | soff = 0; | ||
557 | doff = fsl_chan->fsc.addr_width; | ||
558 | } | ||
559 | |||
560 | fill_tcd_params(fsl_chan->edma, fsl_desc->tcd[i].vtcd, src_addr, | ||
561 | dst_addr, fsl_chan->fsc.attr, soff, nbytes, 0, | ||
562 | iter, iter, doff, last_sg, true, false, true); | ||
563 | dma_buf_next += period_len; | ||
564 | } | ||
565 | |||
566 | return vchan_tx_prep(&fsl_chan->vchan, &fsl_desc->vdesc, flags); | ||
567 | } | ||
568 | |||
569 | static struct dma_async_tx_descriptor *fsl_edma_prep_slave_sg( | ||
570 | struct dma_chan *chan, struct scatterlist *sgl, | ||
571 | unsigned int sg_len, enum dma_transfer_direction direction, | ||
572 | unsigned long flags, void *context) | ||
573 | { | ||
574 | struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); | ||
575 | struct fsl_edma_desc *fsl_desc; | ||
576 | struct scatterlist *sg; | ||
577 | u32 src_addr, dst_addr, last_sg, nbytes; | ||
578 | u16 soff, doff, iter; | ||
579 | int i; | ||
580 | |||
581 | if (!is_slave_direction(fsl_chan->fsc.dir)) | ||
582 | return NULL; | ||
583 | |||
584 | fsl_desc = fsl_edma_alloc_desc(fsl_chan, sg_len); | ||
585 | if (!fsl_desc) | ||
586 | return NULL; | ||
587 | fsl_desc->iscyclic = false; | ||
588 | |||
589 | nbytes = fsl_chan->fsc.addr_width * fsl_chan->fsc.burst; | ||
590 | for_each_sg(sgl, sg, sg_len, i) { | ||
591 | /* get next sg's physical address */ | ||
592 | last_sg = fsl_desc->tcd[(i + 1) % sg_len].ptcd; | ||
593 | |||
594 | if (fsl_chan->fsc.dir == DMA_MEM_TO_DEV) { | ||
595 | src_addr = sg_dma_address(sg); | ||
596 | dst_addr = fsl_chan->fsc.dev_addr; | ||
597 | soff = fsl_chan->fsc.addr_width; | ||
598 | doff = 0; | ||
599 | } else { | ||
600 | src_addr = fsl_chan->fsc.dev_addr; | ||
601 | dst_addr = sg_dma_address(sg); | ||
602 | soff = 0; | ||
603 | doff = fsl_chan->fsc.addr_width; | ||
604 | } | ||
605 | |||
606 | iter = sg_dma_len(sg) / nbytes; | ||
607 | if (i < sg_len - 1) { | ||
608 | last_sg = fsl_desc->tcd[(i + 1)].ptcd; | ||
609 | fill_tcd_params(fsl_chan->edma, fsl_desc->tcd[i].vtcd, | ||
610 | src_addr, dst_addr, fsl_chan->fsc.attr, | ||
611 | soff, nbytes, 0, iter, iter, doff, last_sg, | ||
612 | false, false, true); | ||
613 | } else { | ||
614 | last_sg = 0; | ||
615 | fill_tcd_params(fsl_chan->edma, fsl_desc->tcd[i].vtcd, | ||
616 | src_addr, dst_addr, fsl_chan->fsc.attr, | ||
617 | soff, nbytes, 0, iter, iter, doff, last_sg, | ||
618 | true, true, false); | ||
619 | } | ||
620 | } | ||
621 | |||
622 | return vchan_tx_prep(&fsl_chan->vchan, &fsl_desc->vdesc, flags); | ||
623 | } | ||
624 | |||
625 | static void fsl_edma_xfer_desc(struct fsl_edma_chan *fsl_chan) | ||
626 | { | ||
627 | struct fsl_edma_hw_tcd *tcd; | ||
628 | struct virt_dma_desc *vdesc; | ||
629 | |||
630 | vdesc = vchan_next_desc(&fsl_chan->vchan); | ||
631 | if (!vdesc) | ||
632 | return; | ||
633 | fsl_chan->edesc = to_fsl_edma_desc(vdesc); | ||
634 | tcd = fsl_chan->edesc->tcd[0].vtcd; | ||
635 | fsl_edma_set_tcd_params(fsl_chan, tcd->saddr, tcd->daddr, tcd->attr, | ||
636 | tcd->soff, tcd->nbytes, tcd->slast, tcd->citer, | ||
637 | tcd->biter, tcd->doff, tcd->dlast_sga, tcd->csr); | ||
638 | fsl_edma_enable_request(fsl_chan); | ||
639 | fsl_chan->status = DMA_IN_PROGRESS; | ||
640 | } | ||
641 | |||
642 | static irqreturn_t fsl_edma_tx_handler(int irq, void *dev_id) | ||
643 | { | ||
644 | struct fsl_edma_engine *fsl_edma = dev_id; | ||
645 | unsigned int intr, ch; | ||
646 | void __iomem *base_addr; | ||
647 | struct fsl_edma_chan *fsl_chan; | ||
648 | |||
649 | base_addr = fsl_edma->membase; | ||
650 | |||
651 | intr = edma_readl(fsl_edma, base_addr + EDMA_INTR); | ||
652 | if (!intr) | ||
653 | return IRQ_NONE; | ||
654 | |||
655 | for (ch = 0; ch < fsl_edma->n_chans; ch++) { | ||
656 | if (intr & (0x1 << ch)) { | ||
657 | edma_writeb(fsl_edma, EDMA_CINT_CINT(ch), | ||
658 | base_addr + EDMA_CINT); | ||
659 | |||
660 | fsl_chan = &fsl_edma->chans[ch]; | ||
661 | |||
662 | spin_lock(&fsl_chan->vchan.lock); | ||
663 | if (!fsl_chan->edesc->iscyclic) { | ||
664 | list_del(&fsl_chan->edesc->vdesc.node); | ||
665 | vchan_cookie_complete(&fsl_chan->edesc->vdesc); | ||
666 | fsl_chan->edesc = NULL; | ||
667 | fsl_chan->status = DMA_COMPLETE; | ||
668 | } else { | ||
669 | vchan_cyclic_callback(&fsl_chan->edesc->vdesc); | ||
670 | } | ||
671 | |||
672 | if (!fsl_chan->edesc) | ||
673 | fsl_edma_xfer_desc(fsl_chan); | ||
674 | |||
675 | spin_unlock(&fsl_chan->vchan.lock); | ||
676 | } | ||
677 | } | ||
678 | return IRQ_HANDLED; | ||
679 | } | ||
680 | |||
681 | static irqreturn_t fsl_edma_err_handler(int irq, void *dev_id) | ||
682 | { | ||
683 | struct fsl_edma_engine *fsl_edma = dev_id; | ||
684 | unsigned int err, ch; | ||
685 | |||
686 | err = edma_readl(fsl_edma, fsl_edma->membase + EDMA_ERR); | ||
687 | if (!err) | ||
688 | return IRQ_NONE; | ||
689 | |||
690 | for (ch = 0; ch < fsl_edma->n_chans; ch++) { | ||
691 | if (err & (0x1 << ch)) { | ||
692 | fsl_edma_disable_request(&fsl_edma->chans[ch]); | ||
693 | edma_writeb(fsl_edma, EDMA_CERR_CERR(ch), | ||
694 | fsl_edma->membase + EDMA_CERR); | ||
695 | fsl_edma->chans[ch].status = DMA_ERROR; | ||
696 | } | ||
697 | } | ||
698 | return IRQ_HANDLED; | ||
699 | } | ||
700 | |||
701 | static irqreturn_t fsl_edma_irq_handler(int irq, void *dev_id) | ||
702 | { | ||
703 | if (fsl_edma_tx_handler(irq, dev_id) == IRQ_HANDLED) | ||
704 | return IRQ_HANDLED; | ||
705 | |||
706 | return fsl_edma_err_handler(irq, dev_id); | ||
707 | } | ||
708 | |||
709 | static void fsl_edma_issue_pending(struct dma_chan *chan) | ||
710 | { | ||
711 | struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); | ||
712 | unsigned long flags; | ||
713 | |||
714 | spin_lock_irqsave(&fsl_chan->vchan.lock, flags); | ||
715 | |||
716 | if (vchan_issue_pending(&fsl_chan->vchan) && !fsl_chan->edesc) | ||
717 | fsl_edma_xfer_desc(fsl_chan); | ||
718 | |||
719 | spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); | ||
720 | } | ||
721 | |||
722 | static struct dma_chan *fsl_edma_xlate(struct of_phandle_args *dma_spec, | ||
723 | struct of_dma *ofdma) | ||
724 | { | ||
725 | struct fsl_edma_engine *fsl_edma = ofdma->of_dma_data; | ||
726 | struct dma_chan *chan; | ||
727 | |||
728 | if (dma_spec->args_count != 2) | ||
729 | return NULL; | ||
730 | |||
731 | mutex_lock(&fsl_edma->fsl_edma_mutex); | ||
732 | list_for_each_entry(chan, &fsl_edma->dma_dev.channels, device_node) { | ||
733 | if (chan->client_count) | ||
734 | continue; | ||
735 | if ((chan->chan_id / DMAMUX_NR) == dma_spec->args[0]) { | ||
736 | chan = dma_get_slave_channel(chan); | ||
737 | if (chan) { | ||
738 | chan->device->privatecnt++; | ||
739 | fsl_edma_chan_mux(to_fsl_edma_chan(chan), | ||
740 | dma_spec->args[1], true); | ||
741 | mutex_unlock(&fsl_edma->fsl_edma_mutex); | ||
742 | return chan; | ||
743 | } | ||
744 | } | ||
745 | } | ||
746 | mutex_unlock(&fsl_edma->fsl_edma_mutex); | ||
747 | return NULL; | ||
748 | } | ||
749 | |||
750 | static int fsl_edma_alloc_chan_resources(struct dma_chan *chan) | ||
751 | { | ||
752 | struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); | ||
753 | |||
754 | fsl_chan->tcd_pool = dma_pool_create("tcd_pool", chan->device->dev, | ||
755 | sizeof(struct fsl_edma_hw_tcd), | ||
756 | 32, 0); | ||
757 | return 0; | ||
758 | } | ||
759 | |||
760 | static void fsl_edma_free_chan_resources(struct dma_chan *chan) | ||
761 | { | ||
762 | struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); | ||
763 | unsigned long flags; | ||
764 | LIST_HEAD(head); | ||
765 | |||
766 | spin_lock_irqsave(&fsl_chan->vchan.lock, flags); | ||
767 | fsl_edma_disable_request(fsl_chan); | ||
768 | fsl_edma_chan_mux(fsl_chan, 0, false); | ||
769 | fsl_chan->edesc = NULL; | ||
770 | vchan_get_all_descriptors(&fsl_chan->vchan, &head); | ||
771 | spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); | ||
772 | |||
773 | vchan_dma_desc_free_list(&fsl_chan->vchan, &head); | ||
774 | dma_pool_destroy(fsl_chan->tcd_pool); | ||
775 | fsl_chan->tcd_pool = NULL; | ||
776 | } | ||
777 | |||
778 | static int fsl_dma_device_slave_caps(struct dma_chan *dchan, | ||
779 | struct dma_slave_caps *caps) | ||
780 | { | ||
781 | caps->src_addr_widths = FSL_EDMA_BUSWIDTHS; | ||
782 | caps->dstn_addr_widths = FSL_EDMA_BUSWIDTHS; | ||
783 | caps->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); | ||
784 | caps->cmd_pause = true; | ||
785 | caps->cmd_terminate = true; | ||
786 | |||
787 | return 0; | ||
788 | } | ||
789 | |||
790 | static int | ||
791 | fsl_edma_irq_init(struct platform_device *pdev, struct fsl_edma_engine *fsl_edma) | ||
792 | { | ||
793 | int ret; | ||
794 | |||
795 | fsl_edma->txirq = platform_get_irq_byname(pdev, "edma-tx"); | ||
796 | if (fsl_edma->txirq < 0) { | ||
797 | dev_err(&pdev->dev, "Can't get edma-tx irq.\n"); | ||
798 | return fsl_edma->txirq; | ||
799 | } | ||
800 | |||
801 | fsl_edma->errirq = platform_get_irq_byname(pdev, "edma-err"); | ||
802 | if (fsl_edma->errirq < 0) { | ||
803 | dev_err(&pdev->dev, "Can't get edma-err irq.\n"); | ||
804 | return fsl_edma->errirq; | ||
805 | } | ||
806 | |||
807 | if (fsl_edma->txirq == fsl_edma->errirq) { | ||
808 | ret = devm_request_irq(&pdev->dev, fsl_edma->txirq, | ||
809 | fsl_edma_irq_handler, 0, "eDMA", fsl_edma); | ||
810 | if (ret) { | ||
811 | dev_err(&pdev->dev, "Can't register eDMA IRQ.\n"); | ||
812 | return ret; | ||
813 | } | ||
814 | } else { | ||
815 | ret = devm_request_irq(&pdev->dev, fsl_edma->txirq, | ||
816 | fsl_edma_tx_handler, 0, "eDMA tx", fsl_edma); | ||
817 | if (ret) { | ||
818 | dev_err(&pdev->dev, "Can't register eDMA tx IRQ.\n"); | ||
819 | return ret; | ||
820 | } | ||
821 | |||
822 | ret = devm_request_irq(&pdev->dev, fsl_edma->errirq, | ||
823 | fsl_edma_err_handler, 0, "eDMA err", fsl_edma); | ||
824 | if (ret) { | ||
825 | dev_err(&pdev->dev, "Can't register eDMA err IRQ.\n"); | ||
826 | return ret; | ||
827 | } | ||
828 | } | ||
829 | |||
830 | return 0; | ||
831 | } | ||
832 | |||
833 | static int fsl_edma_probe(struct platform_device *pdev) | ||
834 | { | ||
835 | struct device_node *np = pdev->dev.of_node; | ||
836 | struct fsl_edma_engine *fsl_edma; | ||
837 | struct fsl_edma_chan *fsl_chan; | ||
838 | struct resource *res; | ||
839 | int len, chans; | ||
840 | int ret, i; | ||
841 | |||
842 | ret = of_property_read_u32(np, "dma-channels", &chans); | ||
843 | if (ret) { | ||
844 | dev_err(&pdev->dev, "Can't get dma-channels.\n"); | ||
845 | return ret; | ||
846 | } | ||
847 | |||
848 | len = sizeof(*fsl_edma) + sizeof(*fsl_chan) * chans; | ||
849 | fsl_edma = devm_kzalloc(&pdev->dev, len, GFP_KERNEL); | ||
850 | if (!fsl_edma) | ||
851 | return -ENOMEM; | ||
852 | |||
853 | fsl_edma->n_chans = chans; | ||
854 | mutex_init(&fsl_edma->fsl_edma_mutex); | ||
855 | |||
856 | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); | ||
857 | fsl_edma->membase = devm_ioremap_resource(&pdev->dev, res); | ||
858 | if (IS_ERR(fsl_edma->membase)) | ||
859 | return PTR_ERR(fsl_edma->membase); | ||
860 | |||
861 | for (i = 0; i < DMAMUX_NR; i++) { | ||
862 | char clkname[32]; | ||
863 | |||
864 | res = platform_get_resource(pdev, IORESOURCE_MEM, 1 + i); | ||
865 | fsl_edma->muxbase[i] = devm_ioremap_resource(&pdev->dev, res); | ||
866 | if (IS_ERR(fsl_edma->muxbase[i])) | ||
867 | return PTR_ERR(fsl_edma->muxbase[i]); | ||
868 | |||
869 | sprintf(clkname, "dmamux%d", i); | ||
870 | fsl_edma->muxclk[i] = devm_clk_get(&pdev->dev, clkname); | ||
871 | if (IS_ERR(fsl_edma->muxclk[i])) { | ||
872 | dev_err(&pdev->dev, "Missing DMAMUX block clock.\n"); | ||
873 | return PTR_ERR(fsl_edma->muxclk[i]); | ||
874 | } | ||
875 | |||
876 | ret = clk_prepare_enable(fsl_edma->muxclk[i]); | ||
877 | if (ret) { | ||
878 | dev_err(&pdev->dev, "DMAMUX clk block failed.\n"); | ||
879 | return ret; | ||
880 | } | ||
881 | |||
882 | } | ||
883 | |||
884 | ret = fsl_edma_irq_init(pdev, fsl_edma); | ||
885 | if (ret) | ||
886 | return ret; | ||
887 | |||
888 | fsl_edma->big_endian = of_property_read_bool(np, "big-endian"); | ||
889 | |||
890 | INIT_LIST_HEAD(&fsl_edma->dma_dev.channels); | ||
891 | for (i = 0; i < fsl_edma->n_chans; i++) { | ||
892 | struct fsl_edma_chan *fsl_chan = &fsl_edma->chans[i]; | ||
893 | |||
894 | fsl_chan->edma = fsl_edma; | ||
895 | |||
896 | fsl_chan->vchan.desc_free = fsl_edma_free_desc; | ||
897 | vchan_init(&fsl_chan->vchan, &fsl_edma->dma_dev); | ||
898 | |||
899 | edma_writew(fsl_edma, 0x0, fsl_edma->membase + EDMA_TCD_CSR(i)); | ||
900 | fsl_edma_chan_mux(fsl_chan, 0, false); | ||
901 | } | ||
902 | |||
903 | dma_cap_set(DMA_PRIVATE, fsl_edma->dma_dev.cap_mask); | ||
904 | dma_cap_set(DMA_SLAVE, fsl_edma->dma_dev.cap_mask); | ||
905 | dma_cap_set(DMA_CYCLIC, fsl_edma->dma_dev.cap_mask); | ||
906 | |||
907 | fsl_edma->dma_dev.dev = &pdev->dev; | ||
908 | fsl_edma->dma_dev.device_alloc_chan_resources | ||
909 | = fsl_edma_alloc_chan_resources; | ||
910 | fsl_edma->dma_dev.device_free_chan_resources | ||
911 | = fsl_edma_free_chan_resources; | ||
912 | fsl_edma->dma_dev.device_tx_status = fsl_edma_tx_status; | ||
913 | fsl_edma->dma_dev.device_prep_slave_sg = fsl_edma_prep_slave_sg; | ||
914 | fsl_edma->dma_dev.device_prep_dma_cyclic = fsl_edma_prep_dma_cyclic; | ||
915 | fsl_edma->dma_dev.device_control = fsl_edma_control; | ||
916 | fsl_edma->dma_dev.device_issue_pending = fsl_edma_issue_pending; | ||
917 | fsl_edma->dma_dev.device_slave_caps = fsl_dma_device_slave_caps; | ||
918 | |||
919 | platform_set_drvdata(pdev, fsl_edma); | ||
920 | |||
921 | ret = dma_async_device_register(&fsl_edma->dma_dev); | ||
922 | if (ret) { | ||
923 | dev_err(&pdev->dev, "Can't register Freescale eDMA engine.\n"); | ||
924 | return ret; | ||
925 | } | ||
926 | |||
927 | ret = of_dma_controller_register(np, fsl_edma_xlate, fsl_edma); | ||
928 | if (ret) { | ||
929 | dev_err(&pdev->dev, "Can't register Freescale eDMA of_dma.\n"); | ||
930 | dma_async_device_unregister(&fsl_edma->dma_dev); | ||
931 | return ret; | ||
932 | } | ||
933 | |||
934 | /* enable round robin arbitration */ | ||
935 | edma_writel(fsl_edma, EDMA_CR_ERGA | EDMA_CR_ERCA, fsl_edma->membase + EDMA_CR); | ||
936 | |||
937 | return 0; | ||
938 | } | ||
939 | |||
940 | static int fsl_edma_remove(struct platform_device *pdev) | ||
941 | { | ||
942 | struct device_node *np = pdev->dev.of_node; | ||
943 | struct fsl_edma_engine *fsl_edma = platform_get_drvdata(pdev); | ||
944 | int i; | ||
945 | |||
946 | of_dma_controller_free(np); | ||
947 | dma_async_device_unregister(&fsl_edma->dma_dev); | ||
948 | |||
949 | for (i = 0; i < DMAMUX_NR; i++) | ||
950 | clk_disable_unprepare(fsl_edma->muxclk[i]); | ||
951 | |||
952 | return 0; | ||
953 | } | ||
954 | |||
955 | static const struct of_device_id fsl_edma_dt_ids[] = { | ||
956 | { .compatible = "fsl,vf610-edma", }, | ||
957 | { /* sentinel */ } | ||
958 | }; | ||
959 | MODULE_DEVICE_TABLE(of, fsl_edma_dt_ids); | ||
960 | |||
961 | static struct platform_driver fsl_edma_driver = { | ||
962 | .driver = { | ||
963 | .name = "fsl-edma", | ||
964 | .owner = THIS_MODULE, | ||
965 | .of_match_table = fsl_edma_dt_ids, | ||
966 | }, | ||
967 | .probe = fsl_edma_probe, | ||
968 | .remove = fsl_edma_remove, | ||
969 | }; | ||
970 | |||
971 | module_platform_driver(fsl_edma_driver); | ||
972 | |||
973 | MODULE_ALIAS("platform:fsl-edma"); | ||
974 | MODULE_DESCRIPTION("Freescale eDMA engine driver"); | ||
975 | MODULE_LICENSE("GPL v2"); | ||