aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--Documentation/networking/LICENSE.qlge46
-rw-r--r--MAINTAINERS7
-rw-r--r--drivers/net/Kconfig9
-rw-r--r--drivers/net/Makefile1
-rw-r--r--drivers/net/qlge/Makefile7
-rw-r--r--drivers/net/qlge/qlge.h1593
-rw-r--r--drivers/net/qlge/qlge_dbg.c858
-rw-r--r--drivers/net/qlge/qlge_ethtool.c415
-rw-r--r--drivers/net/qlge/qlge_main.c3954
-rw-r--r--drivers/net/qlge/qlge_mpi.c150
10 files changed, 7040 insertions, 0 deletions
diff --git a/Documentation/networking/LICENSE.qlge b/Documentation/networking/LICENSE.qlge
new file mode 100644
index 000000000000..123b6edd7f18
--- /dev/null
+++ b/Documentation/networking/LICENSE.qlge
@@ -0,0 +1,46 @@
1Copyright (c) 2003-2008 QLogic Corporation
2QLogic Linux Networking HBA Driver
3
4This program includes a device driver for Linux 2.6 that may be
5distributed with QLogic hardware specific firmware binary file.
6You may modify and redistribute the device driver code under the
7GNU General Public License as published by the Free Software
8Foundation (version 2 or a later version).
9
10You may redistribute the hardware specific firmware binary file
11under the following terms:
12
13 1. Redistribution of source code (only if applicable),
14 must retain the above copyright notice, this list of
15 conditions and the following disclaimer.
16
17 2. Redistribution in binary form must reproduce the above
18 copyright notice, this list of conditions and the
19 following disclaimer in the documentation and/or other
20 materials provided with the distribution.
21
22 3. The name of QLogic Corporation may not be used to
23 endorse or promote products derived from this software
24 without specific prior written permission
25
26REGARDLESS OF WHAT LICENSING MECHANISM IS USED OR APPLICABLE,
27THIS PROGRAM IS PROVIDED BY QLOGIC CORPORATION "AS IS'' AND ANY
28EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
30PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR
31BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
32EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
33TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
35ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
36OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38POSSIBILITY OF SUCH DAMAGE.
39
40USER ACKNOWLEDGES AND AGREES THAT USE OF THIS PROGRAM WILL NOT
41CREATE OR GIVE GROUNDS FOR A LICENSE BY IMPLICATION, ESTOPPEL, OR
42OTHERWISE IN ANY INTELLECTUAL PROPERTY RIGHTS (PATENT, COPYRIGHT,
43TRADE SECRET, MASK WORK, OR OTHER PROPRIETARY RIGHT) EMBODIED IN
44ANY OTHER QLOGIC HARDWARE OR SOFTWARE EITHER SOLELY OR IN
45COMBINATION WITH THIS PROGRAM.
46
diff --git a/MAINTAINERS b/MAINTAINERS
index c8203d780f0b..106684e45e15 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -3396,6 +3396,13 @@ M: linux-driver@qlogic.com
3396L: netdev@vger.kernel.org 3396L: netdev@vger.kernel.org
3397S: Supported 3397S: Supported
3398 3398
3399QLOGIC QLGE 10Gb ETHERNET DRIVER
3400P: Ron Mercer
3401M: linux-driver@qlogic.com
3402M: ron.mercer@qlogic.com
3403L: netdev@vger.kernel.org
3404S: Supported
3405
3399QNX4 FILESYSTEM 3406QNX4 FILESYSTEM
3400P: Anders Larsen 3407P: Anders Larsen
3401M: al@alarsen.net 3408M: al@alarsen.net
diff --git a/drivers/net/Kconfig b/drivers/net/Kconfig
index 069755af761f..69c81da48ebc 100644
--- a/drivers/net/Kconfig
+++ b/drivers/net/Kconfig
@@ -2526,6 +2526,15 @@ config BNX2X
2526 To compile this driver as a module, choose M here: the module 2526 To compile this driver as a module, choose M here: the module
2527 will be called bnx2x. This is recommended. 2527 will be called bnx2x. This is recommended.
2528 2528
2529config QLGE
2530 tristate "QLogic QLGE 10Gb Ethernet Driver Support"
2531 depends on PCI
2532 help
2533 This driver supports QLogic ISP8XXX 10Gb Ethernet cards.
2534
2535 To compile this driver as a module, choose M here: the module
2536 will be called qlge.
2537
2529source "drivers/net/sfc/Kconfig" 2538source "drivers/net/sfc/Kconfig"
2530 2539
2531endif # NETDEV_10000 2540endif # NETDEV_10000
diff --git a/drivers/net/Makefile b/drivers/net/Makefile
index 016e23f000ee..fa2510b2e609 100644
--- a/drivers/net/Makefile
+++ b/drivers/net/Makefile
@@ -131,6 +131,7 @@ obj-$(CONFIG_AX88796) += ax88796.o
131obj-$(CONFIG_TSI108_ETH) += tsi108_eth.o 131obj-$(CONFIG_TSI108_ETH) += tsi108_eth.o
132obj-$(CONFIG_MV643XX_ETH) += mv643xx_eth.o 132obj-$(CONFIG_MV643XX_ETH) += mv643xx_eth.o
133obj-$(CONFIG_QLA3XXX) += qla3xxx.o 133obj-$(CONFIG_QLA3XXX) += qla3xxx.o
134obj-$(CONFIG_QLGE) += qlge/
134 135
135obj-$(CONFIG_PPP) += ppp_generic.o 136obj-$(CONFIG_PPP) += ppp_generic.o
136obj-$(CONFIG_PPP_ASYNC) += ppp_async.o 137obj-$(CONFIG_PPP_ASYNC) += ppp_async.o
diff --git a/drivers/net/qlge/Makefile b/drivers/net/qlge/Makefile
new file mode 100644
index 000000000000..8a197658d76f
--- /dev/null
+++ b/drivers/net/qlge/Makefile
@@ -0,0 +1,7 @@
1#
2# Makefile for the Qlogic 10GbE PCI Express ethernet driver
3#
4
5obj-$(CONFIG_QLGE) += qlge.o
6
7qlge-objs := qlge_main.o qlge_dbg.o qlge_mpi.o qlge_ethtool.o
diff --git a/drivers/net/qlge/qlge.h b/drivers/net/qlge/qlge.h
new file mode 100644
index 000000000000..c37ea436c918
--- /dev/null
+++ b/drivers/net/qlge/qlge.h
@@ -0,0 +1,1593 @@
1/*
2 * QLogic QLA41xx NIC HBA Driver
3 * Copyright (c) 2003-2006 QLogic Corporation
4 *
5 * See LICENSE.qlge for copyright and licensing details.
6 */
7#ifndef _QLGE_H_
8#define _QLGE_H_
9
10#include <linux/pci.h>
11#include <linux/netdevice.h>
12
13/*
14 * General definitions...
15 */
16#define DRV_NAME "qlge"
17#define DRV_STRING "QLogic 10 Gigabit PCI-E Ethernet Driver "
18#define DRV_VERSION "v1.00.00-b3"
19
20#define PFX "qlge: "
21#define QPRINTK(qdev, nlevel, klevel, fmt, args...) \
22 do { \
23 if (!((qdev)->msg_enable & NETIF_MSG_##nlevel)) \
24 ; \
25 else \
26 dev_printk(KERN_##klevel, &((qdev)->pdev->dev), \
27 "%s: " fmt, __func__, ##args); \
28 } while (0)
29
30#define QLGE_VENDOR_ID 0x1077
31#define QLGE_DEVICE_ID1 0x8012
32#define QLGE_DEVICE_ID 0x8000
33
34#define MAX_RX_RINGS 128
35#define MAX_TX_RINGS 128
36
37#define NUM_TX_RING_ENTRIES 256
38#define NUM_RX_RING_ENTRIES 256
39
40#define NUM_SMALL_BUFFERS 512
41#define NUM_LARGE_BUFFERS 512
42
43#define SMALL_BUFFER_SIZE 256
44#define LARGE_BUFFER_SIZE PAGE_SIZE
45#define MAX_SPLIT_SIZE 1023
46#define QLGE_SB_PAD 32
47
48#define DFLT_COALESCE_WAIT 100 /* 100 usec wait for coalescing */
49#define MAX_INTER_FRAME_WAIT 10 /* 10 usec max interframe-wait for coalescing */
50#define DFLT_INTER_FRAME_WAIT (MAX_INTER_FRAME_WAIT/2)
51#define UDELAY_COUNT 3
52#define UDELAY_DELAY 10
53
54
55#define TX_DESC_PER_IOCB 8
56/* The maximum number of frags we handle is based
57 * on PAGE_SIZE...
58 */
59#if (PAGE_SHIFT == 12) || (PAGE_SHIFT == 13) /* 4k & 8k pages */
60#define TX_DESC_PER_OAL ((MAX_SKB_FRAGS - TX_DESC_PER_IOCB) + 2)
61#elif (PAGE_SHIFT == 16) /* 64k pages */
62#define TX_DESC_PER_OAL 0
63#endif
64
65#define DB_PAGE_SIZE 4096
66
67/*
68 * Processor Address Register (PROC_ADDR) bit definitions.
69 */
70enum {
71
72 /* Misc. stuff */
73 MAILBOX_COUNT = 16,
74
75 PROC_ADDR_RDY = (1 << 31),
76 PROC_ADDR_R = (1 << 30),
77 PROC_ADDR_ERR = (1 << 29),
78 PROC_ADDR_DA = (1 << 28),
79 PROC_ADDR_FUNC0_MBI = 0x00001180,
80 PROC_ADDR_FUNC0_MBO = (PROC_ADDR_FUNC0_MBI + MAILBOX_COUNT),
81 PROC_ADDR_FUNC0_CTL = 0x000011a1,
82 PROC_ADDR_FUNC2_MBI = 0x00001280,
83 PROC_ADDR_FUNC2_MBO = (PROC_ADDR_FUNC2_MBI + MAILBOX_COUNT),
84 PROC_ADDR_FUNC2_CTL = 0x000012a1,
85 PROC_ADDR_MPI_RISC = 0x00000000,
86 PROC_ADDR_MDE = 0x00010000,
87 PROC_ADDR_REGBLOCK = 0x00020000,
88 PROC_ADDR_RISC_REG = 0x00030000,
89};
90
91/*
92 * System Register (SYS) bit definitions.
93 */
94enum {
95 SYS_EFE = (1 << 0),
96 SYS_FAE = (1 << 1),
97 SYS_MDC = (1 << 2),
98 SYS_DST = (1 << 3),
99 SYS_DWC = (1 << 4),
100 SYS_EVW = (1 << 5),
101 SYS_OMP_DLY_MASK = 0x3f000000,
102 /*
103 * There are no values defined as of edit #15.
104 */
105 SYS_ODI = (1 << 14),
106};
107
108/*
109 * Reset/Failover Register (RST_FO) bit definitions.
110 */
111enum {
112 RST_FO_TFO = (1 << 0),
113 RST_FO_RR_MASK = 0x00060000,
114 RST_FO_RR_CQ_CAM = 0x00000000,
115 RST_FO_RR_DROP = 0x00000001,
116 RST_FO_RR_DQ = 0x00000002,
117 RST_FO_RR_RCV_FUNC_CQ = 0x00000003,
118 RST_FO_FRB = (1 << 12),
119 RST_FO_MOP = (1 << 13),
120 RST_FO_REG = (1 << 14),
121 RST_FO_FR = (1 << 15),
122};
123
124/*
125 * Function Specific Control Register (FSC) bit definitions.
126 */
127enum {
128 FSC_DBRST_MASK = 0x00070000,
129 FSC_DBRST_256 = 0x00000000,
130 FSC_DBRST_512 = 0x00000001,
131 FSC_DBRST_768 = 0x00000002,
132 FSC_DBRST_1024 = 0x00000003,
133 FSC_DBL_MASK = 0x00180000,
134 FSC_DBL_DBRST = 0x00000000,
135 FSC_DBL_MAX_PLD = 0x00000008,
136 FSC_DBL_MAX_BRST = 0x00000010,
137 FSC_DBL_128_BYTES = 0x00000018,
138 FSC_EC = (1 << 5),
139 FSC_EPC_MASK = 0x00c00000,
140 FSC_EPC_INBOUND = (1 << 6),
141 FSC_EPC_OUTBOUND = (1 << 7),
142 FSC_VM_PAGESIZE_MASK = 0x07000000,
143 FSC_VM_PAGE_2K = 0x00000100,
144 FSC_VM_PAGE_4K = 0x00000200,
145 FSC_VM_PAGE_8K = 0x00000300,
146 FSC_VM_PAGE_64K = 0x00000600,
147 FSC_SH = (1 << 11),
148 FSC_DSB = (1 << 12),
149 FSC_STE = (1 << 13),
150 FSC_FE = (1 << 15),
151};
152
153/*
154 * Host Command Status Register (CSR) bit definitions.
155 */
156enum {
157 CSR_ERR_STS_MASK = 0x0000003f,
158 /*
159 * There are no valued defined as of edit #15.
160 */
161 CSR_RR = (1 << 8),
162 CSR_HRI = (1 << 9),
163 CSR_RP = (1 << 10),
164 CSR_CMD_PARM_SHIFT = 22,
165 CSR_CMD_NOP = 0x00000000,
166 CSR_CMD_SET_RST = 0x1000000,
167 CSR_CMD_CLR_RST = 0x20000000,
168 CSR_CMD_SET_PAUSE = 0x30000000,
169 CSR_CMD_CLR_PAUSE = 0x40000000,
170 CSR_CMD_SET_H2R_INT = 0x50000000,
171 CSR_CMD_CLR_H2R_INT = 0x60000000,
172 CSR_CMD_PAR_EN = 0x70000000,
173 CSR_CMD_SET_BAD_PAR = 0x80000000,
174 CSR_CMD_CLR_BAD_PAR = 0x90000000,
175 CSR_CMD_CLR_R2PCI_INT = 0xa0000000,
176};
177
178/*
179 * Configuration Register (CFG) bit definitions.
180 */
181enum {
182 CFG_LRQ = (1 << 0),
183 CFG_DRQ = (1 << 1),
184 CFG_LR = (1 << 2),
185 CFG_DR = (1 << 3),
186 CFG_LE = (1 << 5),
187 CFG_LCQ = (1 << 6),
188 CFG_DCQ = (1 << 7),
189 CFG_Q_SHIFT = 8,
190 CFG_Q_MASK = 0x7f000000,
191};
192
193/*
194 * Status Register (STS) bit definitions.
195 */
196enum {
197 STS_FE = (1 << 0),
198 STS_PI = (1 << 1),
199 STS_PL0 = (1 << 2),
200 STS_PL1 = (1 << 3),
201 STS_PI0 = (1 << 4),
202 STS_PI1 = (1 << 5),
203 STS_FUNC_ID_MASK = 0x000000c0,
204 STS_FUNC_ID_SHIFT = 6,
205 STS_F0E = (1 << 8),
206 STS_F1E = (1 << 9),
207 STS_F2E = (1 << 10),
208 STS_F3E = (1 << 11),
209 STS_NFE = (1 << 12),
210};
211
212/*
213 * Interrupt Enable Register (INTR_EN) bit definitions.
214 */
215enum {
216 INTR_EN_INTR_MASK = 0x007f0000,
217 INTR_EN_TYPE_MASK = 0x03000000,
218 INTR_EN_TYPE_ENABLE = 0x00000100,
219 INTR_EN_TYPE_DISABLE = 0x00000200,
220 INTR_EN_TYPE_READ = 0x00000300,
221 INTR_EN_IHD = (1 << 13),
222 INTR_EN_IHD_MASK = (INTR_EN_IHD << 16),
223 INTR_EN_EI = (1 << 14),
224 INTR_EN_EN = (1 << 15),
225};
226
227/*
228 * Interrupt Mask Register (INTR_MASK) bit definitions.
229 */
230enum {
231 INTR_MASK_PI = (1 << 0),
232 INTR_MASK_HL0 = (1 << 1),
233 INTR_MASK_LH0 = (1 << 2),
234 INTR_MASK_HL1 = (1 << 3),
235 INTR_MASK_LH1 = (1 << 4),
236 INTR_MASK_SE = (1 << 5),
237 INTR_MASK_LSC = (1 << 6),
238 INTR_MASK_MC = (1 << 7),
239 INTR_MASK_LINK_IRQS = INTR_MASK_LSC | INTR_MASK_SE | INTR_MASK_MC,
240};
241
242/*
243 * Register (REV_ID) bit definitions.
244 */
245enum {
246 REV_ID_MASK = 0x0000000f,
247 REV_ID_NICROLL_SHIFT = 0,
248 REV_ID_NICREV_SHIFT = 4,
249 REV_ID_XGROLL_SHIFT = 8,
250 REV_ID_XGREV_SHIFT = 12,
251 REV_ID_CHIPREV_SHIFT = 28,
252};
253
254/*
255 * Force ECC Error Register (FRC_ECC_ERR) bit definitions.
256 */
257enum {
258 FRC_ECC_ERR_VW = (1 << 12),
259 FRC_ECC_ERR_VB = (1 << 13),
260 FRC_ECC_ERR_NI = (1 << 14),
261 FRC_ECC_ERR_NO = (1 << 15),
262 FRC_ECC_PFE_SHIFT = 16,
263 FRC_ECC_ERR_DO = (1 << 18),
264 FRC_ECC_P14 = (1 << 19),
265};
266
267/*
268 * Error Status Register (ERR_STS) bit definitions.
269 */
270enum {
271 ERR_STS_NOF = (1 << 0),
272 ERR_STS_NIF = (1 << 1),
273 ERR_STS_DRP = (1 << 2),
274 ERR_STS_XGP = (1 << 3),
275 ERR_STS_FOU = (1 << 4),
276 ERR_STS_FOC = (1 << 5),
277 ERR_STS_FOF = (1 << 6),
278 ERR_STS_FIU = (1 << 7),
279 ERR_STS_FIC = (1 << 8),
280 ERR_STS_FIF = (1 << 9),
281 ERR_STS_MOF = (1 << 10),
282 ERR_STS_TA = (1 << 11),
283 ERR_STS_MA = (1 << 12),
284 ERR_STS_MPE = (1 << 13),
285 ERR_STS_SCE = (1 << 14),
286 ERR_STS_STE = (1 << 15),
287 ERR_STS_FOW = (1 << 16),
288 ERR_STS_UE = (1 << 17),
289 ERR_STS_MCH = (1 << 26),
290 ERR_STS_LOC_SHIFT = 27,
291};
292
293/*
294 * RAM Debug Address Register (RAM_DBG_ADDR) bit definitions.
295 */
296enum {
297 RAM_DBG_ADDR_FW = (1 << 30),
298 RAM_DBG_ADDR_FR = (1 << 31),
299};
300
301/*
302 * Semaphore Register (SEM) bit definitions.
303 */
304enum {
305 /*
306 * Example:
307 * reg = SEM_XGMAC0_MASK | (SEM_SET << SEM_XGMAC0_SHIFT)
308 */
309 SEM_CLEAR = 0,
310 SEM_SET = 1,
311 SEM_FORCE = 3,
312 SEM_XGMAC0_SHIFT = 0,
313 SEM_XGMAC1_SHIFT = 2,
314 SEM_ICB_SHIFT = 4,
315 SEM_MAC_ADDR_SHIFT = 6,
316 SEM_FLASH_SHIFT = 8,
317 SEM_PROBE_SHIFT = 10,
318 SEM_RT_IDX_SHIFT = 12,
319 SEM_PROC_REG_SHIFT = 14,
320 SEM_XGMAC0_MASK = 0x00030000,
321 SEM_XGMAC1_MASK = 0x000c0000,
322 SEM_ICB_MASK = 0x00300000,
323 SEM_MAC_ADDR_MASK = 0x00c00000,
324 SEM_FLASH_MASK = 0x03000000,
325 SEM_PROBE_MASK = 0x0c000000,
326 SEM_RT_IDX_MASK = 0x30000000,
327 SEM_PROC_REG_MASK = 0xc0000000,
328};
329
330/*
331 * 10G MAC Address Register (XGMAC_ADDR) bit definitions.
332 */
333enum {
334 XGMAC_ADDR_RDY = (1 << 31),
335 XGMAC_ADDR_R = (1 << 30),
336 XGMAC_ADDR_XME = (1 << 29),
337
338 /* XGMAC control registers */
339 PAUSE_SRC_LO = 0x00000100,
340 PAUSE_SRC_HI = 0x00000104,
341 GLOBAL_CFG = 0x00000108,
342 GLOBAL_CFG_RESET = (1 << 0),
343 GLOBAL_CFG_JUMBO = (1 << 6),
344 GLOBAL_CFG_TX_STAT_EN = (1 << 10),
345 GLOBAL_CFG_RX_STAT_EN = (1 << 11),
346 TX_CFG = 0x0000010c,
347 TX_CFG_RESET = (1 << 0),
348 TX_CFG_EN = (1 << 1),
349 TX_CFG_PREAM = (1 << 2),
350 RX_CFG = 0x00000110,
351 RX_CFG_RESET = (1 << 0),
352 RX_CFG_EN = (1 << 1),
353 RX_CFG_PREAM = (1 << 2),
354 FLOW_CTL = 0x0000011c,
355 PAUSE_OPCODE = 0x00000120,
356 PAUSE_TIMER = 0x00000124,
357 PAUSE_FRM_DEST_LO = 0x00000128,
358 PAUSE_FRM_DEST_HI = 0x0000012c,
359 MAC_TX_PARAMS = 0x00000134,
360 MAC_TX_PARAMS_JUMBO = (1 << 31),
361 MAC_TX_PARAMS_SIZE_SHIFT = 16,
362 MAC_RX_PARAMS = 0x00000138,
363 MAC_SYS_INT = 0x00000144,
364 MAC_SYS_INT_MASK = 0x00000148,
365 MAC_MGMT_INT = 0x0000014c,
366 MAC_MGMT_IN_MASK = 0x00000150,
367 EXT_ARB_MODE = 0x000001fc,
368
369 /* XGMAC TX statistics registers */
370 TX_PKTS = 0x00000200,
371 TX_BYTES = 0x00000208,
372 TX_MCAST_PKTS = 0x00000210,
373 TX_BCAST_PKTS = 0x00000218,
374 TX_UCAST_PKTS = 0x00000220,
375 TX_CTL_PKTS = 0x00000228,
376 TX_PAUSE_PKTS = 0x00000230,
377 TX_64_PKT = 0x00000238,
378 TX_65_TO_127_PKT = 0x00000240,
379 TX_128_TO_255_PKT = 0x00000248,
380 TX_256_511_PKT = 0x00000250,
381 TX_512_TO_1023_PKT = 0x00000258,
382 TX_1024_TO_1518_PKT = 0x00000260,
383 TX_1519_TO_MAX_PKT = 0x00000268,
384 TX_UNDERSIZE_PKT = 0x00000270,
385 TX_OVERSIZE_PKT = 0x00000278,
386
387 /* XGMAC statistics control registers */
388 RX_HALF_FULL_DET = 0x000002a0,
389 TX_HALF_FULL_DET = 0x000002a4,
390 RX_OVERFLOW_DET = 0x000002a8,
391 TX_OVERFLOW_DET = 0x000002ac,
392 RX_HALF_FULL_MASK = 0x000002b0,
393 TX_HALF_FULL_MASK = 0x000002b4,
394 RX_OVERFLOW_MASK = 0x000002b8,
395 TX_OVERFLOW_MASK = 0x000002bc,
396 STAT_CNT_CTL = 0x000002c0,
397 STAT_CNT_CTL_CLEAR_TX = (1 << 0),
398 STAT_CNT_CTL_CLEAR_RX = (1 << 1),
399 AUX_RX_HALF_FULL_DET = 0x000002d0,
400 AUX_TX_HALF_FULL_DET = 0x000002d4,
401 AUX_RX_OVERFLOW_DET = 0x000002d8,
402 AUX_TX_OVERFLOW_DET = 0x000002dc,
403 AUX_RX_HALF_FULL_MASK = 0x000002f0,
404 AUX_TX_HALF_FULL_MASK = 0x000002f4,
405 AUX_RX_OVERFLOW_MASK = 0x000002f8,
406 AUX_TX_OVERFLOW_MASK = 0x000002fc,
407
408 /* XGMAC RX statistics registers */
409 RX_BYTES = 0x00000300,
410 RX_BYTES_OK = 0x00000308,
411 RX_PKTS = 0x00000310,
412 RX_PKTS_OK = 0x00000318,
413 RX_BCAST_PKTS = 0x00000320,
414 RX_MCAST_PKTS = 0x00000328,
415 RX_UCAST_PKTS = 0x00000330,
416 RX_UNDERSIZE_PKTS = 0x00000338,
417 RX_OVERSIZE_PKTS = 0x00000340,
418 RX_JABBER_PKTS = 0x00000348,
419 RX_UNDERSIZE_FCERR_PKTS = 0x00000350,
420 RX_DROP_EVENTS = 0x00000358,
421 RX_FCERR_PKTS = 0x00000360,
422 RX_ALIGN_ERR = 0x00000368,
423 RX_SYMBOL_ERR = 0x00000370,
424 RX_MAC_ERR = 0x00000378,
425 RX_CTL_PKTS = 0x00000380,
426 RX_PAUSE_PKTS = 0x00000384,
427 RX_64_PKTS = 0x00000390,
428 RX_65_TO_127_PKTS = 0x00000398,
429 RX_128_255_PKTS = 0x000003a0,
430 RX_256_511_PKTS = 0x000003a8,
431 RX_512_TO_1023_PKTS = 0x000003b0,
432 RX_1024_TO_1518_PKTS = 0x000003b8,
433 RX_1519_TO_MAX_PKTS = 0x000003c0,
434 RX_LEN_ERR_PKTS = 0x000003c8,
435
436 /* XGMAC MDIO control registers */
437 MDIO_TX_DATA = 0x00000400,
438 MDIO_RX_DATA = 0x00000410,
439 MDIO_CMD = 0x00000420,
440 MDIO_PHY_ADDR = 0x00000430,
441 MDIO_PORT = 0x00000440,
442 MDIO_STATUS = 0x00000450,
443
444 /* XGMAC AUX statistics registers */
445};
446
447/*
448 * Enhanced Transmission Schedule Registers (NIC_ETS,CNA_ETS) bit definitions.
449 */
450enum {
451 ETS_QUEUE_SHIFT = 29,
452 ETS_REF = (1 << 26),
453 ETS_RS = (1 << 27),
454 ETS_P = (1 << 28),
455 ETS_FC_COS_SHIFT = 23,
456};
457
458/*
459 * Flash Address Register (FLASH_ADDR) bit definitions.
460 */
461enum {
462 FLASH_ADDR_RDY = (1 << 31),
463 FLASH_ADDR_R = (1 << 30),
464 FLASH_ADDR_ERR = (1 << 29),
465};
466
467/*
468 * Stop CQ Processing Register (CQ_STOP) bit definitions.
469 */
470enum {
471 CQ_STOP_QUEUE_MASK = (0x007f0000),
472 CQ_STOP_TYPE_MASK = (0x03000000),
473 CQ_STOP_TYPE_START = 0x00000100,
474 CQ_STOP_TYPE_STOP = 0x00000200,
475 CQ_STOP_TYPE_READ = 0x00000300,
476 CQ_STOP_EN = (1 << 15),
477};
478
479/*
480 * MAC Protocol Address Index Register (MAC_ADDR_IDX) bit definitions.
481 */
482enum {
483 MAC_ADDR_IDX_SHIFT = 4,
484 MAC_ADDR_TYPE_SHIFT = 16,
485 MAC_ADDR_TYPE_MASK = 0x000f0000,
486 MAC_ADDR_TYPE_CAM_MAC = 0x00000000,
487 MAC_ADDR_TYPE_MULTI_MAC = 0x00010000,
488 MAC_ADDR_TYPE_VLAN = 0x00020000,
489 MAC_ADDR_TYPE_MULTI_FLTR = 0x00030000,
490 MAC_ADDR_TYPE_FC_MAC = 0x00040000,
491 MAC_ADDR_TYPE_MGMT_MAC = 0x00050000,
492 MAC_ADDR_TYPE_MGMT_VLAN = 0x00060000,
493 MAC_ADDR_TYPE_MGMT_V4 = 0x00070000,
494 MAC_ADDR_TYPE_MGMT_V6 = 0x00080000,
495 MAC_ADDR_TYPE_MGMT_TU_DP = 0x00090000,
496 MAC_ADDR_ADR = (1 << 25),
497 MAC_ADDR_RS = (1 << 26),
498 MAC_ADDR_E = (1 << 27),
499 MAC_ADDR_MR = (1 << 30),
500 MAC_ADDR_MW = (1 << 31),
501 MAX_MULTICAST_ENTRIES = 32,
502};
503
504/*
505 * MAC Protocol Address Index Register (SPLT_HDR) bit definitions.
506 */
507enum {
508 SPLT_HDR_EP = (1 << 31),
509};
510
511/*
512 * FCoE Receive Configuration Register (FC_RCV_CFG) bit definitions.
513 */
514enum {
515 FC_RCV_CFG_ECT = (1 << 15),
516 FC_RCV_CFG_DFH = (1 << 20),
517 FC_RCV_CFG_DVF = (1 << 21),
518 FC_RCV_CFG_RCE = (1 << 27),
519 FC_RCV_CFG_RFE = (1 << 28),
520 FC_RCV_CFG_TEE = (1 << 29),
521 FC_RCV_CFG_TCE = (1 << 30),
522 FC_RCV_CFG_TFE = (1 << 31),
523};
524
525/*
526 * NIC Receive Configuration Register (NIC_RCV_CFG) bit definitions.
527 */
528enum {
529 NIC_RCV_CFG_PPE = (1 << 0),
530 NIC_RCV_CFG_VLAN_MASK = 0x00060000,
531 NIC_RCV_CFG_VLAN_ALL = 0x00000000,
532 NIC_RCV_CFG_VLAN_MATCH_ONLY = 0x00000002,
533 NIC_RCV_CFG_VLAN_MATCH_AND_NON = 0x00000004,
534 NIC_RCV_CFG_VLAN_NONE_AND_NON = 0x00000006,
535 NIC_RCV_CFG_RV = (1 << 3),
536 NIC_RCV_CFG_DFQ_MASK = (0x7f000000),
537 NIC_RCV_CFG_DFQ_SHIFT = 8,
538 NIC_RCV_CFG_DFQ = 0, /* HARDCODE default queue to 0. */
539};
540
541/*
542 * Mgmt Receive Configuration Register (MGMT_RCV_CFG) bit definitions.
543 */
544enum {
545 MGMT_RCV_CFG_ARP = (1 << 0),
546 MGMT_RCV_CFG_DHC = (1 << 1),
547 MGMT_RCV_CFG_DHS = (1 << 2),
548 MGMT_RCV_CFG_NP = (1 << 3),
549 MGMT_RCV_CFG_I6N = (1 << 4),
550 MGMT_RCV_CFG_I6R = (1 << 5),
551 MGMT_RCV_CFG_DH6 = (1 << 6),
552 MGMT_RCV_CFG_UD1 = (1 << 7),
553 MGMT_RCV_CFG_UD0 = (1 << 8),
554 MGMT_RCV_CFG_BCT = (1 << 9),
555 MGMT_RCV_CFG_MCT = (1 << 10),
556 MGMT_RCV_CFG_DM = (1 << 11),
557 MGMT_RCV_CFG_RM = (1 << 12),
558 MGMT_RCV_CFG_STL = (1 << 13),
559 MGMT_RCV_CFG_VLAN_MASK = 0xc0000000,
560 MGMT_RCV_CFG_VLAN_ALL = 0x00000000,
561 MGMT_RCV_CFG_VLAN_MATCH_ONLY = 0x00004000,
562 MGMT_RCV_CFG_VLAN_MATCH_AND_NON = 0x00008000,
563 MGMT_RCV_CFG_VLAN_NONE_AND_NON = 0x0000c000,
564};
565
566/*
567 * Routing Index Register (RT_IDX) bit definitions.
568 */
569enum {
570 RT_IDX_IDX_SHIFT = 8,
571 RT_IDX_TYPE_MASK = 0x000f0000,
572 RT_IDX_TYPE_RT = 0x00000000,
573 RT_IDX_TYPE_RT_INV = 0x00010000,
574 RT_IDX_TYPE_NICQ = 0x00020000,
575 RT_IDX_TYPE_NICQ_INV = 0x00030000,
576 RT_IDX_DST_MASK = 0x00700000,
577 RT_IDX_DST_RSS = 0x00000000,
578 RT_IDX_DST_CAM_Q = 0x00100000,
579 RT_IDX_DST_COS_Q = 0x00200000,
580 RT_IDX_DST_DFLT_Q = 0x00300000,
581 RT_IDX_DST_DEST_Q = 0x00400000,
582 RT_IDX_RS = (1 << 26),
583 RT_IDX_E = (1 << 27),
584 RT_IDX_MR = (1 << 30),
585 RT_IDX_MW = (1 << 31),
586
587 /* Nic Queue format - type 2 bits */
588 RT_IDX_BCAST = (1 << 0),
589 RT_IDX_MCAST = (1 << 1),
590 RT_IDX_MCAST_MATCH = (1 << 2),
591 RT_IDX_MCAST_REG_MATCH = (1 << 3),
592 RT_IDX_MCAST_HASH_MATCH = (1 << 4),
593 RT_IDX_FC_MACH = (1 << 5),
594 RT_IDX_ETH_FCOE = (1 << 6),
595 RT_IDX_CAM_HIT = (1 << 7),
596 RT_IDX_CAM_BIT0 = (1 << 8),
597 RT_IDX_CAM_BIT1 = (1 << 9),
598 RT_IDX_VLAN_TAG = (1 << 10),
599 RT_IDX_VLAN_MATCH = (1 << 11),
600 RT_IDX_VLAN_FILTER = (1 << 12),
601 RT_IDX_ETH_SKIP1 = (1 << 13),
602 RT_IDX_ETH_SKIP2 = (1 << 14),
603 RT_IDX_BCAST_MCAST_MATCH = (1 << 15),
604 RT_IDX_802_3 = (1 << 16),
605 RT_IDX_LLDP = (1 << 17),
606 RT_IDX_UNUSED018 = (1 << 18),
607 RT_IDX_UNUSED019 = (1 << 19),
608 RT_IDX_UNUSED20 = (1 << 20),
609 RT_IDX_UNUSED21 = (1 << 21),
610 RT_IDX_ERR = (1 << 22),
611 RT_IDX_VALID = (1 << 23),
612 RT_IDX_TU_CSUM_ERR = (1 << 24),
613 RT_IDX_IP_CSUM_ERR = (1 << 25),
614 RT_IDX_MAC_ERR = (1 << 26),
615 RT_IDX_RSS_TCP6 = (1 << 27),
616 RT_IDX_RSS_TCP4 = (1 << 28),
617 RT_IDX_RSS_IPV6 = (1 << 29),
618 RT_IDX_RSS_IPV4 = (1 << 30),
619 RT_IDX_RSS_MATCH = (1 << 31),
620
621 /* Hierarchy for the NIC Queue Mask */
622 RT_IDX_ALL_ERR_SLOT = 0,
623 RT_IDX_MAC_ERR_SLOT = 0,
624 RT_IDX_IP_CSUM_ERR_SLOT = 1,
625 RT_IDX_TCP_UDP_CSUM_ERR_SLOT = 2,
626 RT_IDX_BCAST_SLOT = 3,
627 RT_IDX_MCAST_MATCH_SLOT = 4,
628 RT_IDX_ALLMULTI_SLOT = 5,
629 RT_IDX_UNUSED6_SLOT = 6,
630 RT_IDX_UNUSED7_SLOT = 7,
631 RT_IDX_RSS_MATCH_SLOT = 8,
632 RT_IDX_RSS_IPV4_SLOT = 8,
633 RT_IDX_RSS_IPV6_SLOT = 9,
634 RT_IDX_RSS_TCP4_SLOT = 10,
635 RT_IDX_RSS_TCP6_SLOT = 11,
636 RT_IDX_CAM_HIT_SLOT = 12,
637 RT_IDX_UNUSED013 = 13,
638 RT_IDX_UNUSED014 = 14,
639 RT_IDX_PROMISCUOUS_SLOT = 15,
640 RT_IDX_MAX_SLOTS = 16,
641};
642
643/*
644 * Control Register Set Map
645 */
646enum {
647 PROC_ADDR = 0, /* Use semaphore */
648 PROC_DATA = 0x04, /* Use semaphore */
649 SYS = 0x08,
650 RST_FO = 0x0c,
651 FSC = 0x10,
652 CSR = 0x14,
653 LED = 0x18,
654 ICB_RID = 0x1c, /* Use semaphore */
655 ICB_L = 0x20, /* Use semaphore */
656 ICB_H = 0x24, /* Use semaphore */
657 CFG = 0x28,
658 BIOS_ADDR = 0x2c,
659 STS = 0x30,
660 INTR_EN = 0x34,
661 INTR_MASK = 0x38,
662 ISR1 = 0x3c,
663 ISR2 = 0x40,
664 ISR3 = 0x44,
665 ISR4 = 0x48,
666 REV_ID = 0x4c,
667 FRC_ECC_ERR = 0x50,
668 ERR_STS = 0x54,
669 RAM_DBG_ADDR = 0x58,
670 RAM_DBG_DATA = 0x5c,
671 ECC_ERR_CNT = 0x60,
672 SEM = 0x64,
673 GPIO_1 = 0x68, /* Use semaphore */
674 GPIO_2 = 0x6c, /* Use semaphore */
675 GPIO_3 = 0x70, /* Use semaphore */
676 RSVD2 = 0x74,
677 XGMAC_ADDR = 0x78, /* Use semaphore */
678 XGMAC_DATA = 0x7c, /* Use semaphore */
679 NIC_ETS = 0x80,
680 CNA_ETS = 0x84,
681 FLASH_ADDR = 0x88, /* Use semaphore */
682 FLASH_DATA = 0x8c, /* Use semaphore */
683 CQ_STOP = 0x90,
684 PAGE_TBL_RID = 0x94,
685 WQ_PAGE_TBL_LO = 0x98,
686 WQ_PAGE_TBL_HI = 0x9c,
687 CQ_PAGE_TBL_LO = 0xa0,
688 CQ_PAGE_TBL_HI = 0xa4,
689 MAC_ADDR_IDX = 0xa8, /* Use semaphore */
690 MAC_ADDR_DATA = 0xac, /* Use semaphore */
691 COS_DFLT_CQ1 = 0xb0,
692 COS_DFLT_CQ2 = 0xb4,
693 ETYPE_SKIP1 = 0xb8,
694 ETYPE_SKIP2 = 0xbc,
695 SPLT_HDR = 0xc0,
696 FC_PAUSE_THRES = 0xc4,
697 NIC_PAUSE_THRES = 0xc8,
698 FC_ETHERTYPE = 0xcc,
699 FC_RCV_CFG = 0xd0,
700 NIC_RCV_CFG = 0xd4,
701 FC_COS_TAGS = 0xd8,
702 NIC_COS_TAGS = 0xdc,
703 MGMT_RCV_CFG = 0xe0,
704 RT_IDX = 0xe4,
705 RT_DATA = 0xe8,
706 RSVD7 = 0xec,
707 XG_SERDES_ADDR = 0xf0,
708 XG_SERDES_DATA = 0xf4,
709 PRB_MX_ADDR = 0xf8, /* Use semaphore */
710 PRB_MX_DATA = 0xfc, /* Use semaphore */
711};
712
713/*
714 * CAM output format.
715 */
716enum {
717 CAM_OUT_ROUTE_FC = 0,
718 CAM_OUT_ROUTE_NIC = 1,
719 CAM_OUT_FUNC_SHIFT = 2,
720 CAM_OUT_RV = (1 << 4),
721 CAM_OUT_SH = (1 << 15),
722 CAM_OUT_CQ_ID_SHIFT = 5,
723};
724
725/*
726 * Mailbox definitions
727 */
728enum {
729 /* Asynchronous Event Notifications */
730 AEN_SYS_ERR = 0x00008002,
731 AEN_LINK_UP = 0x00008011,
732 AEN_LINK_DOWN = 0x00008012,
733 AEN_IDC_CMPLT = 0x00008100,
734 AEN_IDC_REQ = 0x00008101,
735 AEN_FW_INIT_DONE = 0x00008400,
736 AEN_FW_INIT_FAIL = 0x00008401,
737
738 /* Mailbox Command Opcodes. */
739 MB_CMD_NOP = 0x00000000,
740 MB_CMD_EX_FW = 0x00000002,
741 MB_CMD_MB_TEST = 0x00000006,
742 MB_CMD_CSUM_TEST = 0x00000007, /* Verify Checksum */
743 MB_CMD_ABOUT_FW = 0x00000008,
744 MB_CMD_LOAD_RISC_RAM = 0x0000000b,
745 MB_CMD_DUMP_RISC_RAM = 0x0000000c,
746 MB_CMD_WRITE_RAM = 0x0000000d,
747 MB_CMD_READ_RAM = 0x0000000f,
748 MB_CMD_STOP_FW = 0x00000014,
749 MB_CMD_MAKE_SYS_ERR = 0x0000002a,
750 MB_CMD_INIT_FW = 0x00000060,
751 MB_CMD_GET_INIT_CB = 0x00000061,
752 MB_CMD_GET_FW_STATE = 0x00000069,
753 MB_CMD_IDC_REQ = 0x00000100, /* Inter-Driver Communication */
754 MB_CMD_IDC_ACK = 0x00000101, /* Inter-Driver Communication */
755 MB_CMD_SET_WOL_MODE = 0x00000110, /* Wake On Lan */
756 MB_WOL_DISABLE = 0x00000000,
757 MB_WOL_MAGIC_PKT = 0x00000001,
758 MB_WOL_FLTR = 0x00000002,
759 MB_WOL_UCAST = 0x00000004,
760 MB_WOL_MCAST = 0x00000008,
761 MB_WOL_BCAST = 0x00000010,
762 MB_WOL_LINK_UP = 0x00000020,
763 MB_WOL_LINK_DOWN = 0x00000040,
764 MB_CMD_SET_WOL_FLTR = 0x00000111, /* Wake On Lan Filter */
765 MB_CMD_CLEAR_WOL_FLTR = 0x00000112, /* Wake On Lan Filter */
766 MB_CMD_SET_WOL_MAGIC = 0x00000113, /* Wake On Lan Magic Packet */
767 MB_CMD_CLEAR_WOL_MAGIC = 0x00000114, /* Wake On Lan Magic Packet */
768 MB_CMD_PORT_RESET = 0x00000120,
769 MB_CMD_SET_PORT_CFG = 0x00000122,
770 MB_CMD_GET_PORT_CFG = 0x00000123,
771 MB_CMD_SET_ASIC_VOLTS = 0x00000130,
772 MB_CMD_GET_SNS_DATA = 0x00000131, /* Temp and Volt Sense data. */
773
774 /* Mailbox Command Status. */
775 MB_CMD_STS_GOOD = 0x00004000, /* Success. */
776 MB_CMD_STS_INTRMDT = 0x00001000, /* Intermediate Complete. */
777 MB_CMD_STS_ERR = 0x00004005, /* Error. */
778};
779
780struct mbox_params {
781 u32 mbox_in[MAILBOX_COUNT];
782 u32 mbox_out[MAILBOX_COUNT];
783 int in_count;
784 int out_count;
785};
786
787struct flash_params {
788 u8 dev_id_str[4];
789 u16 size;
790 u16 csum;
791 u16 ver;
792 u16 sub_dev_id;
793 u8 mac_addr[6];
794 u16 res;
795};
796
797
798/*
799 * doorbell space for the rx ring context
800 */
801struct rx_doorbell_context {
802 u32 cnsmr_idx; /* 0x00 */
803 u32 valid; /* 0x04 */
804 u32 reserved[4]; /* 0x08-0x14 */
805 u32 lbq_prod_idx; /* 0x18 */
806 u32 sbq_prod_idx; /* 0x1c */
807};
808
809/*
810 * doorbell space for the tx ring context
811 */
812struct tx_doorbell_context {
813 u32 prod_idx; /* 0x00 */
814 u32 valid; /* 0x04 */
815 u32 reserved[4]; /* 0x08-0x14 */
816 u32 lbq_prod_idx; /* 0x18 */
817 u32 sbq_prod_idx; /* 0x1c */
818};
819
820/* DATA STRUCTURES SHARED WITH HARDWARE. */
821
822struct bq_element {
823 u32 addr_lo;
824#define BQ_END 0x00000001
825#define BQ_CONT 0x00000002
826#define BQ_MASK 0x00000003
827 u32 addr_hi;
828} __attribute((packed));
829
830struct tx_buf_desc {
831 __le64 addr;
832 __le32 len;
833#define TX_DESC_LEN_MASK 0x000fffff
834#define TX_DESC_C 0x40000000
835#define TX_DESC_E 0x80000000
836} __attribute((packed));
837
838/*
839 * IOCB Definitions...
840 */
841
842#define OPCODE_OB_MAC_IOCB 0x01
843#define OPCODE_OB_MAC_TSO_IOCB 0x02
844#define OPCODE_IB_MAC_IOCB 0x20
845#define OPCODE_IB_MPI_IOCB 0x21
846#define OPCODE_IB_AE_IOCB 0x3f
847
848struct ob_mac_iocb_req {
849 u8 opcode;
850 u8 flags1;
851#define OB_MAC_IOCB_REQ_OI 0x01
852#define OB_MAC_IOCB_REQ_I 0x02
853#define OB_MAC_IOCB_REQ_D 0x08
854#define OB_MAC_IOCB_REQ_F 0x10
855 u8 flags2;
856 u8 flags3;
857#define OB_MAC_IOCB_DFP 0x02
858#define OB_MAC_IOCB_V 0x04
859 __le32 reserved1[2];
860 __le16 frame_len;
861#define OB_MAC_IOCB_LEN_MASK 0x3ffff
862 __le16 reserved2;
863 __le32 tid;
864 __le32 txq_idx;
865 __le32 reserved3;
866 __le16 vlan_tci;
867 __le16 reserved4;
868 struct tx_buf_desc tbd[TX_DESC_PER_IOCB];
869} __attribute((packed));
870
871struct ob_mac_iocb_rsp {
872 u8 opcode; /* */
873 u8 flags1; /* */
874#define OB_MAC_IOCB_RSP_OI 0x01 /* */
875#define OB_MAC_IOCB_RSP_I 0x02 /* */
876#define OB_MAC_IOCB_RSP_E 0x08 /* */
877#define OB_MAC_IOCB_RSP_S 0x10 /* too Short */
878#define OB_MAC_IOCB_RSP_L 0x20 /* too Large */
879#define OB_MAC_IOCB_RSP_P 0x40 /* Padded */
880 u8 flags2; /* */
881 u8 flags3; /* */
882#define OB_MAC_IOCB_RSP_B 0x80 /* */
883 __le32 tid;
884 __le32 txq_idx;
885 __le32 reserved[13];
886} __attribute((packed));
887
888struct ob_mac_tso_iocb_req {
889 u8 opcode;
890 u8 flags1;
891#define OB_MAC_TSO_IOCB_OI 0x01
892#define OB_MAC_TSO_IOCB_I 0x02
893#define OB_MAC_TSO_IOCB_D 0x08
894#define OB_MAC_TSO_IOCB_IP4 0x40
895#define OB_MAC_TSO_IOCB_IP6 0x80
896 u8 flags2;
897#define OB_MAC_TSO_IOCB_LSO 0x20
898#define OB_MAC_TSO_IOCB_UC 0x40
899#define OB_MAC_TSO_IOCB_TC 0x80
900 u8 flags3;
901#define OB_MAC_TSO_IOCB_IC 0x01
902#define OB_MAC_TSO_IOCB_DFP 0x02
903#define OB_MAC_TSO_IOCB_V 0x04
904 __le32 reserved1[2];
905 __le32 frame_len;
906 __le32 tid;
907 __le32 txq_idx;
908 __le16 total_hdrs_len;
909 __le16 net_trans_offset;
910#define OB_MAC_TRANSPORT_HDR_SHIFT 6
911 __le16 vlan_tci;
912 __le16 mss;
913 struct tx_buf_desc tbd[TX_DESC_PER_IOCB];
914} __attribute((packed));
915
916struct ob_mac_tso_iocb_rsp {
917 u8 opcode;
918 u8 flags1;
919#define OB_MAC_TSO_IOCB_RSP_OI 0x01
920#define OB_MAC_TSO_IOCB_RSP_I 0x02
921#define OB_MAC_TSO_IOCB_RSP_E 0x08
922#define OB_MAC_TSO_IOCB_RSP_S 0x10
923#define OB_MAC_TSO_IOCB_RSP_L 0x20
924#define OB_MAC_TSO_IOCB_RSP_P 0x40
925 u8 flags2; /* */
926 u8 flags3; /* */
927#define OB_MAC_TSO_IOCB_RSP_B 0x8000
928 __le32 tid;
929 __le32 txq_idx;
930 __le32 reserved2[13];
931} __attribute((packed));
932
933struct ib_mac_iocb_rsp {
934 u8 opcode; /* 0x20 */
935 u8 flags1;
936#define IB_MAC_IOCB_RSP_OI 0x01 /* Overide intr delay */
937#define IB_MAC_IOCB_RSP_I 0x02 /* Disble Intr Generation */
938#define IB_MAC_IOCB_RSP_TE 0x04 /* Checksum error */
939#define IB_MAC_IOCB_RSP_NU 0x08 /* No checksum rcvd */
940#define IB_MAC_IOCB_RSP_IE 0x10 /* IPv4 checksum error */
941#define IB_MAC_IOCB_RSP_M_MASK 0x60 /* Multicast info */
942#define IB_MAC_IOCB_RSP_M_NONE 0x00 /* Not mcast frame */
943#define IB_MAC_IOCB_RSP_M_HASH 0x20 /* HASH mcast frame */
944#define IB_MAC_IOCB_RSP_M_REG 0x40 /* Registered mcast frame */
945#define IB_MAC_IOCB_RSP_M_PROM 0x60 /* Promiscuous mcast frame */
946#define IB_MAC_IOCB_RSP_B 0x80 /* Broadcast frame */
947 u8 flags2;
948#define IB_MAC_IOCB_RSP_P 0x01 /* Promiscuous frame */
949#define IB_MAC_IOCB_RSP_V 0x02 /* Vlan tag present */
950#define IB_MAC_IOCB_RSP_ERR_MASK 0x1c /* */
951#define IB_MAC_IOCB_RSP_ERR_CODE_ERR 0x04
952#define IB_MAC_IOCB_RSP_ERR_OVERSIZE 0x08
953#define IB_MAC_IOCB_RSP_ERR_UNDERSIZE 0x10
954#define IB_MAC_IOCB_RSP_ERR_PREAMBLE 0x14
955#define IB_MAC_IOCB_RSP_ERR_FRAME_LEN 0x18
956#define IB_MAC_IOCB_RSP_ERR_CRC 0x1c
957#define IB_MAC_IOCB_RSP_U 0x20 /* UDP packet */
958#define IB_MAC_IOCB_RSP_T 0x40 /* TCP packet */
959#define IB_MAC_IOCB_RSP_FO 0x80 /* Failover port */
960 u8 flags3;
961#define IB_MAC_IOCB_RSP_RSS_MASK 0x07 /* RSS mask */
962#define IB_MAC_IOCB_RSP_M_NONE 0x00 /* No RSS match */
963#define IB_MAC_IOCB_RSP_M_IPV4 0x04 /* IPv4 RSS match */
964#define IB_MAC_IOCB_RSP_M_IPV6 0x02 /* IPv6 RSS match */
965#define IB_MAC_IOCB_RSP_M_TCP_V4 0x05 /* TCP with IPv4 */
966#define IB_MAC_IOCB_RSP_M_TCP_V6 0x03 /* TCP with IPv6 */
967#define IB_MAC_IOCB_RSP_V4 0x08 /* IPV4 */
968#define IB_MAC_IOCB_RSP_V6 0x10 /* IPV6 */
969#define IB_MAC_IOCB_RSP_IH 0x20 /* Split after IP header */
970#define IB_MAC_IOCB_RSP_DS 0x40 /* data is in small buffer */
971#define IB_MAC_IOCB_RSP_DL 0x80 /* data is in large buffer */
972 __le32 data_len; /* */
973 __le32 data_addr_lo; /* */
974 __le32 data_addr_hi; /* */
975 __le32 rss; /* */
976 __le16 vlan_id; /* 12 bits */
977#define IB_MAC_IOCB_RSP_C 0x1000 /* VLAN CFI bit */
978#define IB_MAC_IOCB_RSP_COS_SHIFT 12 /* class of service value */
979
980 __le16 reserved1;
981 __le32 reserved2[6];
982 __le32 flags4;
983#define IB_MAC_IOCB_RSP_HV 0x20000000 /* */
984#define IB_MAC_IOCB_RSP_HS 0x40000000 /* */
985#define IB_MAC_IOCB_RSP_HL 0x80000000 /* */
986 __le32 hdr_len; /* */
987 __le32 hdr_addr_lo; /* */
988 __le32 hdr_addr_hi; /* */
989} __attribute((packed));
990
991struct ib_ae_iocb_rsp {
992 u8 opcode;
993 u8 flags1;
994#define IB_AE_IOCB_RSP_OI 0x01
995#define IB_AE_IOCB_RSP_I 0x02
996 u8 event;
997#define LINK_UP_EVENT 0x00
998#define LINK_DOWN_EVENT 0x01
999#define CAM_LOOKUP_ERR_EVENT 0x06
1000#define SOFT_ECC_ERROR_EVENT 0x07
1001#define MGMT_ERR_EVENT 0x08
1002#define TEN_GIG_MAC_EVENT 0x09
1003#define GPI0_H2L_EVENT 0x10
1004#define GPI0_L2H_EVENT 0x20
1005#define GPI1_H2L_EVENT 0x11
1006#define GPI1_L2H_EVENT 0x21
1007#define PCI_ERR_ANON_BUF_RD 0x40
1008 u8 q_id;
1009 __le32 reserved[15];
1010} __attribute((packed));
1011
1012/*
1013 * These three structures are for generic
1014 * handling of ib and ob iocbs.
1015 */
1016struct ql_net_rsp_iocb {
1017 u8 opcode;
1018 u8 flags0;
1019 __le16 length;
1020 __le32 tid;
1021 __le32 reserved[14];
1022} __attribute((packed));
1023
1024struct net_req_iocb {
1025 u8 opcode;
1026 u8 flags0;
1027 __le16 flags1;
1028 __le32 tid;
1029 __le32 reserved1[30];
1030} __attribute((packed));
1031
1032/*
1033 * tx ring initialization control block for chip.
1034 * It is defined as:
1035 * "Work Queue Initialization Control Block"
1036 */
1037struct wqicb {
1038 __le16 len;
1039#define Q_LEN_V (1 << 4)
1040#define Q_LEN_CPP_CONT 0x0000
1041#define Q_LEN_CPP_16 0x0001
1042#define Q_LEN_CPP_32 0x0002
1043#define Q_LEN_CPP_64 0x0003
1044 __le16 flags;
1045#define Q_PRI_SHIFT 1
1046#define Q_FLAGS_LC 0x1000
1047#define Q_FLAGS_LB 0x2000
1048#define Q_FLAGS_LI 0x4000
1049#define Q_FLAGS_LO 0x8000
1050 __le16 cq_id_rss;
1051#define Q_CQ_ID_RSS_RV 0x8000
1052 __le16 rid;
1053 __le32 addr_lo;
1054 __le32 addr_hi;
1055 __le32 cnsmr_idx_addr_lo;
1056 __le32 cnsmr_idx_addr_hi;
1057} __attribute((packed));
1058
1059/*
1060 * rx ring initialization control block for chip.
1061 * It is defined as:
1062 * "Completion Queue Initialization Control Block"
1063 */
1064struct cqicb {
1065 u8 msix_vect;
1066 u8 reserved1;
1067 u8 reserved2;
1068 u8 flags;
1069#define FLAGS_LV 0x08
1070#define FLAGS_LS 0x10
1071#define FLAGS_LL 0x20
1072#define FLAGS_LI 0x40
1073#define FLAGS_LC 0x80
1074 __le16 len;
1075#define LEN_V (1 << 4)
1076#define LEN_CPP_CONT 0x0000
1077#define LEN_CPP_32 0x0001
1078#define LEN_CPP_64 0x0002
1079#define LEN_CPP_128 0x0003
1080 __le16 rid;
1081 __le32 addr_lo;
1082 __le32 addr_hi;
1083 __le32 prod_idx_addr_lo;
1084 __le32 prod_idx_addr_hi;
1085 __le16 pkt_delay;
1086 __le16 irq_delay;
1087 __le32 lbq_addr_lo;
1088 __le32 lbq_addr_hi;
1089 __le16 lbq_buf_size;
1090 __le16 lbq_len; /* entry count */
1091 __le32 sbq_addr_lo;
1092 __le32 sbq_addr_hi;
1093 __le16 sbq_buf_size;
1094 __le16 sbq_len; /* entry count */
1095} __attribute((packed));
1096
1097struct ricb {
1098 u8 base_cq;
1099#define RSS_L4K 0x80
1100 u8 flags;
1101#define RSS_L6K 0x01
1102#define RSS_LI 0x02
1103#define RSS_LB 0x04
1104#define RSS_LM 0x08
1105#define RSS_RI4 0x10
1106#define RSS_RT4 0x20
1107#define RSS_RI6 0x40
1108#define RSS_RT6 0x80
1109 __le16 mask;
1110 __le32 hash_cq_id[256];
1111 __le32 ipv6_hash_key[10];
1112 __le32 ipv4_hash_key[4];
1113} __attribute((packed));
1114
1115/* SOFTWARE/DRIVER DATA STRUCTURES. */
1116
1117struct oal {
1118 struct tx_buf_desc oal[TX_DESC_PER_OAL];
1119};
1120
1121struct map_list {
1122 DECLARE_PCI_UNMAP_ADDR(mapaddr);
1123 DECLARE_PCI_UNMAP_LEN(maplen);
1124};
1125
1126struct tx_ring_desc {
1127 struct sk_buff *skb;
1128 struct ob_mac_iocb_req *queue_entry;
1129 int index;
1130 struct oal oal;
1131 struct map_list map[MAX_SKB_FRAGS + 1];
1132 int map_cnt;
1133 struct tx_ring_desc *next;
1134};
1135
1136struct bq_desc {
1137 union {
1138 struct page *lbq_page;
1139 struct sk_buff *skb;
1140 } p;
1141 struct bq_element *bq;
1142 int index;
1143 DECLARE_PCI_UNMAP_ADDR(mapaddr);
1144 DECLARE_PCI_UNMAP_LEN(maplen);
1145};
1146
1147#define QL_TXQ_IDX(qdev, skb) (smp_processor_id()%(qdev->tx_ring_count))
1148
1149struct tx_ring {
1150 /*
1151 * queue info.
1152 */
1153 struct wqicb wqicb; /* structure used to inform chip of new queue */
1154 void *wq_base; /* pci_alloc:virtual addr for tx */
1155 dma_addr_t wq_base_dma; /* pci_alloc:dma addr for tx */
1156 u32 *cnsmr_idx_sh_reg; /* shadow copy of consumer idx */
1157 dma_addr_t cnsmr_idx_sh_reg_dma; /* dma-shadow copy of consumer */
1158 u32 wq_size; /* size in bytes of queue area */
1159 u32 wq_len; /* number of entries in queue */
1160 void __iomem *prod_idx_db_reg; /* doorbell area index reg at offset 0x00 */
1161 void __iomem *valid_db_reg; /* doorbell area valid reg at offset 0x04 */
1162 u16 prod_idx; /* current value for prod idx */
1163 u16 cq_id; /* completion (rx) queue for tx completions */
1164 u8 wq_id; /* queue id for this entry */
1165 u8 reserved1[3];
1166 struct tx_ring_desc *q; /* descriptor list for the queue */
1167 spinlock_t lock;
1168 atomic_t tx_count; /* counts down for every outstanding IO */
1169 atomic_t queue_stopped; /* Turns queue off when full. */
1170 struct delayed_work tx_work;
1171 struct ql_adapter *qdev;
1172};
1173
1174/*
1175 * Type of inbound queue.
1176 */
1177enum {
1178 DEFAULT_Q = 2, /* Handles slow queue and chip/MPI events. */
1179 TX_Q = 3, /* Handles outbound completions. */
1180 RX_Q = 4, /* Handles inbound completions. */
1181};
1182
1183struct rx_ring {
1184 struct cqicb cqicb; /* The chip's completion queue init control block. */
1185
1186 /* Completion queue elements. */
1187 void *cq_base;
1188 dma_addr_t cq_base_dma;
1189 u32 cq_size;
1190 u32 cq_len;
1191 u16 cq_id;
1192 u32 *prod_idx_sh_reg; /* Shadowed producer register. */
1193 dma_addr_t prod_idx_sh_reg_dma;
1194 void __iomem *cnsmr_idx_db_reg; /* PCI doorbell mem area + 0 */
1195 u32 cnsmr_idx; /* current sw idx */
1196 struct ql_net_rsp_iocb *curr_entry; /* next entry on queue */
1197 void __iomem *valid_db_reg; /* PCI doorbell mem area + 0x04 */
1198
1199 /* Large buffer queue elements. */
1200 u32 lbq_len; /* entry count */
1201 u32 lbq_size; /* size in bytes of queue */
1202 u32 lbq_buf_size;
1203 void *lbq_base;
1204 dma_addr_t lbq_base_dma;
1205 void *lbq_base_indirect;
1206 dma_addr_t lbq_base_indirect_dma;
1207 struct bq_desc *lbq; /* array of control blocks */
1208 void __iomem *lbq_prod_idx_db_reg; /* PCI doorbell mem area + 0x18 */
1209 u32 lbq_prod_idx; /* current sw prod idx */
1210 u32 lbq_curr_idx; /* next entry we expect */
1211 u32 lbq_clean_idx; /* beginning of new descs */
1212 u32 lbq_free_cnt; /* free buffer desc cnt */
1213
1214 /* Small buffer queue elements. */
1215 u32 sbq_len; /* entry count */
1216 u32 sbq_size; /* size in bytes of queue */
1217 u32 sbq_buf_size;
1218 void *sbq_base;
1219 dma_addr_t sbq_base_dma;
1220 void *sbq_base_indirect;
1221 dma_addr_t sbq_base_indirect_dma;
1222 struct bq_desc *sbq; /* array of control blocks */
1223 void __iomem *sbq_prod_idx_db_reg; /* PCI doorbell mem area + 0x1c */
1224 u32 sbq_prod_idx; /* current sw prod idx */
1225 u32 sbq_curr_idx; /* next entry we expect */
1226 u32 sbq_clean_idx; /* beginning of new descs */
1227 u32 sbq_free_cnt; /* free buffer desc cnt */
1228
1229 /* Misc. handler elements. */
1230 u32 type; /* Type of queue, tx, rx, or default. */
1231 u32 irq; /* Which vector this ring is assigned. */
1232 u32 cpu; /* Which CPU this should run on. */
1233 char name[IFNAMSIZ + 5];
1234 struct napi_struct napi;
1235 struct delayed_work rx_work;
1236 u8 reserved;
1237 struct ql_adapter *qdev;
1238};
1239
1240/*
1241 * RSS Initialization Control Block
1242 */
1243struct hash_id {
1244 u8 value[4];
1245};
1246
1247struct nic_stats {
1248 /*
1249 * These stats come from offset 200h to 278h
1250 * in the XGMAC register.
1251 */
1252 u64 tx_pkts;
1253 u64 tx_bytes;
1254 u64 tx_mcast_pkts;
1255 u64 tx_bcast_pkts;
1256 u64 tx_ucast_pkts;
1257 u64 tx_ctl_pkts;
1258 u64 tx_pause_pkts;
1259 u64 tx_64_pkt;
1260 u64 tx_65_to_127_pkt;
1261 u64 tx_128_to_255_pkt;
1262 u64 tx_256_511_pkt;
1263 u64 tx_512_to_1023_pkt;
1264 u64 tx_1024_to_1518_pkt;
1265 u64 tx_1519_to_max_pkt;
1266 u64 tx_undersize_pkt;
1267 u64 tx_oversize_pkt;
1268
1269 /*
1270 * These stats come from offset 300h to 3C8h
1271 * in the XGMAC register.
1272 */
1273 u64 rx_bytes;
1274 u64 rx_bytes_ok;
1275 u64 rx_pkts;
1276 u64 rx_pkts_ok;
1277 u64 rx_bcast_pkts;
1278 u64 rx_mcast_pkts;
1279 u64 rx_ucast_pkts;
1280 u64 rx_undersize_pkts;
1281 u64 rx_oversize_pkts;
1282 u64 rx_jabber_pkts;
1283 u64 rx_undersize_fcerr_pkts;
1284 u64 rx_drop_events;
1285 u64 rx_fcerr_pkts;
1286 u64 rx_align_err;
1287 u64 rx_symbol_err;
1288 u64 rx_mac_err;
1289 u64 rx_ctl_pkts;
1290 u64 rx_pause_pkts;
1291 u64 rx_64_pkts;
1292 u64 rx_65_to_127_pkts;
1293 u64 rx_128_255_pkts;
1294 u64 rx_256_511_pkts;
1295 u64 rx_512_to_1023_pkts;
1296 u64 rx_1024_to_1518_pkts;
1297 u64 rx_1519_to_max_pkts;
1298 u64 rx_len_err_pkts;
1299};
1300
1301/*
1302 * intr_context structure is used during initialization
1303 * to hook the interrupts. It is also used in a single
1304 * irq environment as a context to the ISR.
1305 */
1306struct intr_context {
1307 struct ql_adapter *qdev;
1308 u32 intr;
1309 u32 hooked;
1310 u32 intr_en_mask; /* value/mask used to enable this intr */
1311 u32 intr_dis_mask; /* value/mask used to disable this intr */
1312 u32 intr_read_mask; /* value/mask used to read this intr */
1313 char name[IFNAMSIZ * 2];
1314 atomic_t irq_cnt; /* irq_cnt is used in single vector
1315 * environment. It's incremented for each
1316 * irq handler that is scheduled. When each
1317 * handler finishes it decrements irq_cnt and
1318 * enables interrupts if it's zero. */
1319 irq_handler_t handler;
1320};
1321
1322/* adapter flags definitions. */
1323enum {
1324 QL_ADAPTER_UP = (1 << 0), /* Adapter has been brought up. */
1325 QL_LEGACY_ENABLED = (1 << 3),
1326 QL_MSI_ENABLED = (1 << 3),
1327 QL_MSIX_ENABLED = (1 << 4),
1328 QL_DMA64 = (1 << 5),
1329 QL_PROMISCUOUS = (1 << 6),
1330 QL_ALLMULTI = (1 << 7),
1331};
1332
1333/* link_status bit definitions */
1334enum {
1335 LOOPBACK_MASK = 0x00000700,
1336 LOOPBACK_PCS = 0x00000100,
1337 LOOPBACK_HSS = 0x00000200,
1338 LOOPBACK_EXT = 0x00000300,
1339 PAUSE_MASK = 0x000000c0,
1340 PAUSE_STD = 0x00000040,
1341 PAUSE_PRI = 0x00000080,
1342 SPEED_MASK = 0x00000038,
1343 SPEED_100Mb = 0x00000000,
1344 SPEED_1Gb = 0x00000008,
1345 SPEED_10Gb = 0x00000010,
1346 LINK_TYPE_MASK = 0x00000007,
1347 LINK_TYPE_XFI = 0x00000001,
1348 LINK_TYPE_XAUI = 0x00000002,
1349 LINK_TYPE_XFI_BP = 0x00000003,
1350 LINK_TYPE_XAUI_BP = 0x00000004,
1351 LINK_TYPE_10GBASET = 0x00000005,
1352};
1353
1354/*
1355 * The main Adapter structure definition.
1356 * This structure has all fields relevant to the hardware.
1357 */
1358struct ql_adapter {
1359 struct ricb ricb;
1360 unsigned long flags;
1361 u32 wol;
1362
1363 struct nic_stats nic_stats;
1364
1365 struct vlan_group *vlgrp;
1366
1367 /* PCI Configuration information for this device */
1368 struct pci_dev *pdev;
1369 struct net_device *ndev; /* Parent NET device */
1370
1371 /* Hardware information */
1372 u32 chip_rev_id;
1373 u32 func; /* PCI function for this adapter */
1374
1375 spinlock_t adapter_lock;
1376 spinlock_t hw_lock;
1377 spinlock_t stats_lock;
1378 spinlock_t legacy_lock; /* used for maintaining legacy intr sync */
1379
1380 /* PCI Bus Relative Register Addresses */
1381 void __iomem *reg_base;
1382 void __iomem *doorbell_area;
1383 u32 doorbell_area_size;
1384
1385 u32 msg_enable;
1386
1387 /* Page for Shadow Registers */
1388 void *rx_ring_shadow_reg_area;
1389 dma_addr_t rx_ring_shadow_reg_dma;
1390 void *tx_ring_shadow_reg_area;
1391 dma_addr_t tx_ring_shadow_reg_dma;
1392
1393 u32 mailbox_in;
1394 u32 mailbox_out;
1395
1396 int tx_ring_size;
1397 int rx_ring_size;
1398 u32 intr_count;
1399 struct msix_entry *msi_x_entry;
1400 struct intr_context intr_context[MAX_RX_RINGS];
1401
1402 int (*legacy_check) (struct ql_adapter *);
1403
1404 int tx_ring_count; /* One per online CPU. */
1405 u32 rss_ring_first_cq_id;/* index of first inbound (rss) rx_ring */
1406 u32 rss_ring_count; /* One per online CPU. */
1407 /*
1408 * rx_ring_count =
1409 * one default queue +
1410 * (CPU count * outbound completion rx_ring) +
1411 * (CPU count * inbound (RSS) completion rx_ring)
1412 */
1413 int rx_ring_count;
1414 int ring_mem_size;
1415 void *ring_mem;
1416 struct rx_ring *rx_ring;
1417 int rx_csum;
1418 struct tx_ring *tx_ring;
1419 u32 default_rx_queue;
1420
1421 u16 rx_coalesce_usecs; /* cqicb->int_delay */
1422 u16 rx_max_coalesced_frames; /* cqicb->pkt_int_delay */
1423 u16 tx_coalesce_usecs; /* cqicb->int_delay */
1424 u16 tx_max_coalesced_frames; /* cqicb->pkt_int_delay */
1425
1426 u32 xg_sem_mask;
1427 u32 port_link_up;
1428 u32 port_init;
1429 u32 link_status;
1430
1431 struct flash_params flash;
1432
1433 struct net_device_stats stats;
1434 struct workqueue_struct *q_workqueue;
1435 struct workqueue_struct *workqueue;
1436 struct delayed_work asic_reset_work;
1437 struct delayed_work mpi_reset_work;
1438 struct delayed_work mpi_work;
1439};
1440
1441/*
1442 * Typical Register accessor for memory mapped device.
1443 */
1444static inline u32 ql_read32(const struct ql_adapter *qdev, int reg)
1445{
1446 return readl(qdev->reg_base + reg);
1447}
1448
1449/*
1450 * Typical Register accessor for memory mapped device.
1451 */
1452static inline void ql_write32(const struct ql_adapter *qdev, int reg, u32 val)
1453{
1454 writel(val, qdev->reg_base + reg);
1455}
1456
1457/*
1458 * Doorbell Registers:
1459 * Doorbell registers are virtual registers in the PCI memory space.
1460 * The space is allocated by the chip during PCI initialization. The
1461 * device driver finds the doorbell address in BAR 3 in PCI config space.
1462 * The registers are used to control outbound and inbound queues. For
1463 * example, the producer index for an outbound queue. Each queue uses
1464 * 1 4k chunk of memory. The lower half of the space is for outbound
1465 * queues. The upper half is for inbound queues.
1466 */
1467static inline void ql_write_db_reg(u32 val, void __iomem *addr)
1468{
1469 writel(val, addr);
1470 mmiowb();
1471}
1472
1473/*
1474 * Shadow Registers:
1475 * Outbound queues have a consumer index that is maintained by the chip.
1476 * Inbound queues have a producer index that is maintained by the chip.
1477 * For lower overhead, these registers are "shadowed" to host memory
1478 * which allows the device driver to track the queue progress without
1479 * PCI reads. When an entry is placed on an inbound queue, the chip will
1480 * update the relevant index register and then copy the value to the
1481 * shadow register in host memory.
1482 */
1483static inline unsigned int ql_read_sh_reg(const volatile void *addr)
1484{
1485 return *(volatile unsigned int __force *)addr;
1486}
1487
1488extern char qlge_driver_name[];
1489extern const char qlge_driver_version[];
1490extern const struct ethtool_ops qlge_ethtool_ops;
1491
1492extern int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask);
1493extern void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask);
1494extern int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data);
1495extern int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
1496 u32 *value);
1497extern int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value);
1498extern int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
1499 u16 q_id);
1500void ql_queue_fw_error(struct ql_adapter *qdev);
1501void ql_mpi_work(struct work_struct *work);
1502void ql_mpi_reset_work(struct work_struct *work);
1503int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 ebit);
1504void ql_queue_asic_error(struct ql_adapter *qdev);
1505void ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr);
1506void ql_set_ethtool_ops(struct net_device *ndev);
1507int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data);
1508
1509#if 1
1510#define QL_ALL_DUMP
1511#define QL_REG_DUMP
1512#define QL_DEV_DUMP
1513#define QL_CB_DUMP
1514/* #define QL_IB_DUMP */
1515/* #define QL_OB_DUMP */
1516#endif
1517
1518#ifdef QL_REG_DUMP
1519extern void ql_dump_xgmac_control_regs(struct ql_adapter *qdev);
1520extern void ql_dump_routing_entries(struct ql_adapter *qdev);
1521extern void ql_dump_regs(struct ql_adapter *qdev);
1522#define QL_DUMP_REGS(qdev) ql_dump_regs(qdev)
1523#define QL_DUMP_ROUTE(qdev) ql_dump_routing_entries(qdev)
1524#define QL_DUMP_XGMAC_CONTROL_REGS(qdev) ql_dump_xgmac_control_regs(qdev)
1525#else
1526#define QL_DUMP_REGS(qdev)
1527#define QL_DUMP_ROUTE(qdev)
1528#define QL_DUMP_XGMAC_CONTROL_REGS(qdev)
1529#endif
1530
1531#ifdef QL_STAT_DUMP
1532extern void ql_dump_stat(struct ql_adapter *qdev);
1533#define QL_DUMP_STAT(qdev) ql_dump_stat(qdev)
1534#else
1535#define QL_DUMP_STAT(qdev)
1536#endif
1537
1538#ifdef QL_DEV_DUMP
1539extern void ql_dump_qdev(struct ql_adapter *qdev);
1540#define QL_DUMP_QDEV(qdev) ql_dump_qdev(qdev)
1541#else
1542#define QL_DUMP_QDEV(qdev)
1543#endif
1544
1545#ifdef QL_CB_DUMP
1546extern void ql_dump_wqicb(struct wqicb *wqicb);
1547extern void ql_dump_tx_ring(struct tx_ring *tx_ring);
1548extern void ql_dump_ricb(struct ricb *ricb);
1549extern void ql_dump_cqicb(struct cqicb *cqicb);
1550extern void ql_dump_rx_ring(struct rx_ring *rx_ring);
1551extern void ql_dump_hw_cb(struct ql_adapter *qdev, int size, u32 bit, u16 q_id);
1552#define QL_DUMP_RICB(ricb) ql_dump_ricb(ricb)
1553#define QL_DUMP_WQICB(wqicb) ql_dump_wqicb(wqicb)
1554#define QL_DUMP_TX_RING(tx_ring) ql_dump_tx_ring(tx_ring)
1555#define QL_DUMP_CQICB(cqicb) ql_dump_cqicb(cqicb)
1556#define QL_DUMP_RX_RING(rx_ring) ql_dump_rx_ring(rx_ring)
1557#define QL_DUMP_HW_CB(qdev, size, bit, q_id) \
1558 ql_dump_hw_cb(qdev, size, bit, q_id)
1559#else
1560#define QL_DUMP_RICB(ricb)
1561#define QL_DUMP_WQICB(wqicb)
1562#define QL_DUMP_TX_RING(tx_ring)
1563#define QL_DUMP_CQICB(cqicb)
1564#define QL_DUMP_RX_RING(rx_ring)
1565#define QL_DUMP_HW_CB(qdev, size, bit, q_id)
1566#endif
1567
1568#ifdef QL_OB_DUMP
1569extern void ql_dump_tx_desc(struct tx_buf_desc *tbd);
1570extern void ql_dump_ob_mac_iocb(struct ob_mac_iocb_req *ob_mac_iocb);
1571extern void ql_dump_ob_mac_rsp(struct ob_mac_iocb_rsp *ob_mac_rsp);
1572#define QL_DUMP_OB_MAC_IOCB(ob_mac_iocb) ql_dump_ob_mac_iocb(ob_mac_iocb)
1573#define QL_DUMP_OB_MAC_RSP(ob_mac_rsp) ql_dump_ob_mac_rsp(ob_mac_rsp)
1574#else
1575#define QL_DUMP_OB_MAC_IOCB(ob_mac_iocb)
1576#define QL_DUMP_OB_MAC_RSP(ob_mac_rsp)
1577#endif
1578
1579#ifdef QL_IB_DUMP
1580extern void ql_dump_ib_mac_rsp(struct ib_mac_iocb_rsp *ib_mac_rsp);
1581#define QL_DUMP_IB_MAC_RSP(ib_mac_rsp) ql_dump_ib_mac_rsp(ib_mac_rsp)
1582#else
1583#define QL_DUMP_IB_MAC_RSP(ib_mac_rsp)
1584#endif
1585
1586#ifdef QL_ALL_DUMP
1587extern void ql_dump_all(struct ql_adapter *qdev);
1588#define QL_DUMP_ALL(qdev) ql_dump_all(qdev)
1589#else
1590#define QL_DUMP_ALL(qdev)
1591#endif
1592
1593#endif /* _QLGE_H_ */
diff --git a/drivers/net/qlge/qlge_dbg.c b/drivers/net/qlge/qlge_dbg.c
new file mode 100644
index 000000000000..f0392b166170
--- /dev/null
+++ b/drivers/net/qlge/qlge_dbg.c
@@ -0,0 +1,858 @@
1#include "qlge.h"
2
3#ifdef QL_REG_DUMP
4static void ql_dump_intr_states(struct ql_adapter *qdev)
5{
6 int i;
7 u32 value;
8 for (i = 0; i < qdev->intr_count; i++) {
9 ql_write32(qdev, INTR_EN, qdev->intr_context[i].intr_read_mask);
10 value = ql_read32(qdev, INTR_EN);
11 printk(KERN_ERR PFX
12 "%s: Interrupt %d is %s.\n",
13 qdev->ndev->name, i,
14 (value & INTR_EN_EN ? "enabled" : "disabled"));
15 }
16}
17
18void ql_dump_xgmac_control_regs(struct ql_adapter *qdev)
19{
20 u32 data;
21 if (ql_sem_spinlock(qdev, qdev->xg_sem_mask)) {
22 printk(KERN_ERR "%s: Couldn't get xgmac sem.\n", __func__);
23 return;
24 }
25 ql_read_xgmac_reg(qdev, PAUSE_SRC_LO, &data);
26 printk(KERN_ERR PFX "%s: PAUSE_SRC_LO = 0x%.08x.\n", qdev->ndev->name,
27 data);
28 ql_read_xgmac_reg(qdev, PAUSE_SRC_HI, &data);
29 printk(KERN_ERR PFX "%s: PAUSE_SRC_HI = 0x%.08x.\n", qdev->ndev->name,
30 data);
31 ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
32 printk(KERN_ERR PFX "%s: GLOBAL_CFG = 0x%.08x.\n", qdev->ndev->name,
33 data);
34 ql_read_xgmac_reg(qdev, TX_CFG, &data);
35 printk(KERN_ERR PFX "%s: TX_CFG = 0x%.08x.\n", qdev->ndev->name, data);
36 ql_read_xgmac_reg(qdev, RX_CFG, &data);
37 printk(KERN_ERR PFX "%s: RX_CFG = 0x%.08x.\n", qdev->ndev->name, data);
38 ql_read_xgmac_reg(qdev, FLOW_CTL, &data);
39 printk(KERN_ERR PFX "%s: FLOW_CTL = 0x%.08x.\n", qdev->ndev->name,
40 data);
41 ql_read_xgmac_reg(qdev, PAUSE_OPCODE, &data);
42 printk(KERN_ERR PFX "%s: PAUSE_OPCODE = 0x%.08x.\n", qdev->ndev->name,
43 data);
44 ql_read_xgmac_reg(qdev, PAUSE_TIMER, &data);
45 printk(KERN_ERR PFX "%s: PAUSE_TIMER = 0x%.08x.\n", qdev->ndev->name,
46 data);
47 ql_read_xgmac_reg(qdev, PAUSE_FRM_DEST_LO, &data);
48 printk(KERN_ERR PFX "%s: PAUSE_FRM_DEST_LO = 0x%.08x.\n",
49 qdev->ndev->name, data);
50 ql_read_xgmac_reg(qdev, PAUSE_FRM_DEST_HI, &data);
51 printk(KERN_ERR PFX "%s: PAUSE_FRM_DEST_HI = 0x%.08x.\n",
52 qdev->ndev->name, data);
53 ql_read_xgmac_reg(qdev, MAC_TX_PARAMS, &data);
54 printk(KERN_ERR PFX "%s: MAC_TX_PARAMS = 0x%.08x.\n", qdev->ndev->name,
55 data);
56 ql_read_xgmac_reg(qdev, MAC_RX_PARAMS, &data);
57 printk(KERN_ERR PFX "%s: MAC_RX_PARAMS = 0x%.08x.\n", qdev->ndev->name,
58 data);
59 ql_read_xgmac_reg(qdev, MAC_SYS_INT, &data);
60 printk(KERN_ERR PFX "%s: MAC_SYS_INT = 0x%.08x.\n", qdev->ndev->name,
61 data);
62 ql_read_xgmac_reg(qdev, MAC_SYS_INT_MASK, &data);
63 printk(KERN_ERR PFX "%s: MAC_SYS_INT_MASK = 0x%.08x.\n",
64 qdev->ndev->name, data);
65 ql_read_xgmac_reg(qdev, MAC_MGMT_INT, &data);
66 printk(KERN_ERR PFX "%s: MAC_MGMT_INT = 0x%.08x.\n", qdev->ndev->name,
67 data);
68 ql_read_xgmac_reg(qdev, MAC_MGMT_IN_MASK, &data);
69 printk(KERN_ERR PFX "%s: MAC_MGMT_IN_MASK = 0x%.08x.\n",
70 qdev->ndev->name, data);
71 ql_read_xgmac_reg(qdev, EXT_ARB_MODE, &data);
72 printk(KERN_ERR PFX "%s: EXT_ARB_MODE = 0x%.08x.\n", qdev->ndev->name,
73 data);
74 ql_sem_unlock(qdev, qdev->xg_sem_mask);
75
76}
77
78static void ql_dump_ets_regs(struct ql_adapter *qdev)
79{
80}
81
82static void ql_dump_cam_entries(struct ql_adapter *qdev)
83{
84 int i;
85 u32 value[3];
86 for (i = 0; i < 4; i++) {
87 if (ql_get_mac_addr_reg(qdev, MAC_ADDR_TYPE_CAM_MAC, i, value)) {
88 printk(KERN_ERR PFX
89 "%s: Failed read of mac index register.\n",
90 __func__);
91 return;
92 } else {
93 if (value[0])
94 printk(KERN_ERR PFX
95 "%s: CAM index %d CAM Lookup Lower = 0x%.08x:%.08x, Output = 0x%.08x.\n",
96 qdev->ndev->name, i, value[1], value[0],
97 value[2]);
98 }
99 }
100 for (i = 0; i < 32; i++) {
101 if (ql_get_mac_addr_reg
102 (qdev, MAC_ADDR_TYPE_MULTI_MAC, i, value)) {
103 printk(KERN_ERR PFX
104 "%s: Failed read of mac index register.\n",
105 __func__);
106 return;
107 } else {
108 if (value[0])
109 printk(KERN_ERR PFX
110 "%s: MCAST index %d CAM Lookup Lower = 0x%.08x:%.08x.\n",
111 qdev->ndev->name, i, value[1], value[0]);
112 }
113 }
114}
115
116void ql_dump_routing_entries(struct ql_adapter *qdev)
117{
118 int i;
119 u32 value;
120 for (i = 0; i < 16; i++) {
121 value = 0;
122 if (ql_get_routing_reg(qdev, i, &value)) {
123 printk(KERN_ERR PFX
124 "%s: Failed read of routing index register.\n",
125 __func__);
126 return;
127 } else {
128 if (value)
129 printk(KERN_ERR PFX
130 "%s: Routing Mask %d = 0x%.08x.\n",
131 qdev->ndev->name, i, value);
132 }
133 }
134}
135
136void ql_dump_regs(struct ql_adapter *qdev)
137{
138 printk(KERN_ERR PFX "reg dump for function #%d.\n", qdev->func);
139 printk(KERN_ERR PFX "SYS = 0x%x.\n",
140 ql_read32(qdev, SYS));
141 printk(KERN_ERR PFX "RST_FO = 0x%x.\n",
142 ql_read32(qdev, RST_FO));
143 printk(KERN_ERR PFX "FSC = 0x%x.\n",
144 ql_read32(qdev, FSC));
145 printk(KERN_ERR PFX "CSR = 0x%x.\n",
146 ql_read32(qdev, CSR));
147 printk(KERN_ERR PFX "ICB_RID = 0x%x.\n",
148 ql_read32(qdev, ICB_RID));
149 printk(KERN_ERR PFX "ICB_L = 0x%x.\n",
150 ql_read32(qdev, ICB_L));
151 printk(KERN_ERR PFX "ICB_H = 0x%x.\n",
152 ql_read32(qdev, ICB_H));
153 printk(KERN_ERR PFX "CFG = 0x%x.\n",
154 ql_read32(qdev, CFG));
155 printk(KERN_ERR PFX "BIOS_ADDR = 0x%x.\n",
156 ql_read32(qdev, BIOS_ADDR));
157 printk(KERN_ERR PFX "STS = 0x%x.\n",
158 ql_read32(qdev, STS));
159 printk(KERN_ERR PFX "INTR_EN = 0x%x.\n",
160 ql_read32(qdev, INTR_EN));
161 printk(KERN_ERR PFX "INTR_MASK = 0x%x.\n",
162 ql_read32(qdev, INTR_MASK));
163 printk(KERN_ERR PFX "ISR1 = 0x%x.\n",
164 ql_read32(qdev, ISR1));
165 printk(KERN_ERR PFX "ISR2 = 0x%x.\n",
166 ql_read32(qdev, ISR2));
167 printk(KERN_ERR PFX "ISR3 = 0x%x.\n",
168 ql_read32(qdev, ISR3));
169 printk(KERN_ERR PFX "ISR4 = 0x%x.\n",
170 ql_read32(qdev, ISR4));
171 printk(KERN_ERR PFX "REV_ID = 0x%x.\n",
172 ql_read32(qdev, REV_ID));
173 printk(KERN_ERR PFX "FRC_ECC_ERR = 0x%x.\n",
174 ql_read32(qdev, FRC_ECC_ERR));
175 printk(KERN_ERR PFX "ERR_STS = 0x%x.\n",
176 ql_read32(qdev, ERR_STS));
177 printk(KERN_ERR PFX "RAM_DBG_ADDR = 0x%x.\n",
178 ql_read32(qdev, RAM_DBG_ADDR));
179 printk(KERN_ERR PFX "RAM_DBG_DATA = 0x%x.\n",
180 ql_read32(qdev, RAM_DBG_DATA));
181 printk(KERN_ERR PFX "ECC_ERR_CNT = 0x%x.\n",
182 ql_read32(qdev, ECC_ERR_CNT));
183 printk(KERN_ERR PFX "SEM = 0x%x.\n",
184 ql_read32(qdev, SEM));
185 printk(KERN_ERR PFX "GPIO_1 = 0x%x.\n",
186 ql_read32(qdev, GPIO_1));
187 printk(KERN_ERR PFX "GPIO_2 = 0x%x.\n",
188 ql_read32(qdev, GPIO_2));
189 printk(KERN_ERR PFX "GPIO_3 = 0x%x.\n",
190 ql_read32(qdev, GPIO_3));
191 printk(KERN_ERR PFX "XGMAC_ADDR = 0x%x.\n",
192 ql_read32(qdev, XGMAC_ADDR));
193 printk(KERN_ERR PFX "XGMAC_DATA = 0x%x.\n",
194 ql_read32(qdev, XGMAC_DATA));
195 printk(KERN_ERR PFX "NIC_ETS = 0x%x.\n",
196 ql_read32(qdev, NIC_ETS));
197 printk(KERN_ERR PFX "CNA_ETS = 0x%x.\n",
198 ql_read32(qdev, CNA_ETS));
199 printk(KERN_ERR PFX "FLASH_ADDR = 0x%x.\n",
200 ql_read32(qdev, FLASH_ADDR));
201 printk(KERN_ERR PFX "FLASH_DATA = 0x%x.\n",
202 ql_read32(qdev, FLASH_DATA));
203 printk(KERN_ERR PFX "CQ_STOP = 0x%x.\n",
204 ql_read32(qdev, CQ_STOP));
205 printk(KERN_ERR PFX "PAGE_TBL_RID = 0x%x.\n",
206 ql_read32(qdev, PAGE_TBL_RID));
207 printk(KERN_ERR PFX "WQ_PAGE_TBL_LO = 0x%x.\n",
208 ql_read32(qdev, WQ_PAGE_TBL_LO));
209 printk(KERN_ERR PFX "WQ_PAGE_TBL_HI = 0x%x.\n",
210 ql_read32(qdev, WQ_PAGE_TBL_HI));
211 printk(KERN_ERR PFX "CQ_PAGE_TBL_LO = 0x%x.\n",
212 ql_read32(qdev, CQ_PAGE_TBL_LO));
213 printk(KERN_ERR PFX "CQ_PAGE_TBL_HI = 0x%x.\n",
214 ql_read32(qdev, CQ_PAGE_TBL_HI));
215 printk(KERN_ERR PFX "COS_DFLT_CQ1 = 0x%x.\n",
216 ql_read32(qdev, COS_DFLT_CQ1));
217 printk(KERN_ERR PFX "COS_DFLT_CQ2 = 0x%x.\n",
218 ql_read32(qdev, COS_DFLT_CQ2));
219 printk(KERN_ERR PFX "SPLT_HDR = 0x%x.\n",
220 ql_read32(qdev, SPLT_HDR));
221 printk(KERN_ERR PFX "FC_PAUSE_THRES = 0x%x.\n",
222 ql_read32(qdev, FC_PAUSE_THRES));
223 printk(KERN_ERR PFX "NIC_PAUSE_THRES = 0x%x.\n",
224 ql_read32(qdev, NIC_PAUSE_THRES));
225 printk(KERN_ERR PFX "FC_ETHERTYPE = 0x%x.\n",
226 ql_read32(qdev, FC_ETHERTYPE));
227 printk(KERN_ERR PFX "FC_RCV_CFG = 0x%x.\n",
228 ql_read32(qdev, FC_RCV_CFG));
229 printk(KERN_ERR PFX "NIC_RCV_CFG = 0x%x.\n",
230 ql_read32(qdev, NIC_RCV_CFG));
231 printk(KERN_ERR PFX "FC_COS_TAGS = 0x%x.\n",
232 ql_read32(qdev, FC_COS_TAGS));
233 printk(KERN_ERR PFX "NIC_COS_TAGS = 0x%x.\n",
234 ql_read32(qdev, NIC_COS_TAGS));
235 printk(KERN_ERR PFX "MGMT_RCV_CFG = 0x%x.\n",
236 ql_read32(qdev, MGMT_RCV_CFG));
237 printk(KERN_ERR PFX "XG_SERDES_ADDR = 0x%x.\n",
238 ql_read32(qdev, XG_SERDES_ADDR));
239 printk(KERN_ERR PFX "XG_SERDES_DATA = 0x%x.\n",
240 ql_read32(qdev, XG_SERDES_DATA));
241 printk(KERN_ERR PFX "PRB_MX_ADDR = 0x%x.\n",
242 ql_read32(qdev, PRB_MX_ADDR));
243 printk(KERN_ERR PFX "PRB_MX_DATA = 0x%x.\n",
244 ql_read32(qdev, PRB_MX_DATA));
245 ql_dump_intr_states(qdev);
246 ql_dump_xgmac_control_regs(qdev);
247 ql_dump_ets_regs(qdev);
248 ql_dump_cam_entries(qdev);
249 ql_dump_routing_entries(qdev);
250}
251#endif
252
253#ifdef QL_STAT_DUMP
254void ql_dump_stat(struct ql_adapter *qdev)
255{
256 printk(KERN_ERR "%s: Enter.\n", __func__);
257 printk(KERN_ERR "tx_pkts = %ld\n",
258 (unsigned long)qdev->nic_stats.tx_pkts);
259 printk(KERN_ERR "tx_bytes = %ld\n",
260 (unsigned long)qdev->nic_stats.tx_bytes);
261 printk(KERN_ERR "tx_mcast_pkts = %ld.\n",
262 (unsigned long)qdev->nic_stats.tx_mcast_pkts);
263 printk(KERN_ERR "tx_bcast_pkts = %ld.\n",
264 (unsigned long)qdev->nic_stats.tx_bcast_pkts);
265 printk(KERN_ERR "tx_ucast_pkts = %ld.\n",
266 (unsigned long)qdev->nic_stats.tx_ucast_pkts);
267 printk(KERN_ERR "tx_ctl_pkts = %ld.\n",
268 (unsigned long)qdev->nic_stats.tx_ctl_pkts);
269 printk(KERN_ERR "tx_pause_pkts = %ld.\n",
270 (unsigned long)qdev->nic_stats.tx_pause_pkts);
271 printk(KERN_ERR "tx_64_pkt = %ld.\n",
272 (unsigned long)qdev->nic_stats.tx_64_pkt);
273 printk(KERN_ERR "tx_65_to_127_pkt = %ld.\n",
274 (unsigned long)qdev->nic_stats.tx_65_to_127_pkt);
275 printk(KERN_ERR "tx_128_to_255_pkt = %ld.\n",
276 (unsigned long)qdev->nic_stats.tx_128_to_255_pkt);
277 printk(KERN_ERR "tx_256_511_pkt = %ld.\n",
278 (unsigned long)qdev->nic_stats.tx_256_511_pkt);
279 printk(KERN_ERR "tx_512_to_1023_pkt = %ld.\n",
280 (unsigned long)qdev->nic_stats.tx_512_to_1023_pkt);
281 printk(KERN_ERR "tx_1024_to_1518_pkt = %ld.\n",
282 (unsigned long)qdev->nic_stats.tx_1024_to_1518_pkt);
283 printk(KERN_ERR "tx_1519_to_max_pkt = %ld.\n",
284 (unsigned long)qdev->nic_stats.tx_1519_to_max_pkt);
285 printk(KERN_ERR "tx_undersize_pkt = %ld.\n",
286 (unsigned long)qdev->nic_stats.tx_undersize_pkt);
287 printk(KERN_ERR "tx_oversize_pkt = %ld.\n",
288 (unsigned long)qdev->nic_stats.tx_oversize_pkt);
289 printk(KERN_ERR "rx_bytes = %ld.\n",
290 (unsigned long)qdev->nic_stats.rx_bytes);
291 printk(KERN_ERR "rx_bytes_ok = %ld.\n",
292 (unsigned long)qdev->nic_stats.rx_bytes_ok);
293 printk(KERN_ERR "rx_pkts = %ld.\n",
294 (unsigned long)qdev->nic_stats.rx_pkts);
295 printk(KERN_ERR "rx_pkts_ok = %ld.\n",
296 (unsigned long)qdev->nic_stats.rx_pkts_ok);
297 printk(KERN_ERR "rx_bcast_pkts = %ld.\n",
298 (unsigned long)qdev->nic_stats.rx_bcast_pkts);
299 printk(KERN_ERR "rx_mcast_pkts = %ld.\n",
300 (unsigned long)qdev->nic_stats.rx_mcast_pkts);
301 printk(KERN_ERR "rx_ucast_pkts = %ld.\n",
302 (unsigned long)qdev->nic_stats.rx_ucast_pkts);
303 printk(KERN_ERR "rx_undersize_pkts = %ld.\n",
304 (unsigned long)qdev->nic_stats.rx_undersize_pkts);
305 printk(KERN_ERR "rx_oversize_pkts = %ld.\n",
306 (unsigned long)qdev->nic_stats.rx_oversize_pkts);
307 printk(KERN_ERR "rx_jabber_pkts = %ld.\n",
308 (unsigned long)qdev->nic_stats.rx_jabber_pkts);
309 printk(KERN_ERR "rx_undersize_fcerr_pkts = %ld.\n",
310 (unsigned long)qdev->nic_stats.rx_undersize_fcerr_pkts);
311 printk(KERN_ERR "rx_drop_events = %ld.\n",
312 (unsigned long)qdev->nic_stats.rx_drop_events);
313 printk(KERN_ERR "rx_fcerr_pkts = %ld.\n",
314 (unsigned long)qdev->nic_stats.rx_fcerr_pkts);
315 printk(KERN_ERR "rx_align_err = %ld.\n",
316 (unsigned long)qdev->nic_stats.rx_align_err);
317 printk(KERN_ERR "rx_symbol_err = %ld.\n",
318 (unsigned long)qdev->nic_stats.rx_symbol_err);
319 printk(KERN_ERR "rx_mac_err = %ld.\n",
320 (unsigned long)qdev->nic_stats.rx_mac_err);
321 printk(KERN_ERR "rx_ctl_pkts = %ld.\n",
322 (unsigned long)qdev->nic_stats.rx_ctl_pkts);
323 printk(KERN_ERR "rx_pause_pkts = %ld.\n",
324 (unsigned long)qdev->nic_stats.rx_pause_pkts);
325 printk(KERN_ERR "rx_64_pkts = %ld.\n",
326 (unsigned long)qdev->nic_stats.rx_64_pkts);
327 printk(KERN_ERR "rx_65_to_127_pkts = %ld.\n",
328 (unsigned long)qdev->nic_stats.rx_65_to_127_pkts);
329 printk(KERN_ERR "rx_128_255_pkts = %ld.\n",
330 (unsigned long)qdev->nic_stats.rx_128_255_pkts);
331 printk(KERN_ERR "rx_256_511_pkts = %ld.\n",
332 (unsigned long)qdev->nic_stats.rx_256_511_pkts);
333 printk(KERN_ERR "rx_512_to_1023_pkts = %ld.\n",
334 (unsigned long)qdev->nic_stats.rx_512_to_1023_pkts);
335 printk(KERN_ERR "rx_1024_to_1518_pkts = %ld.\n",
336 (unsigned long)qdev->nic_stats.rx_1024_to_1518_pkts);
337 printk(KERN_ERR "rx_1519_to_max_pkts = %ld.\n",
338 (unsigned long)qdev->nic_stats.rx_1519_to_max_pkts);
339 printk(KERN_ERR "rx_len_err_pkts = %ld.\n",
340 (unsigned long)qdev->nic_stats.rx_len_err_pkts);
341};
342#endif
343
344#ifdef QL_DEV_DUMP
345void ql_dump_qdev(struct ql_adapter *qdev)
346{
347 int i;
348 printk(KERN_ERR PFX "qdev->flags = %lx.\n",
349 qdev->flags);
350 printk(KERN_ERR PFX "qdev->vlgrp = %p.\n",
351 qdev->vlgrp);
352 printk(KERN_ERR PFX "qdev->pdev = %p.\n",
353 qdev->pdev);
354 printk(KERN_ERR PFX "qdev->ndev = %p.\n",
355 qdev->ndev);
356 printk(KERN_ERR PFX "qdev->chip_rev_id = %d.\n",
357 qdev->chip_rev_id);
358 printk(KERN_ERR PFX "qdev->reg_base = %p.\n",
359 qdev->reg_base);
360 printk(KERN_ERR PFX "qdev->doorbell_area = %p.\n",
361 qdev->doorbell_area);
362 printk(KERN_ERR PFX "qdev->doorbell_area_size = %d.\n",
363 qdev->doorbell_area_size);
364 printk(KERN_ERR PFX "msg_enable = %x.\n",
365 qdev->msg_enable);
366 printk(KERN_ERR PFX "qdev->rx_ring_shadow_reg_area = %p.\n",
367 qdev->rx_ring_shadow_reg_area);
368 printk(KERN_ERR PFX "qdev->rx_ring_shadow_reg_dma = %p.\n",
369 (void *)qdev->rx_ring_shadow_reg_dma);
370 printk(KERN_ERR PFX "qdev->tx_ring_shadow_reg_area = %p.\n",
371 qdev->tx_ring_shadow_reg_area);
372 printk(KERN_ERR PFX "qdev->tx_ring_shadow_reg_dma = %p.\n",
373 (void *)qdev->tx_ring_shadow_reg_dma);
374 printk(KERN_ERR PFX "qdev->intr_count = %d.\n",
375 qdev->intr_count);
376 if (qdev->msi_x_entry)
377 for (i = 0; i < qdev->intr_count; i++) {
378 printk(KERN_ERR PFX
379 "msi_x_entry.[%d]vector = %d.\n", i,
380 qdev->msi_x_entry[i].vector);
381 printk(KERN_ERR PFX
382 "msi_x_entry.[%d]entry = %d.\n", i,
383 qdev->msi_x_entry[i].entry);
384 }
385 for (i = 0; i < qdev->intr_count; i++) {
386 printk(KERN_ERR PFX
387 "intr_context[%d].qdev = %p.\n", i,
388 qdev->intr_context[i].qdev);
389 printk(KERN_ERR PFX
390 "intr_context[%d].intr = %d.\n", i,
391 qdev->intr_context[i].intr);
392 printk(KERN_ERR PFX
393 "intr_context[%d].hooked = %d.\n", i,
394 qdev->intr_context[i].hooked);
395 printk(KERN_ERR PFX
396 "intr_context[%d].intr_en_mask = 0x%08x.\n", i,
397 qdev->intr_context[i].intr_en_mask);
398 printk(KERN_ERR PFX
399 "intr_context[%d].intr_dis_mask = 0x%08x.\n", i,
400 qdev->intr_context[i].intr_dis_mask);
401 printk(KERN_ERR PFX
402 "intr_context[%d].intr_read_mask = 0x%08x.\n", i,
403 qdev->intr_context[i].intr_read_mask);
404 }
405 printk(KERN_ERR PFX "qdev->tx_ring_count = %d.\n", qdev->tx_ring_count);
406 printk(KERN_ERR PFX "qdev->rx_ring_count = %d.\n", qdev->rx_ring_count);
407 printk(KERN_ERR PFX "qdev->ring_mem_size = %d.\n", qdev->ring_mem_size);
408 printk(KERN_ERR PFX "qdev->ring_mem = %p.\n", qdev->ring_mem);
409 printk(KERN_ERR PFX "qdev->intr_count = %d.\n", qdev->intr_count);
410 printk(KERN_ERR PFX "qdev->tx_ring = %p.\n",
411 qdev->tx_ring);
412 printk(KERN_ERR PFX "qdev->rss_ring_first_cq_id = %d.\n",
413 qdev->rss_ring_first_cq_id);
414 printk(KERN_ERR PFX "qdev->rss_ring_count = %d.\n",
415 qdev->rss_ring_count);
416 printk(KERN_ERR PFX "qdev->rx_ring = %p.\n", qdev->rx_ring);
417 printk(KERN_ERR PFX "qdev->default_rx_queue = %d.\n",
418 qdev->default_rx_queue);
419 printk(KERN_ERR PFX "qdev->xg_sem_mask = 0x%08x.\n",
420 qdev->xg_sem_mask);
421 printk(KERN_ERR PFX "qdev->port_link_up = 0x%08x.\n",
422 qdev->port_link_up);
423 printk(KERN_ERR PFX "qdev->port_init = 0x%08x.\n",
424 qdev->port_init);
425
426}
427#endif
428
429#ifdef QL_CB_DUMP
430void ql_dump_wqicb(struct wqicb *wqicb)
431{
432 printk(KERN_ERR PFX "Dumping wqicb stuff...\n");
433 printk(KERN_ERR PFX "wqicb->len = 0x%x.\n", le16_to_cpu(wqicb->len));
434 printk(KERN_ERR PFX "wqicb->flags = %x.\n", le16_to_cpu(wqicb->flags));
435 printk(KERN_ERR PFX "wqicb->cq_id_rss = %d.\n",
436 le16_to_cpu(wqicb->cq_id_rss));
437 printk(KERN_ERR PFX "wqicb->rid = 0x%x.\n", le16_to_cpu(wqicb->rid));
438 printk(KERN_ERR PFX "wqicb->wq_addr_lo = 0x%.08x.\n",
439 le32_to_cpu(wqicb->addr_lo));
440 printk(KERN_ERR PFX "wqicb->wq_addr_hi = 0x%.08x.\n",
441 le32_to_cpu(wqicb->addr_hi));
442 printk(KERN_ERR PFX "wqicb->wq_cnsmr_idx_addr_lo = 0x%.08x.\n",
443 le32_to_cpu(wqicb->cnsmr_idx_addr_lo));
444 printk(KERN_ERR PFX "wqicb->wq_cnsmr_idx_addr_hi = 0x%.08x.\n",
445 le32_to_cpu(wqicb->cnsmr_idx_addr_hi));
446}
447
448void ql_dump_tx_ring(struct tx_ring *tx_ring)
449{
450 if (tx_ring == NULL)
451 return;
452 printk(KERN_ERR PFX
453 "===================== Dumping tx_ring %d ===============.\n",
454 tx_ring->wq_id);
455 printk(KERN_ERR PFX "tx_ring->base = %p.\n", tx_ring->wq_base);
456 printk(KERN_ERR PFX "tx_ring->base_dma = 0x%llx.\n",
457 (u64) tx_ring->wq_base_dma);
458 printk(KERN_ERR PFX "tx_ring->cnsmr_idx_sh_reg = %p.\n",
459 tx_ring->cnsmr_idx_sh_reg);
460 printk(KERN_ERR PFX "tx_ring->cnsmr_idx_sh_reg_dma = 0x%llx.\n",
461 (u64) tx_ring->cnsmr_idx_sh_reg_dma);
462 printk(KERN_ERR PFX "tx_ring->size = %d.\n", tx_ring->wq_size);
463 printk(KERN_ERR PFX "tx_ring->len = %d.\n", tx_ring->wq_len);
464 printk(KERN_ERR PFX "tx_ring->prod_idx_db_reg = %p.\n",
465 tx_ring->prod_idx_db_reg);
466 printk(KERN_ERR PFX "tx_ring->valid_db_reg = %p.\n",
467 tx_ring->valid_db_reg);
468 printk(KERN_ERR PFX "tx_ring->prod_idx = %d.\n", tx_ring->prod_idx);
469 printk(KERN_ERR PFX "tx_ring->cq_id = %d.\n", tx_ring->cq_id);
470 printk(KERN_ERR PFX "tx_ring->wq_id = %d.\n", tx_ring->wq_id);
471 printk(KERN_ERR PFX "tx_ring->q = %p.\n", tx_ring->q);
472 printk(KERN_ERR PFX "tx_ring->tx_count = %d.\n",
473 atomic_read(&tx_ring->tx_count));
474}
475
476void ql_dump_ricb(struct ricb *ricb)
477{
478 int i;
479 printk(KERN_ERR PFX
480 "===================== Dumping ricb ===============.\n");
481 printk(KERN_ERR PFX "Dumping ricb stuff...\n");
482
483 printk(KERN_ERR PFX "ricb->base_cq = %d.\n", ricb->base_cq & 0x1f);
484 printk(KERN_ERR PFX "ricb->flags = %s%s%s%s%s%s%s%s%s.\n",
485 ricb->base_cq & RSS_L4K ? "RSS_L4K " : "",
486 ricb->flags & RSS_L6K ? "RSS_L6K " : "",
487 ricb->flags & RSS_LI ? "RSS_LI " : "",
488 ricb->flags & RSS_LB ? "RSS_LB " : "",
489 ricb->flags & RSS_LM ? "RSS_LM " : "",
490 ricb->flags & RSS_RI4 ? "RSS_RI4 " : "",
491 ricb->flags & RSS_RT4 ? "RSS_RT4 " : "",
492 ricb->flags & RSS_RI6 ? "RSS_RI6 " : "",
493 ricb->flags & RSS_RT6 ? "RSS_RT6 " : "");
494 printk(KERN_ERR PFX "ricb->mask = 0x%.04x.\n", le16_to_cpu(ricb->mask));
495 for (i = 0; i < 16; i++)
496 printk(KERN_ERR PFX "ricb->hash_cq_id[%d] = 0x%.08x.\n", i,
497 le32_to_cpu(ricb->hash_cq_id[i]));
498 for (i = 0; i < 10; i++)
499 printk(KERN_ERR PFX "ricb->ipv6_hash_key[%d] = 0x%.08x.\n", i,
500 le32_to_cpu(ricb->ipv6_hash_key[i]));
501 for (i = 0; i < 4; i++)
502 printk(KERN_ERR PFX "ricb->ipv4_hash_key[%d] = 0x%.08x.\n", i,
503 le32_to_cpu(ricb->ipv4_hash_key[i]));
504}
505
506void ql_dump_cqicb(struct cqicb *cqicb)
507{
508 printk(KERN_ERR PFX "Dumping cqicb stuff...\n");
509
510 printk(KERN_ERR PFX "cqicb->msix_vect = %d.\n", cqicb->msix_vect);
511 printk(KERN_ERR PFX "cqicb->flags = %x.\n", cqicb->flags);
512 printk(KERN_ERR PFX "cqicb->len = %d.\n", le16_to_cpu(cqicb->len));
513 printk(KERN_ERR PFX "cqicb->addr_lo = %x.\n",
514 le32_to_cpu(cqicb->addr_lo));
515 printk(KERN_ERR PFX "cqicb->addr_hi = %x.\n",
516 le32_to_cpu(cqicb->addr_hi));
517 printk(KERN_ERR PFX "cqicb->prod_idx_addr_lo = %x.\n",
518 le32_to_cpu(cqicb->prod_idx_addr_lo));
519 printk(KERN_ERR PFX "cqicb->prod_idx_addr_hi = %x.\n",
520 le32_to_cpu(cqicb->prod_idx_addr_hi));
521 printk(KERN_ERR PFX "cqicb->pkt_delay = 0x%.04x.\n",
522 le16_to_cpu(cqicb->pkt_delay));
523 printk(KERN_ERR PFX "cqicb->irq_delay = 0x%.04x.\n",
524 le16_to_cpu(cqicb->irq_delay));
525 printk(KERN_ERR PFX "cqicb->lbq_addr_lo = %x.\n",
526 le32_to_cpu(cqicb->lbq_addr_lo));
527 printk(KERN_ERR PFX "cqicb->lbq_addr_hi = %x.\n",
528 le32_to_cpu(cqicb->lbq_addr_hi));
529 printk(KERN_ERR PFX "cqicb->lbq_buf_size = 0x%.04x.\n",
530 le16_to_cpu(cqicb->lbq_buf_size));
531 printk(KERN_ERR PFX "cqicb->lbq_len = 0x%.04x.\n",
532 le16_to_cpu(cqicb->lbq_len));
533 printk(KERN_ERR PFX "cqicb->sbq_addr_lo = %x.\n",
534 le32_to_cpu(cqicb->sbq_addr_lo));
535 printk(KERN_ERR PFX "cqicb->sbq_addr_hi = %x.\n",
536 le32_to_cpu(cqicb->sbq_addr_hi));
537 printk(KERN_ERR PFX "cqicb->sbq_buf_size = 0x%.04x.\n",
538 le16_to_cpu(cqicb->sbq_buf_size));
539 printk(KERN_ERR PFX "cqicb->sbq_len = 0x%.04x.\n",
540 le16_to_cpu(cqicb->sbq_len));
541}
542
543void ql_dump_rx_ring(struct rx_ring *rx_ring)
544{
545 if (rx_ring == NULL)
546 return;
547 printk(KERN_ERR PFX
548 "===================== Dumping rx_ring %d ===============.\n",
549 rx_ring->cq_id);
550 printk(KERN_ERR PFX "Dumping rx_ring %d, type = %s%s%s.\n",
551 rx_ring->cq_id, rx_ring->type == DEFAULT_Q ? "DEFAULT" : "",
552 rx_ring->type == TX_Q ? "OUTBOUND COMPLETIONS" : "",
553 rx_ring->type == RX_Q ? "INBOUND_COMPLETIONS" : "");
554 printk(KERN_ERR PFX "rx_ring->cqicb = %p.\n", &rx_ring->cqicb);
555 printk(KERN_ERR PFX "rx_ring->cq_base = %p.\n", rx_ring->cq_base);
556 printk(KERN_ERR PFX "rx_ring->cq_base_dma = %llx.\n",
557 (u64) rx_ring->cq_base_dma);
558 printk(KERN_ERR PFX "rx_ring->cq_size = %d.\n", rx_ring->cq_size);
559 printk(KERN_ERR PFX "rx_ring->cq_len = %d.\n", rx_ring->cq_len);
560 printk(KERN_ERR PFX
561 "rx_ring->prod_idx_sh_reg, addr = %p, value = %d.\n",
562 rx_ring->prod_idx_sh_reg,
563 rx_ring->prod_idx_sh_reg ? *(rx_ring->prod_idx_sh_reg) : 0);
564 printk(KERN_ERR PFX "rx_ring->prod_idx_sh_reg_dma = %llx.\n",
565 (u64) rx_ring->prod_idx_sh_reg_dma);
566 printk(KERN_ERR PFX "rx_ring->cnsmr_idx_db_reg = %p.\n",
567 rx_ring->cnsmr_idx_db_reg);
568 printk(KERN_ERR PFX "rx_ring->cnsmr_idx = %d.\n", rx_ring->cnsmr_idx);
569 printk(KERN_ERR PFX "rx_ring->curr_entry = %p.\n", rx_ring->curr_entry);
570 printk(KERN_ERR PFX "rx_ring->valid_db_reg = %p.\n",
571 rx_ring->valid_db_reg);
572
573 printk(KERN_ERR PFX "rx_ring->lbq_base = %p.\n", rx_ring->lbq_base);
574 printk(KERN_ERR PFX "rx_ring->lbq_base_dma = %llx.\n",
575 (u64) rx_ring->lbq_base_dma);
576 printk(KERN_ERR PFX "rx_ring->lbq_base_indirect = %p.\n",
577 rx_ring->lbq_base_indirect);
578 printk(KERN_ERR PFX "rx_ring->lbq_base_indirect_dma = %llx.\n",
579 (u64) rx_ring->lbq_base_indirect_dma);
580 printk(KERN_ERR PFX "rx_ring->lbq = %p.\n", rx_ring->lbq);
581 printk(KERN_ERR PFX "rx_ring->lbq_len = %d.\n", rx_ring->lbq_len);
582 printk(KERN_ERR PFX "rx_ring->lbq_size = %d.\n", rx_ring->lbq_size);
583 printk(KERN_ERR PFX "rx_ring->lbq_prod_idx_db_reg = %p.\n",
584 rx_ring->lbq_prod_idx_db_reg);
585 printk(KERN_ERR PFX "rx_ring->lbq_prod_idx = %d.\n",
586 rx_ring->lbq_prod_idx);
587 printk(KERN_ERR PFX "rx_ring->lbq_curr_idx = %d.\n",
588 rx_ring->lbq_curr_idx);
589 printk(KERN_ERR PFX "rx_ring->lbq_clean_idx = %d.\n",
590 rx_ring->lbq_clean_idx);
591 printk(KERN_ERR PFX "rx_ring->lbq_free_cnt = %d.\n",
592 rx_ring->lbq_free_cnt);
593 printk(KERN_ERR PFX "rx_ring->lbq_buf_size = %d.\n",
594 rx_ring->lbq_buf_size);
595
596 printk(KERN_ERR PFX "rx_ring->sbq_base = %p.\n", rx_ring->sbq_base);
597 printk(KERN_ERR PFX "rx_ring->sbq_base_dma = %llx.\n",
598 (u64) rx_ring->sbq_base_dma);
599 printk(KERN_ERR PFX "rx_ring->sbq_base_indirect = %p.\n",
600 rx_ring->sbq_base_indirect);
601 printk(KERN_ERR PFX "rx_ring->sbq_base_indirect_dma = %llx.\n",
602 (u64) rx_ring->sbq_base_indirect_dma);
603 printk(KERN_ERR PFX "rx_ring->sbq = %p.\n", rx_ring->sbq);
604 printk(KERN_ERR PFX "rx_ring->sbq_len = %d.\n", rx_ring->sbq_len);
605 printk(KERN_ERR PFX "rx_ring->sbq_size = %d.\n", rx_ring->sbq_size);
606 printk(KERN_ERR PFX "rx_ring->sbq_prod_idx_db_reg addr = %p.\n",
607 rx_ring->sbq_prod_idx_db_reg);
608 printk(KERN_ERR PFX "rx_ring->sbq_prod_idx = %d.\n",
609 rx_ring->sbq_prod_idx);
610 printk(KERN_ERR PFX "rx_ring->sbq_curr_idx = %d.\n",
611 rx_ring->sbq_curr_idx);
612 printk(KERN_ERR PFX "rx_ring->sbq_clean_idx = %d.\n",
613 rx_ring->sbq_clean_idx);
614 printk(KERN_ERR PFX "rx_ring->sbq_free_cnt = %d.\n",
615 rx_ring->sbq_free_cnt);
616 printk(KERN_ERR PFX "rx_ring->sbq_buf_size = %d.\n",
617 rx_ring->sbq_buf_size);
618 printk(KERN_ERR PFX "rx_ring->cq_id = %d.\n", rx_ring->cq_id);
619 printk(KERN_ERR PFX "rx_ring->irq = %d.\n", rx_ring->irq);
620 printk(KERN_ERR PFX "rx_ring->cpu = %d.\n", rx_ring->cpu);
621 printk(KERN_ERR PFX "rx_ring->qdev = %p.\n", rx_ring->qdev);
622}
623
624void ql_dump_hw_cb(struct ql_adapter *qdev, int size, u32 bit, u16 q_id)
625{
626 void *ptr;
627
628 printk(KERN_ERR PFX "%s: Enter.\n", __func__);
629
630 ptr = kmalloc(size, GFP_ATOMIC);
631 if (ptr == NULL) {
632 printk(KERN_ERR PFX "%s: Couldn't allocate a buffer.\n",
633 __func__);
634 return;
635 }
636
637 if (ql_write_cfg(qdev, ptr, size, bit, q_id)) {
638 printk(KERN_ERR "%s: Failed to upload control block!\n",
639 __func__);
640 goto fail_it;
641 }
642 switch (bit) {
643 case CFG_DRQ:
644 ql_dump_wqicb((struct wqicb *)ptr);
645 break;
646 case CFG_DCQ:
647 ql_dump_cqicb((struct cqicb *)ptr);
648 break;
649 case CFG_DR:
650 ql_dump_ricb((struct ricb *)ptr);
651 break;
652 default:
653 printk(KERN_ERR PFX "%s: Invalid bit value = %x.\n",
654 __func__, bit);
655 break;
656 }
657fail_it:
658 kfree(ptr);
659}
660#endif
661
662#ifdef QL_OB_DUMP
663void ql_dump_tx_desc(struct tx_buf_desc *tbd)
664{
665 printk(KERN_ERR PFX "tbd->addr = 0x%llx\n",
666 le64_to_cpu((u64) tbd->addr));
667 printk(KERN_ERR PFX "tbd->len = %d\n",
668 le32_to_cpu(tbd->len & TX_DESC_LEN_MASK));
669 printk(KERN_ERR PFX "tbd->flags = %s %s\n",
670 tbd->len & TX_DESC_C ? "C" : ".",
671 tbd->len & TX_DESC_E ? "E" : ".");
672 tbd++;
673 printk(KERN_ERR PFX "tbd->addr = 0x%llx\n",
674 le64_to_cpu((u64) tbd->addr));
675 printk(KERN_ERR PFX "tbd->len = %d\n",
676 le32_to_cpu(tbd->len & TX_DESC_LEN_MASK));
677 printk(KERN_ERR PFX "tbd->flags = %s %s\n",
678 tbd->len & TX_DESC_C ? "C" : ".",
679 tbd->len & TX_DESC_E ? "E" : ".");
680 tbd++;
681 printk(KERN_ERR PFX "tbd->addr = 0x%llx\n",
682 le64_to_cpu((u64) tbd->addr));
683 printk(KERN_ERR PFX "tbd->len = %d\n",
684 le32_to_cpu(tbd->len & TX_DESC_LEN_MASK));
685 printk(KERN_ERR PFX "tbd->flags = %s %s\n",
686 tbd->len & TX_DESC_C ? "C" : ".",
687 tbd->len & TX_DESC_E ? "E" : ".");
688
689}
690
691void ql_dump_ob_mac_iocb(struct ob_mac_iocb_req *ob_mac_iocb)
692{
693 struct ob_mac_tso_iocb_req *ob_mac_tso_iocb =
694 (struct ob_mac_tso_iocb_req *)ob_mac_iocb;
695 struct tx_buf_desc *tbd;
696 u16 frame_len;
697
698 printk(KERN_ERR PFX "%s\n", __func__);
699 printk(KERN_ERR PFX "opcode = %s\n",
700 (ob_mac_iocb->opcode == OPCODE_OB_MAC_IOCB) ? "MAC" : "TSO");
701 printk(KERN_ERR PFX "flags1 = %s %s %s %s %s\n",
702 ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_OI ? "OI" : "",
703 ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_I ? "I" : "",
704 ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_D ? "D" : "",
705 ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_IP4 ? "IP4" : "",
706 ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_IP6 ? "IP6" : "");
707 printk(KERN_ERR PFX "flags2 = %s %s %s\n",
708 ob_mac_tso_iocb->flags2 & OB_MAC_TSO_IOCB_LSO ? "LSO" : "",
709 ob_mac_tso_iocb->flags2 & OB_MAC_TSO_IOCB_UC ? "UC" : "",
710 ob_mac_tso_iocb->flags2 & OB_MAC_TSO_IOCB_TC ? "TC" : "");
711 printk(KERN_ERR PFX "flags3 = %s %s %s \n",
712 ob_mac_tso_iocb->flags3 & OB_MAC_TSO_IOCB_IC ? "IC" : "",
713 ob_mac_tso_iocb->flags3 & OB_MAC_TSO_IOCB_DFP ? "DFP" : "",
714 ob_mac_tso_iocb->flags3 & OB_MAC_TSO_IOCB_V ? "V" : "");
715 printk(KERN_ERR PFX "tid = %x\n", ob_mac_iocb->tid);
716 printk(KERN_ERR PFX "txq_idx = %d\n", ob_mac_iocb->txq_idx);
717 printk(KERN_ERR PFX "vlan_tci = %x\n", ob_mac_tso_iocb->vlan_tci);
718 if (ob_mac_iocb->opcode == OPCODE_OB_MAC_TSO_IOCB) {
719 printk(KERN_ERR PFX "frame_len = %d\n",
720 le32_to_cpu(ob_mac_tso_iocb->frame_len));
721 printk(KERN_ERR PFX "mss = %d\n",
722 le16_to_cpu(ob_mac_tso_iocb->mss));
723 printk(KERN_ERR PFX "prot_hdr_len = %d\n",
724 le16_to_cpu(ob_mac_tso_iocb->total_hdrs_len));
725 printk(KERN_ERR PFX "hdr_offset = 0x%.04x\n",
726 le16_to_cpu(ob_mac_tso_iocb->net_trans_offset));
727 frame_len = le32_to_cpu(ob_mac_tso_iocb->frame_len);
728 } else {
729 printk(KERN_ERR PFX "frame_len = %d\n",
730 le16_to_cpu(ob_mac_iocb->frame_len));
731 frame_len = le16_to_cpu(ob_mac_iocb->frame_len);
732 }
733 tbd = &ob_mac_iocb->tbd[0];
734 ql_dump_tx_desc(tbd);
735}
736
737void ql_dump_ob_mac_rsp(struct ob_mac_iocb_rsp *ob_mac_rsp)
738{
739 printk(KERN_ERR PFX "%s\n", __func__);
740 printk(KERN_ERR PFX "opcode = %d\n", ob_mac_rsp->opcode);
741 printk(KERN_ERR PFX "flags = %s %s %s %s %s %s %s\n",
742 ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_OI ? "OI" : ".",
743 ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_I ? "I" : ".",
744 ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_E ? "E" : ".",
745 ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_S ? "S" : ".",
746 ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_L ? "L" : ".",
747 ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_P ? "P" : ".",
748 ob_mac_rsp->flags2 & OB_MAC_IOCB_RSP_B ? "B" : ".");
749 printk(KERN_ERR PFX "tid = %x\n", ob_mac_rsp->tid);
750}
751#endif
752
753#ifdef QL_IB_DUMP
754void ql_dump_ib_mac_rsp(struct ib_mac_iocb_rsp *ib_mac_rsp)
755{
756 printk(KERN_ERR PFX "%s\n", __func__);
757 printk(KERN_ERR PFX "opcode = 0x%x\n", ib_mac_rsp->opcode);
758 printk(KERN_ERR PFX "flags1 = %s%s%s%s%s%s\n",
759 ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_OI ? "OI " : "",
760 ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_I ? "I " : "",
761 ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_TE ? "TE " : "",
762 ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU ? "NU " : "",
763 ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_IE ? "IE " : "",
764 ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_B ? "B " : "");
765
766 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK)
767 printk(KERN_ERR PFX "%s%s%s Multicast.\n",
768 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
769 IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
770 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
771 IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
772 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
773 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
774
775 printk(KERN_ERR PFX "flags2 = %s%s%s%s%s\n",
776 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) ? "P " : "",
777 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ? "V " : "",
778 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) ? "U " : "",
779 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ? "T " : "",
780 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_FO) ? "FO " : "");
781
782 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK)
783 printk(KERN_ERR PFX "%s%s%s%s%s error.\n",
784 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
785 IB_MAC_IOCB_RSP_ERR_OVERSIZE ? "oversize" : "",
786 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
787 IB_MAC_IOCB_RSP_ERR_UNDERSIZE ? "undersize" : "",
788 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
789 IB_MAC_IOCB_RSP_ERR_PREAMBLE ? "preamble" : "",
790 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
791 IB_MAC_IOCB_RSP_ERR_FRAME_LEN ? "frame length" : "",
792 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
793 IB_MAC_IOCB_RSP_ERR_CRC ? "CRC" : "");
794
795 printk(KERN_ERR PFX "flags3 = %s%s.\n",
796 ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS ? "DS " : "",
797 ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL ? "DL " : "");
798
799 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK)
800 printk(KERN_ERR PFX "RSS flags = %s%s%s%s.\n",
801 ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) ==
802 IB_MAC_IOCB_RSP_M_IPV4) ? "IPv4 RSS" : "",
803 ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) ==
804 IB_MAC_IOCB_RSP_M_IPV6) ? "IPv6 RSS " : "",
805 ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) ==
806 IB_MAC_IOCB_RSP_M_TCP_V4) ? "TCP/IPv4 RSS" : "",
807 ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) ==
808 IB_MAC_IOCB_RSP_M_TCP_V6) ? "TCP/IPv6 RSS" : "");
809
810 printk(KERN_ERR PFX "data_len = %d\n",
811 le32_to_cpu(ib_mac_rsp->data_len));
812 printk(KERN_ERR PFX "data_addr_hi = 0x%x\n",
813 le32_to_cpu(ib_mac_rsp->data_addr_hi));
814 printk(KERN_ERR PFX "data_addr_lo = 0x%x\n",
815 le32_to_cpu(ib_mac_rsp->data_addr_lo));
816 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK)
817 printk(KERN_ERR PFX "rss = %x\n",
818 le32_to_cpu(ib_mac_rsp->rss));
819 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)
820 printk(KERN_ERR PFX "vlan_id = %x\n",
821 le16_to_cpu(ib_mac_rsp->vlan_id));
822
823 printk(KERN_ERR PFX "flags4 = %s%s%s.\n",
824 le32_to_cpu(ib_mac_rsp->
825 flags4) & IB_MAC_IOCB_RSP_HV ? "HV " : "",
826 le32_to_cpu(ib_mac_rsp->
827 flags4) & IB_MAC_IOCB_RSP_HS ? "HS " : "",
828 le32_to_cpu(ib_mac_rsp->
829 flags4) & IB_MAC_IOCB_RSP_HL ? "HL " : "");
830
831 if (le32_to_cpu(ib_mac_rsp->flags4) & IB_MAC_IOCB_RSP_HV) {
832 printk(KERN_ERR PFX "hdr length = %d.\n",
833 le32_to_cpu(ib_mac_rsp->hdr_len));
834 printk(KERN_ERR PFX "hdr addr_hi = 0x%x.\n",
835 le32_to_cpu(ib_mac_rsp->hdr_addr_hi));
836 printk(KERN_ERR PFX "hdr addr_lo = 0x%x.\n",
837 le32_to_cpu(ib_mac_rsp->hdr_addr_lo));
838 }
839}
840#endif
841
842#ifdef QL_ALL_DUMP
843void ql_dump_all(struct ql_adapter *qdev)
844{
845 int i;
846
847 QL_DUMP_REGS(qdev);
848 QL_DUMP_QDEV(qdev);
849 for (i = 0; i < qdev->tx_ring_count; i++) {
850 QL_DUMP_TX_RING(&qdev->tx_ring[i]);
851 QL_DUMP_WQICB((struct wqicb *)&qdev->tx_ring[i]);
852 }
853 for (i = 0; i < qdev->rx_ring_count; i++) {
854 QL_DUMP_RX_RING(&qdev->rx_ring[i]);
855 QL_DUMP_CQICB((struct cqicb *)&qdev->rx_ring[i]);
856 }
857}
858#endif
diff --git a/drivers/net/qlge/qlge_ethtool.c b/drivers/net/qlge/qlge_ethtool.c
new file mode 100644
index 000000000000..6457f8c4fdaa
--- /dev/null
+++ b/drivers/net/qlge/qlge_ethtool.c
@@ -0,0 +1,415 @@
1#include <linux/kernel.h>
2#include <linux/init.h>
3#include <linux/types.h>
4#include <linux/module.h>
5#include <linux/list.h>
6#include <linux/pci.h>
7#include <linux/dma-mapping.h>
8#include <linux/pagemap.h>
9#include <linux/sched.h>
10#include <linux/slab.h>
11#include <linux/dmapool.h>
12#include <linux/mempool.h>
13#include <linux/spinlock.h>
14#include <linux/kthread.h>
15#include <linux/interrupt.h>
16#include <linux/errno.h>
17#include <linux/ioport.h>
18#include <linux/in.h>
19#include <linux/ip.h>
20#include <linux/ipv6.h>
21#include <net/ipv6.h>
22#include <linux/tcp.h>
23#include <linux/udp.h>
24#include <linux/if_arp.h>
25#include <linux/if_ether.h>
26#include <linux/netdevice.h>
27#include <linux/etherdevice.h>
28#include <linux/ethtool.h>
29#include <linux/skbuff.h>
30#include <linux/rtnetlink.h>
31#include <linux/if_vlan.h>
32#include <linux/init.h>
33#include <linux/delay.h>
34#include <linux/mm.h>
35#include <linux/vmalloc.h>
36
37#include <linux/version.h>
38
39#include "qlge.h"
40
41static int ql_update_ring_coalescing(struct ql_adapter *qdev)
42{
43 int i, status = 0;
44 struct rx_ring *rx_ring;
45 struct cqicb *cqicb;
46
47 if (!netif_running(qdev->ndev))
48 return status;
49
50 spin_lock(&qdev->hw_lock);
51 /* Skip the default queue, and update the outbound handler
52 * queues if they changed.
53 */
54 cqicb = (struct cqicb *)&qdev->rx_ring[1];
55 if (le16_to_cpu(cqicb->irq_delay) != qdev->tx_coalesce_usecs ||
56 le16_to_cpu(cqicb->pkt_delay) != qdev->tx_max_coalesced_frames) {
57 for (i = 1; i < qdev->rss_ring_first_cq_id; i++, rx_ring++) {
58 rx_ring = &qdev->rx_ring[i];
59 cqicb = (struct cqicb *)rx_ring;
60 cqicb->irq_delay = le16_to_cpu(qdev->tx_coalesce_usecs);
61 cqicb->pkt_delay =
62 le16_to_cpu(qdev->tx_max_coalesced_frames);
63 cqicb->flags = FLAGS_LI;
64 status = ql_write_cfg(qdev, cqicb, sizeof(cqicb),
65 CFG_LCQ, rx_ring->cq_id);
66 if (status) {
67 QPRINTK(qdev, IFUP, ERR,
68 "Failed to load CQICB.\n");
69 goto exit;
70 }
71 }
72 }
73
74 /* Update the inbound (RSS) handler queues if they changed. */
75 cqicb = (struct cqicb *)&qdev->rx_ring[qdev->rss_ring_first_cq_id];
76 if (le16_to_cpu(cqicb->irq_delay) != qdev->rx_coalesce_usecs ||
77 le16_to_cpu(cqicb->pkt_delay) != qdev->rx_max_coalesced_frames) {
78 for (i = qdev->rss_ring_first_cq_id;
79 i <= qdev->rss_ring_first_cq_id + qdev->rss_ring_count;
80 i++) {
81 rx_ring = &qdev->rx_ring[i];
82 cqicb = (struct cqicb *)rx_ring;
83 cqicb->irq_delay = le16_to_cpu(qdev->rx_coalesce_usecs);
84 cqicb->pkt_delay =
85 le16_to_cpu(qdev->rx_max_coalesced_frames);
86 cqicb->flags = FLAGS_LI;
87 status = ql_write_cfg(qdev, cqicb, sizeof(cqicb),
88 CFG_LCQ, rx_ring->cq_id);
89 if (status) {
90 QPRINTK(qdev, IFUP, ERR,
91 "Failed to load CQICB.\n");
92 goto exit;
93 }
94 }
95 }
96exit:
97 spin_unlock(&qdev->hw_lock);
98 return status;
99}
100
101void ql_update_stats(struct ql_adapter *qdev)
102{
103 u32 i;
104 u64 data;
105 u64 *iter = &qdev->nic_stats.tx_pkts;
106
107 spin_lock(&qdev->stats_lock);
108 if (ql_sem_spinlock(qdev, qdev->xg_sem_mask)) {
109 QPRINTK(qdev, DRV, ERR,
110 "Couldn't get xgmac sem.\n");
111 goto quit;
112 }
113 /*
114 * Get TX statistics.
115 */
116 for (i = 0x200; i < 0x280; i += 8) {
117 if (ql_read_xgmac_reg64(qdev, i, &data)) {
118 QPRINTK(qdev, DRV, ERR,
119 "Error reading status register 0x%.04x.\n", i);
120 goto end;
121 } else
122 *iter = data;
123 iter++;
124 }
125
126 /*
127 * Get RX statistics.
128 */
129 for (i = 0x300; i < 0x3d0; i += 8) {
130 if (ql_read_xgmac_reg64(qdev, i, &data)) {
131 QPRINTK(qdev, DRV, ERR,
132 "Error reading status register 0x%.04x.\n", i);
133 goto end;
134 } else
135 *iter = data;
136 iter++;
137 }
138
139end:
140 ql_sem_unlock(qdev, qdev->xg_sem_mask);
141quit:
142 spin_unlock(&qdev->stats_lock);
143
144 QL_DUMP_STAT(qdev);
145
146 return;
147}
148
149static char ql_stats_str_arr[][ETH_GSTRING_LEN] = {
150 {"tx_pkts"},
151 {"tx_bytes"},
152 {"tx_mcast_pkts"},
153 {"tx_bcast_pkts"},
154 {"tx_ucast_pkts"},
155 {"tx_ctl_pkts"},
156 {"tx_pause_pkts"},
157 {"tx_64_pkts"},
158 {"tx_65_to_127_pkts"},
159 {"tx_128_to_255_pkts"},
160 {"tx_256_511_pkts"},
161 {"tx_512_to_1023_pkts"},
162 {"tx_1024_to_1518_pkts"},
163 {"tx_1519_to_max_pkts"},
164 {"tx_undersize_pkts"},
165 {"tx_oversize_pkts"},
166 {"rx_bytes"},
167 {"rx_bytes_ok"},
168 {"rx_pkts"},
169 {"rx_pkts_ok"},
170 {"rx_bcast_pkts"},
171 {"rx_mcast_pkts"},
172 {"rx_ucast_pkts"},
173 {"rx_undersize_pkts"},
174 {"rx_oversize_pkts"},
175 {"rx_jabber_pkts"},
176 {"rx_undersize_fcerr_pkts"},
177 {"rx_drop_events"},
178 {"rx_fcerr_pkts"},
179 {"rx_align_err"},
180 {"rx_symbol_err"},
181 {"rx_mac_err"},
182 {"rx_ctl_pkts"},
183 {"rx_pause_pkts"},
184 {"rx_64_pkts"},
185 {"rx_65_to_127_pkts"},
186 {"rx_128_255_pkts"},
187 {"rx_256_511_pkts"},
188 {"rx_512_to_1023_pkts"},
189 {"rx_1024_to_1518_pkts"},
190 {"rx_1519_to_max_pkts"},
191 {"rx_len_err_pkts"},
192};
193
194static void ql_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
195{
196 switch (stringset) {
197 case ETH_SS_STATS:
198 memcpy(buf, ql_stats_str_arr, sizeof(ql_stats_str_arr));
199 break;
200 }
201}
202
203static int ql_get_sset_count(struct net_device *dev, int sset)
204{
205 switch (sset) {
206 case ETH_SS_STATS:
207 return ARRAY_SIZE(ql_stats_str_arr);
208 default:
209 return -EOPNOTSUPP;
210 }
211}
212
213static void
214ql_get_ethtool_stats(struct net_device *ndev,
215 struct ethtool_stats *stats, u64 *data)
216{
217 struct ql_adapter *qdev = netdev_priv(ndev);
218 struct nic_stats *s = &qdev->nic_stats;
219
220 ql_update_stats(qdev);
221
222 *data++ = s->tx_pkts;
223 *data++ = s->tx_bytes;
224 *data++ = s->tx_mcast_pkts;
225 *data++ = s->tx_bcast_pkts;
226 *data++ = s->tx_ucast_pkts;
227 *data++ = s->tx_ctl_pkts;
228 *data++ = s->tx_pause_pkts;
229 *data++ = s->tx_64_pkt;
230 *data++ = s->tx_65_to_127_pkt;
231 *data++ = s->tx_128_to_255_pkt;
232 *data++ = s->tx_256_511_pkt;
233 *data++ = s->tx_512_to_1023_pkt;
234 *data++ = s->tx_1024_to_1518_pkt;
235 *data++ = s->tx_1519_to_max_pkt;
236 *data++ = s->tx_undersize_pkt;
237 *data++ = s->tx_oversize_pkt;
238 *data++ = s->rx_bytes;
239 *data++ = s->rx_bytes_ok;
240 *data++ = s->rx_pkts;
241 *data++ = s->rx_pkts_ok;
242 *data++ = s->rx_bcast_pkts;
243 *data++ = s->rx_mcast_pkts;
244 *data++ = s->rx_ucast_pkts;
245 *data++ = s->rx_undersize_pkts;
246 *data++ = s->rx_oversize_pkts;
247 *data++ = s->rx_jabber_pkts;
248 *data++ = s->rx_undersize_fcerr_pkts;
249 *data++ = s->rx_drop_events;
250 *data++ = s->rx_fcerr_pkts;
251 *data++ = s->rx_align_err;
252 *data++ = s->rx_symbol_err;
253 *data++ = s->rx_mac_err;
254 *data++ = s->rx_ctl_pkts;
255 *data++ = s->rx_pause_pkts;
256 *data++ = s->rx_64_pkts;
257 *data++ = s->rx_65_to_127_pkts;
258 *data++ = s->rx_128_255_pkts;
259 *data++ = s->rx_256_511_pkts;
260 *data++ = s->rx_512_to_1023_pkts;
261 *data++ = s->rx_1024_to_1518_pkts;
262 *data++ = s->rx_1519_to_max_pkts;
263 *data++ = s->rx_len_err_pkts;
264}
265
266static int ql_get_settings(struct net_device *ndev,
267 struct ethtool_cmd *ecmd)
268{
269 struct ql_adapter *qdev = netdev_priv(ndev);
270
271 ecmd->supported = SUPPORTED_10000baseT_Full;
272 ecmd->advertising = ADVERTISED_10000baseT_Full;
273 ecmd->autoneg = AUTONEG_ENABLE;
274 ecmd->transceiver = XCVR_EXTERNAL;
275 if ((qdev->link_status & LINK_TYPE_MASK) == LINK_TYPE_10GBASET) {
276 ecmd->supported |= (SUPPORTED_TP | SUPPORTED_Autoneg);
277 ecmd->advertising |= (ADVERTISED_TP | ADVERTISED_Autoneg);
278 ecmd->port = PORT_TP;
279 } else {
280 ecmd->supported |= SUPPORTED_FIBRE;
281 ecmd->advertising |= ADVERTISED_FIBRE;
282 ecmd->port = PORT_FIBRE;
283 }
284
285 ecmd->speed = SPEED_10000;
286 ecmd->duplex = DUPLEX_FULL;
287
288 return 0;
289}
290
291static void ql_get_drvinfo(struct net_device *ndev,
292 struct ethtool_drvinfo *drvinfo)
293{
294 struct ql_adapter *qdev = netdev_priv(ndev);
295 strncpy(drvinfo->driver, qlge_driver_name, 32);
296 strncpy(drvinfo->version, qlge_driver_version, 32);
297 strncpy(drvinfo->fw_version, "N/A", 32);
298 strncpy(drvinfo->bus_info, pci_name(qdev->pdev), 32);
299 drvinfo->n_stats = 0;
300 drvinfo->testinfo_len = 0;
301 drvinfo->regdump_len = 0;
302 drvinfo->eedump_len = 0;
303}
304
305static int ql_get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
306{
307 struct ql_adapter *qdev = netdev_priv(dev);
308
309 c->rx_coalesce_usecs = qdev->rx_coalesce_usecs;
310 c->tx_coalesce_usecs = qdev->tx_coalesce_usecs;
311
312 /* This chip coalesces as follows:
313 * If a packet arrives, hold off interrupts until
314 * cqicb->int_delay expires, but if no other packets arrive don't
315 * wait longer than cqicb->pkt_int_delay. But ethtool doesn't use a
316 * timer to coalesce on a frame basis. So, we have to take ethtool's
317 * max_coalesced_frames value and convert it to a delay in microseconds.
318 * We do this by using a basic thoughput of 1,000,000 frames per
319 * second @ (1024 bytes). This means one frame per usec. So it's a
320 * simple one to one ratio.
321 */
322 c->rx_max_coalesced_frames = qdev->rx_max_coalesced_frames;
323 c->tx_max_coalesced_frames = qdev->tx_max_coalesced_frames;
324
325 return 0;
326}
327
328static int ql_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *c)
329{
330 struct ql_adapter *qdev = netdev_priv(ndev);
331
332 /* Validate user parameters. */
333 if (c->rx_coalesce_usecs > qdev->rx_ring_size / 2)
334 return -EINVAL;
335 /* Don't wait more than 10 usec. */
336 if (c->rx_max_coalesced_frames > MAX_INTER_FRAME_WAIT)
337 return -EINVAL;
338 if (c->tx_coalesce_usecs > qdev->tx_ring_size / 2)
339 return -EINVAL;
340 if (c->tx_max_coalesced_frames > MAX_INTER_FRAME_WAIT)
341 return -EINVAL;
342
343 /* Verify a change took place before updating the hardware. */
344 if (qdev->rx_coalesce_usecs == c->rx_coalesce_usecs &&
345 qdev->tx_coalesce_usecs == c->tx_coalesce_usecs &&
346 qdev->rx_max_coalesced_frames == c->rx_max_coalesced_frames &&
347 qdev->tx_max_coalesced_frames == c->tx_max_coalesced_frames)
348 return 0;
349
350 qdev->rx_coalesce_usecs = c->rx_coalesce_usecs;
351 qdev->tx_coalesce_usecs = c->tx_coalesce_usecs;
352 qdev->rx_max_coalesced_frames = c->rx_max_coalesced_frames;
353 qdev->tx_max_coalesced_frames = c->tx_max_coalesced_frames;
354
355 return ql_update_ring_coalescing(qdev);
356}
357
358static u32 ql_get_rx_csum(struct net_device *netdev)
359{
360 struct ql_adapter *qdev = netdev_priv(netdev);
361 return qdev->rx_csum;
362}
363
364static int ql_set_rx_csum(struct net_device *netdev, uint32_t data)
365{
366 struct ql_adapter *qdev = netdev_priv(netdev);
367 qdev->rx_csum = data;
368 return 0;
369}
370
371static int ql_set_tso(struct net_device *ndev, uint32_t data)
372{
373
374 if (data) {
375 ndev->features |= NETIF_F_TSO;
376 ndev->features |= NETIF_F_TSO6;
377 } else {
378 ndev->features &= ~NETIF_F_TSO;
379 ndev->features &= ~NETIF_F_TSO6;
380 }
381 return 0;
382}
383
384static u32 ql_get_msglevel(struct net_device *ndev)
385{
386 struct ql_adapter *qdev = netdev_priv(ndev);
387 return qdev->msg_enable;
388}
389
390static void ql_set_msglevel(struct net_device *ndev, u32 value)
391{
392 struct ql_adapter *qdev = netdev_priv(ndev);
393 qdev->msg_enable = value;
394}
395
396const struct ethtool_ops qlge_ethtool_ops = {
397 .get_settings = ql_get_settings,
398 .get_drvinfo = ql_get_drvinfo,
399 .get_msglevel = ql_get_msglevel,
400 .set_msglevel = ql_set_msglevel,
401 .get_link = ethtool_op_get_link,
402 .get_rx_csum = ql_get_rx_csum,
403 .set_rx_csum = ql_set_rx_csum,
404 .get_tx_csum = ethtool_op_get_tx_csum,
405 .get_sg = ethtool_op_get_sg,
406 .set_sg = ethtool_op_set_sg,
407 .get_tso = ethtool_op_get_tso,
408 .set_tso = ql_set_tso,
409 .get_coalesce = ql_get_coalesce,
410 .set_coalesce = ql_set_coalesce,
411 .get_sset_count = ql_get_sset_count,
412 .get_strings = ql_get_strings,
413 .get_ethtool_stats = ql_get_ethtool_stats,
414};
415
diff --git a/drivers/net/qlge/qlge_main.c b/drivers/net/qlge/qlge_main.c
new file mode 100644
index 000000000000..ad878e2b9ded
--- /dev/null
+++ b/drivers/net/qlge/qlge_main.c
@@ -0,0 +1,3954 @@
1/*
2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
7 */
8#include <linux/kernel.h>
9#include <linux/init.h>
10#include <linux/types.h>
11#include <linux/module.h>
12#include <linux/list.h>
13#include <linux/pci.h>
14#include <linux/dma-mapping.h>
15#include <linux/pagemap.h>
16#include <linux/sched.h>
17#include <linux/slab.h>
18#include <linux/dmapool.h>
19#include <linux/mempool.h>
20#include <linux/spinlock.h>
21#include <linux/kthread.h>
22#include <linux/interrupt.h>
23#include <linux/errno.h>
24#include <linux/ioport.h>
25#include <linux/in.h>
26#include <linux/ip.h>
27#include <linux/ipv6.h>
28#include <net/ipv6.h>
29#include <linux/tcp.h>
30#include <linux/udp.h>
31#include <linux/if_arp.h>
32#include <linux/if_ether.h>
33#include <linux/netdevice.h>
34#include <linux/etherdevice.h>
35#include <linux/ethtool.h>
36#include <linux/skbuff.h>
37#include <linux/rtnetlink.h>
38#include <linux/if_vlan.h>
39#include <linux/init.h>
40#include <linux/delay.h>
41#include <linux/mm.h>
42#include <linux/vmalloc.h>
43
44#include "qlge.h"
45
46char qlge_driver_name[] = DRV_NAME;
47const char qlge_driver_version[] = DRV_VERSION;
48
49MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50MODULE_DESCRIPTION(DRV_STRING " ");
51MODULE_LICENSE("GPL");
52MODULE_VERSION(DRV_VERSION);
53
54static const u32 default_msg =
55 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56/* NETIF_MSG_TIMER | */
57 NETIF_MSG_IFDOWN |
58 NETIF_MSG_IFUP |
59 NETIF_MSG_RX_ERR |
60 NETIF_MSG_TX_ERR |
61 NETIF_MSG_TX_QUEUED |
62 NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS |
63/* NETIF_MSG_PKTDATA | */
64 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
65
66static int debug = 0x00007fff; /* defaults above */
67module_param(debug, int, 0);
68MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70#define MSIX_IRQ 0
71#define MSI_IRQ 1
72#define LEG_IRQ 2
73static int irq_type = MSIX_IRQ;
74module_param(irq_type, int, MSIX_IRQ);
75MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
76
77static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
78 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID)},
79 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID1)},
80 /* required last entry */
81 {0,}
82};
83
84MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
85
86/* This hardware semaphore causes exclusive access to
87 * resources shared between the NIC driver, MPI firmware,
88 * FCOE firmware and the FC driver.
89 */
90static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
91{
92 u32 sem_bits = 0;
93
94 switch (sem_mask) {
95 case SEM_XGMAC0_MASK:
96 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
97 break;
98 case SEM_XGMAC1_MASK:
99 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
100 break;
101 case SEM_ICB_MASK:
102 sem_bits = SEM_SET << SEM_ICB_SHIFT;
103 break;
104 case SEM_MAC_ADDR_MASK:
105 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
106 break;
107 case SEM_FLASH_MASK:
108 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
109 break;
110 case SEM_PROBE_MASK:
111 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
112 break;
113 case SEM_RT_IDX_MASK:
114 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
115 break;
116 case SEM_PROC_REG_MASK:
117 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
118 break;
119 default:
120 QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
121 return -EINVAL;
122 }
123
124 ql_write32(qdev, SEM, sem_bits | sem_mask);
125 return !(ql_read32(qdev, SEM) & sem_bits);
126}
127
128int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
129{
130 unsigned int seconds = 3;
131 do {
132 if (!ql_sem_trylock(qdev, sem_mask))
133 return 0;
134 ssleep(1);
135 } while (--seconds);
136 return -ETIMEDOUT;
137}
138
139void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
140{
141 ql_write32(qdev, SEM, sem_mask);
142 ql_read32(qdev, SEM); /* flush */
143}
144
145/* This function waits for a specific bit to come ready
146 * in a given register. It is used mostly by the initialize
147 * process, but is also used in kernel thread API such as
148 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
149 */
150int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
151{
152 u32 temp;
153 int count = UDELAY_COUNT;
154
155 while (count) {
156 temp = ql_read32(qdev, reg);
157
158 /* check for errors */
159 if (temp & err_bit) {
160 QPRINTK(qdev, PROBE, ALERT,
161 "register 0x%.08x access error, value = 0x%.08x!.\n",
162 reg, temp);
163 return -EIO;
164 } else if (temp & bit)
165 return 0;
166 udelay(UDELAY_DELAY);
167 count--;
168 }
169 QPRINTK(qdev, PROBE, ALERT,
170 "Timed out waiting for reg %x to come ready.\n", reg);
171 return -ETIMEDOUT;
172}
173
174/* The CFG register is used to download TX and RX control blocks
175 * to the chip. This function waits for an operation to complete.
176 */
177static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
178{
179 int count = UDELAY_COUNT;
180 u32 temp;
181
182 while (count) {
183 temp = ql_read32(qdev, CFG);
184 if (temp & CFG_LE)
185 return -EIO;
186 if (!(temp & bit))
187 return 0;
188 udelay(UDELAY_DELAY);
189 count--;
190 }
191 return -ETIMEDOUT;
192}
193
194
195/* Used to issue init control blocks to hw. Maps control block,
196 * sets address, triggers download, waits for completion.
197 */
198int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
199 u16 q_id)
200{
201 u64 map;
202 int status = 0;
203 int direction;
204 u32 mask;
205 u32 value;
206
207 direction =
208 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
209 PCI_DMA_FROMDEVICE;
210
211 map = pci_map_single(qdev->pdev, ptr, size, direction);
212 if (pci_dma_mapping_error(qdev->pdev, map)) {
213 QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
214 return -ENOMEM;
215 }
216
217 status = ql_wait_cfg(qdev, bit);
218 if (status) {
219 QPRINTK(qdev, IFUP, ERR,
220 "Timed out waiting for CFG to come ready.\n");
221 goto exit;
222 }
223
224 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
225 if (status)
226 goto exit;
227 ql_write32(qdev, ICB_L, (u32) map);
228 ql_write32(qdev, ICB_H, (u32) (map >> 32));
229 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
230
231 mask = CFG_Q_MASK | (bit << 16);
232 value = bit | (q_id << CFG_Q_SHIFT);
233 ql_write32(qdev, CFG, (mask | value));
234
235 /*
236 * Wait for the bit to clear after signaling hw.
237 */
238 status = ql_wait_cfg(qdev, bit);
239exit:
240 pci_unmap_single(qdev->pdev, map, size, direction);
241 return status;
242}
243
244/* Get a specific MAC address from the CAM. Used for debug and reg dump. */
245int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
246 u32 *value)
247{
248 u32 offset = 0;
249 int status;
250
251 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
252 if (status)
253 return status;
254 switch (type) {
255 case MAC_ADDR_TYPE_MULTI_MAC:
256 case MAC_ADDR_TYPE_CAM_MAC:
257 {
258 status =
259 ql_wait_reg_rdy(qdev,
260 MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
261 if (status)
262 goto exit;
263 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
264 (index << MAC_ADDR_IDX_SHIFT) | /* index */
265 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
266 status =
267 ql_wait_reg_rdy(qdev,
268 MAC_ADDR_IDX, MAC_ADDR_MR, MAC_ADDR_E);
269 if (status)
270 goto exit;
271 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
272 status =
273 ql_wait_reg_rdy(qdev,
274 MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
275 if (status)
276 goto exit;
277 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
278 (index << MAC_ADDR_IDX_SHIFT) | /* index */
279 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
280 status =
281 ql_wait_reg_rdy(qdev,
282 MAC_ADDR_IDX, MAC_ADDR_MR, MAC_ADDR_E);
283 if (status)
284 goto exit;
285 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
286 if (type == MAC_ADDR_TYPE_CAM_MAC) {
287 status =
288 ql_wait_reg_rdy(qdev,
289 MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
290 if (status)
291 goto exit;
292 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
293 (index << MAC_ADDR_IDX_SHIFT) | /* index */
294 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
295 status =
296 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
297 MAC_ADDR_MR, MAC_ADDR_E);
298 if (status)
299 goto exit;
300 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
301 }
302 break;
303 }
304 case MAC_ADDR_TYPE_VLAN:
305 case MAC_ADDR_TYPE_MULTI_FLTR:
306 default:
307 QPRINTK(qdev, IFUP, CRIT,
308 "Address type %d not yet supported.\n", type);
309 status = -EPERM;
310 }
311exit:
312 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
313 return status;
314}
315
316/* Set up a MAC, multicast or VLAN address for the
317 * inbound frame matching.
318 */
319static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
320 u16 index)
321{
322 u32 offset = 0;
323 int status = 0;
324
325 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
326 if (status)
327 return status;
328 switch (type) {
329 case MAC_ADDR_TYPE_MULTI_MAC:
330 case MAC_ADDR_TYPE_CAM_MAC:
331 {
332 u32 cam_output;
333 u32 upper = (addr[0] << 8) | addr[1];
334 u32 lower =
335 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
336 (addr[5]);
337
338 QPRINTK(qdev, IFUP, INFO,
339 "Adding %s address %02x:%02x:%02x:%02x:%02x:%02x"
340 " at index %d in the CAM.\n",
341 ((type ==
342 MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
343 "UNICAST"), addr[0], addr[1], addr[2], addr[3],
344 addr[4], addr[5], index);
345
346 status =
347 ql_wait_reg_rdy(qdev,
348 MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
349 if (status)
350 goto exit;
351 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
352 (index << MAC_ADDR_IDX_SHIFT) | /* index */
353 type); /* type */
354 ql_write32(qdev, MAC_ADDR_DATA, lower);
355 status =
356 ql_wait_reg_rdy(qdev,
357 MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
358 if (status)
359 goto exit;
360 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
361 (index << MAC_ADDR_IDX_SHIFT) | /* index */
362 type); /* type */
363 ql_write32(qdev, MAC_ADDR_DATA, upper);
364 status =
365 ql_wait_reg_rdy(qdev,
366 MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
367 if (status)
368 goto exit;
369 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
370 (index << MAC_ADDR_IDX_SHIFT) | /* index */
371 type); /* type */
372 /* This field should also include the queue id
373 and possibly the function id. Right now we hardcode
374 the route field to NIC core.
375 */
376 if (type == MAC_ADDR_TYPE_CAM_MAC) {
377 cam_output = (CAM_OUT_ROUTE_NIC |
378 (qdev->
379 func << CAM_OUT_FUNC_SHIFT) |
380 (qdev->
381 rss_ring_first_cq_id <<
382 CAM_OUT_CQ_ID_SHIFT));
383 if (qdev->vlgrp)
384 cam_output |= CAM_OUT_RV;
385 /* route to NIC core */
386 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
387 }
388 break;
389 }
390 case MAC_ADDR_TYPE_VLAN:
391 {
392 u32 enable_bit = *((u32 *) &addr[0]);
393 /* For VLAN, the addr actually holds a bit that
394 * either enables or disables the vlan id we are
395 * addressing. It's either MAC_ADDR_E on or off.
396 * That's bit-27 we're talking about.
397 */
398 QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
399 (enable_bit ? "Adding" : "Removing"),
400 index, (enable_bit ? "to" : "from"));
401
402 status =
403 ql_wait_reg_rdy(qdev,
404 MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
405 if (status)
406 goto exit;
407 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
408 (index << MAC_ADDR_IDX_SHIFT) | /* index */
409 type | /* type */
410 enable_bit); /* enable/disable */
411 break;
412 }
413 case MAC_ADDR_TYPE_MULTI_FLTR:
414 default:
415 QPRINTK(qdev, IFUP, CRIT,
416 "Address type %d not yet supported.\n", type);
417 status = -EPERM;
418 }
419exit:
420 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
421 return status;
422}
423
424/* Get a specific frame routing value from the CAM.
425 * Used for debug and reg dump.
426 */
427int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
428{
429 int status = 0;
430
431 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
432 if (status)
433 goto exit;
434
435 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, RT_IDX_E);
436 if (status)
437 goto exit;
438
439 ql_write32(qdev, RT_IDX,
440 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
441 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, RT_IDX_E);
442 if (status)
443 goto exit;
444 *value = ql_read32(qdev, RT_DATA);
445exit:
446 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
447 return status;
448}
449
450/* The NIC function for this chip has 16 routing indexes. Each one can be used
451 * to route different frame types to various inbound queues. We send broadcast/
452 * multicast/error frames to the default queue for slow handling,
453 * and CAM hit/RSS frames to the fast handling queues.
454 */
455static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
456 int enable)
457{
458 int status;
459 u32 value = 0;
460
461 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
462 if (status)
463 return status;
464
465 QPRINTK(qdev, IFUP, DEBUG,
466 "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
467 (enable ? "Adding" : "Removing"),
468 ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
469 ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
470 ((index ==
471 RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
472 ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
473 ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
474 ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
475 ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
476 ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
477 ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
478 ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
479 ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
480 ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
481 ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
482 ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
483 ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
484 ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
485 (enable ? "to" : "from"));
486
487 switch (mask) {
488 case RT_IDX_CAM_HIT:
489 {
490 value = RT_IDX_DST_CAM_Q | /* dest */
491 RT_IDX_TYPE_NICQ | /* type */
492 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
493 break;
494 }
495 case RT_IDX_VALID: /* Promiscuous Mode frames. */
496 {
497 value = RT_IDX_DST_DFLT_Q | /* dest */
498 RT_IDX_TYPE_NICQ | /* type */
499 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
500 break;
501 }
502 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
503 {
504 value = RT_IDX_DST_DFLT_Q | /* dest */
505 RT_IDX_TYPE_NICQ | /* type */
506 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
507 break;
508 }
509 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
510 {
511 value = RT_IDX_DST_DFLT_Q | /* dest */
512 RT_IDX_TYPE_NICQ | /* type */
513 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
514 break;
515 }
516 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
517 {
518 value = RT_IDX_DST_CAM_Q | /* dest */
519 RT_IDX_TYPE_NICQ | /* type */
520 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
521 break;
522 }
523 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
524 {
525 value = RT_IDX_DST_CAM_Q | /* dest */
526 RT_IDX_TYPE_NICQ | /* type */
527 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
528 break;
529 }
530 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
531 {
532 value = RT_IDX_DST_RSS | /* dest */
533 RT_IDX_TYPE_NICQ | /* type */
534 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
535 break;
536 }
537 case 0: /* Clear the E-bit on an entry. */
538 {
539 value = RT_IDX_DST_DFLT_Q | /* dest */
540 RT_IDX_TYPE_NICQ | /* type */
541 (index << RT_IDX_IDX_SHIFT);/* index */
542 break;
543 }
544 default:
545 QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
546 mask);
547 status = -EPERM;
548 goto exit;
549 }
550
551 if (value) {
552 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
553 if (status)
554 goto exit;
555 value |= (enable ? RT_IDX_E : 0);
556 ql_write32(qdev, RT_IDX, value);
557 ql_write32(qdev, RT_DATA, enable ? mask : 0);
558 }
559exit:
560 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
561 return status;
562}
563
564static void ql_enable_interrupts(struct ql_adapter *qdev)
565{
566 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
567}
568
569static void ql_disable_interrupts(struct ql_adapter *qdev)
570{
571 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
572}
573
574/* If we're running with multiple MSI-X vectors then we enable on the fly.
575 * Otherwise, we may have multiple outstanding workers and don't want to
576 * enable until the last one finishes. In this case, the irq_cnt gets
577 * incremented everytime we queue a worker and decremented everytime
578 * a worker finishes. Once it hits zero we enable the interrupt.
579 */
580void ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
581{
582 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags)))
583 ql_write32(qdev, INTR_EN,
584 qdev->intr_context[intr].intr_en_mask);
585 else {
586 if (qdev->legacy_check)
587 spin_lock(&qdev->legacy_lock);
588 if (atomic_dec_and_test(&qdev->intr_context[intr].irq_cnt)) {
589 QPRINTK(qdev, INTR, ERR, "Enabling interrupt %d.\n",
590 intr);
591 ql_write32(qdev, INTR_EN,
592 qdev->intr_context[intr].intr_en_mask);
593 } else {
594 QPRINTK(qdev, INTR, ERR,
595 "Skip enable, other queue(s) are active.\n");
596 }
597 if (qdev->legacy_check)
598 spin_unlock(&qdev->legacy_lock);
599 }
600}
601
602static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
603{
604 u32 var = 0;
605
606 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags)))
607 goto exit;
608 else if (!atomic_read(&qdev->intr_context[intr].irq_cnt)) {
609 ql_write32(qdev, INTR_EN,
610 qdev->intr_context[intr].intr_dis_mask);
611 var = ql_read32(qdev, STS);
612 }
613 atomic_inc(&qdev->intr_context[intr].irq_cnt);
614exit:
615 return var;
616}
617
618static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
619{
620 int i;
621 for (i = 0; i < qdev->intr_count; i++) {
622 /* The enable call does a atomic_dec_and_test
623 * and enables only if the result is zero.
624 * So we precharge it here.
625 */
626 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
627 ql_enable_completion_interrupt(qdev, i);
628 }
629
630}
631
632int ql_read_flash_word(struct ql_adapter *qdev, int offset, u32 *data)
633{
634 int status = 0;
635 /* wait for reg to come ready */
636 status = ql_wait_reg_rdy(qdev,
637 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
638 if (status)
639 goto exit;
640 /* set up for reg read */
641 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
642 /* wait for reg to come ready */
643 status = ql_wait_reg_rdy(qdev,
644 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
645 if (status)
646 goto exit;
647 /* get the data */
648 *data = ql_read32(qdev, FLASH_DATA);
649exit:
650 return status;
651}
652
653static int ql_get_flash_params(struct ql_adapter *qdev)
654{
655 int i;
656 int status;
657 u32 *p = (u32 *)&qdev->flash;
658
659 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
660 return -ETIMEDOUT;
661
662 for (i = 0; i < sizeof(qdev->flash) / sizeof(u32); i++, p++) {
663 status = ql_read_flash_word(qdev, i, p);
664 if (status) {
665 QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
666 goto exit;
667 }
668
669 }
670exit:
671 ql_sem_unlock(qdev, SEM_FLASH_MASK);
672 return status;
673}
674
675/* xgmac register are located behind the xgmac_addr and xgmac_data
676 * register pair. Each read/write requires us to wait for the ready
677 * bit before reading/writing the data.
678 */
679static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
680{
681 int status;
682 /* wait for reg to come ready */
683 status = ql_wait_reg_rdy(qdev,
684 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
685 if (status)
686 return status;
687 /* write the data to the data reg */
688 ql_write32(qdev, XGMAC_DATA, data);
689 /* trigger the write */
690 ql_write32(qdev, XGMAC_ADDR, reg);
691 return status;
692}
693
694/* xgmac register are located behind the xgmac_addr and xgmac_data
695 * register pair. Each read/write requires us to wait for the ready
696 * bit before reading/writing the data.
697 */
698int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
699{
700 int status = 0;
701 /* wait for reg to come ready */
702 status = ql_wait_reg_rdy(qdev,
703 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
704 if (status)
705 goto exit;
706 /* set up for reg read */
707 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
708 /* wait for reg to come ready */
709 status = ql_wait_reg_rdy(qdev,
710 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
711 if (status)
712 goto exit;
713 /* get the data */
714 *data = ql_read32(qdev, XGMAC_DATA);
715exit:
716 return status;
717}
718
719/* This is used for reading the 64-bit statistics regs. */
720int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
721{
722 int status = 0;
723 u32 hi = 0;
724 u32 lo = 0;
725
726 status = ql_read_xgmac_reg(qdev, reg, &lo);
727 if (status)
728 goto exit;
729
730 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
731 if (status)
732 goto exit;
733
734 *data = (u64) lo | ((u64) hi << 32);
735
736exit:
737 return status;
738}
739
740/* Take the MAC Core out of reset.
741 * Enable statistics counting.
742 * Take the transmitter/receiver out of reset.
743 * This functionality may be done in the MPI firmware at a
744 * later date.
745 */
746static int ql_port_initialize(struct ql_adapter *qdev)
747{
748 int status = 0;
749 u32 data;
750
751 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
752 /* Another function has the semaphore, so
753 * wait for the port init bit to come ready.
754 */
755 QPRINTK(qdev, LINK, INFO,
756 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
757 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
758 if (status) {
759 QPRINTK(qdev, LINK, CRIT,
760 "Port initialize timed out.\n");
761 }
762 return status;
763 }
764
765 QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
766 /* Set the core reset. */
767 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
768 if (status)
769 goto end;
770 data |= GLOBAL_CFG_RESET;
771 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
772 if (status)
773 goto end;
774
775 /* Clear the core reset and turn on jumbo for receiver. */
776 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
777 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
778 data |= GLOBAL_CFG_TX_STAT_EN;
779 data |= GLOBAL_CFG_RX_STAT_EN;
780 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
781 if (status)
782 goto end;
783
784 /* Enable transmitter, and clear it's reset. */
785 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
786 if (status)
787 goto end;
788 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
789 data |= TX_CFG_EN; /* Enable the transmitter. */
790 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
791 if (status)
792 goto end;
793
794 /* Enable receiver and clear it's reset. */
795 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
796 if (status)
797 goto end;
798 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
799 data |= RX_CFG_EN; /* Enable the receiver. */
800 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
801 if (status)
802 goto end;
803
804 /* Turn on jumbo. */
805 status =
806 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
807 if (status)
808 goto end;
809 status =
810 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
811 if (status)
812 goto end;
813
814 /* Signal to the world that the port is enabled. */
815 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
816end:
817 ql_sem_unlock(qdev, qdev->xg_sem_mask);
818 return status;
819}
820
821/* Get the next large buffer. */
822struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
823{
824 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
825 rx_ring->lbq_curr_idx++;
826 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
827 rx_ring->lbq_curr_idx = 0;
828 rx_ring->lbq_free_cnt++;
829 return lbq_desc;
830}
831
832/* Get the next small buffer. */
833struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
834{
835 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
836 rx_ring->sbq_curr_idx++;
837 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
838 rx_ring->sbq_curr_idx = 0;
839 rx_ring->sbq_free_cnt++;
840 return sbq_desc;
841}
842
843/* Update an rx ring index. */
844static void ql_update_cq(struct rx_ring *rx_ring)
845{
846 rx_ring->cnsmr_idx++;
847 rx_ring->curr_entry++;
848 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
849 rx_ring->cnsmr_idx = 0;
850 rx_ring->curr_entry = rx_ring->cq_base;
851 }
852}
853
854static void ql_write_cq_idx(struct rx_ring *rx_ring)
855{
856 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
857}
858
859/* Process (refill) a large buffer queue. */
860static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
861{
862 int clean_idx = rx_ring->lbq_clean_idx;
863 struct bq_desc *lbq_desc;
864 struct bq_element *bq;
865 u64 map;
866 int i;
867
868 while (rx_ring->lbq_free_cnt > 16) {
869 for (i = 0; i < 16; i++) {
870 QPRINTK(qdev, RX_STATUS, DEBUG,
871 "lbq: try cleaning clean_idx = %d.\n",
872 clean_idx);
873 lbq_desc = &rx_ring->lbq[clean_idx];
874 bq = lbq_desc->bq;
875 if (lbq_desc->p.lbq_page == NULL) {
876 QPRINTK(qdev, RX_STATUS, DEBUG,
877 "lbq: getting new page for index %d.\n",
878 lbq_desc->index);
879 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
880 if (lbq_desc->p.lbq_page == NULL) {
881 QPRINTK(qdev, RX_STATUS, ERR,
882 "Couldn't get a page.\n");
883 return;
884 }
885 map = pci_map_page(qdev->pdev,
886 lbq_desc->p.lbq_page,
887 0, PAGE_SIZE,
888 PCI_DMA_FROMDEVICE);
889 if (pci_dma_mapping_error(qdev->pdev, map)) {
890 QPRINTK(qdev, RX_STATUS, ERR,
891 "PCI mapping failed.\n");
892 return;
893 }
894 pci_unmap_addr_set(lbq_desc, mapaddr, map);
895 pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
896 bq->addr_lo = /*lbq_desc->addr_lo = */
897 cpu_to_le32(map);
898 bq->addr_hi = /*lbq_desc->addr_hi = */
899 cpu_to_le32(map >> 32);
900 }
901 clean_idx++;
902 if (clean_idx == rx_ring->lbq_len)
903 clean_idx = 0;
904 }
905
906 rx_ring->lbq_clean_idx = clean_idx;
907 rx_ring->lbq_prod_idx += 16;
908 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
909 rx_ring->lbq_prod_idx = 0;
910 QPRINTK(qdev, RX_STATUS, DEBUG,
911 "lbq: updating prod idx = %d.\n",
912 rx_ring->lbq_prod_idx);
913 ql_write_db_reg(rx_ring->lbq_prod_idx,
914 rx_ring->lbq_prod_idx_db_reg);
915 rx_ring->lbq_free_cnt -= 16;
916 }
917}
918
919/* Process (refill) a small buffer queue. */
920static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
921{
922 int clean_idx = rx_ring->sbq_clean_idx;
923 struct bq_desc *sbq_desc;
924 struct bq_element *bq;
925 u64 map;
926 int i;
927
928 while (rx_ring->sbq_free_cnt > 16) {
929 for (i = 0; i < 16; i++) {
930 sbq_desc = &rx_ring->sbq[clean_idx];
931 QPRINTK(qdev, RX_STATUS, DEBUG,
932 "sbq: try cleaning clean_idx = %d.\n",
933 clean_idx);
934 bq = sbq_desc->bq;
935 if (sbq_desc->p.skb == NULL) {
936 QPRINTK(qdev, RX_STATUS, DEBUG,
937 "sbq: getting new skb for index %d.\n",
938 sbq_desc->index);
939 sbq_desc->p.skb =
940 netdev_alloc_skb(qdev->ndev,
941 rx_ring->sbq_buf_size);
942 if (sbq_desc->p.skb == NULL) {
943 QPRINTK(qdev, PROBE, ERR,
944 "Couldn't get an skb.\n");
945 rx_ring->sbq_clean_idx = clean_idx;
946 return;
947 }
948 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
949 map = pci_map_single(qdev->pdev,
950 sbq_desc->p.skb->data,
951 rx_ring->sbq_buf_size /
952 2, PCI_DMA_FROMDEVICE);
953 pci_unmap_addr_set(sbq_desc, mapaddr, map);
954 pci_unmap_len_set(sbq_desc, maplen,
955 rx_ring->sbq_buf_size / 2);
956 bq->addr_lo = cpu_to_le32(map);
957 bq->addr_hi = cpu_to_le32(map >> 32);
958 }
959
960 clean_idx++;
961 if (clean_idx == rx_ring->sbq_len)
962 clean_idx = 0;
963 }
964 rx_ring->sbq_clean_idx = clean_idx;
965 rx_ring->sbq_prod_idx += 16;
966 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
967 rx_ring->sbq_prod_idx = 0;
968 QPRINTK(qdev, RX_STATUS, DEBUG,
969 "sbq: updating prod idx = %d.\n",
970 rx_ring->sbq_prod_idx);
971 ql_write_db_reg(rx_ring->sbq_prod_idx,
972 rx_ring->sbq_prod_idx_db_reg);
973
974 rx_ring->sbq_free_cnt -= 16;
975 }
976}
977
978static void ql_update_buffer_queues(struct ql_adapter *qdev,
979 struct rx_ring *rx_ring)
980{
981 ql_update_sbq(qdev, rx_ring);
982 ql_update_lbq(qdev, rx_ring);
983}
984
985/* Unmaps tx buffers. Can be called from send() if a pci mapping
986 * fails at some stage, or from the interrupt when a tx completes.
987 */
988static void ql_unmap_send(struct ql_adapter *qdev,
989 struct tx_ring_desc *tx_ring_desc, int mapped)
990{
991 int i;
992 for (i = 0; i < mapped; i++) {
993 if (i == 0 || (i == 7 && mapped > 7)) {
994 /*
995 * Unmap the skb->data area, or the
996 * external sglist (AKA the Outbound
997 * Address List (OAL)).
998 * If its the zeroeth element, then it's
999 * the skb->data area. If it's the 7th
1000 * element and there is more than 6 frags,
1001 * then its an OAL.
1002 */
1003 if (i == 7) {
1004 QPRINTK(qdev, TX_DONE, DEBUG,
1005 "unmapping OAL area.\n");
1006 }
1007 pci_unmap_single(qdev->pdev,
1008 pci_unmap_addr(&tx_ring_desc->map[i],
1009 mapaddr),
1010 pci_unmap_len(&tx_ring_desc->map[i],
1011 maplen),
1012 PCI_DMA_TODEVICE);
1013 } else {
1014 QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
1015 i);
1016 pci_unmap_page(qdev->pdev,
1017 pci_unmap_addr(&tx_ring_desc->map[i],
1018 mapaddr),
1019 pci_unmap_len(&tx_ring_desc->map[i],
1020 maplen), PCI_DMA_TODEVICE);
1021 }
1022 }
1023
1024}
1025
1026/* Map the buffers for this transmit. This will return
1027 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1028 */
1029static int ql_map_send(struct ql_adapter *qdev,
1030 struct ob_mac_iocb_req *mac_iocb_ptr,
1031 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1032{
1033 int len = skb_headlen(skb);
1034 dma_addr_t map;
1035 int frag_idx, err, map_idx = 0;
1036 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1037 int frag_cnt = skb_shinfo(skb)->nr_frags;
1038
1039 if (frag_cnt) {
1040 QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
1041 }
1042 /*
1043 * Map the skb buffer first.
1044 */
1045 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1046
1047 err = pci_dma_mapping_error(qdev->pdev, map);
1048 if (err) {
1049 QPRINTK(qdev, TX_QUEUED, ERR,
1050 "PCI mapping failed with error: %d\n", err);
1051
1052 return NETDEV_TX_BUSY;
1053 }
1054
1055 tbd->len = cpu_to_le32(len);
1056 tbd->addr = cpu_to_le64(map);
1057 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1058 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1059 map_idx++;
1060
1061 /*
1062 * This loop fills the remainder of the 8 address descriptors
1063 * in the IOCB. If there are more than 7 fragments, then the
1064 * eighth address desc will point to an external list (OAL).
1065 * When this happens, the remainder of the frags will be stored
1066 * in this list.
1067 */
1068 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1069 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1070 tbd++;
1071 if (frag_idx == 6 && frag_cnt > 7) {
1072 /* Let's tack on an sglist.
1073 * Our control block will now
1074 * look like this:
1075 * iocb->seg[0] = skb->data
1076 * iocb->seg[1] = frag[0]
1077 * iocb->seg[2] = frag[1]
1078 * iocb->seg[3] = frag[2]
1079 * iocb->seg[4] = frag[3]
1080 * iocb->seg[5] = frag[4]
1081 * iocb->seg[6] = frag[5]
1082 * iocb->seg[7] = ptr to OAL (external sglist)
1083 * oal->seg[0] = frag[6]
1084 * oal->seg[1] = frag[7]
1085 * oal->seg[2] = frag[8]
1086 * oal->seg[3] = frag[9]
1087 * oal->seg[4] = frag[10]
1088 * etc...
1089 */
1090 /* Tack on the OAL in the eighth segment of IOCB. */
1091 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1092 sizeof(struct oal),
1093 PCI_DMA_TODEVICE);
1094 err = pci_dma_mapping_error(qdev->pdev, map);
1095 if (err) {
1096 QPRINTK(qdev, TX_QUEUED, ERR,
1097 "PCI mapping outbound address list with error: %d\n",
1098 err);
1099 goto map_error;
1100 }
1101
1102 tbd->addr = cpu_to_le64(map);
1103 /*
1104 * The length is the number of fragments
1105 * that remain to be mapped times the length
1106 * of our sglist (OAL).
1107 */
1108 tbd->len =
1109 cpu_to_le32((sizeof(struct tx_buf_desc) *
1110 (frag_cnt - frag_idx)) | TX_DESC_C);
1111 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1112 map);
1113 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1114 sizeof(struct oal));
1115 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1116 map_idx++;
1117 }
1118
1119 map =
1120 pci_map_page(qdev->pdev, frag->page,
1121 frag->page_offset, frag->size,
1122 PCI_DMA_TODEVICE);
1123
1124 err = pci_dma_mapping_error(qdev->pdev, map);
1125 if (err) {
1126 QPRINTK(qdev, TX_QUEUED, ERR,
1127 "PCI mapping frags failed with error: %d.\n",
1128 err);
1129 goto map_error;
1130 }
1131
1132 tbd->addr = cpu_to_le64(map);
1133 tbd->len = cpu_to_le32(frag->size);
1134 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1135 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1136 frag->size);
1137
1138 }
1139 /* Save the number of segments we've mapped. */
1140 tx_ring_desc->map_cnt = map_idx;
1141 /* Terminate the last segment. */
1142 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1143 return NETDEV_TX_OK;
1144
1145map_error:
1146 /*
1147 * If the first frag mapping failed, then i will be zero.
1148 * This causes the unmap of the skb->data area. Otherwise
1149 * we pass in the number of frags that mapped successfully
1150 * so they can be umapped.
1151 */
1152 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1153 return NETDEV_TX_BUSY;
1154}
1155
1156void ql_realign_skb(struct sk_buff *skb, int len)
1157{
1158 void *temp_addr = skb->data;
1159
1160 /* Undo the skb_reserve(skb,32) we did before
1161 * giving to hardware, and realign data on
1162 * a 2-byte boundary.
1163 */
1164 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1165 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1166 skb_copy_to_linear_data(skb, temp_addr,
1167 (unsigned int)len);
1168}
1169
1170/*
1171 * This function builds an skb for the given inbound
1172 * completion. It will be rewritten for readability in the near
1173 * future, but for not it works well.
1174 */
1175static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1176 struct rx_ring *rx_ring,
1177 struct ib_mac_iocb_rsp *ib_mac_rsp)
1178{
1179 struct bq_desc *lbq_desc;
1180 struct bq_desc *sbq_desc;
1181 struct sk_buff *skb = NULL;
1182 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1183 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1184
1185 /*
1186 * Handle the header buffer if present.
1187 */
1188 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1189 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1190 QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
1191 /*
1192 * Headers fit nicely into a small buffer.
1193 */
1194 sbq_desc = ql_get_curr_sbuf(rx_ring);
1195 pci_unmap_single(qdev->pdev,
1196 pci_unmap_addr(sbq_desc, mapaddr),
1197 pci_unmap_len(sbq_desc, maplen),
1198 PCI_DMA_FROMDEVICE);
1199 skb = sbq_desc->p.skb;
1200 ql_realign_skb(skb, hdr_len);
1201 skb_put(skb, hdr_len);
1202 sbq_desc->p.skb = NULL;
1203 }
1204
1205 /*
1206 * Handle the data buffer(s).
1207 */
1208 if (unlikely(!length)) { /* Is there data too? */
1209 QPRINTK(qdev, RX_STATUS, DEBUG,
1210 "No Data buffer in this packet.\n");
1211 return skb;
1212 }
1213
1214 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1215 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1216 QPRINTK(qdev, RX_STATUS, DEBUG,
1217 "Headers in small, data of %d bytes in small, combine them.\n", length);
1218 /*
1219 * Data is less than small buffer size so it's
1220 * stuffed in a small buffer.
1221 * For this case we append the data
1222 * from the "data" small buffer to the "header" small
1223 * buffer.
1224 */
1225 sbq_desc = ql_get_curr_sbuf(rx_ring);
1226 pci_dma_sync_single_for_cpu(qdev->pdev,
1227 pci_unmap_addr
1228 (sbq_desc, mapaddr),
1229 pci_unmap_len
1230 (sbq_desc, maplen),
1231 PCI_DMA_FROMDEVICE);
1232 memcpy(skb_put(skb, length),
1233 sbq_desc->p.skb->data, length);
1234 pci_dma_sync_single_for_device(qdev->pdev,
1235 pci_unmap_addr
1236 (sbq_desc,
1237 mapaddr),
1238 pci_unmap_len
1239 (sbq_desc,
1240 maplen),
1241 PCI_DMA_FROMDEVICE);
1242 } else {
1243 QPRINTK(qdev, RX_STATUS, DEBUG,
1244 "%d bytes in a single small buffer.\n", length);
1245 sbq_desc = ql_get_curr_sbuf(rx_ring);
1246 skb = sbq_desc->p.skb;
1247 ql_realign_skb(skb, length);
1248 skb_put(skb, length);
1249 pci_unmap_single(qdev->pdev,
1250 pci_unmap_addr(sbq_desc,
1251 mapaddr),
1252 pci_unmap_len(sbq_desc,
1253 maplen),
1254 PCI_DMA_FROMDEVICE);
1255 sbq_desc->p.skb = NULL;
1256 }
1257 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1258 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1259 QPRINTK(qdev, RX_STATUS, DEBUG,
1260 "Header in small, %d bytes in large. Chain large to small!\n", length);
1261 /*
1262 * The data is in a single large buffer. We
1263 * chain it to the header buffer's skb and let
1264 * it rip.
1265 */
1266 lbq_desc = ql_get_curr_lbuf(rx_ring);
1267 pci_unmap_page(qdev->pdev,
1268 pci_unmap_addr(lbq_desc,
1269 mapaddr),
1270 pci_unmap_len(lbq_desc, maplen),
1271 PCI_DMA_FROMDEVICE);
1272 QPRINTK(qdev, RX_STATUS, DEBUG,
1273 "Chaining page to skb.\n");
1274 skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1275 0, length);
1276 skb->len += length;
1277 skb->data_len += length;
1278 skb->truesize += length;
1279 lbq_desc->p.lbq_page = NULL;
1280 } else {
1281 /*
1282 * The headers and data are in a single large buffer. We
1283 * copy it to a new skb and let it go. This can happen with
1284 * jumbo mtu on a non-TCP/UDP frame.
1285 */
1286 lbq_desc = ql_get_curr_lbuf(rx_ring);
1287 skb = netdev_alloc_skb(qdev->ndev, length);
1288 if (skb == NULL) {
1289 QPRINTK(qdev, PROBE, DEBUG,
1290 "No skb available, drop the packet.\n");
1291 return NULL;
1292 }
1293 skb_reserve(skb, NET_IP_ALIGN);
1294 QPRINTK(qdev, RX_STATUS, DEBUG,
1295 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
1296 skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1297 0, length);
1298 skb->len += length;
1299 skb->data_len += length;
1300 skb->truesize += length;
1301 length -= length;
1302 lbq_desc->p.lbq_page = NULL;
1303 __pskb_pull_tail(skb,
1304 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1305 VLAN_ETH_HLEN : ETH_HLEN);
1306 }
1307 } else {
1308 /*
1309 * The data is in a chain of large buffers
1310 * pointed to by a small buffer. We loop
1311 * thru and chain them to the our small header
1312 * buffer's skb.
1313 * frags: There are 18 max frags and our small
1314 * buffer will hold 32 of them. The thing is,
1315 * we'll use 3 max for our 9000 byte jumbo
1316 * frames. If the MTU goes up we could
1317 * eventually be in trouble.
1318 */
1319 int size, offset, i = 0;
1320 struct bq_element *bq, bq_array[8];
1321 sbq_desc = ql_get_curr_sbuf(rx_ring);
1322 pci_unmap_single(qdev->pdev,
1323 pci_unmap_addr(sbq_desc, mapaddr),
1324 pci_unmap_len(sbq_desc, maplen),
1325 PCI_DMA_FROMDEVICE);
1326 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1327 /*
1328 * This is an non TCP/UDP IP frame, so
1329 * the headers aren't split into a small
1330 * buffer. We have to use the small buffer
1331 * that contains our sg list as our skb to
1332 * send upstairs. Copy the sg list here to
1333 * a local buffer and use it to find the
1334 * pages to chain.
1335 */
1336 QPRINTK(qdev, RX_STATUS, DEBUG,
1337 "%d bytes of headers & data in chain of large.\n", length);
1338 skb = sbq_desc->p.skb;
1339 bq = &bq_array[0];
1340 memcpy(bq, skb->data, sizeof(bq_array));
1341 sbq_desc->p.skb = NULL;
1342 skb_reserve(skb, NET_IP_ALIGN);
1343 } else {
1344 QPRINTK(qdev, RX_STATUS, DEBUG,
1345 "Headers in small, %d bytes of data in chain of large.\n", length);
1346 bq = (struct bq_element *)sbq_desc->p.skb->data;
1347 }
1348 while (length > 0) {
1349 lbq_desc = ql_get_curr_lbuf(rx_ring);
1350 if ((bq->addr_lo & ~BQ_MASK) != lbq_desc->bq->addr_lo) {
1351 QPRINTK(qdev, RX_STATUS, ERR,
1352 "Panic!!! bad large buffer address, expected 0x%.08x, got 0x%.08x.\n",
1353 lbq_desc->bq->addr_lo, bq->addr_lo);
1354 return NULL;
1355 }
1356 pci_unmap_page(qdev->pdev,
1357 pci_unmap_addr(lbq_desc,
1358 mapaddr),
1359 pci_unmap_len(lbq_desc,
1360 maplen),
1361 PCI_DMA_FROMDEVICE);
1362 size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
1363 offset = 0;
1364
1365 QPRINTK(qdev, RX_STATUS, DEBUG,
1366 "Adding page %d to skb for %d bytes.\n",
1367 i, size);
1368 skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
1369 offset, size);
1370 skb->len += size;
1371 skb->data_len += size;
1372 skb->truesize += size;
1373 length -= size;
1374 lbq_desc->p.lbq_page = NULL;
1375 bq++;
1376 i++;
1377 }
1378 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1379 VLAN_ETH_HLEN : ETH_HLEN);
1380 }
1381 return skb;
1382}
1383
1384/* Process an inbound completion from an rx ring. */
1385static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
1386 struct rx_ring *rx_ring,
1387 struct ib_mac_iocb_rsp *ib_mac_rsp)
1388{
1389 struct net_device *ndev = qdev->ndev;
1390 struct sk_buff *skb = NULL;
1391
1392 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1393
1394 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1395 if (unlikely(!skb)) {
1396 QPRINTK(qdev, RX_STATUS, DEBUG,
1397 "No skb available, drop packet.\n");
1398 return;
1399 }
1400
1401 prefetch(skb->data);
1402 skb->dev = ndev;
1403 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1404 QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
1405 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1406 IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
1407 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1408 IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
1409 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1410 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1411 }
1412 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1413 QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
1414 }
1415 if (ib_mac_rsp->flags1 & (IB_MAC_IOCB_RSP_IE | IB_MAC_IOCB_RSP_TE)) {
1416 QPRINTK(qdev, RX_STATUS, ERR,
1417 "Bad checksum for this %s packet.\n",
1418 ((ib_mac_rsp->
1419 flags2 & IB_MAC_IOCB_RSP_T) ? "TCP" : "UDP"));
1420 skb->ip_summed = CHECKSUM_NONE;
1421 } else if (qdev->rx_csum &&
1422 ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ||
1423 ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1424 !(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU)))) {
1425 QPRINTK(qdev, RX_STATUS, DEBUG, "RX checksum done!\n");
1426 skb->ip_summed = CHECKSUM_UNNECESSARY;
1427 }
1428 qdev->stats.rx_packets++;
1429 qdev->stats.rx_bytes += skb->len;
1430 skb->protocol = eth_type_trans(skb, ndev);
1431 if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)) {
1432 QPRINTK(qdev, RX_STATUS, DEBUG,
1433 "Passing a VLAN packet upstream.\n");
1434 vlan_hwaccel_rx(skb, qdev->vlgrp,
1435 le16_to_cpu(ib_mac_rsp->vlan_id));
1436 } else {
1437 QPRINTK(qdev, RX_STATUS, DEBUG,
1438 "Passing a normal packet upstream.\n");
1439 netif_rx(skb);
1440 }
1441 ndev->last_rx = jiffies;
1442}
1443
1444/* Process an outbound completion from an rx ring. */
1445static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
1446 struct ob_mac_iocb_rsp *mac_rsp)
1447{
1448 struct tx_ring *tx_ring;
1449 struct tx_ring_desc *tx_ring_desc;
1450
1451 QL_DUMP_OB_MAC_RSP(mac_rsp);
1452 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
1453 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
1454 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
1455 qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
1456 qdev->stats.tx_packets++;
1457 dev_kfree_skb(tx_ring_desc->skb);
1458 tx_ring_desc->skb = NULL;
1459
1460 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
1461 OB_MAC_IOCB_RSP_S |
1462 OB_MAC_IOCB_RSP_L |
1463 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
1464 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
1465 QPRINTK(qdev, TX_DONE, WARNING,
1466 "Total descriptor length did not match transfer length.\n");
1467 }
1468 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
1469 QPRINTK(qdev, TX_DONE, WARNING,
1470 "Frame too short to be legal, not sent.\n");
1471 }
1472 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
1473 QPRINTK(qdev, TX_DONE, WARNING,
1474 "Frame too long, but sent anyway.\n");
1475 }
1476 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
1477 QPRINTK(qdev, TX_DONE, WARNING,
1478 "PCI backplane error. Frame not sent.\n");
1479 }
1480 }
1481 atomic_inc(&tx_ring->tx_count);
1482}
1483
1484/* Fire up a handler to reset the MPI processor. */
1485void ql_queue_fw_error(struct ql_adapter *qdev)
1486{
1487 netif_stop_queue(qdev->ndev);
1488 netif_carrier_off(qdev->ndev);
1489 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
1490}
1491
1492void ql_queue_asic_error(struct ql_adapter *qdev)
1493{
1494 netif_stop_queue(qdev->ndev);
1495 netif_carrier_off(qdev->ndev);
1496 ql_disable_interrupts(qdev);
1497 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
1498}
1499
1500static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
1501 struct ib_ae_iocb_rsp *ib_ae_rsp)
1502{
1503 switch (ib_ae_rsp->event) {
1504 case MGMT_ERR_EVENT:
1505 QPRINTK(qdev, RX_ERR, ERR,
1506 "Management Processor Fatal Error.\n");
1507 ql_queue_fw_error(qdev);
1508 return;
1509
1510 case CAM_LOOKUP_ERR_EVENT:
1511 QPRINTK(qdev, LINK, ERR,
1512 "Multiple CAM hits lookup occurred.\n");
1513 QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
1514 ql_queue_asic_error(qdev);
1515 return;
1516
1517 case SOFT_ECC_ERROR_EVENT:
1518 QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
1519 ql_queue_asic_error(qdev);
1520 break;
1521
1522 case PCI_ERR_ANON_BUF_RD:
1523 QPRINTK(qdev, RX_ERR, ERR,
1524 "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
1525 ib_ae_rsp->q_id);
1526 ql_queue_asic_error(qdev);
1527 break;
1528
1529 default:
1530 QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
1531 ib_ae_rsp->event);
1532 ql_queue_asic_error(qdev);
1533 break;
1534 }
1535}
1536
1537static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
1538{
1539 struct ql_adapter *qdev = rx_ring->qdev;
1540 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1541 struct ob_mac_iocb_rsp *net_rsp = NULL;
1542 int count = 0;
1543
1544 /* While there are entries in the completion queue. */
1545 while (prod != rx_ring->cnsmr_idx) {
1546
1547 QPRINTK(qdev, RX_STATUS, DEBUG,
1548 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1549 prod, rx_ring->cnsmr_idx);
1550
1551 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
1552 rmb();
1553 switch (net_rsp->opcode) {
1554
1555 case OPCODE_OB_MAC_TSO_IOCB:
1556 case OPCODE_OB_MAC_IOCB:
1557 ql_process_mac_tx_intr(qdev, net_rsp);
1558 break;
1559 default:
1560 QPRINTK(qdev, RX_STATUS, DEBUG,
1561 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1562 net_rsp->opcode);
1563 }
1564 count++;
1565 ql_update_cq(rx_ring);
1566 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1567 }
1568 ql_write_cq_idx(rx_ring);
1569 if (netif_queue_stopped(qdev->ndev) && net_rsp != NULL) {
1570 struct tx_ring *tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
1571 if (atomic_read(&tx_ring->queue_stopped) &&
1572 (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
1573 /*
1574 * The queue got stopped because the tx_ring was full.
1575 * Wake it up, because it's now at least 25% empty.
1576 */
1577 netif_wake_queue(qdev->ndev);
1578 }
1579
1580 return count;
1581}
1582
1583static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
1584{
1585 struct ql_adapter *qdev = rx_ring->qdev;
1586 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1587 struct ql_net_rsp_iocb *net_rsp;
1588 int count = 0;
1589
1590 /* While there are entries in the completion queue. */
1591 while (prod != rx_ring->cnsmr_idx) {
1592
1593 QPRINTK(qdev, RX_STATUS, DEBUG,
1594 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1595 prod, rx_ring->cnsmr_idx);
1596
1597 net_rsp = rx_ring->curr_entry;
1598 rmb();
1599 switch (net_rsp->opcode) {
1600 case OPCODE_IB_MAC_IOCB:
1601 ql_process_mac_rx_intr(qdev, rx_ring,
1602 (struct ib_mac_iocb_rsp *)
1603 net_rsp);
1604 break;
1605
1606 case OPCODE_IB_AE_IOCB:
1607 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
1608 net_rsp);
1609 break;
1610 default:
1611 {
1612 QPRINTK(qdev, RX_STATUS, DEBUG,
1613 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1614 net_rsp->opcode);
1615 }
1616 }
1617 count++;
1618 ql_update_cq(rx_ring);
1619 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1620 if (count == budget)
1621 break;
1622 }
1623 ql_update_buffer_queues(qdev, rx_ring);
1624 ql_write_cq_idx(rx_ring);
1625 return count;
1626}
1627
1628static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
1629{
1630 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
1631 struct ql_adapter *qdev = rx_ring->qdev;
1632 int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
1633
1634 QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
1635 rx_ring->cq_id);
1636
1637 if (work_done < budget) {
1638 __netif_rx_complete(qdev->ndev, napi);
1639 ql_enable_completion_interrupt(qdev, rx_ring->irq);
1640 }
1641 return work_done;
1642}
1643
1644static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
1645{
1646 struct ql_adapter *qdev = netdev_priv(ndev);
1647
1648 qdev->vlgrp = grp;
1649 if (grp) {
1650 QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
1651 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
1652 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
1653 } else {
1654 QPRINTK(qdev, IFUP, DEBUG,
1655 "Turning off VLAN in NIC_RCV_CFG.\n");
1656 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
1657 }
1658}
1659
1660static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
1661{
1662 struct ql_adapter *qdev = netdev_priv(ndev);
1663 u32 enable_bit = MAC_ADDR_E;
1664
1665 spin_lock(&qdev->hw_lock);
1666 if (ql_set_mac_addr_reg
1667 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1668 QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
1669 }
1670 spin_unlock(&qdev->hw_lock);
1671}
1672
1673static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
1674{
1675 struct ql_adapter *qdev = netdev_priv(ndev);
1676 u32 enable_bit = 0;
1677
1678 spin_lock(&qdev->hw_lock);
1679 if (ql_set_mac_addr_reg
1680 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1681 QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
1682 }
1683 spin_unlock(&qdev->hw_lock);
1684
1685}
1686
1687/* Worker thread to process a given rx_ring that is dedicated
1688 * to outbound completions.
1689 */
1690static void ql_tx_clean(struct work_struct *work)
1691{
1692 struct rx_ring *rx_ring =
1693 container_of(work, struct rx_ring, rx_work.work);
1694 ql_clean_outbound_rx_ring(rx_ring);
1695 ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1696
1697}
1698
1699/* Worker thread to process a given rx_ring that is dedicated
1700 * to inbound completions.
1701 */
1702static void ql_rx_clean(struct work_struct *work)
1703{
1704 struct rx_ring *rx_ring =
1705 container_of(work, struct rx_ring, rx_work.work);
1706 ql_clean_inbound_rx_ring(rx_ring, 64);
1707 ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1708}
1709
1710/* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
1711static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
1712{
1713 struct rx_ring *rx_ring = dev_id;
1714 queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
1715 &rx_ring->rx_work, 0);
1716 return IRQ_HANDLED;
1717}
1718
1719/* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
1720static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
1721{
1722 struct rx_ring *rx_ring = dev_id;
1723 struct ql_adapter *qdev = rx_ring->qdev;
1724 netif_rx_schedule(qdev->ndev, &rx_ring->napi);
1725 return IRQ_HANDLED;
1726}
1727
1728/* We check here to see if we're already handling a legacy
1729 * interrupt. If we are, then it must belong to another
1730 * chip with which we're sharing the interrupt line.
1731 */
1732int ql_legacy_check(struct ql_adapter *qdev)
1733{
1734 int err;
1735 spin_lock(&qdev->legacy_lock);
1736 err = atomic_read(&qdev->intr_context[0].irq_cnt);
1737 spin_unlock(&qdev->legacy_lock);
1738 return err;
1739}
1740
1741/* This handles a fatal error, MPI activity, and the default
1742 * rx_ring in an MSI-X multiple vector environment.
1743 * In MSI/Legacy environment it also process the rest of
1744 * the rx_rings.
1745 */
1746static irqreturn_t qlge_isr(int irq, void *dev_id)
1747{
1748 struct rx_ring *rx_ring = dev_id;
1749 struct ql_adapter *qdev = rx_ring->qdev;
1750 struct intr_context *intr_context = &qdev->intr_context[0];
1751 u32 var;
1752 int i;
1753 int work_done = 0;
1754
1755 if (qdev->legacy_check && qdev->legacy_check(qdev)) {
1756 QPRINTK(qdev, INTR, INFO, "Already busy, not our interrupt.\n");
1757 return IRQ_NONE; /* Not our interrupt */
1758 }
1759
1760 var = ql_read32(qdev, STS);
1761
1762 /*
1763 * Check for fatal error.
1764 */
1765 if (var & STS_FE) {
1766 ql_queue_asic_error(qdev);
1767 QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
1768 var = ql_read32(qdev, ERR_STS);
1769 QPRINTK(qdev, INTR, ERR,
1770 "Resetting chip. Error Status Register = 0x%x\n", var);
1771 return IRQ_HANDLED;
1772 }
1773
1774 /*
1775 * Check MPI processor activity.
1776 */
1777 if (var & STS_PI) {
1778 /*
1779 * We've got an async event or mailbox completion.
1780 * Handle it and clear the source of the interrupt.
1781 */
1782 QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
1783 ql_disable_completion_interrupt(qdev, intr_context->intr);
1784 queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
1785 &qdev->mpi_work, 0);
1786 work_done++;
1787 }
1788
1789 /*
1790 * Check the default queue and wake handler if active.
1791 */
1792 rx_ring = &qdev->rx_ring[0];
1793 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
1794 QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
1795 ql_disable_completion_interrupt(qdev, intr_context->intr);
1796 queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
1797 &rx_ring->rx_work, 0);
1798 work_done++;
1799 }
1800
1801 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
1802 /*
1803 * Start the DPC for each active queue.
1804 */
1805 for (i = 1; i < qdev->rx_ring_count; i++) {
1806 rx_ring = &qdev->rx_ring[i];
1807 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
1808 rx_ring->cnsmr_idx) {
1809 QPRINTK(qdev, INTR, INFO,
1810 "Waking handler for rx_ring[%d].\n", i);
1811 ql_disable_completion_interrupt(qdev,
1812 intr_context->
1813 intr);
1814 if (i < qdev->rss_ring_first_cq_id)
1815 queue_delayed_work_on(rx_ring->cpu,
1816 qdev->q_workqueue,
1817 &rx_ring->rx_work,
1818 0);
1819 else
1820 netif_rx_schedule(qdev->ndev,
1821 &rx_ring->napi);
1822 work_done++;
1823 }
1824 }
1825 }
1826 return work_done ? IRQ_HANDLED : IRQ_NONE;
1827}
1828
1829static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1830{
1831
1832 if (skb_is_gso(skb)) {
1833 int err;
1834 if (skb_header_cloned(skb)) {
1835 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1836 if (err)
1837 return err;
1838 }
1839
1840 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1841 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
1842 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1843 mac_iocb_ptr->total_hdrs_len =
1844 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
1845 mac_iocb_ptr->net_trans_offset =
1846 cpu_to_le16(skb_network_offset(skb) |
1847 skb_transport_offset(skb)
1848 << OB_MAC_TRANSPORT_HDR_SHIFT);
1849 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
1850 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
1851 if (likely(skb->protocol == htons(ETH_P_IP))) {
1852 struct iphdr *iph = ip_hdr(skb);
1853 iph->check = 0;
1854 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
1855 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1856 iph->daddr, 0,
1857 IPPROTO_TCP,
1858 0);
1859 } else if (skb->protocol == htons(ETH_P_IPV6)) {
1860 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
1861 tcp_hdr(skb)->check =
1862 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1863 &ipv6_hdr(skb)->daddr,
1864 0, IPPROTO_TCP, 0);
1865 }
1866 return 1;
1867 }
1868 return 0;
1869}
1870
1871static void ql_hw_csum_setup(struct sk_buff *skb,
1872 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1873{
1874 int len;
1875 struct iphdr *iph = ip_hdr(skb);
1876 u16 *check;
1877 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1878 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1879 mac_iocb_ptr->net_trans_offset =
1880 cpu_to_le16(skb_network_offset(skb) |
1881 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
1882
1883 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
1884 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
1885 if (likely(iph->protocol == IPPROTO_TCP)) {
1886 check = &(tcp_hdr(skb)->check);
1887 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
1888 mac_iocb_ptr->total_hdrs_len =
1889 cpu_to_le16(skb_transport_offset(skb) +
1890 (tcp_hdr(skb)->doff << 2));
1891 } else {
1892 check = &(udp_hdr(skb)->check);
1893 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
1894 mac_iocb_ptr->total_hdrs_len =
1895 cpu_to_le16(skb_transport_offset(skb) +
1896 sizeof(struct udphdr));
1897 }
1898 *check = ~csum_tcpudp_magic(iph->saddr,
1899 iph->daddr, len, iph->protocol, 0);
1900}
1901
1902static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
1903{
1904 struct tx_ring_desc *tx_ring_desc;
1905 struct ob_mac_iocb_req *mac_iocb_ptr;
1906 struct ql_adapter *qdev = netdev_priv(ndev);
1907 int tso;
1908 struct tx_ring *tx_ring;
1909 u32 tx_ring_idx = (u32) QL_TXQ_IDX(qdev, skb);
1910
1911 tx_ring = &qdev->tx_ring[tx_ring_idx];
1912
1913 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
1914 QPRINTK(qdev, TX_QUEUED, INFO,
1915 "%s: shutting down tx queue %d du to lack of resources.\n",
1916 __func__, tx_ring_idx);
1917 netif_stop_queue(ndev);
1918 atomic_inc(&tx_ring->queue_stopped);
1919 return NETDEV_TX_BUSY;
1920 }
1921 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
1922 mac_iocb_ptr = tx_ring_desc->queue_entry;
1923 memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
1924 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) != NETDEV_TX_OK) {
1925 QPRINTK(qdev, TX_QUEUED, ERR, "Could not map the segments.\n");
1926 return NETDEV_TX_BUSY;
1927 }
1928
1929 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
1930 mac_iocb_ptr->tid = tx_ring_desc->index;
1931 /* We use the upper 32-bits to store the tx queue for this IO.
1932 * When we get the completion we can use it to establish the context.
1933 */
1934 mac_iocb_ptr->txq_idx = tx_ring_idx;
1935 tx_ring_desc->skb = skb;
1936
1937 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
1938
1939 if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
1940 QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
1941 vlan_tx_tag_get(skb));
1942 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
1943 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
1944 }
1945 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
1946 if (tso < 0) {
1947 dev_kfree_skb_any(skb);
1948 return NETDEV_TX_OK;
1949 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
1950 ql_hw_csum_setup(skb,
1951 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
1952 }
1953 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
1954 tx_ring->prod_idx++;
1955 if (tx_ring->prod_idx == tx_ring->wq_len)
1956 tx_ring->prod_idx = 0;
1957 wmb();
1958
1959 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
1960 ndev->trans_start = jiffies;
1961 QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
1962 tx_ring->prod_idx, skb->len);
1963
1964 atomic_dec(&tx_ring->tx_count);
1965 return NETDEV_TX_OK;
1966}
1967
1968static void ql_free_shadow_space(struct ql_adapter *qdev)
1969{
1970 if (qdev->rx_ring_shadow_reg_area) {
1971 pci_free_consistent(qdev->pdev,
1972 PAGE_SIZE,
1973 qdev->rx_ring_shadow_reg_area,
1974 qdev->rx_ring_shadow_reg_dma);
1975 qdev->rx_ring_shadow_reg_area = NULL;
1976 }
1977 if (qdev->tx_ring_shadow_reg_area) {
1978 pci_free_consistent(qdev->pdev,
1979 PAGE_SIZE,
1980 qdev->tx_ring_shadow_reg_area,
1981 qdev->tx_ring_shadow_reg_dma);
1982 qdev->tx_ring_shadow_reg_area = NULL;
1983 }
1984}
1985
1986static int ql_alloc_shadow_space(struct ql_adapter *qdev)
1987{
1988 qdev->rx_ring_shadow_reg_area =
1989 pci_alloc_consistent(qdev->pdev,
1990 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
1991 if (qdev->rx_ring_shadow_reg_area == NULL) {
1992 QPRINTK(qdev, IFUP, ERR,
1993 "Allocation of RX shadow space failed.\n");
1994 return -ENOMEM;
1995 }
1996 qdev->tx_ring_shadow_reg_area =
1997 pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
1998 &qdev->tx_ring_shadow_reg_dma);
1999 if (qdev->tx_ring_shadow_reg_area == NULL) {
2000 QPRINTK(qdev, IFUP, ERR,
2001 "Allocation of TX shadow space failed.\n");
2002 goto err_wqp_sh_area;
2003 }
2004 return 0;
2005
2006err_wqp_sh_area:
2007 pci_free_consistent(qdev->pdev,
2008 PAGE_SIZE,
2009 qdev->rx_ring_shadow_reg_area,
2010 qdev->rx_ring_shadow_reg_dma);
2011 return -ENOMEM;
2012}
2013
2014static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2015{
2016 struct tx_ring_desc *tx_ring_desc;
2017 int i;
2018 struct ob_mac_iocb_req *mac_iocb_ptr;
2019
2020 mac_iocb_ptr = tx_ring->wq_base;
2021 tx_ring_desc = tx_ring->q;
2022 for (i = 0; i < tx_ring->wq_len; i++) {
2023 tx_ring_desc->index = i;
2024 tx_ring_desc->skb = NULL;
2025 tx_ring_desc->queue_entry = mac_iocb_ptr;
2026 mac_iocb_ptr++;
2027 tx_ring_desc++;
2028 }
2029 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2030 atomic_set(&tx_ring->queue_stopped, 0);
2031}
2032
2033static void ql_free_tx_resources(struct ql_adapter *qdev,
2034 struct tx_ring *tx_ring)
2035{
2036 if (tx_ring->wq_base) {
2037 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2038 tx_ring->wq_base, tx_ring->wq_base_dma);
2039 tx_ring->wq_base = NULL;
2040 }
2041 kfree(tx_ring->q);
2042 tx_ring->q = NULL;
2043}
2044
2045static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2046 struct tx_ring *tx_ring)
2047{
2048 tx_ring->wq_base =
2049 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2050 &tx_ring->wq_base_dma);
2051
2052 if ((tx_ring->wq_base == NULL)
2053 || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
2054 QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
2055 return -ENOMEM;
2056 }
2057 tx_ring->q =
2058 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2059 if (tx_ring->q == NULL)
2060 goto err;
2061
2062 return 0;
2063err:
2064 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2065 tx_ring->wq_base, tx_ring->wq_base_dma);
2066 return -ENOMEM;
2067}
2068
2069void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2070{
2071 int i;
2072 struct bq_desc *lbq_desc;
2073
2074 for (i = 0; i < rx_ring->lbq_len; i++) {
2075 lbq_desc = &rx_ring->lbq[i];
2076 if (lbq_desc->p.lbq_page) {
2077 pci_unmap_page(qdev->pdev,
2078 pci_unmap_addr(lbq_desc, mapaddr),
2079 pci_unmap_len(lbq_desc, maplen),
2080 PCI_DMA_FROMDEVICE);
2081
2082 put_page(lbq_desc->p.lbq_page);
2083 lbq_desc->p.lbq_page = NULL;
2084 }
2085 lbq_desc->bq->addr_lo = 0;
2086 lbq_desc->bq->addr_hi = 0;
2087 }
2088}
2089
2090/*
2091 * Allocate and map a page for each element of the lbq.
2092 */
2093static int ql_alloc_lbq_buffers(struct ql_adapter *qdev,
2094 struct rx_ring *rx_ring)
2095{
2096 int i;
2097 struct bq_desc *lbq_desc;
2098 u64 map;
2099 struct bq_element *bq = rx_ring->lbq_base;
2100
2101 for (i = 0; i < rx_ring->lbq_len; i++) {
2102 lbq_desc = &rx_ring->lbq[i];
2103 memset(lbq_desc, 0, sizeof(lbq_desc));
2104 lbq_desc->bq = bq;
2105 lbq_desc->index = i;
2106 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
2107 if (unlikely(!lbq_desc->p.lbq_page)) {
2108 QPRINTK(qdev, IFUP, ERR, "failed alloc_page().\n");
2109 goto mem_error;
2110 } else {
2111 map = pci_map_page(qdev->pdev,
2112 lbq_desc->p.lbq_page,
2113 0, PAGE_SIZE, PCI_DMA_FROMDEVICE);
2114 if (pci_dma_mapping_error(qdev->pdev, map)) {
2115 QPRINTK(qdev, IFUP, ERR,
2116 "PCI mapping failed.\n");
2117 goto mem_error;
2118 }
2119 pci_unmap_addr_set(lbq_desc, mapaddr, map);
2120 pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
2121 bq->addr_lo = cpu_to_le32(map);
2122 bq->addr_hi = cpu_to_le32(map >> 32);
2123 }
2124 bq++;
2125 }
2126 return 0;
2127mem_error:
2128 ql_free_lbq_buffers(qdev, rx_ring);
2129 return -ENOMEM;
2130}
2131
2132void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2133{
2134 int i;
2135 struct bq_desc *sbq_desc;
2136
2137 for (i = 0; i < rx_ring->sbq_len; i++) {
2138 sbq_desc = &rx_ring->sbq[i];
2139 if (sbq_desc == NULL) {
2140 QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
2141 return;
2142 }
2143 if (sbq_desc->p.skb) {
2144 pci_unmap_single(qdev->pdev,
2145 pci_unmap_addr(sbq_desc, mapaddr),
2146 pci_unmap_len(sbq_desc, maplen),
2147 PCI_DMA_FROMDEVICE);
2148 dev_kfree_skb(sbq_desc->p.skb);
2149 sbq_desc->p.skb = NULL;
2150 }
2151 if (sbq_desc->bq == NULL) {
2152 QPRINTK(qdev, IFUP, ERR, "sbq_desc->bq %d is NULL.\n",
2153 i);
2154 return;
2155 }
2156 sbq_desc->bq->addr_lo = 0;
2157 sbq_desc->bq->addr_hi = 0;
2158 }
2159}
2160
2161/* Allocate and map an skb for each element of the sbq. */
2162static int ql_alloc_sbq_buffers(struct ql_adapter *qdev,
2163 struct rx_ring *rx_ring)
2164{
2165 int i;
2166 struct bq_desc *sbq_desc;
2167 struct sk_buff *skb;
2168 u64 map;
2169 struct bq_element *bq = rx_ring->sbq_base;
2170
2171 for (i = 0; i < rx_ring->sbq_len; i++) {
2172 sbq_desc = &rx_ring->sbq[i];
2173 memset(sbq_desc, 0, sizeof(sbq_desc));
2174 sbq_desc->index = i;
2175 sbq_desc->bq = bq;
2176 skb = netdev_alloc_skb(qdev->ndev, rx_ring->sbq_buf_size);
2177 if (unlikely(!skb)) {
2178 /* Better luck next round */
2179 QPRINTK(qdev, IFUP, ERR,
2180 "small buff alloc failed for %d bytes at index %d.\n",
2181 rx_ring->sbq_buf_size, i);
2182 goto mem_err;
2183 }
2184 skb_reserve(skb, QLGE_SB_PAD);
2185 sbq_desc->p.skb = skb;
2186 /*
2187 * Map only half the buffer. Because the
2188 * other half may get some data copied to it
2189 * when the completion arrives.
2190 */
2191 map = pci_map_single(qdev->pdev,
2192 skb->data,
2193 rx_ring->sbq_buf_size / 2,
2194 PCI_DMA_FROMDEVICE);
2195 if (pci_dma_mapping_error(qdev->pdev, map)) {
2196 QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
2197 goto mem_err;
2198 }
2199 pci_unmap_addr_set(sbq_desc, mapaddr, map);
2200 pci_unmap_len_set(sbq_desc, maplen, rx_ring->sbq_buf_size / 2);
2201 bq->addr_lo = /*sbq_desc->addr_lo = */
2202 cpu_to_le32(map);
2203 bq->addr_hi = /*sbq_desc->addr_hi = */
2204 cpu_to_le32(map >> 32);
2205 bq++;
2206 }
2207 return 0;
2208mem_err:
2209 ql_free_sbq_buffers(qdev, rx_ring);
2210 return -ENOMEM;
2211}
2212
2213static void ql_free_rx_resources(struct ql_adapter *qdev,
2214 struct rx_ring *rx_ring)
2215{
2216 if (rx_ring->sbq_len)
2217 ql_free_sbq_buffers(qdev, rx_ring);
2218 if (rx_ring->lbq_len)
2219 ql_free_lbq_buffers(qdev, rx_ring);
2220
2221 /* Free the small buffer queue. */
2222 if (rx_ring->sbq_base) {
2223 pci_free_consistent(qdev->pdev,
2224 rx_ring->sbq_size,
2225 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2226 rx_ring->sbq_base = NULL;
2227 }
2228
2229 /* Free the small buffer queue control blocks. */
2230 kfree(rx_ring->sbq);
2231 rx_ring->sbq = NULL;
2232
2233 /* Free the large buffer queue. */
2234 if (rx_ring->lbq_base) {
2235 pci_free_consistent(qdev->pdev,
2236 rx_ring->lbq_size,
2237 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2238 rx_ring->lbq_base = NULL;
2239 }
2240
2241 /* Free the large buffer queue control blocks. */
2242 kfree(rx_ring->lbq);
2243 rx_ring->lbq = NULL;
2244
2245 /* Free the rx queue. */
2246 if (rx_ring->cq_base) {
2247 pci_free_consistent(qdev->pdev,
2248 rx_ring->cq_size,
2249 rx_ring->cq_base, rx_ring->cq_base_dma);
2250 rx_ring->cq_base = NULL;
2251 }
2252}
2253
2254/* Allocate queues and buffers for this completions queue based
2255 * on the values in the parameter structure. */
2256static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2257 struct rx_ring *rx_ring)
2258{
2259
2260 /*
2261 * Allocate the completion queue for this rx_ring.
2262 */
2263 rx_ring->cq_base =
2264 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2265 &rx_ring->cq_base_dma);
2266
2267 if (rx_ring->cq_base == NULL) {
2268 QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
2269 return -ENOMEM;
2270 }
2271
2272 if (rx_ring->sbq_len) {
2273 /*
2274 * Allocate small buffer queue.
2275 */
2276 rx_ring->sbq_base =
2277 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2278 &rx_ring->sbq_base_dma);
2279
2280 if (rx_ring->sbq_base == NULL) {
2281 QPRINTK(qdev, IFUP, ERR,
2282 "Small buffer queue allocation failed.\n");
2283 goto err_mem;
2284 }
2285
2286 /*
2287 * Allocate small buffer queue control blocks.
2288 */
2289 rx_ring->sbq =
2290 kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2291 GFP_KERNEL);
2292 if (rx_ring->sbq == NULL) {
2293 QPRINTK(qdev, IFUP, ERR,
2294 "Small buffer queue control block allocation failed.\n");
2295 goto err_mem;
2296 }
2297
2298 if (ql_alloc_sbq_buffers(qdev, rx_ring)) {
2299 QPRINTK(qdev, IFUP, ERR,
2300 "Small buffer allocation failed.\n");
2301 goto err_mem;
2302 }
2303 }
2304
2305 if (rx_ring->lbq_len) {
2306 /*
2307 * Allocate large buffer queue.
2308 */
2309 rx_ring->lbq_base =
2310 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2311 &rx_ring->lbq_base_dma);
2312
2313 if (rx_ring->lbq_base == NULL) {
2314 QPRINTK(qdev, IFUP, ERR,
2315 "Large buffer queue allocation failed.\n");
2316 goto err_mem;
2317 }
2318 /*
2319 * Allocate large buffer queue control blocks.
2320 */
2321 rx_ring->lbq =
2322 kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2323 GFP_KERNEL);
2324 if (rx_ring->lbq == NULL) {
2325 QPRINTK(qdev, IFUP, ERR,
2326 "Large buffer queue control block allocation failed.\n");
2327 goto err_mem;
2328 }
2329
2330 /*
2331 * Allocate the buffers.
2332 */
2333 if (ql_alloc_lbq_buffers(qdev, rx_ring)) {
2334 QPRINTK(qdev, IFUP, ERR,
2335 "Large buffer allocation failed.\n");
2336 goto err_mem;
2337 }
2338 }
2339
2340 return 0;
2341
2342err_mem:
2343 ql_free_rx_resources(qdev, rx_ring);
2344 return -ENOMEM;
2345}
2346
2347static void ql_tx_ring_clean(struct ql_adapter *qdev)
2348{
2349 struct tx_ring *tx_ring;
2350 struct tx_ring_desc *tx_ring_desc;
2351 int i, j;
2352
2353 /*
2354 * Loop through all queues and free
2355 * any resources.
2356 */
2357 for (j = 0; j < qdev->tx_ring_count; j++) {
2358 tx_ring = &qdev->tx_ring[j];
2359 for (i = 0; i < tx_ring->wq_len; i++) {
2360 tx_ring_desc = &tx_ring->q[i];
2361 if (tx_ring_desc && tx_ring_desc->skb) {
2362 QPRINTK(qdev, IFDOWN, ERR,
2363 "Freeing lost SKB %p, from queue %d, index %d.\n",
2364 tx_ring_desc->skb, j,
2365 tx_ring_desc->index);
2366 ql_unmap_send(qdev, tx_ring_desc,
2367 tx_ring_desc->map_cnt);
2368 dev_kfree_skb(tx_ring_desc->skb);
2369 tx_ring_desc->skb = NULL;
2370 }
2371 }
2372 }
2373}
2374
2375static void ql_free_ring_cb(struct ql_adapter *qdev)
2376{
2377 kfree(qdev->ring_mem);
2378}
2379
2380static int ql_alloc_ring_cb(struct ql_adapter *qdev)
2381{
2382 /* Allocate space for tx/rx ring control blocks. */
2383 qdev->ring_mem_size =
2384 (qdev->tx_ring_count * sizeof(struct tx_ring)) +
2385 (qdev->rx_ring_count * sizeof(struct rx_ring));
2386 qdev->ring_mem = kmalloc(qdev->ring_mem_size, GFP_KERNEL);
2387 if (qdev->ring_mem == NULL) {
2388 return -ENOMEM;
2389 } else {
2390 qdev->rx_ring = qdev->ring_mem;
2391 qdev->tx_ring = qdev->ring_mem +
2392 (qdev->rx_ring_count * sizeof(struct rx_ring));
2393 }
2394 return 0;
2395}
2396
2397static void ql_free_mem_resources(struct ql_adapter *qdev)
2398{
2399 int i;
2400
2401 for (i = 0; i < qdev->tx_ring_count; i++)
2402 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2403 for (i = 0; i < qdev->rx_ring_count; i++)
2404 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2405 ql_free_shadow_space(qdev);
2406}
2407
2408static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2409{
2410 int i;
2411
2412 /* Allocate space for our shadow registers and such. */
2413 if (ql_alloc_shadow_space(qdev))
2414 return -ENOMEM;
2415
2416 for (i = 0; i < qdev->rx_ring_count; i++) {
2417 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
2418 QPRINTK(qdev, IFUP, ERR,
2419 "RX resource allocation failed.\n");
2420 goto err_mem;
2421 }
2422 }
2423 /* Allocate tx queue resources */
2424 for (i = 0; i < qdev->tx_ring_count; i++) {
2425 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
2426 QPRINTK(qdev, IFUP, ERR,
2427 "TX resource allocation failed.\n");
2428 goto err_mem;
2429 }
2430 }
2431 return 0;
2432
2433err_mem:
2434 ql_free_mem_resources(qdev);
2435 return -ENOMEM;
2436}
2437
2438/* Set up the rx ring control block and pass it to the chip.
2439 * The control block is defined as
2440 * "Completion Queue Initialization Control Block", or cqicb.
2441 */
2442static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2443{
2444 struct cqicb *cqicb = &rx_ring->cqicb;
2445 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
2446 (rx_ring->cq_id * sizeof(u64) * 4);
2447 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
2448 (rx_ring->cq_id * sizeof(u64) * 4);
2449 void __iomem *doorbell_area =
2450 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
2451 int err = 0;
2452 u16 bq_len;
2453
2454 /* Set up the shadow registers for this ring. */
2455 rx_ring->prod_idx_sh_reg = shadow_reg;
2456 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
2457 shadow_reg += sizeof(u64);
2458 shadow_reg_dma += sizeof(u64);
2459 rx_ring->lbq_base_indirect = shadow_reg;
2460 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
2461 shadow_reg += sizeof(u64);
2462 shadow_reg_dma += sizeof(u64);
2463 rx_ring->sbq_base_indirect = shadow_reg;
2464 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
2465
2466 /* PCI doorbell mem area + 0x00 for consumer index register */
2467 rx_ring->cnsmr_idx_db_reg = (u32 *) doorbell_area;
2468 rx_ring->cnsmr_idx = 0;
2469 rx_ring->curr_entry = rx_ring->cq_base;
2470
2471 /* PCI doorbell mem area + 0x04 for valid register */
2472 rx_ring->valid_db_reg = doorbell_area + 0x04;
2473
2474 /* PCI doorbell mem area + 0x18 for large buffer consumer */
2475 rx_ring->lbq_prod_idx_db_reg = (u32 *) (doorbell_area + 0x18);
2476
2477 /* PCI doorbell mem area + 0x1c */
2478 rx_ring->sbq_prod_idx_db_reg = (u32 *) (doorbell_area + 0x1c);
2479
2480 memset((void *)cqicb, 0, sizeof(struct cqicb));
2481 cqicb->msix_vect = rx_ring->irq;
2482
2483 cqicb->len = cpu_to_le16(rx_ring->cq_len | LEN_V | LEN_CPP_CONT);
2484
2485 cqicb->addr_lo = cpu_to_le32(rx_ring->cq_base_dma);
2486 cqicb->addr_hi = cpu_to_le32((u64) rx_ring->cq_base_dma >> 32);
2487
2488 cqicb->prod_idx_addr_lo = cpu_to_le32(rx_ring->prod_idx_sh_reg_dma);
2489 cqicb->prod_idx_addr_hi =
2490 cpu_to_le32((u64) rx_ring->prod_idx_sh_reg_dma >> 32);
2491
2492 /*
2493 * Set up the control block load flags.
2494 */
2495 cqicb->flags = FLAGS_LC | /* Load queue base address */
2496 FLAGS_LV | /* Load MSI-X vector */
2497 FLAGS_LI; /* Load irq delay values */
2498 if (rx_ring->lbq_len) {
2499 cqicb->flags |= FLAGS_LL; /* Load lbq values */
2500 *((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma;
2501 cqicb->lbq_addr_lo =
2502 cpu_to_le32(rx_ring->lbq_base_indirect_dma);
2503 cqicb->lbq_addr_hi =
2504 cpu_to_le32((u64) rx_ring->lbq_base_indirect_dma >> 32);
2505 cqicb->lbq_buf_size = cpu_to_le32(rx_ring->lbq_buf_size);
2506 bq_len = (u16) rx_ring->lbq_len;
2507 cqicb->lbq_len = cpu_to_le16(bq_len);
2508 rx_ring->lbq_prod_idx = rx_ring->lbq_len - 16;
2509 rx_ring->lbq_curr_idx = 0;
2510 rx_ring->lbq_clean_idx = rx_ring->lbq_prod_idx;
2511 rx_ring->lbq_free_cnt = 16;
2512 }
2513 if (rx_ring->sbq_len) {
2514 cqicb->flags |= FLAGS_LS; /* Load sbq values */
2515 *((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma;
2516 cqicb->sbq_addr_lo =
2517 cpu_to_le32(rx_ring->sbq_base_indirect_dma);
2518 cqicb->sbq_addr_hi =
2519 cpu_to_le32((u64) rx_ring->sbq_base_indirect_dma >> 32);
2520 cqicb->sbq_buf_size =
2521 cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8);
2522 bq_len = (u16) rx_ring->sbq_len;
2523 cqicb->sbq_len = cpu_to_le16(bq_len);
2524 rx_ring->sbq_prod_idx = rx_ring->sbq_len - 16;
2525 rx_ring->sbq_curr_idx = 0;
2526 rx_ring->sbq_clean_idx = rx_ring->sbq_prod_idx;
2527 rx_ring->sbq_free_cnt = 16;
2528 }
2529 switch (rx_ring->type) {
2530 case TX_Q:
2531 /* If there's only one interrupt, then we use
2532 * worker threads to process the outbound
2533 * completion handling rx_rings. We do this so
2534 * they can be run on multiple CPUs. There is
2535 * room to play with this more where we would only
2536 * run in a worker if there are more than x number
2537 * of outbound completions on the queue and more
2538 * than one queue active. Some threshold that
2539 * would indicate a benefit in spite of the cost
2540 * of a context switch.
2541 * If there's more than one interrupt, then the
2542 * outbound completions are processed in the ISR.
2543 */
2544 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
2545 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2546 else {
2547 /* With all debug warnings on we see a WARN_ON message
2548 * when we free the skb in the interrupt context.
2549 */
2550 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2551 }
2552 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
2553 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
2554 break;
2555 case DEFAULT_Q:
2556 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
2557 cqicb->irq_delay = 0;
2558 cqicb->pkt_delay = 0;
2559 break;
2560 case RX_Q:
2561 /* Inbound completion handling rx_rings run in
2562 * separate NAPI contexts.
2563 */
2564 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
2565 64);
2566 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
2567 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
2568 break;
2569 default:
2570 QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
2571 rx_ring->type);
2572 }
2573 QPRINTK(qdev, IFUP, INFO, "Initializing rx work queue.\n");
2574 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
2575 CFG_LCQ, rx_ring->cq_id);
2576 if (err) {
2577 QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
2578 return err;
2579 }
2580 QPRINTK(qdev, IFUP, INFO, "Successfully loaded CQICB.\n");
2581 /*
2582 * Advance the producer index for the buffer queues.
2583 */
2584 wmb();
2585 if (rx_ring->lbq_len)
2586 ql_write_db_reg(rx_ring->lbq_prod_idx,
2587 rx_ring->lbq_prod_idx_db_reg);
2588 if (rx_ring->sbq_len)
2589 ql_write_db_reg(rx_ring->sbq_prod_idx,
2590 rx_ring->sbq_prod_idx_db_reg);
2591 return err;
2592}
2593
2594static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2595{
2596 struct wqicb *wqicb = (struct wqicb *)tx_ring;
2597 void __iomem *doorbell_area =
2598 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
2599 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
2600 (tx_ring->wq_id * sizeof(u64));
2601 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
2602 (tx_ring->wq_id * sizeof(u64));
2603 int err = 0;
2604
2605 /*
2606 * Assign doorbell registers for this tx_ring.
2607 */
2608 /* TX PCI doorbell mem area for tx producer index */
2609 tx_ring->prod_idx_db_reg = (u32 *) doorbell_area;
2610 tx_ring->prod_idx = 0;
2611 /* TX PCI doorbell mem area + 0x04 */
2612 tx_ring->valid_db_reg = doorbell_area + 0x04;
2613
2614 /*
2615 * Assign shadow registers for this tx_ring.
2616 */
2617 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
2618 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
2619
2620 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
2621 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
2622 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
2623 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
2624 wqicb->rid = 0;
2625 wqicb->addr_lo = cpu_to_le32(tx_ring->wq_base_dma);
2626 wqicb->addr_hi = cpu_to_le32((u64) tx_ring->wq_base_dma >> 32);
2627
2628 wqicb->cnsmr_idx_addr_lo = cpu_to_le32(tx_ring->cnsmr_idx_sh_reg_dma);
2629 wqicb->cnsmr_idx_addr_hi =
2630 cpu_to_le32((u64) tx_ring->cnsmr_idx_sh_reg_dma >> 32);
2631
2632 ql_init_tx_ring(qdev, tx_ring);
2633
2634 err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
2635 (u16) tx_ring->wq_id);
2636 if (err) {
2637 QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
2638 return err;
2639 }
2640 QPRINTK(qdev, IFUP, INFO, "Successfully loaded WQICB.\n");
2641 return err;
2642}
2643
2644static void ql_disable_msix(struct ql_adapter *qdev)
2645{
2646 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2647 pci_disable_msix(qdev->pdev);
2648 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
2649 kfree(qdev->msi_x_entry);
2650 qdev->msi_x_entry = NULL;
2651 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
2652 pci_disable_msi(qdev->pdev);
2653 clear_bit(QL_MSI_ENABLED, &qdev->flags);
2654 }
2655}
2656
2657static void ql_enable_msix(struct ql_adapter *qdev)
2658{
2659 int i;
2660
2661 qdev->intr_count = 1;
2662 /* Get the MSIX vectors. */
2663 if (irq_type == MSIX_IRQ) {
2664 /* Try to alloc space for the msix struct,
2665 * if it fails then go to MSI/legacy.
2666 */
2667 qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
2668 sizeof(struct msix_entry),
2669 GFP_KERNEL);
2670 if (!qdev->msi_x_entry) {
2671 irq_type = MSI_IRQ;
2672 goto msi;
2673 }
2674
2675 for (i = 0; i < qdev->rx_ring_count; i++)
2676 qdev->msi_x_entry[i].entry = i;
2677
2678 if (!pci_enable_msix
2679 (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
2680 set_bit(QL_MSIX_ENABLED, &qdev->flags);
2681 qdev->intr_count = qdev->rx_ring_count;
2682 QPRINTK(qdev, IFUP, INFO,
2683 "MSI-X Enabled, got %d vectors.\n",
2684 qdev->intr_count);
2685 return;
2686 } else {
2687 kfree(qdev->msi_x_entry);
2688 qdev->msi_x_entry = NULL;
2689 QPRINTK(qdev, IFUP, WARNING,
2690 "MSI-X Enable failed, trying MSI.\n");
2691 irq_type = MSI_IRQ;
2692 }
2693 }
2694msi:
2695 if (irq_type == MSI_IRQ) {
2696 if (!pci_enable_msi(qdev->pdev)) {
2697 set_bit(QL_MSI_ENABLED, &qdev->flags);
2698 QPRINTK(qdev, IFUP, INFO,
2699 "Running with MSI interrupts.\n");
2700 return;
2701 }
2702 }
2703 irq_type = LEG_IRQ;
2704 spin_lock_init(&qdev->legacy_lock);
2705 qdev->legacy_check = ql_legacy_check;
2706 QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
2707}
2708
2709/*
2710 * Here we build the intr_context structures based on
2711 * our rx_ring count and intr vector count.
2712 * The intr_context structure is used to hook each vector
2713 * to possibly different handlers.
2714 */
2715static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
2716{
2717 int i = 0;
2718 struct intr_context *intr_context = &qdev->intr_context[0];
2719
2720 ql_enable_msix(qdev);
2721
2722 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2723 /* Each rx_ring has it's
2724 * own intr_context since we have separate
2725 * vectors for each queue.
2726 * This only true when MSI-X is enabled.
2727 */
2728 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2729 qdev->rx_ring[i].irq = i;
2730 intr_context->intr = i;
2731 intr_context->qdev = qdev;
2732 /*
2733 * We set up each vectors enable/disable/read bits so
2734 * there's no bit/mask calculations in the critical path.
2735 */
2736 intr_context->intr_en_mask =
2737 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2738 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
2739 | i;
2740 intr_context->intr_dis_mask =
2741 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2742 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
2743 INTR_EN_IHD | i;
2744 intr_context->intr_read_mask =
2745 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2746 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
2747 i;
2748
2749 if (i == 0) {
2750 /*
2751 * Default queue handles bcast/mcast plus
2752 * async events. Needs buffers.
2753 */
2754 intr_context->handler = qlge_isr;
2755 sprintf(intr_context->name, "%s-default-queue",
2756 qdev->ndev->name);
2757 } else if (i < qdev->rss_ring_first_cq_id) {
2758 /*
2759 * Outbound queue is for outbound completions only.
2760 */
2761 intr_context->handler = qlge_msix_tx_isr;
2762 sprintf(intr_context->name, "%s-txq-%d",
2763 qdev->ndev->name, i);
2764 } else {
2765 /*
2766 * Inbound queues handle unicast frames only.
2767 */
2768 intr_context->handler = qlge_msix_rx_isr;
2769 sprintf(intr_context->name, "%s-rxq-%d",
2770 qdev->ndev->name, i);
2771 }
2772 }
2773 } else {
2774 /*
2775 * All rx_rings use the same intr_context since
2776 * there is only one vector.
2777 */
2778 intr_context->intr = 0;
2779 intr_context->qdev = qdev;
2780 /*
2781 * We set up each vectors enable/disable/read bits so
2782 * there's no bit/mask calculations in the critical path.
2783 */
2784 intr_context->intr_en_mask =
2785 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
2786 intr_context->intr_dis_mask =
2787 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2788 INTR_EN_TYPE_DISABLE;
2789 intr_context->intr_read_mask =
2790 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
2791 /*
2792 * Single interrupt means one handler for all rings.
2793 */
2794 intr_context->handler = qlge_isr;
2795 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
2796 for (i = 0; i < qdev->rx_ring_count; i++)
2797 qdev->rx_ring[i].irq = 0;
2798 }
2799}
2800
2801static void ql_free_irq(struct ql_adapter *qdev)
2802{
2803 int i;
2804 struct intr_context *intr_context = &qdev->intr_context[0];
2805
2806 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2807 if (intr_context->hooked) {
2808 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2809 free_irq(qdev->msi_x_entry[i].vector,
2810 &qdev->rx_ring[i]);
2811 QPRINTK(qdev, IFDOWN, ERR,
2812 "freeing msix interrupt %d.\n", i);
2813 } else {
2814 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
2815 QPRINTK(qdev, IFDOWN, ERR,
2816 "freeing msi interrupt %d.\n", i);
2817 }
2818 }
2819 }
2820 ql_disable_msix(qdev);
2821}
2822
2823static int ql_request_irq(struct ql_adapter *qdev)
2824{
2825 int i;
2826 int status = 0;
2827 struct pci_dev *pdev = qdev->pdev;
2828 struct intr_context *intr_context = &qdev->intr_context[0];
2829
2830 ql_resolve_queues_to_irqs(qdev);
2831
2832 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2833 atomic_set(&intr_context->irq_cnt, 0);
2834 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2835 status = request_irq(qdev->msi_x_entry[i].vector,
2836 intr_context->handler,
2837 0,
2838 intr_context->name,
2839 &qdev->rx_ring[i]);
2840 if (status) {
2841 QPRINTK(qdev, IFUP, ERR,
2842 "Failed request for MSIX interrupt %d.\n",
2843 i);
2844 goto err_irq;
2845 } else {
2846 QPRINTK(qdev, IFUP, INFO,
2847 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2848 i,
2849 qdev->rx_ring[i].type ==
2850 DEFAULT_Q ? "DEFAULT_Q" : "",
2851 qdev->rx_ring[i].type ==
2852 TX_Q ? "TX_Q" : "",
2853 qdev->rx_ring[i].type ==
2854 RX_Q ? "RX_Q" : "", intr_context->name);
2855 }
2856 } else {
2857 QPRINTK(qdev, IFUP, DEBUG,
2858 "trying msi or legacy interrupts.\n");
2859 QPRINTK(qdev, IFUP, DEBUG,
2860 "%s: irq = %d.\n", __func__, pdev->irq);
2861 QPRINTK(qdev, IFUP, DEBUG,
2862 "%s: context->name = %s.\n", __func__,
2863 intr_context->name);
2864 QPRINTK(qdev, IFUP, DEBUG,
2865 "%s: dev_id = 0x%p.\n", __func__,
2866 &qdev->rx_ring[0]);
2867 status =
2868 request_irq(pdev->irq, qlge_isr,
2869 test_bit(QL_MSI_ENABLED,
2870 &qdev->
2871 flags) ? 0 : IRQF_SHARED,
2872 intr_context->name, &qdev->rx_ring[0]);
2873 if (status)
2874 goto err_irq;
2875
2876 QPRINTK(qdev, IFUP, ERR,
2877 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2878 i,
2879 qdev->rx_ring[0].type ==
2880 DEFAULT_Q ? "DEFAULT_Q" : "",
2881 qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
2882 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
2883 intr_context->name);
2884 }
2885 intr_context->hooked = 1;
2886 }
2887 return status;
2888err_irq:
2889 QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
2890 ql_free_irq(qdev);
2891 return status;
2892}
2893
2894static int ql_start_rss(struct ql_adapter *qdev)
2895{
2896 struct ricb *ricb = &qdev->ricb;
2897 int status = 0;
2898 int i;
2899 u8 *hash_id = (u8 *) ricb->hash_cq_id;
2900
2901 memset((void *)ricb, 0, sizeof(ricb));
2902
2903 ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
2904 ricb->flags =
2905 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
2906 RSS_RT6);
2907 ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
2908
2909 /*
2910 * Fill out the Indirection Table.
2911 */
2912 for (i = 0; i < 32; i++)
2913 hash_id[i] = i & 1;
2914
2915 /*
2916 * Random values for the IPv6 and IPv4 Hash Keys.
2917 */
2918 get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
2919 get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
2920
2921 QPRINTK(qdev, IFUP, INFO, "Initializing RSS.\n");
2922
2923 status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
2924 if (status) {
2925 QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
2926 return status;
2927 }
2928 QPRINTK(qdev, IFUP, INFO, "Successfully loaded RICB.\n");
2929 return status;
2930}
2931
2932/* Initialize the frame-to-queue routing. */
2933static int ql_route_initialize(struct ql_adapter *qdev)
2934{
2935 int status = 0;
2936 int i;
2937
2938 /* Clear all the entries in the routing table. */
2939 for (i = 0; i < 16; i++) {
2940 status = ql_set_routing_reg(qdev, i, 0, 0);
2941 if (status) {
2942 QPRINTK(qdev, IFUP, ERR,
2943 "Failed to init routing register for CAM packets.\n");
2944 return status;
2945 }
2946 }
2947
2948 status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
2949 if (status) {
2950 QPRINTK(qdev, IFUP, ERR,
2951 "Failed to init routing register for error packets.\n");
2952 return status;
2953 }
2954 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
2955 if (status) {
2956 QPRINTK(qdev, IFUP, ERR,
2957 "Failed to init routing register for broadcast packets.\n");
2958 return status;
2959 }
2960 /* If we have more than one inbound queue, then turn on RSS in the
2961 * routing block.
2962 */
2963 if (qdev->rss_ring_count > 1) {
2964 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
2965 RT_IDX_RSS_MATCH, 1);
2966 if (status) {
2967 QPRINTK(qdev, IFUP, ERR,
2968 "Failed to init routing register for MATCH RSS packets.\n");
2969 return status;
2970 }
2971 }
2972
2973 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
2974 RT_IDX_CAM_HIT, 1);
2975 if (status) {
2976 QPRINTK(qdev, IFUP, ERR,
2977 "Failed to init routing register for CAM packets.\n");
2978 return status;
2979 }
2980 return status;
2981}
2982
2983static int ql_adapter_initialize(struct ql_adapter *qdev)
2984{
2985 u32 value, mask;
2986 int i;
2987 int status = 0;
2988
2989 /*
2990 * Set up the System register to halt on errors.
2991 */
2992 value = SYS_EFE | SYS_FAE;
2993 mask = value << 16;
2994 ql_write32(qdev, SYS, mask | value);
2995
2996 /* Set the default queue. */
2997 value = NIC_RCV_CFG_DFQ;
2998 mask = NIC_RCV_CFG_DFQ_MASK;
2999 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3000
3001 /* Set the MPI interrupt to enabled. */
3002 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3003
3004 /* Enable the function, set pagesize, enable error checking. */
3005 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3006 FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
3007
3008 /* Set/clear header splitting. */
3009 mask = FSC_VM_PAGESIZE_MASK |
3010 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3011 ql_write32(qdev, FSC, mask | value);
3012
3013 ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
3014 min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
3015
3016 /* Start up the rx queues. */
3017 for (i = 0; i < qdev->rx_ring_count; i++) {
3018 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3019 if (status) {
3020 QPRINTK(qdev, IFUP, ERR,
3021 "Failed to start rx ring[%d].\n", i);
3022 return status;
3023 }
3024 }
3025
3026 /* If there is more than one inbound completion queue
3027 * then download a RICB to configure RSS.
3028 */
3029 if (qdev->rss_ring_count > 1) {
3030 status = ql_start_rss(qdev);
3031 if (status) {
3032 QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
3033 return status;
3034 }
3035 }
3036
3037 /* Start up the tx queues. */
3038 for (i = 0; i < qdev->tx_ring_count; i++) {
3039 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3040 if (status) {
3041 QPRINTK(qdev, IFUP, ERR,
3042 "Failed to start tx ring[%d].\n", i);
3043 return status;
3044 }
3045 }
3046
3047 status = ql_port_initialize(qdev);
3048 if (status) {
3049 QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
3050 return status;
3051 }
3052
3053 status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
3054 MAC_ADDR_TYPE_CAM_MAC, qdev->func);
3055 if (status) {
3056 QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
3057 return status;
3058 }
3059
3060 status = ql_route_initialize(qdev);
3061 if (status) {
3062 QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
3063 return status;
3064 }
3065
3066 /* Start NAPI for the RSS queues. */
3067 for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
3068 QPRINTK(qdev, IFUP, INFO, "Enabling NAPI for rx_ring[%d].\n",
3069 i);
3070 napi_enable(&qdev->rx_ring[i].napi);
3071 }
3072
3073 return status;
3074}
3075
3076/* Issue soft reset to chip. */
3077static int ql_adapter_reset(struct ql_adapter *qdev)
3078{
3079 u32 value;
3080 int max_wait_time;
3081 int status = 0;
3082 int resetCnt = 0;
3083
3084#define MAX_RESET_CNT 1
3085issueReset:
3086 resetCnt++;
3087 QPRINTK(qdev, IFDOWN, DEBUG, "Issue soft reset to chip.\n");
3088 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3089 /* Wait for reset to complete. */
3090 max_wait_time = 3;
3091 QPRINTK(qdev, IFDOWN, DEBUG, "Wait %d seconds for reset to complete.\n",
3092 max_wait_time);
3093 do {
3094 value = ql_read32(qdev, RST_FO);
3095 if ((value & RST_FO_FR) == 0)
3096 break;
3097
3098 ssleep(1);
3099 } while ((--max_wait_time));
3100 if (value & RST_FO_FR) {
3101 QPRINTK(qdev, IFDOWN, ERR,
3102 "Stuck in SoftReset: FSC_SR:0x%08x\n", value);
3103 if (resetCnt < MAX_RESET_CNT)
3104 goto issueReset;
3105 }
3106 if (max_wait_time == 0) {
3107 status = -ETIMEDOUT;
3108 QPRINTK(qdev, IFDOWN, ERR,
3109 "ETIMEOUT!!! errored out of resetting the chip!\n");
3110 }
3111
3112 return status;
3113}
3114
3115static void ql_display_dev_info(struct net_device *ndev)
3116{
3117 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3118
3119 QPRINTK(qdev, PROBE, INFO,
3120 "Function #%d, NIC Roll %d, NIC Rev = %d, "
3121 "XG Roll = %d, XG Rev = %d.\n",
3122 qdev->func,
3123 qdev->chip_rev_id & 0x0000000f,
3124 qdev->chip_rev_id >> 4 & 0x0000000f,
3125 qdev->chip_rev_id >> 8 & 0x0000000f,
3126 qdev->chip_rev_id >> 12 & 0x0000000f);
3127 QPRINTK(qdev, PROBE, INFO,
3128 "MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
3129 ndev->dev_addr[0], ndev->dev_addr[1],
3130 ndev->dev_addr[2], ndev->dev_addr[3], ndev->dev_addr[4],
3131 ndev->dev_addr[5]);
3132}
3133
3134static int ql_adapter_down(struct ql_adapter *qdev)
3135{
3136 struct net_device *ndev = qdev->ndev;
3137 int i, status = 0;
3138 struct rx_ring *rx_ring;
3139
3140 netif_stop_queue(ndev);
3141 netif_carrier_off(ndev);
3142
3143 cancel_delayed_work_sync(&qdev->asic_reset_work);
3144 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3145 cancel_delayed_work_sync(&qdev->mpi_work);
3146
3147 /* The default queue at index 0 is always processed in
3148 * a workqueue.
3149 */
3150 cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
3151
3152 /* The rest of the rx_rings are processed in
3153 * a workqueue only if it's a single interrupt
3154 * environment (MSI/Legacy).
3155 */
3156 for (i = 1; i > qdev->rx_ring_count; i++) {
3157 rx_ring = &qdev->rx_ring[i];
3158 /* Only the RSS rings use NAPI on multi irq
3159 * environment. Outbound completion processing
3160 * is done in interrupt context.
3161 */
3162 if (i >= qdev->rss_ring_first_cq_id) {
3163 napi_disable(&rx_ring->napi);
3164 } else {
3165 cancel_delayed_work_sync(&rx_ring->rx_work);
3166 }
3167 }
3168
3169 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3170
3171 ql_disable_interrupts(qdev);
3172
3173 ql_tx_ring_clean(qdev);
3174
3175 spin_lock(&qdev->hw_lock);
3176 status = ql_adapter_reset(qdev);
3177 if (status)
3178 QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
3179 qdev->func);
3180 spin_unlock(&qdev->hw_lock);
3181 return status;
3182}
3183
3184static int ql_adapter_up(struct ql_adapter *qdev)
3185{
3186 int err = 0;
3187
3188 spin_lock(&qdev->hw_lock);
3189 err = ql_adapter_initialize(qdev);
3190 if (err) {
3191 QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
3192 spin_unlock(&qdev->hw_lock);
3193 goto err_init;
3194 }
3195 spin_unlock(&qdev->hw_lock);
3196 set_bit(QL_ADAPTER_UP, &qdev->flags);
3197 ql_enable_interrupts(qdev);
3198 ql_enable_all_completion_interrupts(qdev);
3199 if ((ql_read32(qdev, STS) & qdev->port_init)) {
3200 netif_carrier_on(qdev->ndev);
3201 netif_start_queue(qdev->ndev);
3202 }
3203
3204 return 0;
3205err_init:
3206 ql_adapter_reset(qdev);
3207 return err;
3208}
3209
3210static int ql_cycle_adapter(struct ql_adapter *qdev)
3211{
3212 int status;
3213
3214 status = ql_adapter_down(qdev);
3215 if (status)
3216 goto error;
3217
3218 status = ql_adapter_up(qdev);
3219 if (status)
3220 goto error;
3221
3222 return status;
3223error:
3224 QPRINTK(qdev, IFUP, ALERT,
3225 "Driver up/down cycle failed, closing device\n");
3226 rtnl_lock();
3227 dev_close(qdev->ndev);
3228 rtnl_unlock();
3229 return status;
3230}
3231
3232static void ql_release_adapter_resources(struct ql_adapter *qdev)
3233{
3234 ql_free_mem_resources(qdev);
3235 ql_free_irq(qdev);
3236}
3237
3238static int ql_get_adapter_resources(struct ql_adapter *qdev)
3239{
3240 int status = 0;
3241
3242 if (ql_alloc_mem_resources(qdev)) {
3243 QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
3244 return -ENOMEM;
3245 }
3246 status = ql_request_irq(qdev);
3247 if (status)
3248 goto err_irq;
3249 return status;
3250err_irq:
3251 ql_free_mem_resources(qdev);
3252 return status;
3253}
3254
3255static int qlge_close(struct net_device *ndev)
3256{
3257 struct ql_adapter *qdev = netdev_priv(ndev);
3258
3259 /*
3260 * Wait for device to recover from a reset.
3261 * (Rarely happens, but possible.)
3262 */
3263 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3264 msleep(1);
3265 ql_adapter_down(qdev);
3266 ql_release_adapter_resources(qdev);
3267 ql_free_ring_cb(qdev);
3268 return 0;
3269}
3270
3271static int ql_configure_rings(struct ql_adapter *qdev)
3272{
3273 int i;
3274 struct rx_ring *rx_ring;
3275 struct tx_ring *tx_ring;
3276 int cpu_cnt = num_online_cpus();
3277
3278 /*
3279 * For each processor present we allocate one
3280 * rx_ring for outbound completions, and one
3281 * rx_ring for inbound completions. Plus there is
3282 * always the one default queue. For the CPU
3283 * counts we end up with the following rx_rings:
3284 * rx_ring count =
3285 * one default queue +
3286 * (CPU count * outbound completion rx_ring) +
3287 * (CPU count * inbound (RSS) completion rx_ring)
3288 * To keep it simple we limit the total number of
3289 * queues to < 32, so we truncate CPU to 8.
3290 * This limitation can be removed when requested.
3291 */
3292
3293 if (cpu_cnt > 8)
3294 cpu_cnt = 8;
3295
3296 /*
3297 * rx_ring[0] is always the default queue.
3298 */
3299 /* Allocate outbound completion ring for each CPU. */
3300 qdev->tx_ring_count = cpu_cnt;
3301 /* Allocate inbound completion (RSS) ring for each CPU. */
3302 qdev->rss_ring_count = cpu_cnt;
3303 /* cq_id for the first inbound ring handler. */
3304 qdev->rss_ring_first_cq_id = cpu_cnt + 1;
3305 /*
3306 * qdev->rx_ring_count:
3307 * Total number of rx_rings. This includes the one
3308 * default queue, a number of outbound completion
3309 * handler rx_rings, and the number of inbound
3310 * completion handler rx_rings.
3311 */
3312 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
3313
3314 if (ql_alloc_ring_cb(qdev))
3315 return -ENOMEM;
3316
3317 for (i = 0; i < qdev->tx_ring_count; i++) {
3318 tx_ring = &qdev->tx_ring[i];
3319 memset((void *)tx_ring, 0, sizeof(tx_ring));
3320 tx_ring->qdev = qdev;
3321 tx_ring->wq_id = i;
3322 tx_ring->wq_len = qdev->tx_ring_size;
3323 tx_ring->wq_size =
3324 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
3325
3326 /*
3327 * The completion queue ID for the tx rings start
3328 * immediately after the default Q ID, which is zero.
3329 */
3330 tx_ring->cq_id = i + 1;
3331 }
3332
3333 for (i = 0; i < qdev->rx_ring_count; i++) {
3334 rx_ring = &qdev->rx_ring[i];
3335 memset((void *)rx_ring, 0, sizeof(rx_ring));
3336 rx_ring->qdev = qdev;
3337 rx_ring->cq_id = i;
3338 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
3339 if (i == 0) { /* Default queue at index 0. */
3340 /*
3341 * Default queue handles bcast/mcast plus
3342 * async events. Needs buffers.
3343 */
3344 rx_ring->cq_len = qdev->rx_ring_size;
3345 rx_ring->cq_size =
3346 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3347 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3348 rx_ring->lbq_size =
3349 rx_ring->lbq_len * sizeof(struct bq_element);
3350 rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3351 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3352 rx_ring->sbq_size =
3353 rx_ring->sbq_len * sizeof(struct bq_element);
3354 rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3355 rx_ring->type = DEFAULT_Q;
3356 } else if (i < qdev->rss_ring_first_cq_id) {
3357 /*
3358 * Outbound queue handles outbound completions only.
3359 */
3360 /* outbound cq is same size as tx_ring it services. */
3361 rx_ring->cq_len = qdev->tx_ring_size;
3362 rx_ring->cq_size =
3363 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3364 rx_ring->lbq_len = 0;
3365 rx_ring->lbq_size = 0;
3366 rx_ring->lbq_buf_size = 0;
3367 rx_ring->sbq_len = 0;
3368 rx_ring->sbq_size = 0;
3369 rx_ring->sbq_buf_size = 0;
3370 rx_ring->type = TX_Q;
3371 } else { /* Inbound completions (RSS) queues */
3372 /*
3373 * Inbound queues handle unicast frames only.
3374 */
3375 rx_ring->cq_len = qdev->rx_ring_size;
3376 rx_ring->cq_size =
3377 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3378 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3379 rx_ring->lbq_size =
3380 rx_ring->lbq_len * sizeof(struct bq_element);
3381 rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3382 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3383 rx_ring->sbq_size =
3384 rx_ring->sbq_len * sizeof(struct bq_element);
3385 rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3386 rx_ring->type = RX_Q;
3387 }
3388 }
3389 return 0;
3390}
3391
3392static int qlge_open(struct net_device *ndev)
3393{
3394 int err = 0;
3395 struct ql_adapter *qdev = netdev_priv(ndev);
3396
3397 err = ql_configure_rings(qdev);
3398 if (err)
3399 return err;
3400
3401 err = ql_get_adapter_resources(qdev);
3402 if (err)
3403 goto error_up;
3404
3405 err = ql_adapter_up(qdev);
3406 if (err)
3407 goto error_up;
3408
3409 return err;
3410
3411error_up:
3412 ql_release_adapter_resources(qdev);
3413 ql_free_ring_cb(qdev);
3414 return err;
3415}
3416
3417static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
3418{
3419 struct ql_adapter *qdev = netdev_priv(ndev);
3420
3421 if (ndev->mtu == 1500 && new_mtu == 9000) {
3422 QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
3423 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
3424 QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
3425 } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
3426 (ndev->mtu == 9000 && new_mtu == 9000)) {
3427 return 0;
3428 } else
3429 return -EINVAL;
3430 ndev->mtu = new_mtu;
3431 return 0;
3432}
3433
3434static struct net_device_stats *qlge_get_stats(struct net_device
3435 *ndev)
3436{
3437 struct ql_adapter *qdev = netdev_priv(ndev);
3438 return &qdev->stats;
3439}
3440
3441static void qlge_set_multicast_list(struct net_device *ndev)
3442{
3443 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3444 struct dev_mc_list *mc_ptr;
3445 int i;
3446
3447 spin_lock(&qdev->hw_lock);
3448 /*
3449 * Set or clear promiscuous mode if a
3450 * transition is taking place.
3451 */
3452 if (ndev->flags & IFF_PROMISC) {
3453 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3454 if (ql_set_routing_reg
3455 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
3456 QPRINTK(qdev, HW, ERR,
3457 "Failed to set promiscous mode.\n");
3458 } else {
3459 set_bit(QL_PROMISCUOUS, &qdev->flags);
3460 }
3461 }
3462 } else {
3463 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3464 if (ql_set_routing_reg
3465 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
3466 QPRINTK(qdev, HW, ERR,
3467 "Failed to clear promiscous mode.\n");
3468 } else {
3469 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3470 }
3471 }
3472 }
3473
3474 /*
3475 * Set or clear all multicast mode if a
3476 * transition is taking place.
3477 */
3478 if ((ndev->flags & IFF_ALLMULTI) ||
3479 (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
3480 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
3481 if (ql_set_routing_reg
3482 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
3483 QPRINTK(qdev, HW, ERR,
3484 "Failed to set all-multi mode.\n");
3485 } else {
3486 set_bit(QL_ALLMULTI, &qdev->flags);
3487 }
3488 }
3489 } else {
3490 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
3491 if (ql_set_routing_reg
3492 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
3493 QPRINTK(qdev, HW, ERR,
3494 "Failed to clear all-multi mode.\n");
3495 } else {
3496 clear_bit(QL_ALLMULTI, &qdev->flags);
3497 }
3498 }
3499 }
3500
3501 if (ndev->mc_count) {
3502 for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
3503 i++, mc_ptr = mc_ptr->next)
3504 if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
3505 MAC_ADDR_TYPE_MULTI_MAC, i)) {
3506 QPRINTK(qdev, HW, ERR,
3507 "Failed to loadmulticast address.\n");
3508 goto exit;
3509 }
3510 if (ql_set_routing_reg
3511 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
3512 QPRINTK(qdev, HW, ERR,
3513 "Failed to set multicast match mode.\n");
3514 } else {
3515 set_bit(QL_ALLMULTI, &qdev->flags);
3516 }
3517 }
3518exit:
3519 spin_unlock(&qdev->hw_lock);
3520}
3521
3522static int qlge_set_mac_address(struct net_device *ndev, void *p)
3523{
3524 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3525 struct sockaddr *addr = p;
3526
3527 if (netif_running(ndev))
3528 return -EBUSY;
3529
3530 if (!is_valid_ether_addr(addr->sa_data))
3531 return -EADDRNOTAVAIL;
3532 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3533
3534 spin_lock(&qdev->hw_lock);
3535 if (ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
3536 MAC_ADDR_TYPE_CAM_MAC, qdev->func)) {/* Unicast */
3537 QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
3538 return -1;
3539 }
3540 spin_unlock(&qdev->hw_lock);
3541
3542 return 0;
3543}
3544
3545static void qlge_tx_timeout(struct net_device *ndev)
3546{
3547 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3548 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
3549}
3550
3551static void ql_asic_reset_work(struct work_struct *work)
3552{
3553 struct ql_adapter *qdev =
3554 container_of(work, struct ql_adapter, asic_reset_work.work);
3555 ql_cycle_adapter(qdev);
3556}
3557
3558static void ql_get_board_info(struct ql_adapter *qdev)
3559{
3560 qdev->func =
3561 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
3562 if (qdev->func) {
3563 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
3564 qdev->port_link_up = STS_PL1;
3565 qdev->port_init = STS_PI1;
3566 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
3567 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
3568 } else {
3569 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
3570 qdev->port_link_up = STS_PL0;
3571 qdev->port_init = STS_PI0;
3572 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
3573 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
3574 }
3575 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
3576}
3577
3578static void ql_release_all(struct pci_dev *pdev)
3579{
3580 struct net_device *ndev = pci_get_drvdata(pdev);
3581 struct ql_adapter *qdev = netdev_priv(ndev);
3582
3583 if (qdev->workqueue) {
3584 destroy_workqueue(qdev->workqueue);
3585 qdev->workqueue = NULL;
3586 }
3587 if (qdev->q_workqueue) {
3588 destroy_workqueue(qdev->q_workqueue);
3589 qdev->q_workqueue = NULL;
3590 }
3591 if (qdev->reg_base)
3592 iounmap((void *)qdev->reg_base);
3593 if (qdev->doorbell_area)
3594 iounmap(qdev->doorbell_area);
3595 pci_release_regions(pdev);
3596 pci_set_drvdata(pdev, NULL);
3597}
3598
3599static int __devinit ql_init_device(struct pci_dev *pdev,
3600 struct net_device *ndev, int cards_found)
3601{
3602 struct ql_adapter *qdev = netdev_priv(ndev);
3603 int pos, err = 0;
3604 u16 val16;
3605
3606 memset((void *)qdev, 0, sizeof(qdev));
3607 err = pci_enable_device(pdev);
3608 if (err) {
3609 dev_err(&pdev->dev, "PCI device enable failed.\n");
3610 return err;
3611 }
3612
3613 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
3614 if (pos <= 0) {
3615 dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
3616 "aborting.\n");
3617 goto err_out;
3618 } else {
3619 pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
3620 val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
3621 val16 |= (PCI_EXP_DEVCTL_CERE |
3622 PCI_EXP_DEVCTL_NFERE |
3623 PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
3624 pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
3625 }
3626
3627 err = pci_request_regions(pdev, DRV_NAME);
3628 if (err) {
3629 dev_err(&pdev->dev, "PCI region request failed.\n");
3630 goto err_out;
3631 }
3632
3633 pci_set_master(pdev);
3634 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3635 set_bit(QL_DMA64, &qdev->flags);
3636 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3637 } else {
3638 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3639 if (!err)
3640 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3641 }
3642
3643 if (err) {
3644 dev_err(&pdev->dev, "No usable DMA configuration.\n");
3645 goto err_out;
3646 }
3647
3648 pci_set_drvdata(pdev, ndev);
3649 qdev->reg_base =
3650 ioremap_nocache(pci_resource_start(pdev, 1),
3651 pci_resource_len(pdev, 1));
3652 if (!qdev->reg_base) {
3653 dev_err(&pdev->dev, "Register mapping failed.\n");
3654 err = -ENOMEM;
3655 goto err_out;
3656 }
3657
3658 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
3659 qdev->doorbell_area =
3660 ioremap_nocache(pci_resource_start(pdev, 3),
3661 pci_resource_len(pdev, 3));
3662 if (!qdev->doorbell_area) {
3663 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
3664 err = -ENOMEM;
3665 goto err_out;
3666 }
3667
3668 ql_get_board_info(qdev);
3669 qdev->ndev = ndev;
3670 qdev->pdev = pdev;
3671 qdev->msg_enable = netif_msg_init(debug, default_msg);
3672 spin_lock_init(&qdev->hw_lock);
3673 spin_lock_init(&qdev->stats_lock);
3674
3675 /* make sure the EEPROM is good */
3676 err = ql_get_flash_params(qdev);
3677 if (err) {
3678 dev_err(&pdev->dev, "Invalid FLASH.\n");
3679 goto err_out;
3680 }
3681
3682 if (!is_valid_ether_addr(qdev->flash.mac_addr))
3683 goto err_out;
3684
3685 memcpy(ndev->dev_addr, qdev->flash.mac_addr, ndev->addr_len);
3686 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3687
3688 /* Set up the default ring sizes. */
3689 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
3690 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
3691
3692 /* Set up the coalescing parameters. */
3693 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
3694 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
3695 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3696 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3697
3698 /*
3699 * Set up the operating parameters.
3700 */
3701 qdev->rx_csum = 1;
3702
3703 qdev->q_workqueue = create_workqueue(ndev->name);
3704 qdev->workqueue = create_singlethread_workqueue(ndev->name);
3705 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
3706 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
3707 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
3708
3709 if (!cards_found) {
3710 dev_info(&pdev->dev, "%s\n", DRV_STRING);
3711 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
3712 DRV_NAME, DRV_VERSION);
3713 }
3714 return 0;
3715err_out:
3716 ql_release_all(pdev);
3717 pci_disable_device(pdev);
3718 return err;
3719}
3720
3721static int __devinit qlge_probe(struct pci_dev *pdev,
3722 const struct pci_device_id *pci_entry)
3723{
3724 struct net_device *ndev = NULL;
3725 struct ql_adapter *qdev = NULL;
3726 static int cards_found = 0;
3727 int err = 0;
3728
3729 ndev = alloc_etherdev(sizeof(struct ql_adapter));
3730 if (!ndev)
3731 return -ENOMEM;
3732
3733 err = ql_init_device(pdev, ndev, cards_found);
3734 if (err < 0) {
3735 free_netdev(ndev);
3736 return err;
3737 }
3738
3739 qdev = netdev_priv(ndev);
3740 SET_NETDEV_DEV(ndev, &pdev->dev);
3741 ndev->features = (0
3742 | NETIF_F_IP_CSUM
3743 | NETIF_F_SG
3744 | NETIF_F_TSO
3745 | NETIF_F_TSO6
3746 | NETIF_F_TSO_ECN
3747 | NETIF_F_HW_VLAN_TX
3748 | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
3749
3750 if (test_bit(QL_DMA64, &qdev->flags))
3751 ndev->features |= NETIF_F_HIGHDMA;
3752
3753 /*
3754 * Set up net_device structure.
3755 */
3756 ndev->tx_queue_len = qdev->tx_ring_size;
3757 ndev->irq = pdev->irq;
3758 ndev->open = qlge_open;
3759 ndev->stop = qlge_close;
3760 ndev->hard_start_xmit = qlge_send;
3761 SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
3762 ndev->change_mtu = qlge_change_mtu;
3763 ndev->get_stats = qlge_get_stats;
3764 ndev->set_multicast_list = qlge_set_multicast_list;
3765 ndev->set_mac_address = qlge_set_mac_address;
3766 ndev->tx_timeout = qlge_tx_timeout;
3767 ndev->watchdog_timeo = 10 * HZ;
3768 ndev->vlan_rx_register = ql_vlan_rx_register;
3769 ndev->vlan_rx_add_vid = ql_vlan_rx_add_vid;
3770 ndev->vlan_rx_kill_vid = ql_vlan_rx_kill_vid;
3771 err = register_netdev(ndev);
3772 if (err) {
3773 dev_err(&pdev->dev, "net device registration failed.\n");
3774 ql_release_all(pdev);
3775 pci_disable_device(pdev);
3776 return err;
3777 }
3778 netif_carrier_off(ndev);
3779 netif_stop_queue(ndev);
3780 ql_display_dev_info(ndev);
3781 cards_found++;
3782 return 0;
3783}
3784
3785static void __devexit qlge_remove(struct pci_dev *pdev)
3786{
3787 struct net_device *ndev = pci_get_drvdata(pdev);
3788 unregister_netdev(ndev);
3789 ql_release_all(pdev);
3790 pci_disable_device(pdev);
3791 free_netdev(ndev);
3792}
3793
3794/*
3795 * This callback is called by the PCI subsystem whenever
3796 * a PCI bus error is detected.
3797 */
3798static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
3799 enum pci_channel_state state)
3800{
3801 struct net_device *ndev = pci_get_drvdata(pdev);
3802 struct ql_adapter *qdev = netdev_priv(ndev);
3803
3804 if (netif_running(ndev))
3805 ql_adapter_down(qdev);
3806
3807 pci_disable_device(pdev);
3808
3809 /* Request a slot reset. */
3810 return PCI_ERS_RESULT_NEED_RESET;
3811}
3812
3813/*
3814 * This callback is called after the PCI buss has been reset.
3815 * Basically, this tries to restart the card from scratch.
3816 * This is a shortened version of the device probe/discovery code,
3817 * it resembles the first-half of the () routine.
3818 */
3819static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
3820{
3821 struct net_device *ndev = pci_get_drvdata(pdev);
3822 struct ql_adapter *qdev = netdev_priv(ndev);
3823
3824 if (pci_enable_device(pdev)) {
3825 QPRINTK(qdev, IFUP, ERR,
3826 "Cannot re-enable PCI device after reset.\n");
3827 return PCI_ERS_RESULT_DISCONNECT;
3828 }
3829
3830 pci_set_master(pdev);
3831
3832 netif_carrier_off(ndev);
3833 netif_stop_queue(ndev);
3834 ql_adapter_reset(qdev);
3835
3836 /* Make sure the EEPROM is good */
3837 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3838
3839 if (!is_valid_ether_addr(ndev->perm_addr)) {
3840 QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
3841 return PCI_ERS_RESULT_DISCONNECT;
3842 }
3843
3844 return PCI_ERS_RESULT_RECOVERED;
3845}
3846
3847static void qlge_io_resume(struct pci_dev *pdev)
3848{
3849 struct net_device *ndev = pci_get_drvdata(pdev);
3850 struct ql_adapter *qdev = netdev_priv(ndev);
3851
3852 pci_set_master(pdev);
3853
3854 if (netif_running(ndev)) {
3855 if (ql_adapter_up(qdev)) {
3856 QPRINTK(qdev, IFUP, ERR,
3857 "Device initialization failed after reset.\n");
3858 return;
3859 }
3860 }
3861
3862 netif_device_attach(ndev);
3863}
3864
3865static struct pci_error_handlers qlge_err_handler = {
3866 .error_detected = qlge_io_error_detected,
3867 .slot_reset = qlge_io_slot_reset,
3868 .resume = qlge_io_resume,
3869};
3870
3871static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
3872{
3873 struct net_device *ndev = pci_get_drvdata(pdev);
3874 struct ql_adapter *qdev = netdev_priv(ndev);
3875 int err;
3876
3877 netif_device_detach(ndev);
3878
3879 if (netif_running(ndev)) {
3880 err = ql_adapter_down(qdev);
3881 if (!err)
3882 return err;
3883 }
3884
3885 err = pci_save_state(pdev);
3886 if (err)
3887 return err;
3888
3889 pci_disable_device(pdev);
3890
3891 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3892
3893 return 0;
3894}
3895
3896static int qlge_resume(struct pci_dev *pdev)
3897{
3898 struct net_device *ndev = pci_get_drvdata(pdev);
3899 struct ql_adapter *qdev = netdev_priv(ndev);
3900 int err;
3901
3902 pci_set_power_state(pdev, PCI_D0);
3903 pci_restore_state(pdev);
3904 err = pci_enable_device(pdev);
3905 if (err) {
3906 QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
3907 return err;
3908 }
3909 pci_set_master(pdev);
3910
3911 pci_enable_wake(pdev, PCI_D3hot, 0);
3912 pci_enable_wake(pdev, PCI_D3cold, 0);
3913
3914 if (netif_running(ndev)) {
3915 err = ql_adapter_up(qdev);
3916 if (err)
3917 return err;
3918 }
3919
3920 netif_device_attach(ndev);
3921
3922 return 0;
3923}
3924
3925static void qlge_shutdown(struct pci_dev *pdev)
3926{
3927 qlge_suspend(pdev, PMSG_SUSPEND);
3928}
3929
3930static struct pci_driver qlge_driver = {
3931 .name = DRV_NAME,
3932 .id_table = qlge_pci_tbl,
3933 .probe = qlge_probe,
3934 .remove = __devexit_p(qlge_remove),
3935#ifdef CONFIG_PM
3936 .suspend = qlge_suspend,
3937 .resume = qlge_resume,
3938#endif
3939 .shutdown = qlge_shutdown,
3940 .err_handler = &qlge_err_handler
3941};
3942
3943static int __init qlge_init_module(void)
3944{
3945 return pci_register_driver(&qlge_driver);
3946}
3947
3948static void __exit qlge_exit(void)
3949{
3950 pci_unregister_driver(&qlge_driver);
3951}
3952
3953module_init(qlge_init_module);
3954module_exit(qlge_exit);
diff --git a/drivers/net/qlge/qlge_mpi.c b/drivers/net/qlge/qlge_mpi.c
new file mode 100644
index 000000000000..24fe344bcf1f
--- /dev/null
+++ b/drivers/net/qlge/qlge_mpi.c
@@ -0,0 +1,150 @@
1#include "qlge.h"
2
3static int ql_read_mbox_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
4{
5 int status;
6 /* wait for reg to come ready */
7 status = ql_wait_reg_rdy(qdev, PROC_ADDR, PROC_ADDR_RDY, PROC_ADDR_ERR);
8 if (status)
9 goto exit;
10 /* set up for reg read */
11 ql_write32(qdev, PROC_ADDR, reg | PROC_ADDR_R);
12 /* wait for reg to come ready */
13 status = ql_wait_reg_rdy(qdev, PROC_ADDR, PROC_ADDR_RDY, PROC_ADDR_ERR);
14 if (status)
15 goto exit;
16 /* get the data */
17 *data = ql_read32(qdev, PROC_DATA);
18exit:
19 return status;
20}
21
22int ql_get_mb_sts(struct ql_adapter *qdev, struct mbox_params *mbcp)
23{
24 int i, status;
25
26 status = ql_sem_spinlock(qdev, SEM_PROC_REG_MASK);
27 if (status)
28 return -EBUSY;
29 for (i = 0; i < mbcp->out_count; i++) {
30 status =
31 ql_read_mbox_reg(qdev, qdev->mailbox_out + i,
32 &mbcp->mbox_out[i]);
33 if (status) {
34 QPRINTK(qdev, DRV, ERR, "Failed mailbox read.\n");
35 break;
36 }
37 }
38 ql_sem_unlock(qdev, SEM_PROC_REG_MASK); /* does flush too */
39 return status;
40}
41
42static void ql_link_up(struct ql_adapter *qdev, struct mbox_params *mbcp)
43{
44 mbcp->out_count = 2;
45
46 if (ql_get_mb_sts(qdev, mbcp))
47 goto exit;
48
49 qdev->link_status = mbcp->mbox_out[1];
50 QPRINTK(qdev, DRV, ERR, "Link Up.\n");
51 QPRINTK(qdev, DRV, INFO, "Link Status = 0x%.08x.\n", mbcp->mbox_out[1]);
52 if (!netif_carrier_ok(qdev->ndev)) {
53 QPRINTK(qdev, LINK, INFO, "Link is Up.\n");
54 netif_carrier_on(qdev->ndev);
55 netif_wake_queue(qdev->ndev);
56 }
57exit:
58 /* Clear the MPI firmware status. */
59 ql_write32(qdev, CSR, CSR_CMD_CLR_R2PCI_INT);
60}
61
62static void ql_link_down(struct ql_adapter *qdev, struct mbox_params *mbcp)
63{
64 mbcp->out_count = 3;
65
66 if (ql_get_mb_sts(qdev, mbcp)) {
67 QPRINTK(qdev, DRV, ERR, "Firmware did not initialize!\n");
68 goto exit;
69 }
70
71 if (netif_carrier_ok(qdev->ndev)) {
72 QPRINTK(qdev, LINK, INFO, "Link is Down.\n");
73 netif_carrier_off(qdev->ndev);
74 netif_stop_queue(qdev->ndev);
75 }
76 QPRINTK(qdev, DRV, ERR, "Link Down.\n");
77 QPRINTK(qdev, DRV, ERR, "Link Status = 0x%.08x.\n", mbcp->mbox_out[1]);
78exit:
79 /* Clear the MPI firmware status. */
80 ql_write32(qdev, CSR, CSR_CMD_CLR_R2PCI_INT);
81}
82
83static void ql_init_fw_done(struct ql_adapter *qdev, struct mbox_params *mbcp)
84{
85 mbcp->out_count = 2;
86
87 if (ql_get_mb_sts(qdev, mbcp)) {
88 QPRINTK(qdev, DRV, ERR, "Firmware did not initialize!\n");
89 goto exit;
90 }
91 QPRINTK(qdev, DRV, ERR, "Firmware initialized!\n");
92 QPRINTK(qdev, DRV, ERR, "Firmware status = 0x%.08x.\n",
93 mbcp->mbox_out[0]);
94 QPRINTK(qdev, DRV, ERR, "Firmware Revision = 0x%.08x.\n",
95 mbcp->mbox_out[1]);
96exit:
97 /* Clear the MPI firmware status. */
98 ql_write32(qdev, CSR, CSR_CMD_CLR_R2PCI_INT);
99}
100
101void ql_mpi_work(struct work_struct *work)
102{
103 struct ql_adapter *qdev =
104 container_of(work, struct ql_adapter, mpi_work.work);
105 struct mbox_params mbc;
106 struct mbox_params *mbcp = &mbc;
107 mbcp->out_count = 1;
108
109 while (ql_read32(qdev, STS) & STS_PI) {
110 if (ql_get_mb_sts(qdev, mbcp)) {
111 QPRINTK(qdev, DRV, ERR,
112 "Could not read MPI, resetting ASIC!\n");
113 ql_queue_asic_error(qdev);
114 }
115
116 switch (mbcp->mbox_out[0]) {
117 case AEN_LINK_UP:
118 ql_link_up(qdev, mbcp);
119 break;
120 case AEN_LINK_DOWN:
121 ql_link_down(qdev, mbcp);
122 break;
123 case AEN_FW_INIT_DONE:
124 ql_init_fw_done(qdev, mbcp);
125 break;
126 case MB_CMD_STS_GOOD:
127 break;
128 case AEN_FW_INIT_FAIL:
129 case AEN_SYS_ERR:
130 case MB_CMD_STS_ERR:
131 ql_queue_fw_error(qdev);
132 default:
133 /* Clear the MPI firmware status. */
134 ql_write32(qdev, CSR, CSR_CMD_CLR_R2PCI_INT);
135 break;
136 }
137 }
138 ql_enable_completion_interrupt(qdev, 0);
139}
140
141void ql_mpi_reset_work(struct work_struct *work)
142{
143 struct ql_adapter *qdev =
144 container_of(work, struct ql_adapter, mpi_reset_work.work);
145 QPRINTK(qdev, DRV, ERR,
146 "Enter, qdev = %p..\n", qdev);
147 ql_write32(qdev, CSR, CSR_CMD_SET_RST);
148 msleep(50);
149 ql_write32(qdev, CSR, CSR_CMD_CLR_RST);
150}